0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTC2057HVIDD#PBF

LTC2057HVIDD#PBF

  • 厂商:

    LINEAR(凌力尔特)

  • 封装:

    DFN8_3X3MM_EP

  • 描述:

    高电压、低噪声零漂运算放大器

  • 数据手册
  • 价格&库存
LTC2057HVIDD#PBF 数据手册
LTC2057/LTC2057HV High Voltage, Low Noise Zero-Drift Operational Amplifier Description Features Supply Voltage Range n 4.75V to 36V (LTC2057) n 4.75V to 60V (LTC2057HV) n Offset Voltage: 4μV (Maximum) n Offset Voltage Drift: 0.015μV/°C (Maximum, –40°C to 125°C) n Input Noise Voltage n 200nVP-P, DC to 10Hz (Typ) n 11nV/√Hz, 1kHz (Typ) n Input Common Mode Range: V– – 0.1V to V+ – 1.5V n Rail-to-Rail Output n Unity Gain Stable n Gain Bandwidth Product: 1.5MHz (Typ) n Slew Rate: 0.45V/μs (Typ) n A VOL: 150dB (Typ) n PSRR: 160dB (Typ) n CMRR: 150dB (Typ) n Shutdown Mode n Applications n n n n n n n n The LTC®2057 is a high voltage, low noise, zero-drift operational amplifier that offers precision DC performance over a wide supply range of 4.75V to 36V or 4.75V to 60V for the LTC2057HV. Offset voltage and 1/f noise are suppressed, allowing this amplifier to achieve a maximum offset voltage of 4μV and a DC to 10Hz input noise voltage of 200nVP-P (typ). The LTC2057’s self-calibrating circuitry results in low offset voltage drift with temperature, 0.015μV/°C (max), and zero-drift over time. The amplifier also features an excellent power supply rejection ratio (PSRR) of 160dB and a common mode rejection ratio (CMRR) of 150dB (typ). The LTC2057 provides rail-to-rail output swing and an input common mode range that includes the V– rail (V– – 0.1V to V+ – 1.5V). In addition to low offset and noise, this amplifier features a 1.5MHz (typ) gain-bandwidth product and a 0.45V/μs (typ) slew rate. Wide supply range, combined with low noise, low offset, and excellent PSRR and CMRR make the LTC2057 and LTC2057HV well suited for high dynamic-range test, measurement, and instrumentation systems. High Resolution Data Acquisition Reference Buffering Test and Measurement Electronic Scales Thermocouple Amplifiers Strain Gauges Low-Side Current Sense Automotive Monitors and Control L, LT, LTC, LTM, Linear Technology, Over-The-Top, and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Typical Application Wide Input Range Precision Gain-of-100 Instrumentation Amplifier Input Offset Voltage vs Supply Voltage 30V –IN 5 + 5 TYPICAL UNITS 4 VCM = VS /2 T = 25°C 3 A LTC2057HV – 18V 232Ω 11.5k 11.5k 30V – LTC2057HV +IN + 8 M9 9 M3 10 M1 1 P1 2 P3 3 P9 2 7 VOS (µV) –30V VCC LT1991A VEE 4 –18V OUT 6 VOUT REF 5 1 0 –1 –2 –3 –4 –5 2057 TA01a INPUT CM RANGE = ±28V WITH 4V OF OUTPUT SWING CMRR = 130dB (TYP), INPUT OFFSET VOLTAGE = 1µV (TYP) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 VS (V) 2057 TA01b –30V 2057f For more information www.linear.com/LTC2057 1 LTC2057/LTC2057HV Absolute Maximum Ratings (Note 1) Total Supply Voltage (V+ to V–) LTC2057 ...............................................................40V LTC2057HV............................................................65V Input Voltage –IN, +IN.................................... V– – 0.3V to V+ + 0.3V SD, SDCOM ............................. V– – 0.3V to V+ + 0.3V Input Current –IN, +IN............................................................ ±10mA SD, SDCOM...................................................... ±10mA Differential Input Voltage –IN – +IN��������������������������������������������������������������±6V SD – SDCOM......................................... –0.3V to 5.3V Output Short-Circuit Duration........................... Indefinite Operating Temperature Range (Note 2) LTC2057I/LTC2057HVI.........................–40°C to 85°C LTC2057H/LTC2057HVH.................... –40°C to 125°C Storage Temperature Range................... –65°C to 150°C Lead Temperature (Soldering, 10 sec).................... 