0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTM2882IV-3#PBF

LTM2882IV-3#PBF

  • 厂商:

    LINEAR(凌力尔特)

  • 封装:

    LGA32_15X11.25MM

  • 描述:

    双通道隔离式RS232 μ模块收发器+电源

  • 数据手册
  • 价格&库存
LTM2882IV-3#PBF 数据手册
LTM2882 Dual Isolated RS232 µModule Transceiver + Power DESCRIPTION FEATURES RS232 Transceiver: 2500VRMS for 1 Minute n UL-CSA Recognized File #E151738 n CSA Component Acceptance Notice 5A n Isolated DC Power: 5V at Up to 200mA n No External Components Required n 1.62V to 5.5V Logic Supply for Flexible Digital Interfacing n High Speed Operation 1Mbps for 250pF/3kΩ Load 250kbps for 1nF/3kΩ Load 100kbps for 2.5nF/3kΩ TIA/EIA-232-F Load n 3.3V (LTM2882-3) or 5V (LTM2882-5) Operation n No Damage or Latchup to ±10kV HBM ESD on Isolated RS232 Interface or Across Isolation Barrier n High Common Mode Transient Immunity: 30kV/μs n Maximum Continuous Working Voltage: 560V PEAK n True RS232 Compliant Output Levels n 15mm × 11.25mm BGA and LGA Packages n The LTM®2882 is a complete galvanically isolated dual RS232 µModule® (micromodule) transceiver. No external components are required. A single 3.3V or 5V supply powers both sides of the interface through an integrated, isolated DC/DC converter. A logic supply pin allows easy interfacing with different logic levels from 1.62V to 5.5V, independent of the main supply. Coupled inductors and an isolation power transformer provide 2500VRMS of isolation between the line transceiver and the logic interface. This device is ideal for systems with different grounds, allowing for large common mode voltages. Uninterrupted communication is guaranteed for common mode transients greater than 30kV/μs. APPLICATIONS This part is compatible with the TIA/EIA-232-F standard. Driver outputs are protected from overload and can be shorted to ground or up to ±15V without damage. An auxiliary isolated digital channel is available. This channel allows configuration for half-duplex operation by controlling the DE pin. Isolated RS232 Interface Industrial Communication n Test and Measurement Equipment n Breaking RS232 Ground Loops Enhanced ESD protection allows this part to withstand up to ±10kV (human body model) on the transceiver interface pins to isolated supplies and across the isolation barrier to logic supplies without latchup or damage. n n All registered trademarks and trademarks are the property of their respective owners. TYPICAL APPLICATION Isolated Dual RS232 µModule Transceiver 1Mbps Operation 3.3V (LTM2882-3) 5V (LTM2882-5) VL VCC LTM2882 VCC2 ON DE DIN DOUT T1IN R1OUT T2IN ISOLATION BARRIER OFF ON TIN 5V/DIV T1OUT/R1IN 10V/DIV T2OUT/R2IN T1OUT R1OUT 5V/DIV R2OUT R1IN T2OUT R2OUT GND 5V AVAILABLE CURRENT: 150mA (LTM2882-5) 100mA (LTM2882-3) R2IN GND2 2882 TA01b 400ns/DIV DRIVER OUTPUTS TIED TO RECEIVER INPUTS TOUT LOAD = 250pF + RIN ROUT LOAD = 150pF 2882 TA01a 2882fh For more information www.linear.com/LTM2882 1 LTM2882 ABSOLUTE MAXIMUM RATINGS PIN CONFIGURATION (Note 1) VCC to GND................................................... –0.3V to 6V VL to GND..................................................... –0.3V to 6V VCC2 to GND2................................................ –0.3V to 6V Logic Inputs T1IN, T2IN, ON, DIN to GND.........–0.3V to (VL + 0.3V) DE to GND2............................. –0.3V to (VCC2 + 0.3V) Logic Outputs R1OUT, R2OUT to GND................–0.3V to (VL + 0.3V) DOUT to GND2......................... –0.3V to (VCC2 + 0.3V) Driver Output Voltage T1OUT, T2OUT to GND2............................–15V to 15V Receiver Input Voltage R1IN, R2IN to GND2................................ –25V to 25V Operating Temperature Range (Note 4) LTM2882C..........................................0°C ≤ TA ≤ 70°C LTM2882I...................................... –40°C ≤ TA ≤ 85°C LTM2882H................................... –40°C ≤ TA ≤ 105°C Maximum Internal Operating Temperature............. 125°C Storage Temperature Range................... –40°C to 125°C Peak Package Body Reflow Temperature............... 