LTC1391 8-Channel Analog Multiplexer with Cascadable Serial Interface
FEATURES
s s s s s s s s s s
DESCRIPTIO
Low RON: 45Ω Single 2.7V to ± 5V Supply Operation Low Charge Injection Serial Digital Interface Analog Inputs May Extend to Supply Rails Low Leakage: ± 5nA Max Guaranteed Break-Before-Make TTL/CMOS Compatible for All Digital Inputs Cascadable to Allow Additional Channels Can Be Used as a Demultiplexer
The LTC ® 1391 is a high performance CMOS 8-to-1 analog multiplexer. It features a serial digital interface that allows several LTC1391s to be daisy-chained together, increasing the number of MUX channels available using a single digital port. The LTC1391 features a typical RON of 45Ω, a typical switch leakage of 50pA and guaranteed break-beforemake operation. Charge injection is ± 10pC maximum. All digital inputs are TTL and CMOS compatible when operated from single or dual supplies. The inputs can withstand 100mA fault current. The LTC1391 is available in 16-pin PDIP, SSOP and narrow SO packages. For applications requiring 2-way serial data transmission, see the LTC1390 data sheet.
, LTC and LT are registered trademarks of Linear Technology Corporation.
APPLICATIO S
s s s
Data Acquisition Systems Communication Systems Signal Multiplexing/Demultiplexing
TYPICAL APPLICATIO
3V, 8-Channel 12-Bit ADC
0.1µF OPTIONAL A/D INPUT FILTER
3V
1 2 3 ANALOG INPUTS 4 5 6 7 8
S0 S1 S2 S3 S4 S5 S6 S7 LTC1391
V+ D V– DOUT DIN CS CLK GND DATA IN CLK CS DATA OUT
16 15 14 13 12 11 10 9
1 2
VREF +IN
VCC
8 7 6 5
1µF
ON-RESISTANCE (Ω)
CLK LTC1285 3 –IN DOUT 4 GND CS/SHDN
SERIAL INTERFACE TO MUX AND ADC
1391 TA01
U
On-Resistance vs Analog Input Voltage
300 TA = 25°C 250 200 150 100 50 V + = 5V V – = – 5V V + = 2.7V V – = 0V 0 –5 –4 –3 –2 –1 0 1 2 3 ANALOG INPUT VOLTAGE (V) 4 5
1391 TA02
U
U
sn1391 1391fas
1
LTC1391
ABSOLUTE
(Note 1)
AXI U
RATI GS
PACKAGE/ORDER I FOR ATIO
TOP VIEW S0 1 S1 2 S2 3 S3 4 S4 5 S5 6 S6 7 S7 8 16 V + 15 D 14 V – 13 DOUT 12 DIN 11 CS 10 CLK 9 GND
Total Supply Voltage (V + to V –) .............................. 15V Input Voltage Analog Inputs/Outputs ..... (V – – 0.3V) to (V + + 0.3V) Digital Inputs .........................................– 0.3V to 15V Digital Outputs ..........................– 0.3V to (V + + 0.3V) Power Dissipation .............................................. 500mW Operating Temperature Range LTC1391C ............................................... 0°C to 70°C LTC1391I ........................................... – 40°C to 85°C Storage Temperature Range ................. – 65°C to 150°C Lead Temperature (Soldering, 10 sec).................. 300°C
ORDER PART NUMBER LTC1391CGN LTC1391CN LTC1391CS LTC1391IGN LTC1391IN LTC1391IS GN PART MARKING 1391 1391I
GN PACKAGE N PACKAGE 16-LEAD PLASTIC SSOP 16-LEAD PDIP S PACKAGE 16-LEAD PLASTIC SO
TJMAX = 125°C, θJA = 110°C/ W (GN) TJMAX = 125°C, θJA = 70°C/ W (N) TJMAX = 125°C, θJA = 100°C/ W (S)
Consult LTC Marketing for parts specified with wider operating temperature ranges.
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER Switch VANALOG Analog Signal Range RON On-Resistance (Note 2) VS = ± 3.5V, ID = 1mA CONDITIONS
The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. V + = 5V, V – = – 5V, GND = 0V, unless otherwise specified.