300°C Pin Configuration TOP VIEW SD 1 –IN 2 +IN 3 V– 4 – + 9 V– 8 SDCOM TOP VIEW 7 V+ SD –IN +IN V– 6 OUT 5 NC 1 2 3 4 – + 8 7 6 5 SDCOM V+ OUT NC MS8 PACKAGE 8-LEAD PLASTIC MSOP TJMAX = 150°C, θJA = 163°C/W DD PACKAGE 8-LEAD (3mm × 3mm) PLASTIC DFN TJMAX = 150°C, θJA = 43°C/W EXPOSED PAD (PIN 9) IS V– PCB CONNECTION REQUIRED TOP VIEW SD 1 –IN 2 +IN 3 V– 4 – + 8 SDCOM 7 V+ 6 OUT 5 NC TOP VIEW GRD –IN +IN GRD V– 1 2 3 4 5 – + 10 9 8 7 6 SD SDCOM V+ NC OUT MS PACKAGE 10-LEAD PLASTIC MSOP TJMAX = 150°C, θJA = 160°C/W S8 PACKAGE 8-LEAD PLASTIC SO TJMAX = 150°C, θJA = 120°C/W 2057f 2 For more information www.linear.com/LTC2057 LTC2057/LTC2057HV Order Information LEAD FREE FINISH TAPE AND REEL PART MARKING* PACKAGE DESCRIPTION TEMPERATURE RANGE LTC2057IDD#PBF LTC2057IDD#TRPBF LGCZ 8-Lead Plastic DFN (3mm × 3mm) –40°C to 85°C LTC2057HVIDD#PBF LTC2057HVIDD#TRPBF LGDB 8-Lead Plastic DFN (3mm × 3mm) –40°C to 85°C LTC2057HDD#PBF LTC2057HDD#TRPBF LGCZ 8-Lead Plastic DFN (3mm × 3mm) –40°C to 125°C LTC2057HVHDD#PBF LTC2057HVHDD#TRPBF LGDB 8-Lead Plastic DFN (3mm × 3mm) –40°C to 125°C LTC2057IMS8#PBF LTC2057IMS8#TRPBF LTFGK 8-Lead Plastic MSOP –40°C to 85°C LTC2057HVIMS8#PBF LTC2057HVIMS8#TRPBF LTGDC 8-Lead Plastic MSOP –40°C to 85°C LTC2057HMS8#PBF LTC2057HMS8#TRPBF LTFGK 8-Lead Plastic MSOP –40°C to 125°C LTC2057HVHMS8#PBF LTC2057HVHMS8#TRPBF LTGDC 8-Lead Plastic MSOP –40°C to 125°C LTC2057IMS#PBF LTC2057IMS#TRPBF LTGCX 10-Lead Plastic MSOP –40°C to 85°C LTC2057HVIMS#PBF LTC2057HVIMS#TRPBF LTGCY 10-Lead Plastic MSOP –40°C to 85°C LTC2057HMS#PBF LTC2057HMS#TRPBF LTGCX 10-Lead Plastic MSOP –40°C to 125°C LTC2057HVHMS#PBF LTC2057HVHMS#TRPBF LTGCY 10-Lead Plastic MSOP –40°C to 125°C LTC2057IS8#PBF LTC2057IS8#TRPBF 2057 8-Lead Plastic Small Outline –40°C to 85°C LTC2057HVIS8#PBF LTC2057HVIS8#TRPBF 2057HV 8-Lead Plastic Small Outline –40°C to 85°C LTC2057HS8#PBF LTC2057HS8#TRPBF 2057 8-Lead Plastic Small Outline –40°C to 125°C LTC2057HVHS8#PBF LTC2057HVHS8#TRPBF 2057HV 8-Lead Plastic Small Outline –40°C to 125°C Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ 2057f For more information www.linear.com/LTC2057 3 LTC2057/LTC2057HV Electrical Characteristics (LTC2057/LTC2057HV) The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. Unless otherwise noted, VS = ±2.5V; VCM = VOUT = 0V. SYMBOL VOS ∆VOS/∆T IB IOS in en en P-P CIN CMRR PSRR AVOL VOL – V– V+ – VOH ISC SRRISE SRFALL GBW fC IS VSDL VSDH ISD ISDCOM PARAMETER CONDITIONS Input Offset Voltage (Note 3) Average Input Offset Voltage Drift (Note 3) –40°C to 125°C Input Bias Current (Note 4) –40°C to 85°C –40°C to 125°C Input Offset Current (Note 4) –40°C to 85°C –40°C to 125°C Input Noise Current Spectral Density 1kHz Input Noise Voltage Spectral Density 1kHz Input Noise Voltage DC to 10Hz Differential Input Capacitance Common Mode Input Capacitance Common Mode Rejection Ratio (Note 5) VCM = V– – 0.1V to V+ – 1.5V –40°C to 125°C Power Supply Rejection Ratio (Note 5) VS = 4.75V to 36V –40°C to 125°C Open Loop Voltage Gain (Note 5) VOUT = V – +0.2V to V+ –0.2V, RL =1kΩ –40°C to 125°C Output Voltage Swing Low No Load –40°C to 125°C ISINK = 1mA –40°C to 125°C ISINK = 5mA –40°C to 85°C –40°C to 125°C Output Voltage Swing High No Load –40°C to 125°C ISOURCE = 1mA –40°C to 125°C ISOURCE = 5mA –40°C to 85°C –40°C to 125°C Short Circuit Current Rising Slew Rate AV = –1, RL = 10kΩ Falling Slew Rate AV = –1, RL = 10kΩ Gain Bandwidth Product Internal Chopping Frequency Supply Current No Load –40°C to 85°C –40°C to 125°C In Shutdown Mode –40°C to 85°C –40°C to 125°C Shutdown Threshold (SD – SDCOM) Low –40°C to 125°C Shutdown Threshold (SD – SDCOM) High –40°C to 125°C SDCOM Voltage Range –40°C to 125°C SD Pin Current –40°C to 125°C, VSD – VSDCOM = 0 SDCOM Pin Current –40°C to 125°C, VSD – VSDCOM = 0 MIN TYP 0.5 l 30 l l 60 l l l l l 114 111 133 129 118 117 170 11 200 3 3 150 160 150 0.2 l 35 l 180 l l 0.2 l 50 l 250 l l 17 26 1.2 0.45 1.5 100 0.8 l l 2.5 l l l l l l l 2 V– –2 MAX 4 0.015 200 300 3.5 400 460 1.0 10 15 60 90 270 365 415 10 15 75 115 345 470 535 1.21 1.50 1.70 5.6 6.5 0.8 V+ –2V –0.5 0.5 2 UNITS μV μV/°C pA pA nA pA pA nA fA/√Hz nV/√Hz nVP-P pF pF dB dB dB dB dB dB mV mV mV mV mV mV mV mV mV mV mV mV mV mV mA V/μs V/μs MHz kHz mA mA mA μA μA μA V V V μA μA 2057f 4 For more information www.linear.com/LTC2057 LTC2057/LTC2057HV Electrical Characteristics (LTC2057/LTC2057HV) The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. Unless otherwise noted, VS = ±15V; VCM = VOUT = 0V. SYMBOL VOS ∆VOS/∆T IB IOS in en en P-P CIN CMRR PSRR AVOL VOL – V– V+ – VOH ISC SRRISE SRFALL GBW fC IS VSDL VSDH ISD ISDCOM PARAMETER Input Offset Voltage (Note 3) Average