0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTC5540IUH#TRPBF

LTC5540IUH#TRPBF

  • 厂商:

    LINEAR(凌力尔特)

  • 封装:

    QFN20_5X5MM_EP

  • 描述:

    600MHz至1.3GHz高动态范围下变频混频器

  • 数据手册
  • 价格&库存
LTC5540IUH#TRPBF 数据手册
LTC5540 600MHz to 1.3GHz High Dynamic Range Downconverting Mixer Description Features n n n n n n n n n n n n n n Conversion Gain: 7.9dB at 900MHz IIP3: 25.9dBm at 900MHz Noise Figure: 9.9dB at 900MHz 16.2dB NF Under +5dBm Blocking High Input P1dB 3.3V Supply, 640mW Power Consumption Shutdown Pin 50Ω Single-Ended RF and LO Inputs LO Inputs 50Ω Matched when Shutdown High Isolation LO Switch 0dBm LO Drive Level High LO-RF and LO-IF Isolation Small Solution Size 20-Lead (5mm × 5mm) QFN package The LTC®5540 is part of a family of high dynamic range, high gain passive downconverting mixers covering the 600MHz to 4GHz frequency range. The LTC5540 is optimized for 0.6GHz to 1.3GHz RF applications. The LO frequency must fall within the 0.7GHz to 1.2GHz range for optimum performance. A typical application is a LTE or GSM receiver with a 700MHz to 915MHz RF input and high-side LO. The LTC5540 is designed for 3.3V operation, however; the IF amplifier can be powered by 5V for the highest P1dB. An integrated SPDT LO switch with fast switching accepts two active LO signals, while providing high isolation. The LTC5540’s high conversion gain and high dynamic range enable the use of lossy IF filters in high-selectivity receiver designs, while minimizing the total solution cost, board space and system-level variation. Applications Wireless Infrastructure Receivers (LTE, GSM, W-CDMA) n Point-to-Point Microwave links n High Dynamic Range Downmixer Applications High Dynamic Range Downconverting Mixer Family n L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. PART# RF RANGE LO RANGE LTC5540 600MHz –1.3GHz 700MHz – 1.2GHz LTC5541 1.3GHz – 2.3GHz 1.4GHz – 2.0GHz LTC5542 1.6GHz – 2.7GHz 1.7GHz – 2.5GHz LTC5543 2.3GHz – 4GHz 2.4GHz – 3.6GHz Typical Application Wideband Receiver 190MHz SAW VCCIF 3.3V or 5V 1µF 22pF 1.5pF 5.6pF LNA IF+ IF – LTC5540 IF 100pF SYNTH 2 ALTERNATE LO FOR FREQUENCY-HOPPING LO 100pF BIAS SHDN VCC2 VCC 3.3V LO2 RF IMAGE BPF SHDN (0V/3.3V) ADC 1µF VCC1 22pF VCC3 LO1 LOSEL LO SELECT (0V/3.3V) 16 28 15 27 14 26 13 12 11 LO 1090MHz 5540 TA01 25 IIP3 24 23 10 22 9 8 SYNTH 1 NF TA = +25°C fIF = 190MHz fLO = fRF + fIF 21 20 GC 7 6 600 IIP3 (dBm) RF 700MHz TO 915MHz CT IF AMP 1nF 150nH 150nH Wideband Conversion Gain, IIP3 and NF vs RF Input Frequency 190MHz BPF GC (dB), NF (dB) 1nF 19 800 700 900 RF FREQUENCY (MHz) 18 1000 5540 TA01a 5540f  LTC5540 Absolute Maximum Ratings Pin Configuration (Note 1) IFGND GND IF– IFBIAS IF+ TOP VIEW Mixer Supply Voltage (VCC1, VCC2)...........................3.8V LO Switch Supply Voltage (VCC3).............................3.8V IF Supply Voltage (IF+, IF –).......................................5.5V Shutdown Voltage (SHDN).................