MIN
q
TYP
MAX 5 75
UNITS V Ω Ω Ω % %/°C
–5
TMIN = 0°C (LTC1391C) TMIN = – 40°C (LTC1391I) 25°C TMAX = 70°C (LTC1391C) TMAX = 85°C (LTC1391I) 45
75 120
∆RON vs VS ∆RON vs Temperature IS(OFF) ID(OFF) ID(ON) Digital VINH VINL VOH VOL High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage V + = 5.25V V+ = 4.75V VIN = 5V, 0V V + = 4.75V, IO = – 10µA V + = 4.75V, IO = – 360µA V + = 4.75V, IO = 1.6mA
q q q q q
20 0.5 VS = 4V, VD = – 4V, VS = – 4V, VD = 4V Channel Off VS = 4V, VD = – 4V, VS = – 4V, VD = 4V Channel Off VS = VD = ± 4V Channel On ± 0.05
q
Off Input Leakage Off Output Leakage On Channel Leakage
±5 ± 20 ±5 ± 20 ±5 ± 20
± 0.05
q
± 0.05
q
2.4 0.8 ±5 2.4 4.74 4.50 0.5 0.8
IINL, IINH Input Current
sn1391 1391fas
2
U
nA nA nA nA nA nA V V µA V V V
W
U
U
WW
W
LTC1391
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER Dynamic fCLK tON tOFF tOPEN OIRR QINJ CS(OFF) CD(0FF) Supply I+ I– Positive Supply Current Negative Supply Current All Logic Inputs Tied Together, VIN = 0V or 5V All Logic Inputs Tied Together, VIN = 0V or 5V
q q
The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. V + = 5V, V – = – 5V, GND = 0V, unless otherwise specified.
CONDITIONS (Note 2) VS = 2.5V, RL = 1k, CL = 35pF VS = 2.5V, RL = 1k, CL = 35pF 35 VS = 2VP–P, RL = 1k, f = 100kHz RS = 0, CL = 1000pF, VS = 1V (Note 2) 260 100 155 70 ±2 5 10 15 – 15 40 – 40 ± 10 MIN TYP MAX 5 400 200 UNITS MHz ns ns ns dB pC pF pF µA µA
Clock Frequency Enable Turn-On Time Enable Turn-Off Time Break-Before-Make Interval Off Isolation Charge Injection Input Off Capacitance Output Off Capacitance
The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. V + = 2.7V, V – = GND = 0V, unless otherwise specified.
SYMBOL PARAMETER Switch VANALOG Analog Signal Range RON On-Resistance (Note 2) VS = 1.2V, IO = 1mA TMIN = 0°C (LTC1391C) TMIN = – 40°C (LTC1391I) 25°C TMAX = 70°C (LTC1391C) TMAX = 85°C (LTC1391I) ∆RON vs VS ∆RON vs Temperature IS(OFF) ID(OFF) ID(ON) Digital VINH VINL VOH VOL High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage V + = 3.0V V+ = 2.4V VIN = 2.7V, 0V V + = 2.7V, IO = – 20µA V + = 2.7V, IO = – 400µA V + = 2.7V, IO = 20µA V + = 2.7V, IO = 400µA
q q q q q q
CONDITIONS
MIN 0
TYP
MAX 2.7 300
UNITS V Ω Ω Ω % %/°C
250
300 350
20 0.5 VS = 2.5V, VD = 0.5V; VS = 0.5V, VD = 2.5V (Note 3) Channel Off VS = 2.5V, VD = 0.5V; VS = 0.5V, VD = 2.5V (Note 3) Channel Off VS = VD = 0.5V, 2.5V (Note 3) Channel On ± 0.05
q
Off Input Leakage Off Output Leakage On Channel Leakage
±5 ± 20 ±5 ± 20 ±5 ± 20
nA nA nA nA nA nA V
± 0.05
q
± 0.05
q
2.0 0.8 ±5 2.0 2.68 2.30 0.01 0.20 0.8
V µA V V V V
IINL, IINH Input Current
sn1391 1391fas
3
LTC1391
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER Dynamic fCLK tON tOFF tOPEN QIRR QINJ CS(OFF) CD(OFF) Supply I+ Positive Supply Current All Logic Inputs Tied Together, VIN = 0V or 2.7V
q
The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. V + = 2.7V, V – = GND = 0V, unless otherwise specified.