245°C TOP VIEW 1 2 3 4 R2OUT T2IN R1OUT T1IN 5 6 7 8 DIN ON VL VCC A B GND C D E F G H I J GND2 K L R2IN T2OUT R1IN T1OUT DOUT BGA PACKAGE 32-PIN (15mm × 11.25mm × 3.42mm) TJMAX = 125°C, θJA = 30°C/W, θJCtop = 27.8°C/W, θJCbottom = 19.3°C/W, θJB = 24°C/W, WEIGHT = 1.1g DE VCC2 LGA PACKAGE 32-PIN (15mm × 11.25mm × 2.8mm) TJMAX = 125°C, θJA = 29°C/W, θJCtop = 27.9°C/W, θJCbottom = 18°C/W, θJB = 22.7°C/W, WEIGHT = 1.1g 2882fh 2 For more information www.linear.com/LTM2882 LTM2882 ORDER INFORMATION PART NUMBER LTM2882CY-3#PBF LTM2882IY-3#PBF LTM2882HY-3#PBF LTM2882CY-5#PBF LTM2882IY-5#PBF LTM2882HY-5#PBF LTM2882CV-3#PBF LTM2882IV-3#PBF LTM2882CV-5#PBF LTM2882IV-5#PBF INPUT VOLTAGE http://www.linear.com/product/LTM2882#orderinfo PART MARKING DEVICE FINISH CODE PAD OR BALL FINISH 3V to 3.6V PACKAGE TYPE MSL RATING LTM2882Y-3 SAC305 (RoHS) 4.5V to 5.5V e1 BGA LTM2882Y-5 3V to 3.6V 3 LTM2882V-3 Au (RoHS) 4.5V to 5.5V e4 LGA LTM2882V-5 TEMPERATURE RANGE 0°C to 70°C –40°C to 85°C –40°C to 105°C 0°C to 70°C –40°C to 85°C –40°C to 105°C 0°C to 70°C –40°C to 85°C 0°C to 70°C –40°C to 85°C • Device temperature grade is indicated by a label on the shipping container. • Pad or ball finish code is per IPC/JEDEC J-STD-609. • Recommended BGA and LGA PCB Assembly and Manufacturing Procedures: www.linear.com/umodule/pcbassembly • Terminal Finish Part Marking: www.linear.com/leadfree • This product is moisture sensitive. For more information, go to: www.linear.com/umodule/pcbassembly • This product is not recommended for second side reflow. For more information, go to: www.linear.com/BGA-assy • LGA and BGA Package and Tray Drawings: www.linear.com/packaging ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5.0V, VL = VCC, and GND = GND2 = 0V, ON = VL unless otherwise noted. SYMBOL PARAMETER CONDITIONS Input Supply Range LTM2882-3 LTM2882-5 MIN TYP MAX UNITS l 3.0 3.3 3.6 V l 4.5 5.0 5.5 V l 1.62 Supplies VCC VL Logic Supply Range ICC Input Supply Current VCC2 Regulated Output Voltage, Loaded VCC2(NOLOAD) Regulated Output Voltage, No Load Efficiency ICC2 5.5 V ON = 0V l 0 10 µA LTM2882-3, No Load l 24 30 mA LTM2882-5, No Load l 17 25 mA LTM2882-3 DE = 0V, ILOAD = 100mA l 4.7 5.0 LTM2882-5 DE = 0V, ILOAD = 150mA l 4.7 5.0 4.8 5.0 DE = 0, No Load ICC2 = 100mA, LTM2882-5 (Note 2) Output Supply Short-Circuit Current V V 5.35 V 65 % 200 mA Driver VOLD Driver Output Voltage Low RL = 3kΩ l –5 –5.7 V VOHD Driver Output Voltage High RL = 3kΩ l 5 6.2 V IOSD Driver Short-Circuit Current VT1OUT, VT2OUT = 0V, VCC2 = 5.5V l ±35 ±70 mA IOZD Driver Three-State (High Impedance) Output Current DE = 0V, VT1OUT, VT2OUT = ±15V l ±0.1 ±10 µA 2882fh For more information www.linear.com/LTM2882 3 LTM2882 ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5.0V, VL = VCC, and GND = GND2 = 0V, ON = VL unless otherwise noted. SYMBOL PARAMETER CONDITIONS MIN TYP VIR Receiver Input Threshold Input Low l Input High l VHYSR Receiver Input Hysteresis RIN Receiver Input Resistance Logic Input Threshold Voltage MAX UNITS 0.8 1.3 1.7 2.5 V l 0.1 0.4 1.0 V –15V ≤ (VR1IN, VR2IN) ≤ 15V l 3 5 7 ON, T1IN, T2IN, DIN = 1.62V ≤ VL < 2.35V l 0.25•VL 0.75•VL V ON, T1IN, T2IN, DIN = 2.35V ≤ VL ≤ 5.5V l 0.4 0.67•VL V DE l 0.4 0.67•VCC2 V ±1 µA Receiver V kΩ Logic VITH IINL Logic Input Current VHYS Logic Input Hysteresis T1IN, T2IN, DIN (Note 2) VOH Logic Output High Voltage R1OUT, R2OUT ILOAD = –1mA (Sourcing), 1.62V ≤ VL < 3.0V ILOAD = –4mA (Sourcing), 3.0V ≤ VL ≤ 5.5V l l VL – 0.4 VL – 0.4 V V DOUT, ILOAD = –4mA (Sourcing) l VCC2 – 0.4 V R1OUT, R2OUT ILOAD = 1mA (Sinking), 1.62V ≤ VL < 3.0V ILOAD = 4mA (Sinking), 3.0V ≤ VL ≤ 5.5V l l 0.4 0.4 V V DOUT, ILOAD = 4mA (Sinking) l 0.4 V VOL Logic Output Low Voltage l 150 mV ESD (HBM) (Note 2) RS232 Driver and Receiver Protection Isolation Boundary (T1OUT, T2OUT, R1IN, R2IN) to (VCC2, GND2) ±10 kV (T1OUT, T2OUT, R1IN, R2IN) to (VCC, VL, GND) ±10 kV (VCC2, GND2) to (VCC, VL, GND) ±10 kV SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5.0V, VL = VCC, and GND = GND2 = 0V, ON = VL unless otherwise noted. SYMBOL PARAMETER CONDITIONS Maximum Data Rate (T1IN to T1OUT, T2IN to T2OUT) RL = 3kΩ, CL = 2.5nF (Note 3) l MIN 100 TYP MAX UNITS kbps RL = 3kΩ, CL = 1nF (Note 3) l 250 kbps RL = 3kΩ, CL = 250pF (Note 3) l 1000 kbps Maximum Data Rate (DIN to DOUT) CL = 15pF (Note 3) l 10 Mbps Driver Slew Rate (6V/tTHL or tTLH) RL = 3kΩ, CL = 50pF (Figure 1) l tPHLD, tPLHD Driver Propagation Delay RL = 3kΩ, CL = 50pF (Figure 1) l tSKEWD Driver Skew |tPHLD – tPLHD| RL = 3kΩ, CL = 50pF (Figure 1) Driver 0.2 150 V/µs 0.5 µs 40 ns tPZHD, tPZLD Driver Output Enable Time DE = ↑ , RL = 3kΩ, CL = 50pF (Figure 2) l 0.6 2 µs tPHZD, tPLZD Driver Output Disable Time DE = ↓ , RL = 3kΩ, CL = 50pF (Figure 2) l 0.3 2 µs 2882fh 4 For more information www.linear.com/LTM2882 LTM2882 SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5.0V, VL = VCC, and GND = GND2 = 0V, ON = VL unless otherwise noted. SYMBOL PARAMETER CONDITIONS MIN TYP MAX 0.2 0.4 UNITS tPHLR, tPLHR Receiver Propagation Delay CL = 150pF (Figure 3) tSKEWR Receiver Skew |tPHLR – tPLHR| CL = 150pF (Figure 3) tRR, tFR Receiver Rise or Fall Time CL = 150pF (Figure 3) l 60 200 ns tPHLL, tPLHL Propagation Delay CL = 15pF, tR and tF < 4ns (Figure 4) l 60 100 ns tRL, tFL Rise or Fall Time CL = 150pF (Figure 4) l 60 200 ns Power-Up Time ON = ↑ to VCC2(MIN) l 0.2 2 ms Receiver l µs 40 ns Auxiliary Channel Power Supply ISOLATION CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5.0V, VL = VCC, and GND = GND2 = 0V, ON = VL unless otherwise noted. SYMBOL PARAMETER VISO Rated Dielectric Insulation Voltage VIORM CTI DTI CONDITIONS MIN TYP MAX UNITS 1 Minute, Derived from 1 Second Test 2500 VRMS 1 Second (Notes 5, 6) ±4400 V Common Mode Transient Immunity VL = ON = 3.3V, VCM = 1kV, ∆t = 33ns (Note 2) 30 kV/µs Maximum Working Insulation Voltage (Notes 2, 5) 560 400 VPEAK VRMS Partial Discharge VPR = 1050 VPEAK (Notes 2, 5) Comparative Tracking Index Depth of Erosion Distance Through Insulation IEC 60112 (Note 2) IEC 60112 (Note 2) (Note 2) 600 Input to Output Resistance (Notes 2, 5) 109 Input to Output Capacitance (Notes 2, 5) 6 pF Creepage Distance (Notes 2, 5) 9.48 mm Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: Guaranteed by design and not subject to production test. Note 3: Maximum Data Rate is guaranteed by other measured parameters and is not tested directly. 5 0.017 0.06 pC VRMS mm mm Ω Note 4: This device includes over-temperature protection that is intended to protect the device during momentary overload conditions. Junction temperature will exceed 125°C when overtemperature protection is active. Continuous operation above specified maximum operating junction temperature may result in device degradation or failure. Note 5: Tests performed from GND to GND2, all pins shorted each side of isolation barrier. Note 6: The rated dielectric insulation voltage should not be interpreted as a continuous voltage rating. 2882fh For more information www.linear.com/LTM2882 5 LTM2882 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5V, VL = 3.3V, and GND = GND2 = 0V, ON = VL unless otherwise noted. VCC Supply Current vs Temperature VCC = 3.3V LTM2882-3 20 100 65 90 VCC = 3.3V LTM2882-3 60 VCC CURRENT (mA) VCC CURRENT (mA) 25 70 VCC = 5.0V LTM2882-5 55 50 45 VCC = 5.0V LTM2882-5 40 15 10 –50 0 50 25 75 TEMPERATURE (°C) –25 100 T1OUT AND T2OUT 35 BAUD = 100kbps RL = 3k, CL = 2.5nF 30 –50 –25 25 75 0 50 TEMPERATURE (°C) 125 VCC CURRENT (mA) 3.3V CL = 250pF 60 5.0V CL = 1nF 40 20 THRESHOLD VOLTAGE (V) 140 100 200 600 400 DATA RATE (kbps) 100 60 INPUT HIGH 2.0 1.5 INPUT LOW 1.0 1000 45 25 75 0 50 TEMPERATURE (°C) 100 SOURCING 25 20 –25 25 0 50 75 TEMPERATURE (°C) 40 30 100 125 2882 G07 FALLING 20 RISING 0 1 5 6 VTOUT = ±15V 5 10 1 0.1 0.001 –50 3 2 4 LOAD CAPACITANCE (nF) Receiver Output Voltage vs Load Current 0.01 15 2.5 2882 G06 OUTPUT VOLTAGE (V) LEAKAGE CURRENT (nA) 30 1 2 0.5 1.5 LOAD CAPACITANCE (nF) 50 0 125 100 SINKING 0 2882 G05 50 35 19.2kbps, LTM2882-5 10 –25 100kbps, LTM2882-5 Driver Slew Rate vs Load Capacitance Driver Disabled Leakage Current vs Temperature at ±15V 40 250kbps, LTM2882-5 2882 G03 2.5 Driver Short-Circuit Current vs Temperature SHORT-CIRCUIT CURRENT (mA) 125 70 2882 G04 10 –50 20 3.0 0 –50 1000 800 40 0.5 5.0V CL = 250pF 0 19.2kbps, LTM2882-3 50 Receiver Input Threshold vs Temperature 3.3V CL = 1nF 100kbps, LTM2882-3 60 2882 G02 VCC Supply Current vs Data Rate (Dual Transceiver) 80 70 30 2882 G01 120 250kbps, LTM2882-3 80 VCC CURRENT (mA) NO LOAD SLEW RATE (V/µs) 30 VCC Supply Current vs Load Capacitance (Dual Transceiver) VCC Supply Current vs Temperature VL = 5.5V VL = 3.3V VL = 1.62V 4 3 2 1 –25 25 0 50 75 TEMPERATURE (°C) 100 125 2882 G08 0 0 2 6 4 LOAD CURRENT(mA) 8 10 2882 G09 2882fh 6 For more information www.linear.com/LTM2882 LTM2882 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5V, VL = 3.3V, and GND = GND2 = 0V, ON = VL unless otherwise noted. VCC2 Output Voltage vs Load Current 3.5 5.2 3.0 5.1 2.5 VCC2 VOLTAGE (V) THRESHOLD VOLTAGE (V) Logic Input Threshold vs VL Supply Voltage INPUT HIGH 2.0 INPUT LOW 1.5 1.0 0.5 0 VCC = 3.0V TO 3.6V, LTM2882-3 VCC = 4.5V TO 5.5V, LTM2882-5 5.0 5.5V 4.9 3.0V 4.7 1 3 2 4 VL SUPPLY VOLTAGE (V) 4.5 6 5 3.6V 4.5V 4.6 0 5.0V 3.3V 4.8 0 50 100 200 150 LOAD CURRENT (mA) 250 2882 G10 300 2882 G11 Driver Outputs Exiting Shutdown Driver Outputs Enable/Disable ON T1OUT DE = DOUT, DIN = VL 5V/DIV 2V/DIV DE T1OUT T2OUT T1OUT 5V/DIV DE = VCC2 T2OUT T2OUT 2882 G12 100µs/DIV 2µs/DIV 2882 G13 Operating Through 35kV/µs Common Mode Transients T1IN 2V/DIV 2V/DIV T1OUT = R1IN R1OUT * 500V/DIV 50ns/DIV * MULTIPLE SWEEPS OF