–0.3V to VCC +0.3V LO Select Voltage (LOSEL).................–0.3V to VCC +0.3V LO1, LO2 Input Power (0.2GHz to 2GHz)................9dBm LO1, LO2 Input DC Voltage.....................................±0.5V RF Input Power (0.2GHz to 2GHz).........................15dBm RF Input DC Voltage................................................ ±0.1V Operating Temperature Range..................–40°C to 85°C Storage Temperature Range................... –65°C to 150°C Junction Temperature (TJ)..................................... 150°C 20 19 18 17 16 15 LO2 NC 1 RF 2 14 VCC3 21 GND CT 3 GND 4 13 GND 12 GND 11 LO1 8 VCC2 VCC1 9 10 GND 7 LOSEL 6 LOBIAS SHDN 5 UH PACKAGE 20-LEAD (5mm s 5mm) PLASTIC QFN TJMAX = 150°C, θJA = 34°C/W, θJC = 3°C/W EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB Order Information LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION TEMPERATURE RANGE LTC5540IUH#PBF LTC5540IUH#TRPBF 5540 20-Lead (5mm × 5mm) Plastic QFN –40°C to 85°C Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on non-standard lead based finish parts. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ AC Electrical Characteristics VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TA = 25°C, PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4) PARAMETER CONDITIONS MIN LO Input Frequency Range TYP MAX UNITS 700 to 1200 MHz 800 to 1300 600 to 1100 MHz MHz 5 to 500 MHz RF Input Frequency Range Low-Side LO High-Side LO IF Output Frequency Range Requires External Matching RF Input Return Loss ZO = 50Ω, 600MHz to 1300MHz >12 dB LO Input Return Loss ZO = 50Ω, 700MHz to 1200MHz >12 dB IF Output Return Loss Requires External Matching >12 dB LO Input Power fLO = 700MHz to 1200MHz –4 0 6 dBm LO to RF Leakage fLO = 700MHz to 1200MHz 47 dB dB RF to LO Isolation fRF = 600MHz to 1300MHz >55 dB RF to IF Isolation fRF = 600MHz to 1300MHz >37 dB 5540f  LTC5540 AC Electrical Characteristics VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TA = 25°C, PLO = 0dBm, PRF = –3dBm (∆f = 2MHz for two-tone IIP3 tests),unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4) High-Side LO Downmixer Application: RF = 600MHz to 1100MHz, IF = 190MHz, fLO = fRF +fIF PARAMETER CONDITIONS Conversion Gain RF = 700MHz RF = 900MHz RF = 1100MHz MIN TYP 6.3 7.6 7.9 7.9 MAX UNITS dB dB dB Conversion Gain Flatness RF = 900 ±30MHz, LO = 1090MHz, IF=190 ±30MHz ±0.20 dB Conversion Gain vs Temperature TA = –40ºC to +85ºC, RF = 900MHz –0.008 dB/°C Input 3rd Order Intercept RF = 700MHz RF = 900MHz RF = 1100MHz 26.5 25.9 23.8 dBm dBm dBm SSB Noise Figure RF = 700MHz RF = 900MHz RF = 1100MHz 10.0 9.9 10.4 SSB Noise Figure Under Blocking fRF = 900MHz, fLO = 1090MHz, fBLOCK = 800MHz, PBLOCK = 5dBm 16.2 dB 2LO – 2RF Output Spurious Product (fRF = fLO – fIF/2) fRF = 995MHz at –10dBm, fLO = 1090MHz, fIF = 190MHz –70 dBc 3LO – 3RF Output Spurious