FEATURES
■
LT1013/LT1014 Quad Precision Op Amp (LT1014) Dual Precision Op Amp (LT1013) DESCRIPTIO
The LT ®1014 is the first precision quad operational amplifier which directly upgrades designs in the industry standard 14-pin DIP LM324/LM348/OP-11/4156 pin configuration. It is no longer necessary to compromise specifications, while saving board space and cost, as compared to single operational amplifiers. The LT1014’s low offset voltage of 50μV, drift of 0.3μV/°C, offset current of 0.15nA, gain of 8 million, common mode rejection of 117dB and power supply rejection of 120dB qualify it as four truly precision operational amplifiers. Particularly important is the low offset voltage, since no offset null terminals are provided in the quad configuration. Although supply current is only 350μA per amplifier, a new output stage design sources and sinks in excess of 20mA of load current, while retaining high voltage gain. Similarly, the LT1013 is the first precision dual op amp in the 8-pin industry standard configuration, upgrading the performance of such popular devices as the MC1458/ 1558, LM158 and OP-221. The LT1013’s specifications are similar to (even somewhat better than) the LT1014’s. Both the LT1013 and LT1014 can be operated off a single 5V power supply: input common mode range includes ground; the output can also swing to within a few millivolts of ground. Crossover distortion, so apparent on previous single-supply designs, is eliminated. A full set of specifications is provided with ± 15V and single 5V supplies.
■ ■ ■ ■ ■
■ ■ ■
Single Supply Operation Input Voltage Range Extends to Ground Output Swings to Ground while Sinking Current Pin Compatible to 1458 and 324 with Precision Specs Guaranteed Offset Voltage: 150μV Max Guaranteed Low Drift: 2μV/°C Max Guaranteed Offset Current: 0.8nA Max Guaranteed High Gain 5mA Load Current: 1.5 Million Min 17mA Load Current: 0.8 Million Min Guaranteed Low Supply Current: 500μA Max Low Voltage Noise, 0.1Hz to 10Hz: 0.55μVp-p Low Current Noise—Better than 0P-07, 0.07pA/√Hz
APPLICATIO S
■
■ ■ ■ ■
Battery-Powered Precision Instrumentation Strain Gauge Signal Conditioners Thermocouple Amplifiers Instrumentation Amplifiers 4mA–20mA Current Loop Transmitters Multiple Limit Threshold Detection Active Filters Multiple Gain Blocks
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.
TYPICAL APPLICATIO
3k +5V 1684Ω LT1004 1.2V 299k
3 Channel Thermocouple Thermometer
4k 1M
LT1014 Distribution of Offset Voltage
700 VS = ±15V TA = 25°C 425 LT1014s (1700 OP AMPS) 500 TESTED FROM THREE RUNS 400 J PACKAGE 600 300 200 100
+5V
LT1014
1
14
LT1014
–
13
260Ω
1.8k 1M 4k 6
+
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM. COLD JUNCTION COMPENSATION ACCURATE TO ±1°C FROM 0°C 60°C. USE 4TH AMPLIFIER FOR OUTPUT C.
5
+
+
12
3
OUTPUT A 10mV/°C
11
NUMBER OF UNITS
–
YSI 44007 5kΩ AT 25°C
2
4
LT1014
7
OUTPUT B 10mV/°C
U
–
U
U
0 100 –300 –200 –100 0 200 INPUT OFFSET VOLTAGE (μV)
300
1013/14 TA02
10134fc
1
LT1013/LT1014
ABSOLUTE
AXI U RATI GS
Supply Voltage ...................................................... ± 22V Differential Input Voltage ....................................... ± 30V Input Voltage ............... Equal to Positive Supply Voltage ............5V Below Negative Supply Voltage Output Short-Circuit Duration .......................... Indefinite Storage Temperature Range All Grades ......................................... – 65°C to 150°C
PACKAGE/ORDER I FOR ATIO
TOP VIEW +INA 1 V– 2 – 8 7 6 5 –INA OUTA V+ OUTB
ORDER PART NUMBER LT1013DS8 LT1013IS8
+INB 3 –INB 4
+ –
S8 PACKAGE 8-LEAD PLASTIC SO NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION
PART MARKING 1013 1013I ORDER PART NUMBER
TJMAX = 150°C, θJA = 190°C/W
+IN A V+ +IN B –IN B OUTPUT B
3 4 5 6 7
OUTPUT A 1 – –IN A 2 +IN A 3 V– 4 A
8 7 6 5 B –
V+ OUTPUT B –IN B +IN B
+ B –
+ 10 +IN C C – 9 –IN C 8 OUTPUT C
N8 PACKAGE 8-LEAD PDIP
TJMAX = 150°C, θJA = 130°C/W
J8 PACKAGE 8-LEAD CERDIP
TJMAX = 150°C, θJA = 100°C/W
LT1013AMJ8 LT1013MJ8 LT1013ACJ8 LT1013CJ8
N PACKAGE 14-LEAD PDIP
TJMAX = 150°C, θJA = 100°C/W
J PACKAGE 14-LEAD CERDIP
TJMAX = 150°C, θJA = 100°C/W
OBSOLETE PACKAGE
Consider the N or S8 Packages for Alternate Source
TOP VIEW V+ 8 OUTPUT A 1 7 OUTPUT B A –IN A 2 – + +IN A 3 B + – 6 –IN B 5 +IN B 4
OBSOLETE PACKAGE
Consider the N or SW Packages for Alternate Source
OBSOLETE PACKAGE
Consider the N or S8 (not N8) Packages for Alternate Source
V –(CASE) H PACKAGE 8-LEAD TO-5 METAL CAN
TJMAX = 150°C, θJA = 150°C/W, θJC = 45°C/W
Consult LTC Marketing for parts specified with wider operating temperature ranges.