COMMON MODE TRANSIENTS 2882 G14 2882fh For more information www.linear.com/LTM2882 7 LTM2882 TYPICAL PERFORMANCE CHARACTERISTICS VCC = 5V, VL = 3.3V, and GND = GND2 = 0V, ON = VL unless otherwise noted. VCC2 Surplus Current vs Temperature 300 70 EFFICIENCY (%) 150 60 VCC = 5.0V LTM2882-5 200 VCC = 3.3V LTM2882-3 100 T1OUT AND T2OUT 50 BAUD = 100kbps RL = 3k, CL = 2.5nF VCC2 = 4.8V 0 –50 –25 25 75 0 50 TEMPERATURE (°C) VCC2 Power Efficiency 1.2 1.0 LTM2882-5 50 0.8 LTM2882-3 40 0.6 30 0.4 20 100 125 10 POWER LOSS (W) VCC2 CURRENT (mA) 250 TA = 25°C, LTM2882-3 VCC = 3.3V, LTM2882-5 0.2 TA = 25°C 0 50 150 100 200 LOAD CURRENT (mA) 2882 G15 250 0 300 2882 G16 VCC2 Load Step Response VCC2 Ripple and Noise 200mV/DIV 100mV/DIV 50mA/DIV T1IN = 250kbps T1OUT, T2OUT, RL = 3k 10µs/DIV 2882 G17 100µs/DIV 2882 G18 2882fh 8 For more information www.linear.com/LTM2882 LTM2882 TEST CIRCUITS VL TIN TIN CL RL ½VL 0V TOUT TOUT tPLHD VOHD 0V –3V VOLD tr, tf ≤ 40ns tPHLD 3V tTHL tTLH 2882 F01 Figure 1. Driver Slew Rate and Timing Measurement VCC2 DE 0V 0 OR VL TOUT DE CL RL TOUT tPZHD VOHD tPHZD 5V VOHD – 0.5V 0V 0V TOUT tr, tf ≤ 40ns ½VCC2 tPZLD tPLZD VOLD – 0.5V –5V VOLD 2882 F02 Figure 2. Driver Enable/Disable Times 3V RIN ROUT –3V CL RIN tr, tf ≤ 40ns ROUT 1.5V tPHLR VOH tPLHR 10% 90% 90% VOL ½VL 10% tFR tRR 2882 F03 Figure 3. Receiver Timing Measurement DIN 0V DOUT DIN VL CL DOUT VOH VOL ½VL tPLHL 90% 10% ½VCC2 tRL tPHLL 10% 90% tFL 2882 F04 Figure 4. Auxiliary Channel Timing Measurement 2882fh For more information www.linear.com/LTM2882 9 LTM2882 PIN FUNCTIONS LOGIC SIDE ISOLATED SIDE R2OUT (Pin A1): Channel 2 RS232 Inverting Receiver Output. Controlled through isolation barrier from receiver input R2IN. Under the condition of an isolation communication failure R2OUT is in a high impedance state. GND2 (Pins K1-K7): Isolated Side Circuit Ground. These pads should be connected to the isolated ground and/or cable shield. T2IN (Pin A2): Channel 2 RS232 Inverting Driver Input. A logic low on this input generates a high on isolated output T2OUT. A logic high on this input generates a low on isolated output T2OUT. Do not float. VCC2 (Pins K8, L7-L8): Isolated Supply Voltage Output. Internally generated from VCC by an isolated DC/DC converter and regulated to 5V. Supply voltage for pins R1IN, R2IN, DE, and DOUT. Internally bypassed to GND2 with 2.2µF. R1OUT (Pin A3): Channel 1 RS232 Inverting Receiver Output. Controlled through isolation barrier from receiver input R1IN. Under the condition of an isolation communication failure R1OUT is in a high impedance state. R2IN (Pin L1): Channel 2 RS232 Inverting Receiver Input. A low on isolated input R2IN generates a logic high on R2OUT. A high on isolated input R2IN generates a logic low on R2OUT. Impedance is nominally 5kΩ in receive mode or unpowered. T1IN (Pin A4): Channel 1 RS232 Inverting Driver Input. A logic low on this input generates a high on isolated output T1OUT. A logic high on this input generates a low on isolated output T1OUT. Do not float. T2OUT (Pin L2): Channel 2 RS232 Inverting Driver Output. Controlled through isolation barrier from driver input T2IN. High impedance when the driver is disabled (DE pin is low). DIN (Pin A5): General Purpose Non-Inverting Logic Input. A logic high on DIN generates a logic high on isolated output DOUT. A logic low on DIN generates a logic low on isolated output DOUT. Do not float. R1IN (Pin L3): Channel 1 RS232 Inverting Receiver Input. A low on isolated input R1IN generates a logic high on R1OUT. A high on isolated input R1IN generates a logic low on R1OUT. Impedance is nominally 5kΩ in receive mode or unpowered. ON (Pin A6): Enable. Enables power and data communication through the isolation barrier. If ON is high the part is enabled and power and communications are functional to the isolated side. If ON is low the logic side is held in reset and the isolated side is unpowered. Do not float. T1OUT (Pin L4): Channel 1 RS232 Inverting Driver Output. Controlled through isolation barrier from driver input T1IN. High impedance when the driver is disabled (DE pin is low). VL (Pin A7): Logic Supply. Interface supply voltage for pins DIN, R2OUT, T2IN, R1OUT, T1IN, and ON. Operating voltage is 1.62V to 5.5V. Internally bypassed to GND with 2.2µF. DOUT (Pin L5): General Purpose Non-Inverting Logic Output. Logic output connected through isolation barrier to DIN. VCC (Pins A8, B7-B8): Supply Voltage. Operating voltage is 3.0V to 3.6V for LTM2882-3, and 4.5V to 5.5V for LTM2882-5. Internally bypassed to GND with 2.2µF. DE (Pin L6): Driver Output Enable. A low input forces both RS232 driver outputs, T1OUT and T2OUT, into a high impedance state. A high input enables both RS232 driver outputs. Do not float. GND (Pins B1-B6): Circuit Ground. 