Input Offset Voltage Drift (Note 3) Input Bias Current (Note 4) Input Offset Current (Note 4) Input Noise Current Spectral Density Input Noise Voltage Spectral Density Input Noise Voltage Differential Input Capacitance Common Mode Input Capacitance Common Mode Rejection Ratio (Note 5) CONDITIONS –40°C to 125°C l –40°C to 85°C –40°C to 125°C l l –40°C to 85°C –40°C to 125°C 1kHz 1kHz DC to 10Hz l l VCM = V– – 0.1V to V+ – 1.5V –40°C to 125°C VS = 4.75V to 36V –40°C to 125°C VOUT = V – +0.25V to V+ –0.25V, RL =10kΩ –40°C to 125°C No Load –40°C to 125°C ISINK = 1mA –40°C to 125°C ISINK = 5mA –40°C to 85°C –40°C to 125°C No Load –40°C to 125°C ISOURCE = 1mA –40°C to 125°C ISOURCE = 5mA –40°C to 85°C –40°C to 125°C Power Supply Rejection Ratio (Note 5) Open Loop Voltage Gain (Note 5) Output Voltage Swing Low Output Voltage Swing High Short Circuit Current Rising Slew Rate Falling Slew Rate Gain Bandwidth Product Internal Chopping Frequency Supply Current MIN 30 60 l l l 128 126 133 129 130 128 Shutdown Threshold (SD – SDCOM) Low Shutdown Threshold (SD – SDCOM) High SDCOM Voltage Range SD Pin Current SDCOM Pin Current 160 150 2 35 l 175 l l 3 l 50 l 235 l l AV = –1, RL = 10kΩ AV = –1, RL = 10kΩ 30 1.3 0.45 1.5 100 0.88 l l 3 l l l l l l l 2 V– –2.0 MAX 4.5 0.015 200 360 6.0 400 480 1.5 150 12 210 3 3 150 l 19 No Load –40°C to 85°C –40°C to 125°C In Shutdown Mode –40°C to 85°C –40°C to 125°C –40°C to 125°C –40°C to 125°C –40°C to 125°C –40°C to 125°C, VSD – VSDCOM = 0 –40°C to 125°C, VSD – VSDCOM = 0 TYP 0.5 12 45 60 100 255 360 435 15 45 75 125 335 465 560 1.35 1.65 1.83 8 9 0.8 V+ –2V –0.5 0.5 2 UNITS μV μV/°C pA pA nA pA pA nA fA/√Hz nV/√Hz nVP-P pF pF dB dB dB dB dB dB mV mV mV mV mV mV mV mV mV mV mV mV mV mV mA V/μs V/μs MHz kHz mA mA mA μA μA μA V V V µA µA 2057f For more information www.linear.com/LTC2057 5 LTC2057/LTC2057HV Electrical Characteristics (LTC2057HV) The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. Unless otherwise noted, VS = ±30V; VCM = VOUT = 0V. SYMBOL VOS ∆VOS/∆T IB VSDL PARAMETER CONDITIONS Input Offset Voltage (Note 3) Average Input Offset Voltage Drift (Note 3) –40°C to 125°C Input Bias Current (Note 4) –40°C to 85°C –40°C to 125°C Input Offset Current (Note 4) –40°C to 85°C –40°C to 125°C Input Noise Current Spectral Density 1kHz Input Noise Voltage Spectral Density 1kHz Input Noise Voltage DC to 10Hz Differential Input Capacitance Common Mode Input Capacitance Common Mode Rejection Ratio (Note 5) VCM = V– – 0.1V to V+ – 1.5V –40°C to 125°C Power Supply Rejection Ratio (Note 5) VS = 4.75V to 60V –40°C to 125°C Open Loop Voltage Gain (Note 5) VOUT = V– +0.25V to V+ – 0.25V, RL = 10kΩ –40°C to 125°C Output Voltage Swing Low No Load –40°C to 125°C ISINK = 1mA –40°C to 125°C ISINK = 5mA –40°C to 85°C –40°C to 125°C Output Voltage Swing High No Load –40°C to 125°C ISOURCE = 1mA –40°C to 125°C ISOURCE = 5mA –40°C to 85°C –40°C to 125°C Short Circuit Current Rising Slew Rate AV = –1, RL = 10kΩ Falling Slew Rate AV = –1, RL = 10kΩ Gain Bandwidth Product Internal Chopping Frequency Supply Current No Load –40°C to 85°C –40°C to 125°C In Shutdown Mode –40°C to 85°C –40°C to 125°C Shutdown Threshold (SD – SDCOM) Low –40°C to 125°C l VSDH Shutdown Threshold (SD – SDCOM) High –40°C to 125°C l 2 SDCOM Voltage Range –40°C to 125°C l V– ISD SD Pin Current –40°C to 125°C, VSD – VSDCOM = 0 l –2 ISDCOM SDCOM Pin Current –40°C to 125°C, VSD – VSDCOM = 0 l IOS in en en P-P CIN CMRR PSRR AVOL VOL – V– V+ – VOH ISC SRRISE SRFALL GBW fC IS MIN TYP 0.5 l 30 l l 60 l l l l l 133 131 138 136 135 130 130 13 220 3 3 150 160 150 3 l 35 l 175 l l 3 l 50 l 235 l l 19 MAX 5 0.025 200 455 11 400 500 3 30 1.3 0.45 1.5 100 0.90 l l 3 l l 15 45 60 105 260 370 445 15 45 75 130 335 475 575 1.40 1.73 1.92 9 11 0.8 UNITS μV μV/°C pA pA nA pA pA nA fA/√Hz nV/√Hz nVP-P pF pF dB dB dB dB dB dB mV mV mV mV mV mV mV mV mV mV mV mV mV mV mA V/μs V/μs MHz kHz mA mA mA μA μA μA V V V+ –2V –0.5 0.5 V µA 2 µA 2057f 6 For more information www.linear.com/LTC2057 LTC2057/LTC2057HV Electrical Characteristics Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTC2057I/LTC2057HVI are guaranteed to meet specified performance from –40°C to 85°C. The LTC2057H/LTC2057HVH are guaranteed to meet