CONDITIONS (Note 2) VS = 1.5V, RL = 1k, CL = 35pF (Note 4) VS = 1.5V, RL = 1k, CL = 35pF (Note 4) (Note 4) VS = 2VP–P, RL = 1k, f = 100kHz RS = 0, CL = 1000pF, VS = 1V (Note 2) 125 490 190 290 70 ±1 5 10 0.2 2 ±5 MIN TYP MAX 5 800 400 UNITS MHz ns ns ns dB pC pF pF µA
Clock Frequency Enable Turn-On Time Enable Turn-Off Time Break-Before-Make Interval Off Isolation Charge Injection Input Off Capacitance Output Off Capacitance
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: Guaranteed by Design.
Note 3: Leakage current with a single 2.7V supply is guaranteed by correlation with the ± 5V leakage current specifications. Note 4: Timing specifications with a single 2.7V supply are guaranteed by correlation with the ± 5V timing specifications.
TYPICAL PERFOR A CE CHARACTERISTICS
On-Resistance vs Temperature
300 250 V + = 2.7V – = 0V
OUTPUT VOLTAGE (V)
200 150 100 50 0 –40 V + = 5V V – = – 5V VS = 0V
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 V + = 5V V – = – 5V
OUTPUT VOLTAGE (V)
ON-RESISTANCE (Ω)
V VS = 1.2V
–20
20 40 60 0 TEMPERATURE (°C)
4
UW
80
1391 G01
Driver Output Low Voltage vs Output Current
1.2 1.1 1.0 0.9 TA = 25°C V + = 2.7V V – = 0V
0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15
Driver Output Low Voltage vs Temperature
V + = 5V V – = – 5V IO = 1.8mA
V + = 2.7V V – = 0V IO = 400µA
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 OUTPUT CURRENT (mA)
1391 G02
0.10 –40
–20
40 60 0 20 TEMPERATURE (°C)
80
1391 G03
sn1391 1391fas
LTC1391 TYPICAL PERFOR A CE CHARACTERISTICS
Driver Output High Voltage vs Output Current
0 –0.5 OUTPUT CURRENT (mA) –1.0 –1.5 –2.0 –2.5 –3.0 –3.5 –4.0 2.0 2.5 3.0 3.5 4.0 OUTPUT VOLTAGE (V) TA =25°C 4.5 5.0
1391 G04
V + = 2.7V V – = 0V OUTPUT VOLTAGE (V)
PIN FUNCTIONS
S0, S1, S2, S3, S4, S5, S6, S7 (Pins 1, 2, 3, 4, 5, 6, 7, 8): Analog Multiplexer Inputs. GND (Pin 9): Digital Ground. Connect to system ground. CLK (Pin 10): System Clock (TTL/CMOS Compatible). The clock synchronizes the channel selection bits and the serial data transfer from DIN to DOUT. CS (Pin 11): Channel Select Input (TTL/CMOS Compatible). A logic high on this input enables the LTC1391 to read in the channel selection bits and allows digital data transfer from DIN to DOUT. A logic low on this input puts DOUT into three-state and enables the selected channel for analog signal transmission. DIN (Pin 12): Digital Input (TTL/CMOS Compatible). Input for the channel selection bits. DOUT (Pin 13): Digital Output (TTL/CMOS Compatible). Output from the internal shift register. V – (Pin 14): Negative Supply. For ±5V dual supply applications, |V – | should not exceed |V +|by more than 20% for proper channel selection. D (Pin 15): Analog Multiplexer Output. V + (Pin 16): Positive Supply.