2882fh 10 For more information www.linear.com/LTM2882 LTM2882 BLOCK DIAGRAM 5V REG VCC VCC2 2.2µF 2.2µF VL GND2 2.2µF DE GND DOUT VDD DC/DC CONVERTER VEE ON DIN VDD T1IN R1OUT T1OUT ISOLATED COMMUNICATIONS INTERFACE ISOLATED COMMUNICATIONS INTERFACE VEE VDD R1IN 5k T2IN T2OUT VEE R2OUT R2IN 5k 2882 BD 2882fh For more information www.linear.com/LTM2882 11 LTM2882 APPLICATIONS INFORMATION Overview ANY VOLTAGE FROM 1.62V TO 5.5V VL ON VCC DIN EXTERNAL DEVICE T1IN R1OUT T2IN LTM2882 GND VCC2 DE DOUT T1OUT R1IN T2OUT R2IN R2OUT µModule Technology GND2 2882 F05 The LTM2882 utilizes isolator µModule technology to translate signals and power across an isolation barrier. Signals on either side of the barrier are encoded into pulses and translated across the isolation boundary using coreless transformers formed in the µModule substrate. This system, complete with data refresh, error checking, safe shutdown on fail, and extremely high common mode immunity, provides a robust solution for bidirectional signal isolation. The µModule technology provides the means to combine the isolated signaling with our advanced dual RS232 transceiver and powerful isolated DC/DC converter in one small package. DC/DC Converter The LTM2882 contains a fully integrated isolated DC/DC converter, including the transformer, so that no external components are necessary. The logic side contains a fullbridge driver, running at about 2MHz, and is AC-coupled to a single transformer primary. A series DC blocking capacitor prevents transformer saturation due to driver duty cycle imbalance. The transformer scales the primary voltage, and is rectified by a full-wave voltage doubler. This topology eliminates transformer saturation caused by secondary imbalances. The DC/DC converter is connected to a low dropout regulator (LDO) to provide a regulated low noise 5V output, VCC2. An integrated boost converter generates a 7V VDD supply and a charge pumped –6.3V VEE supply. VDD and VEE power the output stage of the RS232 drivers and are regulated to levels that guarantee greater than ±5V output swing. 12 3.0V TO 3.6V LTM2882-3 4.5V TO 5.5V LTM2882-5 ISOLATION BARRIER The LTM2882 µModule transceiver provides a galvanicallyisolated robust RS232 interface, powered by an integrated, regulated DC/DC converter, complete with decoupling capacitors. The LTM2882 is ideal for use in networks where grounds can take on different voltages. Isolation in the LTM2882 blocks high voltage differences, eliminates ground loops and is extremely tolerant of common mode transients between grounds. Error-free operation is maintained through common mode events greater than 30kV/ μs providing excellent noise isolation. Figure 5. VCC and VL Are Independent The internal power solution is sufficient to support the transceiver interface at its maximum specified load and data rate, and has the capacity to provide additional 5V power on the isolated side VCC2 and GND2 pins. VCC and VCC2 are each bypassed internally with 2.2µF ceramic capacitors. VL Logic Supply A separate logic supply pin VL allows the LTM2882 to interface with any logic signal from 1.62V to 5.5V as shown in Figure 5. Simply connect the desired logic supply to VL. There is no interdependency between VCC and VL; they may simultaneously operate at any voltage within their specified operating ranges and sequence in any order. VL is bypassed internally by a 2.2µF capacitor. Hot Plugging Safely Caution must be exercised in applications where power is plugged into the LTM2882’s power supplies, VCC or VL, due to the integrated ceramic decoupling capacitors. The parasitic cable inductance along with the high Q characteristics of ceramic capacitors can cause substantial ringing which could exceed the maximum voltage ratings and damage the LTM2882. Refer to Analog Devices Application Note 88, entitled “Ceramic Input Capacitors Can Cause Overvoltage Transients” for a detailed discussion and mitigation of this phenomenon. For more information www.linear.com/LTM2882 2882fh LTM2882 APPLICATIONS INFORMATION Channel Timing Uncertainty Driver Overvoltage and Overcurrent Protection Multiple channels are supported across the isolation boundary by encoding and decoding of the inputs and outputs. The technique used assigns T1IN/R1IN the highest priority such that there is no jitter on the associated