10134fc
2
+
+
TOP VIEW
LT1013ACN8 LT1013CN8 LT1013DN8 LT1013IN8
–IN A
2
A
D
–
–
U
U
W
WW U
W
+
(Note 1)
Lead Temperature (Soldering, 10 sec.)................. 300°C Operating Temperature Range LT1013AM/LT1013M/ LT1014AM/LT1014M ...................... – 55 °C to 125°C LT1013AC/LT1013C/LT1013D LT1014AC/LT1014C/LT1014D ................. 0°C to 70°C LT1013I/ LT1014I ............................... – 40°C to 85°C
TOP VIEW OUTPUT A 1 –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUTPUT B 7 NC 8 SW PACKAGE 16-LEAD PLASTIC SO 16 OUTPUT D 15 –IN D 14 +IN D 13 V – 12 +IN C 11 –IN C 10 OUTPUT C 9 NC
ORDER PART NUMBER LT1014DSW LT1014ISW
+
+
PART MARKING LT1014DSW LT1014ISW ORDER PART NUMBER LT1014ACN LT1014CN LT1014DN LT1014IN LT1014AMJ LT1014MJ LT1014ACJ LT1014CJ
TJMAX = 150°C, θJA = 130°C/W
TOP VIEW OUTPUT A 1 14 OUTPUT D 13 –IN D 12 +IN D 11 V–
ORDER PART NUMBER LT1013AMH LT1013MH LT1013ACH LT1013CH
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
SYMBOL VOS PARAMETER Input Offset Voltage
TA = 25°C. VS = ±15V, VCM = 0V unless otherwise noted.
LT1013AM/AC LT1014AM/AC TYP MAX 40 150 50 180 — — 0.4 0.15 12 0.55 24 22 0.07 400 5 8.0 2.5 +13.8 – 15.3 117 120 140 ± 14 0.4 0.35 — 0.8 20 — — — — — — — — — — — — — — — 0.50 LT1013C/D/I/M LT1014C/D/I/M TYP 60 60 200 0.5 0.2 15 0.55 24 22 0.07 300 4 7.0 2.0 +13.8 – 15.3 114 117 137 ± 14 0.4 0.35
CONDITIONS LT1013 LT1014 LT1013D/I, LT1014D/I
MIN — — — — —
MIN — — — — — — — — — — 70 — 1.2 0.5 +13.5 – 15.0 97 100 120 ± 12.5 0.2 —
MAX 300 300 800 — 1.5 30 — — — — — — — — — — — — — — — 0.55
UNITS μV μV μV μV/Mo. nA nA μVp-p nV/√Hz nV/√Hz pA/√Hz MΩ GΩ V/μV V/μV V V dB dB dB V V/μs mA
ISO IB en en in
Long Term Input Offset Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Noise Voltage Density Input Noise Current Density 0.1Hz to 10Hz fO = 10Hz fO = 1000Hz fO = 10Hz
— — — — — 100 — 1.5 0.8 +13.5 – 15.0 100 103 123 ± 13 0.2 —
Input Resistance – Differential (Note 2) Common Mode AVOL Large Signal Voltage Gain Input Voltage Range CMRR PSRR VOUT IS Common Mode Rejection Ratio Power Supply Rejection Ratio Channel Separation Output Voltage Swing Slew Rate Supply Current VCM = + 13.5V, – 15.0V VS = ± 2V to ± 18V VO = ± 10V, RL = 2k RL = 2k Per Amplifier VO = ± 10V, RL = 2k VO = ± 10V, RL = 600Ω
TA = 25°C. V S+ = + 5V, V S– = 0V, VOUT = 1.4V, VCM = 0V unless otherwise noted