specified performance from –40°C to 125°C. Note 3: These parameters are guaranteed by design. Thermocouple effects preclude measurements of these voltage levels during automated testing. VOS is measured to a limit determined by test equipment capability. Note 4: These specifications are limited by automated test system capability. Leakage currents and thermocouple effects reduce test accuracy. For tighter specifications, please contact LTC Marketing. Note 5: Minimum specifications for these parameters are limited by the capabilities of the automated test system, which has an accuracy of approximately 10µV for VOS measurements. For reference, 10µV/60V is 136dB, 10µV/30V is 130dB, and 10µV/5V is 114dB. 2057f For more information www.linear.com/LTC2057 7 LTC2057/LTC2057HV Typical Performance Characteristics Input Offset Voltage Distribution 160 TYPICAL UNITS VS = ±2.5V µ = –0.441 µV σ = 0.452µV 30 25 20 15 10 25 20 15 10 0 –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3 VOS (µV) NUMBER OF AMPLIFIERS 80 70 60 50 40 30 20 60 50 40 30 20 0 0 5 7 10 9 11 13 15 17 19 VOS TC (nV/°C) 2057 G03 90 70 60 50 40 30 20 1 3 5 7 0 9 11 13 15 17 19 VOS TC (nV/°C) 5 5 2 2 2 5 TYPICAL UNITS 4 VS = 30V T = 25°C 3 A VOS (µV) 1 0 –1 1 –1 –2 –2 –3 –3 –3 –4 –4 –4 1 2 VCM (V) 3 4 5 2057 G07 –5 0 5 10 9 11 13 15 17 19 VOS TC (nV/°C) 0 –2 0 7 5 TYPICAL UNITS 4 VS = 60V T = 25°C 3 A VOS (µV) 5 TYPICAL UNITS 4 VS = 5V T = 25°C 3 A –1 5 Input Offset Voltage vs Input Common Mode Voltage 5 –5 3 2057 G06 Input Offset Voltage vs Input Common Mode Voltage –1 1 2057 G05 Input Offset Voltage vs Input Common Mode Voltage 1 160 TYPICAL UNITS VS = ±30V TA = –40°C TO 125°C µ = 1.32nV/°C σ = 1.26nV/°C 80 10 2057 G04 0 –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3 VOS (µV) Input Offset Voltage Drift Distribution 160 TYPICAL UNITS VS = ±15V TA = –40°C TO 125°C µ = 1.29nV/°C σ = 1.14nV/°C 70 10 3 15 0 –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3 VOS (µV) 80 10 1 20 5 NUMBER OF AMPLIFIERS 160 TYPICAL UNITS VS = ±2.5V TA = –40°C TO 125°C µ = 1.16nV/°C σ = 0.97nV/°C NUMBER OF AMPLIFIERS 90 25 Input Offset Voltage Drift Distribution Input Offset Voltage Drift Distribution 160 TYPICAL UNITS VS = ±30V µ = –0.507 µV σ = 0.548µV 30 2057 G02 2057 G01 VOS (µV) 35 5 5 0 Input Offset Voltage Distribution 160 TYPICAL UNITS VS = ±15V µ = –0.432 µV σ = 0.525µV 30 NUMBER OF AMPLIFIERS 35 NUMBER OF AMPLIFIERS 35 NUMBER OF AMPLIFIERS Input Offset Voltage Distribution 40 15 VCM (V) 20 25 30 2057 G08 –5 0 10 20 30 VCM (V) 40 50 60 2057 G09 2057f 8 For more information www.linear.com/LTC2057 LTC2057/LTC2057HV Typical Performance Characteristics Input Offset Voltage vs Supply Voltage Long-Term Input Offset Voltage Drift 5 100 40 TYPICAL UNITS 4 VS = ±2.5V 3 2 1 1 0 –1 0 –2 –3 –3 –4 –4 –5 0.1 100 10 TIME (HOURS) 1 1000 2057 G09 0.01 –50 –25 2057 G12 Input Bias Current vs Input Common Mode Voltage Input Bias Current vs Supply Voltage 50 VS = 5V 40 TA = 25°C 50 VS = 30V, 60V 40 TA = 25°C 20 10 10 IB (pA) 20 0 –10 IB (+IN) –20 IB (–IN), VS = 60V 30 IB (–IN) VCM = VS /2 40 TA = 25°C 30 IB (–IN), VS = 30V 0 IB (+IN), VS = 30V –10 IB (+IN), VS = 60V –20 10 0 –10 –30 –30 –40 –40 –40 –50 –50 1 1.5 2 2.5 3 VCM (V) 3.5 4 20 30 VCM (V) 40 50 60 –50 VS = ±2.5V 2057 G16 0 10 20 2057 G14 DC to 10Hz Voltage Noise INPUT-REFFERED VOLTAGE NOISE (100nV/DIV) INPUT-REFFERED VOLTAGE NOISE (100nV/DIV) 10 2057 G13 DC to 10Hz Voltage Noise TIME (1s/DIV) 0 40 30 VS (V) 50 60 70 2057 G15 Input Voltage Noise Spectrum 35 VS = ±30V 30 INPUT-REFERRED VOLTAGE NOISE DENSITY (nV/√Hz) 0.5 IB (+IN) –20 –30 0 IB (–IN) 20 IB (pA) 50 30 25 50 75 100 125 150 TEMPERATURE (°C) 0 2057 G10 Input Bias Current vs Input Common Mode Voltage IB (pA) 1 –1 –2 0 5 10 15 20 25 30 35 40 45 50 55 60 65 VS (V) VCM = 0V VS = ±2.5V VS = ±15V VS = ±30V 10 IB (nA) 2 VOS (µV) VOS (µV) 5 TYPICAL UNITS 4 VCM = VS /2 T = 25°C 3 A –5 Input Bias Current vs Temperature 5 AV = +11 VS = ±2.5V VS = ±30V 25 20 15 10 5 TIME (1s/DIV) 2057 G17 0 0.1 1 10 100 1k 10k 100k FREQUENCY (Hz) 1M 2057 G18 2057f For more information www.linear.com/LTC2057 9 LTC2057/LTC2057HV Typical Performance Characteristics Common Mode Rejection Ratio vs Frequency Input Current Noise Spectrum 120 AV = +11 VS = ±2.5V VS = ±30V 0.20 VS = 30V VCM = VS /2 100 80 0.15 CMRR (dB) INPUT-REFERRED CURRENT NOISE DENSITY (pA/√Hz) 0.25 0.10 60 40 0.05 0 20 0.1 1 10 100 FREQUENCY (Hz) 1k 0 100 10k 1000 1k 10k FREQUENCY (Hz) 100k 2057 G19 2057 G20 Power Supply Rejection Ratio vs Frequency 120 Closed Loop Gain vs Frequency 50 VS = 30V VCM = VS /2 80 PSRR (dB) +PSRR 60 40 –PSRR 20 0 VS = ±15V RL = 10kΩ AV = +100 40 CLOSED LOOP GAIN (dB) 100 30 AV = +10 20 10 0 –10 AV = +1 –20 –20 100 1k 10k 100k FREQUENCY (Hz) 1M –30 10M AV = –1 1k 10k 100k 1M FREQUENCY (Hz) 2057 G21 10M 2057 G22 Gain/Phase vs Frequency Gain/Phase vs Frequency 80 70 120 70 90 60 50 60 50 60 40 30 40 30 30 0 PHASE –30 10 –60 0 –90 –10 –20 –30 VS = ±2.5V RL = 1kΩ CL = 50pF CL = 200pF –40 10k 1M 100k FREQUENCY (Hz) 10M 2057 G23 150 120 PHASE 30 90 0 GAIN 20 –30 –60 10 PHASE (dB) GAIN 20 GAIN (dB) 150 PHASE (dB) 80 60 GAIN (dB) 1M –90 0 VS = ±30V RL = 1kΩ CL = 50pF CL = 200pF –120 –10 –150 –20 –180 –30 –210 –40 10k 1M 100k FREQUENCY (Hz) –120 –150 –180 10M –210 2057 G24 2057f 10 For more information www.linear.com/LTC2057 LTC2057/LTC2057HV Typical Performance Characteristics VS = ±2.5V, AV = +1 SD – SDCOM ISS VIN VOUT 3 2 1 0 0.3 0.2 0.1 0 –0.1 –10 10 0 20 30 TIME (µs) SD – SDCOM ISS VIN VOUT 2 1 0 0.4 0.3 0.2 0.1 0 –0.1 –0.2 50 40 VS = ±30V, AV = +1 3 –10 10 0 20 30 TIME (µs) 2057 G26 Start-Up Transient with Sinusoid Input 2 1 SD – SDCOM 0.4 ISS 0.3 VIN VOUT 0.2 0 0.1 0.1 –0.1 VS = ±2.5V AV = +1 10 –0.2 20 30 40 TIME (µs) 50 60 4 3 2 1 0 0.4 0.3 SD – SDCOM ISS VIN VOUT 0.2 0.1 0 –0.3 70 –10 0 10 –0.1 VS = ±30V –0.2 AV = +1 –0.3 50 60 70 20 30 40 TIME (µs) 2057 G27 Closed Loop Output Impedance vs Frequency Closed Loop Output Impedance vs Frequency 1000 VS = ±2.5V THD+N vs Amplitude 0.1 VS = ±30V 100 100 AV = +100 10 ZOUT (Ω) ZOUT (Ω) 2057 G28 AV = +10 1 0.01 10 THD+N (%) 1000 AV = +100 AV = +10 1 0.001 AV = +1 0.1 0.01 100 INPUT VOLTAGE (V) OUTPUT VOLTAGE (V) SD – SDCOM (V) SUPPLY CURRENT (mA) 4 3 INPUT VOLTAGE (V) OUTPUT VOLTAGE (V) SD – SDCOM (V) SUPPLY CURRENT (mA) Start-Up Transient with Sinusoid Input 0 –0.2 50 40 2057 G25 –10 INPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 0.4 4 SD – SDCOM (V) SUPPLY CURRENT (mA) 4 Shutdown Transient with Sinusoid Input INPUT VOLTAGE (V) OUTPUT VOLTAGE (V) SD – SDCOM (V) SUPPLY CURRENT (mA) Shutdown Transient with Sinusoid Input 1k 10k 100k FREQUENCY (Hz) AV = +1 0.1 1M 10M 2057 G29 0.01 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 2057 G30 fIN = 1kHz VS = ±15V AV = +1 RL = 10kΩ BW = 80kHz 0.0001 0.01 1 0.1 OUTPUT AMPLITUDE (VRMS) 10 2057 G31 2057f For more information www.linear.com/LTC2057 11 LTC2057/LTC2057HV Typical Performance Characteristics THD+N vs Frequency Supply Current vs Supply Voltage IS (mA) 25°C 0.8 –40°C 0.6 –55°C 0.2 0.2 2057 G32 1.4 8 150°C 5 125°C 4 3 85°C 25°C 2 –55°C 1 0 IS (mA) IS (µA) 6 0 VS = ±2.5V SDCOM = –2.5V 1.2 7 85°C 0.8 25°C 0 SHUTDOWN PIN CURRENT (µA) SHUTDOWN PIN CURRENT (µA) 0 ISD –50°C ISDCOM –50°C ISD 125°C ISDCOM 125°C –3 –4 –5 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 SD – SDCOM (V) SD = SDCOM = VS /2 0.8 –1 2057 G38 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 SD – SDCOM (V) 2057 G37 No Phase Reversal 20 ISDCOM 150°C 0.6 ISDCOM 25°C 0.4 ISDCOM –55°C 0.2 0 –0.2 ISD –55°C –0.4 ISD 25°C –0.6 ISD 150°C –1.0 0 10 5 0 –5 –15 5 10 15 20 25 30 35 40 45 50 55 60 VS (V) VIN VOUT 15 –10 –0.8 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 SD – SDCOM (V) –55°C 0.2 1.0 1 –40°C 0.4 Shutdown Pin Current vs Supply Voltage 2 25°C 0.8 2057 G36 VS = ±30V SDCOM = 0V 150 85°C 0.6 –55°C 0.2 –40°C 3 120 150°C 125°C 1.0 –40°C 0.6 VS = ±30V SDCOM = 0V 1.2 0.4 5 10 15 20 25 30 35 40 45 50 55 60 VS (V) –2 1.4 150°C 125°C 1.0 Shutdown Pin Current vs Shutdown Pin Voltage 4 0 30 60 90 TEMPERATURE (°C) Supply Current vs Shutdown Control Voltage 1.6 2057 G35 5 –30 2057 G34 Supply Current vs Shutdown Control Voltage SD = SDCOM = VS/2 9 0 –60 5 10 15 20 25 30 35 40 45 50 55 60 VS (V) 2057 G33 Shutdown Supply Current vs Supply Voltage 10 ±15V 0.6 0.4 0 ±2.5V 0.8 0.4 0 10000 ±30V 1.0 IS (mA) 1000 100 FREQUENCY (Hz) 1.2 85°C 1.0 THD+N (%) 10 150°C 125°C 1.2 0.001 0.0001 1.4 IS (mA) VOUT = 2VRMS VS = ±15V AV = +1 RL = 10kΩ BW = 80kHz 0.01 Supply