output channels T1OUT/R1OUT, only delay. This preemptive scheme will produce a certain amount of uncertainty on T2IN/ R2IN to T2OUT/R2OUT and DIN to DOUT. The resulting pulse width uncertainty on these low priority channels is typically ±6ns, but may vary up to about 40ns. The driver outputs are protected from short-circuits to any voltage within the absolute maximum range of ±15V relative to GND2. The maximum current is limited to no more than 70mA to maintain a safe power dissipation and prevent damaging the LTM2882. Half-Duplex Operation Each receiver input has a nominal input impedance of 5kΩ relative to GND2. An open circuit condition will generate a logic high on each receiver’s respective output pin. The DE pin serves as a low-latency driver enable for halfduplex operation. The DE pin can be easily driven from the logic side by using the uncommitted auxiliary digital channel, DIN to DOUT. Each driver is enabled and disabled in less than 2µs, while each receiver remains continuously active. This mode of operation is illustrated in Figure 6. 3.3V (LTM2882-3) 5V (LTM2882-5) RX TX VCC DIN T1IN R1OUT T2IN LTM2882 T1OUT R1IN T2OUT R2IN R2OUT GND VCC2 DE DOUT ISOLATION BARRIER VL ON GND2 2882 F06 Figure 6. Half-Duplex Configuration Using DOUT to Drive DE Receiver Overvoltage and Open Circuit The receiver inputs are protected from common mode voltages of ±25V relative to GND2. RF, Magnetic Field Immunity The LTM2882 has been independently evaluated and has successfully passed the RF and magnetic field immunity testing requirements per European Standard EN 55024, in accordance with the following test standards: EN 61000-4-3 Radiated, Radio-Frequency, Electromagnetic Field Immunity EN 61000-4-8 Power Frequency Magnetic Field Immunity EN 61000-4-9 Pulsed Magnetic Field Immunity Tests were performed using an unshielded test card designed per the data sheet PCB layout recommendations. Specific limits per test are detailed in Table 1. Table 1 TEST EN 61000-4-3, Annex D FREQUENCY FIELD STRENGTH 80MHz to 1GHz 10V/m 1.4MHz to 2GHz 3V/m 2GHz to 2.7GHz 1V/m EN 61000-4-8, Level 4 50Hz and 60Hz 30A/m EN 61000-4-8, Level 5 60Hz 100A/m* EN 61000-4-9, Level 5 Pulse 1000A/m *Non IEC Method 2882fh For more information www.linear.com/LTM2882 13 LTM2882 APPLICATIONS INFORMATION PCB Layout The high integration of the LTM2882 makes PCB layout very simple. However, to optimize its electrical isolation characteristics, EMI, and thermal performance, some layout considerations are necessary. • Under heavily loaded conditions VCC and GND current can exceed 300mA. Sufficient copper must be used on the PCB to insure resistive losses do not cause the supply voltage to drop below the minimum allowed level. Similarly, the VCC2 and GND2 conductors must be sized to support any external load current. These heavy copper traces will also help to reduce thermal stress and improve the thermal conductivity. • Input and Output decoupling is not required, since these components are integrated within the package. An additional bulk capacitor with a value of 6.8µF to 22µF is recommended. The high ESR of this capacitor reduces board resonances and minimizes voltage spikes caused by hot plugging of the supply voltage. For EMI sensitive applications, an additional low ESL ceramic capacitor of 1µF to 4.7µF, placed as close to the power and ground terminals as possible, is recommended. Alternatively, a number of smaller value parallel capacitors may be used to reduce ESL and achieve the same net capacitance. • Do not place copper on the PCB between the inner columns of pads. This area must remain open to withstand the rated isolation voltage. • The use of solid ground planes for GND and GND2 is recommended for non-EMI critical applications to optimize signal fidelity, thermal performance, and to minimize RF emissions due to uncoupled PCB trace conduction. The drawback of using ground planes, where EMI is of concern, is the creation of a dipole antenna structure which can radiate differential voltages formed between GND and GND2. If ground planes are used it is recommended to minimize their area, and use contiguous planes as any openings or splits can exacerbate RF emissions. • For large ground planes a small capacitance (≤ 330pF) from GND to GND2, either discrete or embedded within the substrate, provides a low impedance current return path for the module parasitic capacitance, minimizing any high frequency differential voltages and substantially reducing radiated emissions. Discrete capacitance will not be as effective due to