LT1013AM/AC LT1014AM/AC MIN TYP MAX — — — — — — + 3.5 0 — — — 4.0 3.4 — 60 70 — 0.2 15 1.0 + 3.8 – 0.3 15 5 220 4.4 4.0 0.31 250 280 — 1.3 35 — — — 25 10 350 — — 0.45 LT1013C/D/I/M LT1014C/D/I/M MIN TYP MAX — — — — — — +3.5 0 — — — 4.0 3.4 — 90 90 250 0.3 18 1.0 + 3.8 – 0.3 15 5 220 4.4 4.0 0.32 450 450 950 2.0 50 — — — 25 10 350 — — 0.50
SYMBOL VOS
PARAMETER Input Offset Voltage
CONDITIONS LT1013 LT1014 LT1013D/I, LT1014D/I
UNITS μV μV μV nA nA V/μV V V mV mV mV V V mA
IOS IB AVOL
Input Offset Current Input Bias Current Large Signal Voltage Gain Input Voltage Range VO = 5mV to 4V, RL = 500Ω
VOUT
Output Voltage Swing
Output Low, No Load Output Low, 600Ω to Ground Output Low, ISINK = 1mA Output High, No Load Output High, 600Ω to Ground Per Amplifier
IS
Supply Current
10134fc
3
LT1013/LT1014
The ● denotes the specifications which apply over the temperature range – 55°C ≤ TA ≤ 125°C. V S = ± 15V, VCM = 0V unless otherwise noted.
SYMBOL PARAMETER VOS Input Offset Voltage CONDITIONS VS = + 5V, 0V; VO = + 1.4V – 55°C ≤ TA ≤ 100°C VCM = 0.1V, TA = 125°C VCM = 0V, TA = 125°C (Note 3) VS = + 5V, 0V; VO = +1.4V IB AVOL CMRR PSRR VOUT Input Bias Current Large Signal Voltage Gain Common Mode Rejection Power Supply Rejection Ratio Output Voltage Swing VS = + 5V, 0V; VO = +1.4V VO = ± 10V, RL = 2k VCM = +13.0V, – 14.9V VS = ± 2V to ± 18V RL = 2k VS = +5V, 0V RL = 600Ω to Ground Output Low Output High VS = +5V, 0V; VO = +1.4V LT1013AM MIN TYP MAX ●— 80 300
●
ELECTRICAL CHARACTERISTICS
MIN — — — — — — — — — 0.4 96 100
LT1014AM TYP MAX 90 350 90 150 300 0.4 0.3 0.7 15 25 2.0 114 117 480 480 960 2.0 2.8 7.0 30 90 — — — —
LT1013M/LT1014M MIN TYP MAX UNITS — 110 550 μV — — — — — — — — 0.25 94 97 100 200 400 0.5 0.4 0.9 18 28 2.0 113 116 750 μV 750 μV 1500 μV 2.5 μV/°C 5.0 nA 10.0 nA 45 nA 120 nA — V/μV — dB — dB — V
IOS
Input Offset Voltage Drift Input Offset Current
● ● ● ● ● ● ● ● ●
— — — — — — — — 0.5 97 100
80 120 250 0.4 0.3 0.6 15 20 2.0 114 117
450 450 900 2.0 2.5 6.0 30 80 — — — —
± 12 ± 13.8
± 12 ± 13.8
± 11.5 ± 13.8
● ● ● ●
IS
Supply Current Per Amplifier
— 3.2 — —
6 3.8 0.38 0.34
15 — 0.60 0.55
— 3.2 — —
6 3.8 0.38 0.34
15 — 0.60 0.55
— 3.1 — —
6 3.8 0.38 0.34
18 — 0.7 0.65
mV V mA mA
10134fc
4
LT1013/LT1014
The ● denotes the specifications which apply over the temperature range – 40°C ≤ TA ≤ 85°C for LT1013I, LT1014I, 0°C ≤ TA ≤ 70°C for LT1013C, LT1013D, LT1014C, LT1014D. VS = ±15V, VCM = 0V unless otherwise noted.