UW
Driver Output High Voltage vs Temperature
5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 –40 –20 40 60 0 20 TEMPERATURE (°C) 80
1391 G05
V + = 5V V – = – 5V IO = 1.6mA
V + = 5V V – = – 5V
V + = 2.7V V – = 0V IO = 400µA
U
U
U
sn1391 1391fas
5
LTC1391
APPLICATIONS INFORMATION
Multiplexer Operation Figure 1 shows the block diagram of the components within the LTC1391 required for MUX operation. The LTC1391 uses DIN to select the active channel and the chip select input, CS, to switch on the selected channel as shown in Figure 2. When CS is high, the input data on the DIN pin is latched into the 4-bit shift register on the rising clock edge. The input data consists of the “EN” bit and a string of three bits for channel selection. If “EN” bit is logic high as illustrated in the first input data sequence, it enables the selected channel. After the clocking in of the last channel selection bit B0, the CS pin must be pulled low before the next rising clock edge to ensure correct operation. Once CS is pulled low, the previously selected channel is switched off to ensure a break-before-make interval. After a delay of tON, the selected channel is switched on allowing signal transmission. The selected channel remains on until the next falling edge of CS. After a delay of tOFF, the LTC1391 terminates the analog signal transmission and allows the
CLK DIN CS CONTROL LOGIC 4-BIT SHIFT REGISTER
ANALOG INPUTS (S0 TO S7)
MUX BLOCK
ANALOG OUTPUT (D)
1391 • F01
Figure 1. Simplified Block Diagram of the MUX Operation
CLK
CS
DIN
EN HIGH
B2
B1
B0
ANY ANALOG INPUT
D t ON t OFF
1391 • F02
Figure 2. Multiplexer Operation
sn1391 1391fas
6
U
W
U
U
selection of next channel. If the “EN” bit is logic low, as illustrated in the second data sequence, it disables all channels and there will be no analog signal transmission. Table 1 shows the various bit combinations for channel selection.
Table 1. Logic Table for Channel Selection
ACTIVE CHANNEL All Off S0 S1 S2 S3 S4 S5 S6 S7 EN 0 1 1 1 1 1 1 1 1 B2 X 0 0 0 0 1 1 1 1 B1 X 0 0 1 1 0 0 1 1 BO X 0 1 0 1 0 1 0 1
Digital Data Transfer Operation The block diagram of Figure 3 shows the components within the LTC1391 required for serial data transfer. When CS is held high, data is fed into the 4-bit shift register and then shifted to DOUT. Data appears at DOUT after the fourth rising edge of the clock as shown in Figure 4. The last four
CLK DIN CS CONTROL LOGIC 4-BIT SHIFT REGISTER DOUT
1391 F03
Figure 3. Simplified Block Diagram of the Digital Data Transfer Operation
EN LO
B2
B1
B0
LTC1391
APPLICATIONS INFORMATION
bits clocked into the LTC1391 shift register before CS is taken low select the MUX channel that is turned on. This allows a series of devices, with the DOUT of one device connected to the DIN of the next device, to be programmed with a single data stream.
CLK 1 2 3 4
DIN
D1
D2
D3
D4
D5
DOUT
D1
D2
D3
D4
Figure 4. Digital Data Transfer Operation
Multiplexer Expansion Several LTC1391s can be daisy-chained to expand the number of multiplexer inputs. No additional interface ports are required for the expansion. Figure 5 shows two LTC1391s connected at their analog outputs to form a 16-to-1 multiplexer at the input to an LTC1400 A/D converter.