Product (fRF = fLO – fIF/3) fRF = 1026.67MHz at –10dBm, fLO = 1090MHz, fIF = 190MHz –75 dBc Input 1dB Compression RF = 900MHz, VCCIF = 3.3V RF = 900MHz, VCCIF = 5V 11 14.5 dBm dBm 23.4 11.7 dB dB dB Low-Side LO Downmixer Application: RF = 800MHz-1300MHz, IF = 190MHz, fLO = fRF –fIF PARAMETER CONDITIONS Conversion Gain RF = 900MHz RF = 1100MHz RF = 1300MHz MIN TYP 7.0 7.8 8.0 MAX UNITS dB dB dB Conversion Gain Flatness RF = 900MHz ±30MHz, LO = 710MHz, IF = 190 ±30MHz ±0.33 dB Conversion Gain vs Temperature TA = –40°C to 85°C, RF = 900MHz –0.007 dB/°C Input 3rd Order Intercept RF = 900MHz RF = 1100MHz RF = 1300MHz 24.4 24.1 23.6 dBm dBm dBm SSB Noise Figure RF = 900MHz RF = 1100MHz RF = 1300MHz 10.6 10.5 10.3 dB dB dB SSB Noise Figure Under Blocking fRF = 900MHz, fLO = 710MHz, fIF = 190MHz, fBLOCK = 1000MHz, PBLOCK = 5dBm 16.7 dB 2RF – 2LO Output Spurious Product (fRF = fLO + fIF/2) fRF = 805MHz at –10dBm, fLO = 710MHz, fIF = 190MHz –61.5 dBc 3RF – 3LO Output Spurious Product (fRF = fLO + fIF/3) fRF = 773.33MHz at –10dBm, fLO = 710MHz, fIF = 190MHz –68 dBc Input 1dB Compression RF = 900MHz, VCCIF = 3.3V RF = 900MHz, VCCIF = 5V 11 14 dBm dBm 5540f  LTC5540 DC Electrical Characteristics noted. Test circuit shown in Figure 1. (Note 2) PARAMETER VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TA = 25°C, unless otherwise CONDITIONS MIN TYP MAX UNITS VCC Supply Voltage (Pins 6, 8 and 14) 3.1 3.3 3.5 VCCIF Supply Voltage (Pins 18 and 19) 3.1 3.3 5.3 V 97 96 193 116 120 236 mA mA mA 500 µA Power Supply Requirements (VCC, VCCIF) VCC Supply Current (Pins 6 + 8 + 14) VCCIF Supply Current (Pins 18 + 19) Total Supply Current (VCC + VCCIF) Total Supply Current – Shutdown SHDN = High V Shutdown Logic Input (SHDN) Low = On, High = Off SHDN Input High Voltage (Off) 3 V SHDN Input Low Voltage (On) –0.3V to VCC + 0.3V SHDN Input Current –20 0.3 V 30 µA Turn On Time 1 µs Turn Off Time 1.5 µs LO Select Logic Input (LOSEL) Low = LO1 Selected, High = LO2 Selected LOSEL Input High Voltage 3 V LOSEL Input Low Voltage –0.3V to VCC + 0.3V LOSEL Input Current –20 LO Switching Time Typical DC Performance Characteristics VCC Supply Current vs Supply Voltage (Mixer and LO Switch) 90 110 90 70 85 3.3 3.2 3.4 3.5 VCC SUPPLY VOLTAGE (V) 3.6 5540 G01 50 3.0 220 210 SUPPLY CURRENT (mA) 95 ns Total Supply Current vs Temperature (VCC + VCCIF) 85°C 25°C –40°C 130 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 150 85°C 25°C –40°C 3.1 µA SHDN = Low, Test circuit shown in Figure 1. VCCIF Supply Current vs Supply Voltage (IF Amplifier) 100 80 3.0 30 Note 3: SSB Noise Figure measured with a small-signal noise source, bandpass filter and 6dB matching pad on RF input, bandpass filter and 6dB matching pad on the LO input, and no other RF signals applied. Note 4: LO switch isolation is measured at the IF output port at the IF frequency with fLO1 and fLO2 offset by 2MHz. 105 V 50 Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTC5540 is guaranteed functional over the operating temperature range from –40°C to 85°C. 110 0.3 200 VCC = 3.3V, VCCIF = 5V (DUAL SUPPLY) 190 VCC = VCCIF = 3.3V (SINGLE SUPPLY) 180 170 3.3 3.6 3.9 4.2 4.5 4.8 5.1 VCCIF SUPPLY VOLTAGE (V) 5.4 5540 G02 160 –45 –25 –5 15 55 35 TEMPERATURE (°C) 75 95 5540 G03 5540f  LTC5540 Typical AC Performance Characteristics High-Side LO VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TA = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain, IIP3 and NF vs RF Frequency LO Leakage vs LO Frequency RF Isolation vs RF Frequency 22 26 20 IIP3 16 10 20 14 8 NF 12 –20 LO LEAKAGE (dBm) 18 85°C 16 25°C 14 –40°C 12 22 6 10 6 600 55 LO-RF –30 –40 –60 700 0 1100 800 900 1000 RF FREQUENCY (MHz) RF-IF 35 30 800 900 1000 1100 LO FREQUENCY (MHz) 25 600 1200 700 800 900 1000 1100 1200 1300 RF FREQUENCY (MHz) 5540 G05 700MHz Conversion Gain, IIP3 and NF vs LO Input Power 5540 G06 900MHz Conversion Gain, IIP3 and NF vs LO Input Power 1100MHz Conversion Gain, IIP3 and NF vs LO Input Power 28 20 26 18 24 18 24 18 22 16 20 85°C 16 25°C –40°C 14 22 20 85°C 16 25°C –40°C 14 20 14 18 12 18 12 18 12 16 10 16 10 16 10 14 8 14 8 IIP3 22 10 6 GC 8 6 –6 –4 –2 0 2 4 LO INPUT POWER (dBm) 6 NF 12 4 10 2 8 0 6 6 GC –6 –4 –2 0 2 4 LO INPUT POWER (dBm) 5540 G07 6 22 14 4 10 2 8 0 6 GC –6 26 24 18 24 18 85°C 16 25°C –40°C 14 22 18 12 16 10 14 8 NF 12 10 8 6 3.0 6 GC 3.2 3.3 3.1 3.4 3.5 VCC , VCCIF SUPPLY VOLTAGE (V) 3.6 5540 G10 20 18 RF = 900MHz VCC = 3.3V 85°C 16 25°C –40°C 14 12 16 10 14 8 NF 12 4 10 2 8 0 6 3.0 6 4 GC 4 4.5 3.5 5 VCCIF SUPPLY VOLTAGE (V) 5.5 5540 G11 GC (dB), IIP3 (dBm), P1dB (dBm) 28 20 GC (dB), IIP3 (dBm) 22 26 SSB NF (dB) 28 20 SSB NF (dB) 22 RF = 900MHz VCC = VCCIF –2 0 2 4 LO INPUT POWER (dBm) 6 0 900MHz Conversion Gain, IIP3 and RF Input P1dB vs Temperature 26 20 4 5540 G09 Conversion Gain, IIP3 and NF vs IF Supply Voltage (Dual Supply) IIP3 6 2 –4 28 IIP3 8 NF 85°C 25°C –40°C 12 5540 G08 Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply) 22 20 IIP3 SSB NF (dB) NF 12 IIP3 GC (dB), IIP3 (dBm) 22 26 GC (dB), IIP3 (dBm) 28 20 SSB NF (dB) 22 26 SSB NF (dB) 28 24 GC (dB), IIP3 (dBm) 40 LO-IF 5540 G04 GC (dB), IIP3 (dBm) 45 2 700 RF-LO 50 –50 4 GC 8 65 60 18 SSB NF (dB) GC (dB), IIP3 (dBm) 24 –10 ISOLATION (dB) 28 24 RF = 900MHz VCCIF = 5.0V VCCIF = 3.3V IIP3 22 20 18 16 14 P1dB 12 10 2 8 0 6 –45 GC –25 –5 15 35 55 TEMPERATURE (°C) 75 95 5540 G12 5540f  LTC5540 Typical AC Performance Characteristics High-Side LO (continued) VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TA = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1. Single-Tone IF Output Power, 2 × 2 and 3 × 3 Spurs vs RF Input Power 20 10 10 0 –10 –20 RF1 = 899 MHz –30 RF2 = 901MHz LO = 1090MHz –40 –50 –60 LO = 1090MHz IFOUT RF = 900MHz –10 –20 3LO–3RF RF = 1026.67MHz –30 –40 –50 2LO–2RF RF = 