LT1013AC MIN TYP MAX ●— 55 240 ●— — — ●— 75 350
● ● ● ● ● ● ● ● ● ●
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER VOS Input Offset Voltage
CONDITIONS LT1013D/I, LT1014D/I VS = +5V, 0V; VO = 1.4V LT1013D/I, LT1014D/I VS = +5V, 0V; VO = 1.4V (Note 3) LT1013D/I, LT1014D/I VS = +5V, 0V; VO = 1.4V
LT1014AC MIN TYP MAX — 65 270 — — — — 85 380 — — — — — — — 1.0 98 101 — 0.3 — 0.2 0.4 13 20 5.0 116 119 — 2.0 — 1.7 4.0 25 60 — — — — 13 — 0.55 0.50
LT1013C/D/I LT1014C/D/I MIN TYP MAX UNITS — 80 400 μV — 230 1000 μV — 110 570 μV — — — — — — — 0.7 94 97 280 0.4 0.7 0.3 0.5 16 24 4.0 113 116 1200 μV 2.5 μV/°C 5.0 μV/°C 2.8 nA 6.0 nA 38 nA 90 nA — V/μV — dB — — 13 — 0.60 0.55 dB V mV V mA mA
IOS IB AVOL CMRR PSRR VOUT
Average Input Offset Voltage Drift Input Offset Current Input Bias Current Large Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing
VS = +5V, 0V; VO = 1.4V VO = ± 10V, RL = 2k VCM = +13.0V, – 15.0V VS = ± 2V to ± 18V RL = 2k VS = +5V, 0V; RL = 600Ω Output Low Output High VS = +5V, 0V; VO = 1.4V
— — — — — — — 1.0 98 101
— 0.3 — 0.2 0.4 13 18 5.0 116 119
— 2.0 — 1.5 3.5 25 55 — — — — 13 — 0.55 0.50
● ± 12.5 ± 13.9 ● ● ● ●
± 12.5 ± 13.9 — 3.3 — — 6 3.9 0.36 0.32
± 12.0 ± 13.9 — 3.2 — — 6 3.9 0.37 0.34
IS
Supply Current per Amplifier
— 3.3 — —
6 3.9 0.36 0.32
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Rating condition for extended periods may affect device reliability and lifetime. Note 2: This parameter is guaranteed by design and is not tested. Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically 240 op amps (or 120 ) will be better than the indicated specification. Note 3: This parameter is not 100% tested.
10134fc
5
LT1013/LT1014 TYPICAL PERFOR A CE CHARACTERISTICS
Offset Voltage Drift with Temperature of Representative Units
200 INPUT OFFSET VOLTAGE (μV) VS = ±15V
CHANGE IN OFFSET VOLTAGE (μV)
INPUT OFFSET VOLTAGE (mV)
100
0
–100
–200
–50 –25
50 25 0 75 TEMPERATURE (°C)
Common Mode Rejection Ratio vs Frequency
120
COMMON MODE REJECTION RATIO (dB)
80 60 40 20 0 10 100
VS = 5V, 0V
VS = ± 15V
80 60 40 20 0 0.1
NEGATIVE SUPPLY
POSITIVE SUPPLY
VS = ±15V + 1VP-P SINE WAVE TA = 25°C
1k 10k FREQUENCY (Hz)
100k
1M
1
10
100 1k 10k FREQUENCY (Hz)
100k
1M
NOISE VOLTAGE (200nV/DIV)
100
POWER SUPPLY REJECTION RATIO (dB)
Noise Spectrum
1000
VOLTAGE NOISE DENSITY (nV/√Hz) CURRENT NOISE DENSITY (fA/√Hz)
180 160
SUPPLY CURRENT PER AMPLIFIER (μA)
TA = 25°C VS = ± 2V TO ± 18V NUMBER OF UNITS
300
100 CURRENT NOISE
30
VOLTAGE NOISE 1/f CORNER 2Hz
10
1
10 100 FREQUENCY (Hz)
6
UW
100
1013/14 TPC01
Offset Voltage vs Balanced Source Resistance
10 VS = 5V, 0V, –55°C TO 125°C VS = ±15V, 0V, –55°C TO 125°C 1
Warm-Up Drift
5 VS = ±15V TA = 25°C 4
3 LT1013 METAL CAN (H) PACKAGE 2 LT1014 1 LT1013 CERDIP (J) PACKAGE