5V 0.1µF 0.1µF OPTIONAL A/D INPUT FILTER –5V 0.1µF
CS
1 2 3 ANALOG INPUTS 4 5 6 7 8
S0 S1 S2 S3 S4 S5 S6 S7
V+ D V–
16 15 14 13
+
6 5
DOUT LTC1391 12 DIN A 11 CS 10 CLK 9 GND
10µF
1 2 3 ANALOG INPUTS 4 5 6 7 8
S0 S1 S2 S3 S4 S5 S6 S7
V+ D V–
16 15 14
13 DOUT LTC1391 12 DIN B 11 CS 10 CLK 9 GND
Figure 5. Daisy-Chaining Two LTC1391s for Expansion
sn1391 1391fas
+
U
W
U
U
D5
1391 • F04
To ensure that only one channel is switched on at any one time, two sets of channel selection bits are needed for DATA as shown in Figure 6. The first data sequence is used to switch off one MUX and the second data sequence is used to select one channel from the other MUX or vice versa. In other words, if bit “ENA” is high and bit “ENB” is low, one channel of MUX A is switched on and all channels of MUX B are switched off. If bit “ENA” is low and bit “ENB” is high, all channels at MUX A are switched off and one channel of MUX B is switched on. Care should be taken to ensure that only one LTC1391 is enabled at any one time to prevent two channels from being enabled simultaneously.
CLK 1 2 3 4 5 6 7 8
DIN
ENA
A2
A1
A0
ENB
B2
B1
B0
1391 • F06
Figure 6. Data Sequence for MUX Expansion
5V 10µF
+
1 2
VCC AIN
VSS
8 7 10µF
CONV LTC1400 3 VREF CLK 0.1µF 4 GND DOUT
– 5V 0.1µF
DATA OUT
DATA IN CS CLK
1391 • F05
7
LTC1391
TYPICAL APPLICATIONS
Daisy-Chaining Five LTC1391s
0.1µF BYPASS CAPACITORS FROM V + TO GND FOR EACH LTC1391 1 2 3 ANALOG INPUTS 4 5 6 7 8 1 2 3 ANALOG INPUTS 4 5 6 7 8 1 2 3 ANALOG INPUTS 4 5 6 7 8 1 2 3 ANALOG INPUTS 4 5 6 7 8 1 2 3 ANALOG INPUTS 4 5 6 7 8 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 V+ D 16 15 1 2 VREF +IN VCC 8 5V 0.1µF
14 V– LTC1391 13 DOUT A 12 DIN 11 CS 10 CLK 9 GND V+ D 16 15
14 V– LTC1391 13 DOUT B 12 DIN 11 CS 10 CLK 9 GND V+ D 16 15
14 V– LTC1391 13 DOUT C 12 DIN 11 CS 10 CLK 9 GND V+ D 16 15
V LTC1391 13 DOUT D 12 DIN 11 CS 10 CLK 9 GND V+ D 16 15
14 V– LTC1391 13 DOUT E 12 DIN 11 CS 10 CLK 9 GND
8
U
7 CLK LTC1286 3 6 –IN DOUT 4 5 GND CS
DATA OUT
– 14
DATA IN CS CLK
1391 TA04
sn1391 1391fas
LTC1391
PACKAGE DESCRIPTIO U
GN Package 16-Lead Plastic SSOP (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1641)
0.189 – 0.196* (4.801 – 4.978) 16 15 14 13 12 11 10 9 0.009 (0.229) REF 0.229 – 0.244 (5.817 – 6.198) 0.150 – 0.157** (3.810 – 3.988) 1 0.015 ± 0.004 × 45° (0.38 ± 0.10) 0.007 – 0.0098 (0.178 – 0.249) 0.016 – 0.050 (0.406 – 1.270) * DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE ** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE 0° – 8° TYP 0.053 – 0.068 (1.351 – 1.727) 23 4 56 7 8 0.004 – 0.0098 (0.102 – 0.249) 0.008 – 0.012 (0.203 – 0.305) 0.0250 (0.635) BSC
GN16 (SSOP) 1098
sn1391 1391fas
9
LTC1391
PACKAGE DESCRIPTIO U
N Package 16-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
0.770* (19.558) MAX 16 15 14 13 12 11 10 9 0.255 ± 0.015* (6.477 ± 0.381) 1 2 3 4 5 6 7 8 0.130 ± 0.005 (3.302 ± 0.127) 0.020 (0.508) MIN 0.045 – 0.065 (1.143 – 1.651) 0.065 (1.651) TYP 0.125 (3.175) MIN 0.018 ± 0.003 (0.457 ± 0.076) 0.100 (2.54) BSC