Current vs Temperature 1.4 VOLTAGE (V) 0.1 –20 AV = +1 VS = ±15V VIN = ±16V RIN = 1kΩ 0.2mS/DIV 2057 G40 2057 G39 2057f 12 For more information www.linear.com/LTC2057 LTC2057/LTC2057HV Typical Performance Characteristics Output Voltage Swing High vs Load Current 100 VS = ±2.5V 150°C 25°C 0.1 0.01 0.1 1 ISOURCE (mA) 10 VS = ±2.5V 100 85°C 125°C 150°C 10m 25°C 0.01 0.1 1 ISINK (mA) 10 10 –40°C 0.1 25°C 0.01 0.1 1 ISINK (mA) 10 100 ISC (mA) SINKING 30 60 10 100 2057 G46 VS = ±30V SINKING 30 10 10 0 –50 –25 0 SOURCING 40 SOURCING 10 2057 G47 0.1 1 ISINK (mA) 50 20 25 50 75 100 125 150 TEMPERATURE (°C) 0.01 Short-Circuit Current vs Temperature 20 0 25°C –40°C 2057 G45 20 0 –50 –25 150°C 125°C 85°C 0.1m 0.001 VS = ±15V 40 SOURCING 2057 G43 VS = ±30V 1m 50 40 100 Output Voltage Swing Low vs Load Current Short-Circuit Current vs Temperature 50 10 10m 2057 G44 60 0.1 1 ISOURCE (mA) 1 150°C 125°C 85°C 0.1m 0.001 VS = ±2.5V 0.01 10 0.1 Short-Circuit Current vs Temperature 25°C –40°C 2057 G42 10m 100 85°C 0.1m 0.001 100 100 1m 0.1m 0.001 ISC (mA) 1 ISOURCE (mA) VS = ±15V 1 1m 30 0.1 10 –40°C 0.1 125°C 1m Output Voltage Swing Low vs Load Current VOL – V – (V) VOL – V – (V) 1 0.01 2057 G41 Output Voltage Swing Low vs Load Current 25°C –40°C 0.1m 0.001 100 150°C 0.1 10m 1m 0.1m 0.001 60 150°C 125°C 10m 1m 10 85°C 1 V+ – VOH (V) –40°C 10m 1 V+ – VOH (V) V+ – VOH (V) 85°C VS = ±30V 10 10 125°C 0.1 100 VS = ±15V VOL – V – (V) 1 Output Voltage Swing High vs Load Current ISC (mA) 10 Output Voltage Swing High vs Load Current 25 50 75 100 125 150 TEMPERATURE (°C) 2057 G48 SINKING 0 –50 –25 0 25 50 75 100 125 150 TEMPERATURE (°C) 2057 G49 2057f For more information www.linear.com/LTC2057 13 LTC2057/LTC2057HV Typical Performance Characteristics Large Signal Response Large Signal Response 0.6 6 VS = ±2.5V VIN = ±0.5V AV = +1 CL = 200pF 0.4 8 6 4 VOUT (V) 0 0 –0.2 –2 –0.4 –4 VS = ±30V VIN = ±10V AV = +1 CL = 200pF 10 2 VOUT (V) VOUT (V) VS = ±15V VIN = ±5V AV = +1 CL = 200pF 4 0.2 Large Signal Response 12 2 0 –2 –4 –6 –8 –10 –0.6 –4 –2 0 2 4 6 8 TIME (µs) –6 –10 10 12 14 16 0 10 20 30 40 50 TIME (µs) 60 70 2057 G50 Small Signal Response Small Signal Response 50 50 CL = 200pF 10 –10 –30 VS = ±2.5V VIN = ±50mV AV = +1 –2 –1 0 1 5 6 –70 7 –2 –1 0 1 2 3 4 TIME (µs) 5 40 VS = ±2.5V VIN = 100mV AV = +1 35 –70 7 +OS 15 10 40 VS = ±15V VIN = 100mV AV = +1 35 –OS 25 20 15 +OS 100 CL (pF) 1000 2057 G56 1 2 3 4 TIME (µs) 0 5 6 7 VS = ±30V VIN = 100mV AV = +1 25 20 15 +OS 10 –OS 5 10 0 30 10 5 –1 Small Signal Overshoot vs Load Capacitance OVERSHOOT (%) 20 –2 2057 G55 30 OVERSHOOT (%) OVERSHOOT (%) 30 0 6 Small Signal Overshoot vs Load Capacitance 25 VS = ±30V VIN = ±50mV AV = +1 2057 G54 Small Signal Overshoot vs Load Capacitance 35 –10 –50 2057 G53 40 10 –30 VS = ±15V VIN = ±50mV AV = +1 –50 2 3 4 TIME (µs) CL = 200pF 30 VOUT (mV) VOUT (mV) VOUT (mV) –30 –50 60 80 100 120 140 160 TIME (µs) Small Signal Response 30 –10 40 70 50 CL = 200pF 10 20 2057 G52 70 30 0 2057 G51 70 –70 –12 –20 80 –OS 5 10 100 CL (pF) 1000 2057 G57 0 10 100 CL (pF) 1000 2057 G58 2057f 14 For more information www.linear.com/LTC2057 LTC2057/LTC2057HV Typical Performance Characteristics Large Signal Settling Transient VIN (V) VIN (V) Large Signal Settling Transient 2 1 0 2 1 0 12 8 6 VIN 4 VOUT VOUT(AVG) 2 VOUT (mV) 6 VIN 4 VOUT VOUT(AVG) 2 8 0 0 –2 –2 –5 0 5 10 15 20 25 30 35 40 45 50 55 60 TIME (µs) –4 –5 0 5 10 15 20 25 30 35 40 45 50 55 60 TIME (µs) 2057 G59 VS = ±2.5V AV = –100 RF = 10kΩ CL = 100pF –0.5 Output Overload Recovery 1 0 VIN (V) VIN (V) VIN (V) VIN 0 2057 G60 Output Overload Recovery Output Overload Recovery 0.5 VIN –1 –5 0 5 0 –5 –3 –10 –6 –15 VS = ±15V AV = –100 –12 RF = 10kΩ CL = 100pF –15 –18 10 15 20 25 30 35 40 45 TIME (µs) VS = ±30V AV = –100 RF = 10kΩ CL = 100pF –10 0 Output Overload Recovery 1 0 VIN (V) VIN (V) VIN VIN –1 –30 2057 G63 Output Overload Recovery Output Overload Recovery –25 –35 10 20 30 40 50 60 70 80 90 TIME (µs) 2057 G62 0.5 –20 VOUT (V) VOUT (V) –1 2057 G61 VIN (V) VIN 0 –9 –3 10 20 30 40 50 60 70 80 TIME (µs) 0 0 –2 VOUT (V) 0 –2 –20 –10 0 2 VOUT VOUT VOUT VOUT (mV) AV = –1 RF = 10k VS = ±15V 10 AV = –1 RF = 10k VS = ±15V 10 2 0 VIN –2 –0.5 30 15 3 0 –1 10 20 30 40 50 60 70 80 TIME (µs) 2057 