995MHz –60 IM3 IM5 –70 –80 –12 –55 0 IFOUT –9 –6 –3 0 3 RF INPUT POWER (dBm/TONE) –80 –12 6 –9 –6 –3 0 3 RF INPUT POWER (dBm) –75 3LO–3RF RF = 1026.67MHz –80 14 55 LO2 SELECTED 50 6 fRF = 850MHz TO 950MHz fLO = 1090MHz 9 LO1 SELECTED GAIN (dB) 16 –3 0 3 LO INPUT POWER (dBm) Wideband Conversion Gain vs IF Frequency 10 60 18 –6 5540 G15 65 ISOLATION (dB) SSB NF (dBm) –70 –85 6 70 8 7 45 12 10 8 –20 –15 –10 –5 0 5 RF BLOCKER POWER (dBm) 6 40 RF = 900MHz BLOCKER = 800MHz 35 700 10 800 900 1000 1100 1200 LO FREQUENCY (MHz) 900MHz Conversion Gain Distribution 35 35 90°C 25°C –45°C 30 30 25 20 15 10 0 6.5 7 7.5 8 GAIN (dB) 8.5 9 25 20 15 10 5540 G19 0 45 90°C 25°C –45°C 240 90°C 25°C –45°C 40 35 30 25 20 15 10 5 5 180 200 220 IF FREQUENCY (MHz) 900MHz SSB Noise Figure Distribution DISTRIBUTION (%) 40 160 5540 G18 900MHz IIP3 Distribution DISTRIBUTION (%) 45 5 140 1300 85°C 25°C –40°C 5540 G17 5540 G16 DISTRIBUTION (%) 2LO–2RF RF = 995MHz –65 LO Switch Isolation vs LO Frequency PLO = –3dBm PLO = 0dBm PLO = +3dBm PLO = +6dBm 20 –60 5540 G14 SSB Noise Figure vs RF Blocker Level 22 RF = 900MHz PRF = –10dBM LO = 1090MHz –70 5540 G13 24 2 × 2 and 3 × 3 Spur Suppression vs LO Power RELATIVE SPUR LEVEL (dBc) 20 OUTPUT POWER (dBm) OUTPUT POWER (dBm/TONE) 2-Tone IF Output Power, IM3 and IM5 vs RF Input Power 5 24 24.5 25 25.5 26 26.5 27 27.5 28 IIP3 (dBm) 5540 G20 0 8 8.5 9 9.5 10 10.5 11 11.5 12 NOISE FIGURE (dB) 5540 G21 5540f  LTC5540 Typical AC Performance Characteristics Low-Side LO VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TA = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1. 900MHz SSB Noise Figure vs RF Blocker Level 28 22 26 20 24 18 IIP3 14 18 18 12 16 10 14 85°C 25°C –40°C 12 10 8 NF 6 800 14 12 4 10 2 900 0 1300 1000 1100 1200 RF FREQUENCY (MHz) 26 16 6 GC 8 SSB NF (dB) 20 SSB NF (dB) 20 28 PLO = –3dBm PLO = 0dBm PLO = +3dBm PLO = +6dBm 22 16 22 GC (dB), IIP3 (dBm) 24 900MHz Conversion Gain, IIP3 and RF Input P1dB vs Temperature GC (dB), IIP3 (dBm), P1dB (dBm) Conversion Gain, IIP3 and NF vs RF Frequency –15 –10 –5 0 5 RF BLOCKER POWER (dBm) 5540 G22 18 16 14 P1dB 12 10 GC 8 6 –45 10 –25 –5 15 35 55 TEMPERATURE (°C) 75 95 5540 G24 1300MHz Conversion Gain, IIP3 and NF vs LO Power 1100MHz Conversion Gain, IIP3 and NF vs LO Power 28 20 26 18 24 18 24 18 22 16 22 16 22 16 20 14 20 14 20 14 18 12 18 12 18 12 16 10 16 10 16 10 85°C 25°C –40°C 12 10 NF 8 6 GC 8 6 –6 –4 –2 0 2 4 LO INPUT POWER (dBm) 6 14 85°C 25°C –40°C 12 4 10 2 8 0 6 –6 GC –4 20 10 10 IFOUT RF = 900MHz 0 OUTPUT POWER (dBm) IFOUT –20 RF1 = 899MHz RF2 = 901MHz –40 LO = 710MHz –30 –50 –60 –80 –12 IM3 85°C 25°C –40°C 12 4 10 2 8 0 6 –6 GC 6 4 –4 –2 0 2 4 LO INPUT POWER (dBm) –30 LO = 710MHz 3RF–3LO RF = 733.33MHz –40 –50 6 0 5540 G27 –10 –20 8 NF 2 2 × 2 and 3 × 3 Spur Suppression vs LO Power –50 2RF–2LO RF = 805MHz –60 –55 2RF–2LO RF = 805MHz RF = 900MHz PRF = –10dBM LO = 710MHz –60 –65 3RF–3LO RF = 773.33MHz –70 –75 –70 IM5 –9 –6 –3 0 3 RF INPUT POWER (dBm/TONE) 6 14 Single-Tone IF Output Power, 2 × 2 and 3 × 3 Spurs vs RF Input Power 20 –70 6 20 IIP3 5540 G26 2-Tone IF Output Power, IM3 and IM5 vs RF Input Power –10 8 –2 0 2 4 LO INPUT POWER (dBm) 5540 G25 0 NF 22 SSB NF (dB) 14 IIP3 RELATIVE SPUR LEVEL (dBc) IIP3 GC (dB), IIP3 (dBm) 22 26 GC (dB), IIP3 (dBm) 28 20 SSB NF (dB) 22 26 SSB NF (dB) 28 24 GC (dB), IIP3 (dBm) 20 5540 G23 900MHz Conversion Gain, IIP3 and NF vs LO Power OUTPUT POWER (dBm/TONE) VCCIF = 5.0V VCCIF = 3.3V 22 RF = 900MHz BLOCKER = 1000MHz 8 –20 IIP3 24 6 5540 G28 –80 –12 –9 –6 –3 0 3 RF INPUT POWER (dBm) 6 5540 G29 –80 –6 –3 0 3 LO INPUT POWER (dBm) 6 5540 G30 5540f  LTC5540 Pin Functions NC (Pin 1): This pin is not connected internally. It can be left floating, connected to ground or to VCC . LOBIAS (Pin 7): This Pin Allows Adjustment of the LO Buffer Current. Typical DC voltage is 2.2V. RF (Pin 2): Single-Ended Input for the RF Signal. This pin is internally connected to the primary side of the RF input transformer, which has low DC resistance to ground. A series DC-blocking capacitor should be used to avoid damage to the integrated transformer. The RF input is impedance matched, as long as the selected LO input is driven with a 0dBm ±6dB source between 0.7GHz and 1.2GHz. LOSEL (Pin 9): LO1/LO2 Select Pin. When the input voltage is less than 0.3V, the LO1 port is selected. When the input voltage is greater than 3V, the LO2 port is selected. Typical input current is 11μA for LOSEL = 3.3V. This pin must not be allowed to float. CT (Pin 3): RF Transformer Secondary Center-Tap. This pin may require a bypass capacitor to ground. See the Applications Information section. This pin has an internally generated bias voltage of 1.2V. It must be DC-isolated from ground and VCC. GND (Pins 4, 10, 12, 13, 17, Exposed Pad Pin 21): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad metal of the package provides both electrical contact to ground and good thermal contact to the printed circuit board. SHDN (Pin 5): Shutdown Pin. When the input voltage is less than 0.3V, the internal circuits supplied through pins 6, 8, 14, 18 and 19 are enabled. When the input voltage is greater than 3V, all circuits are disabled. Typical input current is less than 10μA. This pin must not be allowed to float. VCC2 (Pin 6) and VCC1 (Pin 8): Power Supply Pins for the LO Buffer and Bias Circuits. These pins are internally connected and must be externally connected to a regulated 3.3V supply, with bypass capacitors located close to the pin. Typical current consumption is 97mA. LO1 (Pin 11) and LO2 (Pin 15): Single-Ended Inputs for the Local Oscillators. These pins are internally biased at 0V and require external DC blocking capacitors. Both inputs are internally matched to 50Ω, even when the chip is disabled (SHDN = high). VCC3 (Pin 14): Power Supply Pin for the LO Switch. This pin must be connected to a regulated 3.3V supply and bypassed to ground with a capacitor near the pin. Typical DC current consumption is less than 100μA. IFGND (Pin 16): DC Ground Return for the IF Amplifier. This pin must be connected to ground to complete the IF amplifier’s DC current path. Typical DC current is 96mA. IF – (Pin 18) and IF + (Pin 19): Open-Collector Differential Outputs for the IF Amplifier. These pins must be connected to a DC supply through impedance matching inductors, or a transformer center-tap. Typical DC current consumption is 48mA into each pin. IFBIAS (Pin 20): This Pin Allows Adjustment of the IF Amp Current. Typical DC voltage is 2.1V. 5540f  LTC5540 Block Diagram 20 19 18 21 16 IFBIAS IF – IFGND EXPOSED IF+ PAD IF AMP 2 3 5 LO2 15 VCC3 14 RF LO AMP LOSEL PASSIVE MIXER CT SHDN 9 LO1 11 BIAS VCC2 VCC1 6 8 7 LOBIAS GND PINS ARE NOT SHOWN 5540 BD Test Circuit IFOUT 190MHz 50Ω 4:1 T1 L1 VCCIF 3.1V TO 5.3V 96mA C9 L1, L2 vs IF Frequencies C10 IF (MHz) L1, L2 (nH) L2 140 270 190 150 240 100 380 33 450 22 C8 L3 R2 20 19 18 IFBIAS IF+ IF – 17 16 GND IFGND 1 NC RFIN 50Ω C4 LO2IN 50Ω LO2 15 C1 2 RF VCC3 14 C2 LTC5540 3 CT C7 GND 13 4 GND GND 12 C3 SHDN (0V/3.3V) 5 SHDN VCC2 LOBIAS 7 6 VCC 3.1V TO 3.5V 97mA VCC1 LOSEL 9 8 LO1IN 50Ω LO1 11 GND 10 REF DES VALUE SIZE COMMENTS C3, C4 100pF 0402 AVX C6, C7, C8 22pF 0402 AVX C5, C9 1µF 0603 AVX C10 1000pF 0402 AVX L1, L2 150nH 0603 Coilcraft 0603CS L3 30nH 0603 Coilcraft 0603CS R2 2.05k 0402 T1 (Alternate) TC4-1W-7ALN+ (WBC4-6TLB) Mini-Circuits (Coilcraft) HIGH-SIDE LO C5 0.015” 0.062” 0.015” 5541 TC C6 LOSEL (0V/3.3V) RF GND DC1431A BOARD BIAS STACK-UP GND (NELCO N4000-13) C1 5.6pF 0402 AVX C2 1.5pF 0402 AVX 100pF 0402 AVX LOW-SIDE LO C1, C2 Figure 1. Standard Downmixer Test Circuit Schematic (190MHz IF) 5540f  LTC5540 Applications Information Introduction The LTC5540 consists of a high linearity passive doublebalanced mixer core, IF buffer amplifier, high speed singlepole double-throw (SPDT) LO switch, LO buffer amplifier and bias/enable circuits. See Pin Functions section for a description of each pin function. The RF and LO inputs are single-ended. The IF output is differential. Low-side or high-side LO injection can be used. The evaluation circuit, shown in Figure 1, utilizes bandpass IF output matching and an IF transformer to realize a 50Ω single-ended IF output. The evaluation board layout is shown in Figure 2. 