N16 1098
0.300 – 0.325 (7.620 – 8.255)
0.009 – 0.015 (0.229 – 0.381)
(
+0.035 0.325 –0.015 8.255 +0.889 –0.381
)
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
sn1391 1391fas
10
LTC1391
PACKAGE DESCRIPTIO U
S Package 16-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
0.386 – 0.394* (9.804 – 10.008) 16 15 14 13 12 11 10 9 0.228 – 0.244 (5.791 – 6.197) 0.150 – 0.157** (3.810 – 3.988) 1 0.010 – 0.020 × 45° (0.254 – 0.508) 0.008 – 0.010 (0.203 – 0.254) 0° – 8° TYP 0.053 – 0.069 (1.346 – 1.752) 2 3 4 5 6 7 8 0.004 – 0.010 (0.101 – 0.254) 0.014 – 0.019 (0.355 – 0.483) TYP 0.050 (1.270) BSC
S16 1098
0.016 – 0.050 (0.406 – 1.270) *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
sn1391 1391fas
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
11
LTC1391
TYPICAL APPLICATIO
Interfacing LTC1391 with LTC1257 for Demultiplex Operation
16 15 47k 0.1µF
1 2 3 ANALOG OUTPUTS 4 5 6 7 8
S0 S1 S2 S3 S4 S5 S6 S7 LTC1391
TTL COMPATIBLE AT V + = 5V
RELATED PARTS
PART NUMBER LTC1285 LTC1286 LTC1380/LTC1393 LTC1390 LTC1401 LTC1402 LTC1404 LTC1417 LTC1451 LTC1452 LTC1453 LT1460-2.5 LT1461-2.5 DESCRIPTION 3V 12-Bit ADC 5V 12-Bit ADC SMBus-Controlled Analog Multiplexer Serial-Controlled 8-to-1 Analog Multiplexer 3V, 12-Bit, 200ksps Serial ADC 12-Bit, 2.2Msps Serial ADC 12-Bit, 600ksps Serial ADC 14-Bit, 400ksps Serial ADC 5V 12-Bit Voltage Output DAC 5V and 3V 12-Bit Voltage Output DAC 3V 12-Bit Voltage Output DAC Micropower, Precision Bandgap Reference Micropower, Low Dropout Reference COMMENTS Micropower, Auto Shutdown, SO-8 Package, SPI, QSPI + MICROWIRETM Compatible Micropower, Auto Shutdown, SO-8 Package, SPI, QSPI + MICROWIRE Compatible Low RON and Low Charge Injection Low RON, Bidirectional Serial Interface, Low Power, 16-Pin SO 15mW, Internal Reference, SO-8 Package 90mW with Nap and Sleep Modes, 5V or ±5V, Internal Reference 5V or ±5V, Internal Reference and Shutdown 20mW, Single 5V or ± 5V Supply Complete VOUT DAC, SO-8 Package, Daisy-Chainable, Low Power Multiplying VOUT DAC, SO-8 Package, Rail-to-Rail Output, Low Power Complete VOUT DAC, SO-8 Package, Daisy-Chainable, Low Power 130µA Supply Current, 10ppm/°C, Available in SOT-23 50µA Supply Current, 300mV Dropout, 3ppm/°C Drift SO-8 Package, Micropower, Serial I/O Micropower, Multiplying VOUT, Swings from GND to VREF
LTC1655/LTC1655L 16-Bit, Voltage Output DAC, 5V/3V LTC1658 14-Bit, Voltage Output DAC
MICROWIRE is a trademark of National Semiconductor.
12
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 q FAX: (408) 434-0507
q
U
V+ D V 5V ≤ V + ≤ 12V
– 14
DOUT DIN CS CLK GND DATA CLK CS
13 12 11 10 9 1 2 OPTIONAL D/A OUTPUT FILTER CLK DIN VCC 8 0.1µF
7 VOUT LTC1257 6 3 LOAD VREF 5 4 GND DOUT
1391 TA03
sn1391 1391fas LT/TP 0701 1.5K REV A • PRINTED IN USA
www.linear.com
© LINEAR TECHNOLOGY CORPORATION 1995