G64 VS = ±15V AV = –100 RF = 10kΩ CL = 100pF 6 VOUT 3 0 –3 –10 0 10 20 30 40 50 60 70 80 90 100 TIME (µs) 2057 G65 20 VOUT 15 10 VS = ±30V AV = –100 RF = 10kΩ CL = 100pF –20 0 20 VOUT (V) –10 0 1 VOUT 9 VOUT (V) VS = ±2.5V AV = –100 RF = 10kΩ CL = 100pF VOUT (V) 2 25 12 5 0 40 60 80 TIME (µs) –5 100 120 140 2057 G66 2057f For more information www.linear.com/LTC2057 15 LTC2057/LTC2057HV Pin Functions MS8 and S8/DD8 SD (Pin 1/Pin 1): Shutdown Control Pin. SDCOM (Pin 8/Pin 8): Reference Voltage for SD. –IN (Pin 2/Pin 2): Inverting Input. V+ (Pin 7/Pin 7): Positive Power Supply. +IN (Pin 3/Pin 3): Non-Inverting Input. OUT (Pin 6/Pin 6): Amplifier Output V– (Pin 4/Pin 4, 9): Negative Power Supply. NC (Pin 5/Pin 5): No Internal Connection. MS10 GRD (Pin 1): Guard Ring. No Internal Connection. SD (Pin 10): Shutdown Control Pin. –IN (Pin 2): Inverting Input. SDCOM (Pin 9): Reference Voltage for SD. +IN (Pin 3): Non-Inverting Input. V+ (Pin 8): Positive Power Supply. GRD (Pin 4): Guard Ring. No Internal Connection. NC (Pin 7): No Internal Connection. V– (Pin 5): Negative Power Supply. OUT (Pin 6): Amplifier Output. 2057f 16 For more information www.linear.com/LTC2057 LTC2057/LTC2057HV Block Diagrams Amplifier V+ 525Ω –IN V+ V+ – V– V OUT + + 525Ω +IN V– V– 2057 BD1 V– Shutdown Circuit V+ V+ 0.5µA 10k SD – V+ V– 5.25V VTH ≈ 1.4V 10k SDCOM –+ SD + 0.5µA V– 2057 BD2 V– 2057f For more information www.linear.com/LTC2057 17 LTC2057/LTC2057HV Applications Information Input Voltage Noise Chopper stabilized amplifiers like the LTC2057 achieve low offset and 1/f noise by heterodyning DC and flicker noise to higher frequencies. In a classical chopper stabilized amplifier, this process results in idle tones at the chopping frequency and its odd harmonics. The LTC2057 utilizes circuitry to suppress these spurious artifacts to well below the offset voltage. The typical ripple magnitude at 100kHz is much less than 1µVRMS. The voltage noise spectrum of the LTC2057 is shown in Figure 1. If lower noise is required, consider one of the following circuits from the Typical Applications section: "DC Stabilized, Ultralow Noise Amplifier" or "Paralleling Choppers to Improve Noise." 30 AV = +11 VS = ±2.5V AV = +11 VS = ±2.5 NO 1/f NOISE 0.20 0.15 0.01 0.05 0 0.1 10 100 FREQUENCY (Hz) 1 1k 10k 2057 F02 Figure 2. Input Current Noise Spectrum It is important to note that the current noise is not equal to 2qIB. This formula is relevant for base current in bipolar transistors and diode currents, but for most chopper and auto-zero amplifiers with switched inputs, the dominant current noise mechanism is not shot noise. 25 Input Bias Current 20 15 As illustrated in Figure 3, the LTC2057’s input bias current originates from two distinct mechanisms. Below 75°C, input bias current is nearly constant with temperature, and is caused by charge injection from the clocked input switches used in offset correction. NO 1/f NOISE 10 5 0 0.1 1 10 100 1k 10k 100k FREQUENCY (Hz) 1M 100 2057 F01 For applications with high source impedances, input current noise can be a significant contributor to total output noise. For this reason, it is important to consider noise current interaction with circuit elements placed at an amplifier’s inputs. The current noise spectrum of the LTC2057 is shown in Figure 2. The characteristic curve shows no 1/f behavior. As with all zero-drift amplifiers, there is a significant current noise component at the offset-nulling frequency. This phenomenon is discussed in the Input Bias Current section. IB (nA) Input Current Noise 10 1 LEAKAGE CURRENT Figure 1. Input Voltage Noise Spectrum 1 TYPICAL UNIT VS = ±2.5V INJECTION CURRENT INPUT VOLTAGE NOISE DENSITY (nV/√Hz) 35 INPUT CURRENT NOISE DENSITY (pA/√Hz) 0.25 25°C MAX IB SPEC 0.1 0.01 –50 –25 0 25 50 75 100 125 150 TEMPERATURE (°C) 2057 F03 Figure 3. Input Bias Current vs Temperature 2057f 18 For more information www.linear.com/LTC2057 LTC2057/LTC2057HV Applications Information For zero-drift amplifiers, clock feed-through will be proportional to source impedance and the magnitude of injection current, a measure of which is IB at 25°C. In order to minimize clock feed-through, keep gain-setting resistors and source impedances as low as possible. If high