parasitic ESL. In addition, voltage rating, leakage, and clearance must be considered for component selection. Embedding the capacitance within the PCB substrate provides a near ideal capacitor and eliminates component selection issues; however, the PCB must be 4 layers. Care must be exercised in applying either technique to insure the voltage rating of the barrier is not compromised. The PCB layout in Figures 7a to 7e show the low EMI demo board for the LTM2882. The demo board uses a combination of EMI mitigation techniques, including both embedded PCB bridge capacitance and discrete GND to GND2 capacitors. Two safety rated type Y2 capacitors are used in series, manufactured by Murata, part number GA342QR7GF471KW01L. The embedded capacitor effectively suppresses emissions above 400MHz, whereas the discrete capacitors are more effective below 400MHz. EMI performance is shown in Figure 8, measured using a Gigahertz Transverse Electromagnetic (GTEM) cell and method detailed in IEC 61000-4-20, “Testing and Measurement Techniques – Emission and Immunity Testing in Transverse Electromagnetic Waveguides.” 2882fh 14 For more information www.linear.com/LTM2882 LTM2882 APPLICATIONS INFORMATION TECHNOLOGY Figure 7a. Low EMI Demo Board Layout Figure 7b. Low EMI Demo Board Layout (DC1747A), Top Layer Figure 7c. Low EMI Demo Board Layout (DC1747A), Inner Layer 1 2882fh For more information www.linear.com/LTM2882 15 LTM2882 APPLICATIONS INFORMATION Figure 7d. Low EMI Demo Board Layout (DC1747A), Inner Layer 2 Figure 7e. Low EMI Demo Board Layout (DC1747A), Bottom Layer 60 DETECTOR = QuasiPeak 50 RBW = 120kHz VBW = 300kHz 40 SWEEP TIME = 17sec dBµV/m 30 20 10 0 –10 –20 –30 DC1747A-A DC1747A-B CISPR 22 CLASS 8 LIMIT 0 100 200 300 400 500 600 700 800 900 1000 FREQUENCY (MHz) 2882 F08 Figure 8. Low EMI Demo Board Emissions 2882fh 16 For more information www.linear.com/LTM2882 LTM2882 TYPICAL APPLICATIONS VL ON VCC DE DIN RX TX T1IN 3.3k R1OUT T2IN 3.3k LTM2882 DOUT ISOLATION BARRIER 3.3V (LTM2882-3) 5V (LTM2882-5) T1OUT R1IN T2OUT R2IN R2OUT GND GND2 2882 F09 Figure 9. Single Line Dual Half-Duplex Isolated Transceiver VL VCC LTM2882 ON DE DIN DOUT T1IN R1OUT T2IN ISOLATION BARRIER 3.3V (LTM2882-3) 5V (LTM2882-5) T1OUT R1IN CL R2IN R2OUT GND 3k T2OUT DATA RATE CL (nF) (kbps) GND2 2882 F10 100 250 1000 5 2 0.5 Figure 10. Driving Larger Capacitive Loads 2882fh For more information www.linear.com/LTM2882 17 LTM2882 TYPICAL APPLICATIONS 3.3V (LTM2882-3) 5V (LTM2882-5) VL ON VCC LTM2882 ISOLATION BARRIER T1IN R1OUT T2IN VL ON OFF ON DE DIN µP 3.3V (LTM2882-3) 5V (LTM2882-5) DOUT DIN T1OUT T1IN R1IN R1OUT T2OUT T2IN R2IN R2OUT GND VCC LTM2882 R1IN T2OUT R2IN GND 2882 F11 GND2 2882 F12 Figure 12. Isolated 5V Power Supply Figure 11. 1.8V Microprocessor Interface 5V REGULATED 3.3V (LTM2882-3) 5V (LTM2882-5) VL VCC LTM2882 VCC2 ON DE DIN DOUT T1IN R1OUT T2IN R2OUT GND ISOLATION BARRIER OFF ON 5V REGULATED 150mA (LTM2882-5) 100mA (LTM2882-3) T1OUT R2OUT GND2 VCC2 DE DOUT ISOLATION BARRIER 1.8V T1OUT R1IN T2OUT R2IN 7V SWITCHED –6.3V SWITCHED GND2 2882 F13 RETURN Figure 13. Isolated Multirail Power Supply with Switched Outputs 2882fh 18 For more information www.linear.com/LTM2882 1.905 3.175 SUGGESTED PCB LAYOUT TOP VIEW 0.000 aaa Z 0.630 ±0.025 Ø 32x 0.635 PACKAGE TOP VIEW E 0.635 4 1.905 PIN “A1” CORNER 3.175 4.445 4.445 Y X D For more information www.linear.com/LTM2882 6.350 5.080 0.000 5.080 6.350 aaa Z // bbb Z NOM 3.42 0.60 2.82 0.75 0.63 15.0 11.25 1.27 12.70 8.89 0.32 2.50 MAX 3.62 0.70 2.92 0.90 0.66 DIMENSIONS BALL DIMENSION PAD DIMENSION BALL HT NOTES DETAIL B PACKAGE SIDE VIEW A2 SUBSTRATE THK 0.37 MOLD CAP HT 2.55 0.15 0.10 0.20 0.30 0.15 TOTAL NUMBER OF BALLS: 32 0.27 2.45 MIN 3.22 0.50 2.72 0.60 0.60 H1 SUBSTRATE ddd M Z X Y eee M Z DETAIL A Øb (32 PLACES) SYMBOL A A1 A2 b b1 D E e F G H1 H2 aaa bbb ccc ddd eee b1 DETAIL B H2 MOLD CAP ccc Z A1 Z A Z (Reference LTC DWG # 05-08-1851 Rev E) BGA Package 32-Lead (15mm × 11.25mm × 3.42mm) e b 7 5 G 4 e 3 PACKAGE BOTTOM VIEW 6 2 1 L K J H G F E D C B A DETAILS OF PIN #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE PIN #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE BALL DESIGNATION PER JESD MS-028 AND JEP95 TRAY PIN 1 BEVEL COMPONENT PIN “A1” 6 ! 3 BGA 32 0517 REV E PACKAGE IN TRAY LOADING ORIENTATION LTMXXXXXX µModule PACKAGE ROW AND COLUMN LABELING MAY VARY AMONG µModule PRODUCTS. REVIEW EACH PACKAGE LAYOUT CAREFULLY 5. PRIMARY DATUM -Z- IS SEATING PLANE 4 3 2. ALL DIMENSIONS ARE IN MILLIMETERS 6 SEE NOTES PIN 1 SEE NOTES NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 F b 8 DETAIL A LTM2882 PACKAGE DESCRIPTION Please refer to http://www.linear.com/product/LTM2882#packaging for the most recent package drawings. 