2mm of pin 3 for proper high-frequency decoupling. The nominal DC voltage on the CT pin is 1.2V. For the RF input to be properly matched, the selected LO input must be driven. The values of C1 and C2 can be chosen to optimize the performance for high-side or low-side LO (see the table in Figure 1). For high-side applications, a broadband input match is realized with C1 = 5.6pF. The measured input return loss is shown in Figure 4 for LO frequencies of 700MHz, 1090MHz and 1200MHz. As shown in Figure 4, the RF input impedance is dependent on LO frequency, although a single value of C1 is adequate to cover a wide RF range. TO MIXER RFIN C1 2 3 RF CT C2 LTC5540 5540 F03 5540 F02 Figure 3. RF Input Schematic Figure 2. Evaluation Board Layout 0 RF Input The secondary winding of the RF transformer is internally connected to the passive mixer. The center-tap of the transformer secondary is connected to pin 3 (CT) to allow the connection of bypass capacitor, C2. The value of C2 is LO frequency-dependent. C2 should be located within –5 RETURN LOSS (dB) The mixer’s RF input, shown in Figure 3, is connected to the primary winding of an integrated transformer. A 50Ω match is realized when a series capacitor, C1, is connected to the RF input. C1 is also needed for DC blocking if the RF source has DC voltage present, since the primary side of the RF transformer is DC-grounded internally. The DC resistance of the primary is approximately 5Ω. LO = 700MHz LO = 1090MHz LO = 1200MHz –10 –15 –20 –25 600 C1 = 5.6pF 700 800 900 1000 FREQUENCY (MHz) 1200 1100 5541 F04 Figure 4. RF Input Return Loss 5540f 10 LTC5540 Applications Information The RF input impedance and input reflection coefficient, versus RF frequency, is listed in Table 1. The reference plane for this data is pin 2 of the IC, with no external matching, and the LO is driven at 1090MHz. Table 1. RF Input Impedance and S11 (at Pin 2, No External Matching, LO Input Driven at 1090MHz) S11 The LO switch is designed for high isolation and fast (36dBm OIP3 at 300MHz, Differential I/O Fixed Gain of 8dB, 14dB, 20dB and 26dB; >40dBm OIP3 at 140MHz, Differential I/O 40.25dBm OIP3 to 300MHz, Programmable Fast Recovery Output Clamping 35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps Integrated Baluns, 28dBm IIP3, 13dBm P1dB, 0.03dB I/Q Amplitude Match, 0.4° Phase Match 27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Transformer 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports 27.7dBm OIP3 at 140MHz, 22.9dBm at 900MHz, –161.2dBm/Hz Noise Floor LT5581 ADCs LTC2208 LTC2262-14 LTC2242-12 6GHz Low Power RMS Detector 40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current 16-Bit, 130Msps ADC 14-Bit, 150Msps ADC Ultralow Power 12-Bit, 250Msps ADC 78dBFS Noise Floor, >83dB SFDR at 250MHz 72.8dB SNR, 88dB SFDR, 149mW Power Consumption 65.4dB SNR, 78dB SFDR, 740mW Power Consumption ±1dB Output Variation over Temperature, 38ns Response Time, Log Linear Response Low Frequency to 1GHz, 83dB Log Linear Dynamic Range ±0.5dB Accuracy Over Temperature and >50dB Dynamic Range, 500ns Rise Time 5540f 16 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com LT 0410 • PRINTED IN USA  LINEAR TECHNOLOGY CORPORATION 2010
LTC5540IUH#TRPBF 价格&库存

很抱歉,暂时无法提供与“LTC5540IUH#TRPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货