impedances are required, place a capacitor across the feedback resistor to limit the bandwidth of the closed loop gain. Doing so will effectively filter out the clock feed-through signal. Injection currents from the two inputs are of equal magnitude but opposite direction. Therefore, input bias current effects due to injection currents will not be canceled by placing matched impedances at both inputs. MICROVOLTS REFERRED TO 25°C Above 75°C, leakage of the ESD protection diodes begins to dominate the input bias current and continues to increase exponentially at elevated temperatures. Unlike injection current, leakage currents are in the same direction for both inputs. Therefore, the output error due to leakage currents 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.800 0.600 0.400 0.200 0 25 30 35 40 45 TEMPERATURE (°C) 2057 F04 can be mitigated by matching the source impedances seen by the two inputs. Thermocouple Effects In order to achieve accuracy on the microvolt level, thermocouple effects must be considered. Any connection of dissimilar metals forms a thermoelectric junction and generates a small temperature-dependent voltage. Also known as the Seebeck Effect, these thermal EMFs can be the dominant error source in low-drift circuits. Connectors, switches, relay contacts, sockets, resistors, and solder are all candidates for significant thermal EMF generation. Even junctions of copper wire from different manufacturers can generate thermal EMFs of 200nV/°C, which is over 13 times the maximum drift specification of the LTC2057. Figures 4 and 5 illustrate the potential magnitude of these voltages and their sensitivity to temperature. In order to minimize thermocouple-induced errors, attention must be given to circuit board layout and component selection. It is good practice to minimize the number of junctions in the amplifier’s input signal path and avoid connectors, sockets, switches, and relays whenever possible. If such components are required, they should be selected for low thermal EMF characteristics. Furthermore, the number, type, and layout of junctions should be matched for both inputs with respect to thermal gradients on the circuit board. Doing so may involve deliberately introducing dummy junctions to offset unavoidable junctions. THERMALLY PRODUCED VOLTAGE IN MICROVOLTS The DC average of injection current is the specified input bias current, but this current has a frequency component at the chopping frequency as well. When these small current pulses, typically about 0.7nARMS, interact with source impedances or gain setting resistors, the resulting voltage spikes are amplified by the closed loop gain. For high impedances, this may cause the 100kHz chopping frequency to be visible in the output spectrum, which is a phenomenon known as clock feed-through. 100 SLOPE ≈ 1.5µV/°C BELOW 25°C 50 0 64% SN/36% Pb 60% Cd/40% SN SLOPE ≈ 160nV/°C BELOW 25°C –50 –100 10 30 0 40 50 20 SOLDER-COPPER JUNCTION DIFFERENTIAL TEMPERATURE SOURCE: NEW ELECTRONICS 02-06-77 2057 F05 Figure 4. Thermal EMF Generated by Two Copper Wires From Different Manufacturers Figure 5. Solder-Copper Thermal EMFs 2057f For more information www.linear.com/LTC2057 19 LTC2057/LTC2057HV Applications Information RF § HEAT SOURCE/ POWER DISSIPATOR # RELAY ** VTHERMAL –+ THERMAL GRADIENT RG VTHERMAL VIN –IN † ‡ MATCHING RELAY * RL§ +IN ** RG –+ LTC2057 RF NC * CUT SLOTS IN PCB FOR THERMAL ISOLATION. ** INTRODUCE DUMMY JUNCTIONS AND COMPONENTS TO OFFSET UNAVOIDABLE JUNCTIONS OR CANCEL THERMAL EMFs. † ALIGN INPUTS SYMMETRICALLY WITH RESPECT TO THERMAL GRADIENTS. ‡ INTRODUCE DUMMY TRACES AND COMPONENTS FOR SYMMETRICAL THERMAL HEAT SINKING. § LOADS AND FEEDBACK CAN DISSIPATE POWER AND GENERATE THERMAL GRADIENTS. BE AWARE OF THEIR THERMAL EFFECTS. # COVER CIRCUIT TO PREVENT AIR CURRENTS FROM CREATING THERMAL GRADIENTS. 2057 F06 Figure 6. Techniques for Minimizing Thermocouple-Induced Errors LEAKAGE CURRENT GRD RG** VBIAS SD SDCOM V+ +IN * HIGH-Z SENSOR LTC2057 MS10 –IN GRD NC V– GUARD RING NO SOLDER MASK OVER GUARD RING V+ OUT V– VOUT RF * NO LEAKAGE CURRENT. V+IN = VGRD ** VERROR = ILEAK • RG; RG
LTC2057HVIDD#PBF 价格&库存

很抱歉,暂时无法提供与“LTC2057HVIDD#PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货