2882fh 19 4 For more information www.linear.com/LTM2882 3.175 1.905 SUGGESTED PCB LAYOUT TOP VIEW 0.635 PACKAGE TOP VIEW 11.25 BSC 0.635 PAD “A1” CORNER 1.905 Y X 6.350 5.080 0.000 5.080 6.350 DETAIL c 15.00 BSC aaa Z 2.400 – 2.600 eee S X Y 0.290 – 0.350 SUBSTRATE DETAIL C 0.630 ±0.025 Ø 32x DETAIL B eee S X Y DETAILS OF PAD #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE PAD #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE 4 7 PACKAGE ROW AND COLUMN LABELING MAY VARY AMONG µModule PRODUCTS. REVIEW EACH PACKAGE LAYOUT CAREFULLY SYMBOL TOLERANCE aaa 0.10 bbb 0.10 eee 0.05 ! 6. THE TOTAL NUMBER OF PADS: 32 5. PRIMARY DATUM -Z- IS SEATING PLANE LAND DESIGNATION PER JESD MO-222 3 2. ALL DIMENSIONS ARE IN MILLIMETERS NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 DETAIL A 0.630 ±0.025 Ø 32x DETAIL B MOLD CAP 2.69 – 2.95 (Reference LTC DWG # 05-08-1773 Rev A) Z 20 bbb Z LGA Package 32-Lead (15mm × 11.25mm × 2.82mm) TRAY PIN 1 BEVEL COMPONENT PIN “A1” 12.70 BSC 8 DETAIL A 7 8.89 BSC 5 4 3 1.27 BSC 2 1 L K J H G F E D C B A 7 LGA 32 0113 REV A 3 PADS SEE NOTES PAD 1 PACKAGE IN TRAY LOADING ORIENTATION LTMXXXXXX µModule PACKAGE BOTTOM VIEW 6 SEE NOTES LTM2882 PACKAGE DESCRIPTION Please refer to http://www.linear.com/product/LTM2882#packaging for the most recent package drawings. 2882fh 4.445 3.175 4.445 aaa Z LTM2882 REVISION HISTORY REV DATE DESCRIPTION A 3/10 Changes to Features Add BGA Package to Pin Configuration, Order Information and Package Description Sections Changes to LGA Package in Pin Configuration Section PAGE NUMBER 1 2, 15 2 Update to Pin Functions 9 Update to RF, Magnetic Field Immunity Section 12 “PCB Layout Isolation Considerations” Section Replaced 13 B 3/11 H-Grade parts added. Reflected throughout the data sheet. 1-20 C 1/12 MP-Grade parts added. Reflected throughout the data sheet. 1-24 D 11/12 Storage temperature range updated. E 5/14 Removed H-grade and MP-grade parts throughout the data sheet. F 9/14 G 4/16 H 2/18 2 1-22 Reduced Maximum Internal Operating Temperature and Storage Temperature Range. 2 Added CTI and DTI parameters. 5 Revised Output Supply Short-Circuit Current (ICC2) 3 Added CSA information 1 Revised ICC (LTM2882-5) limit 3 H-Grade parts added. Reflected throughout the data sheet. 1-22 2882fh Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications For more information www.linear.com/LTM2882 subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. 21 LTM2882 TYPICAL APPLICATIONS 3.3V (LTM2882-3) 5V (LTM2882-5) 1.62V TO 5.5V VL ON µC VCC TXD R XD PY PZ T1IN R2OUT T2IN PERIPHERAL VL ON OFF ON T1OUT TX T2OUT R1OUT VL T2IN RTS R2IN GND 0V CTS 0V LTM2882 DE T1IN RX R1IN R2OUT VCC DIN DOUT ISOLATION BARRIER DIN VCC2 DE LTM2882 DOUT ISOLATION BARRIER 3.3V (LTM2882-3) 5V (LTM2882-5) T1OUT R1IN GND GND2 R2IN –25V TO 0V 2882 F15 Figure 14. Isolated RS232 Interface with Handshaking VCC DIN T1IN PWMA FAULT PWMB R1OUT T2IN LTM2882 ISOLATION BARRIER RESET VL ON 3V TO 25V GND2 2882 F14 3.3V (LTM2882-3) 5V (LTM2882-5) –25V TO 0V T2OUT R2OUT VL 3V TO 25V Figure 15. Isolated Dual Inverting Level Translator +VS 1k VCC2 DE DOUT T1OUT LOGIC LEVEL FETS R1IN T2OUT R2IN R2OUT GND GND2 IRLML6402 CMPT2369-LTV 1k 3k 470pF 3k IRLML2402 47pF RILIM = 0.6/MAX CURRENT 2882 F16 Figure 16. Isolated Gate Drive with Overcurrent Detection RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTM2881 Isolated RS485/RS422 µModule Transceiver with Low EMI Integrated DC/DC Converter 20Mbps, ±15kV HBM ESD, 2500VRMS Isolation with 1W Power LTC2870/LTC2871 RS232/RS485 Multiprotocol Transceivers with Integrated Termination 20Mbps RS485 and 500kbps RS232, ±26kV ESD, 3V to 5V Operation LTC2804 1Mbps RS232 Transceiver Dual Channel, Full-Duplex, ±10kV HBM ESD LTC1535 Isolated RS485 Transceiver 2500 VRMS Isolation with External Transformer Driver LTM2883 SPI/Digital or I2C Isolated µModule with Adjustable 2500 VRMS Isolation with Power in BGA Package SPI/Digital or I2C Isolated µModule 3500 VRMS Isolation, 6 Channels LTM2892 5V and 12V Rails 2882fh 22 LT 0218 REV H • PRINTED IN USA For more information www.linear.com/LTM2882 www.linear.com/LTM2882  ANALOG DEVICES, INC. 2010
LTM2882IV-3#PBF 价格&库存

很抱歉,暂时无法提供与“LTM2882IV-3#PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LTM2882IV-3#PBF
    •  国内价格
    • 1+198.47240
    • 5+166.81947
    • 10+152.27624
    • 50+124.90073

    库存:228