VS = 5V, 0V, 25°C 0.1 VS = ±15V, 0V, 25°C 0.01 RS RS
+ –
125
1k
3k 10k 30k 100k 300k 1M 3M 10M BALANCED SOURCE RESISTANCE (Ω)
1013/14 TPC02
0 0 1 3 4 2 TIME AFTER POWER ON (MINUTES) 5
1013/14 TPC03
Power Supply Rejection Ratio vs Frequency
120 100
0.1Hz to 10Hz Noise
TA = 25°C VS = ± 2V TO ± 18V
TA = 25°C
0
2
6 4 TIME (SECONDS)
8
10
1013/14 TPC04
1013/14 TPC05
1013/14 TPC06
10Hz Voltage Noise Distribution
200 VS = ± 15V TA = 25°C 328 UNITS TESTED FROM THREE RUNS
460
Supply Current vs Temperature
420
140 120 100 80 60 40 20 0
380
VS = ± 15V
340 VS = 5V, 0V 300
1k
1013/14 TPC07
10
20 40 50 30 VOLTAGE NOISE DENSITY (nV/√Hz)
60
260 –50 –25
50 25 0 75 TEMPERATURE (°C)
100
125
1013/14 TPC08
1013/14 TPC09
10134fc
LT1013/LT1014 TYPICAL PERFOR A CE CHARACTERISTICS
COMMON MODE INPUT VOLTAGE, VS = +5V, 0V (V)
Input Bias Current vs Common Mode Voltage
COMMON MODE INPUT VOLTAGE, VS = ± 15V (V)
5 4 3 2 1 0 –1 0
TA = 25°C
INPUT OFFSET CURRENT (nA)
5 VS = ± 15V VS = 5V, 0V 0 –5 –10 –15 –30
INPUT BIAS CURRENT (nA)
–5
–25 –10 –15 –20 INPUT BIAS CURRENT (nA)
Output Saturation vs Sink Current vs Temperature
10 V + = 5V TO 30V V – = 0V
SATURATION VOLTAGE (V)
20mV/DIV
ISINK = 10mA 1 ISINK = 5mA ISINK = 1mA 0.1 ISINK = 100μA ISINK = 10μA ISINK = 0 0.01 –50 –25 0 25 50 75 TEMPERATURE (°C) 100 125
AV = +1
2μs/DIV
5V/DIV
Small Signal Transient Response, VS = 5V, 0V
4V 100mV 2V 50mV 0V
0 AV = +1 20μs/DIV RL = 600Ω TO GROUND INPUT = 0V TO 100mV PULSE
1013/14 TPC16
UW
1013/14 TPC10 1013/14 TPC13
Input Offset Current vs Temperature
15 10
1.0 VCM = 0V 0.8
Input Bias Current vs Temperature
–30 VCM = 0V –25 –20 VS = 5V, 0V –15 –10 –5 0 –50 –25 VS = ± 15V
VS = ± 2 .5V
0.6
0.4 VS = 5V, 0V 0.2 VS = ± 15V 0 –50 –25 50 25 0 75 TEMPERATURE (°C) 100
VS =± 2.5
V
125
50 25 75 0 TEMPERATURE (°C)
100
125
1013/14 TPC11
1013/14 TPC12
Small Signal Transient Response, VS = ± 15V
Large Signal Transient Response, VS = ± 15V
1013/14 TPC14
AV = +1
50μs/DIV
1013/14 TPC15
Large Signal Transient Response, VS = 5V, 0V
Large Signal Transient Response, VS = 5V, 0V
4V
2V
0V
A V = +1 10μs/DIV RL = 4.7k TO 5V INPUT = 0V TO 4V PULSE
1013/14 TPC17
A V = +1 10μs/DIV NO LOAD INPUT = 0V TO 4V PULSE
1013/14 TPC18
10134fc
7
LT1013/LT1014 TYPICAL PERFOR A CE CHARACTERISTICS
Output Short-Circuit Current vs Time
40 –55°C 25°C 125°C VS = ± 15V
SHORT-CIRCUIT CURRENT (mA) SINKING SOURCING
30 20 10 0 –10 –20 –30 –40
VOLTAGE GAIN (V/V)
TA = – 55°C, VS = 5V, 0V TA = 25°C, VS = 5V, 0V
VOLTAGE GAIN (dB)
125°C 25°C –55°C
1 2 0 3 TIME FROM OUTPUT SHORT TO GROUND (MINUTES)
1013/14 TPC19
Gain, Phase vs Frequency
20
VOLTAGE GAIN (dB)
PHASE ± 15V ± 15V
120 140 160
CHANNEL SEPARATION (dB)
10
GAIN
0
5V, 0V
–10 0.1 0.3 1 3 FREQUENCY (MHz) 10
1013/14 TPC22
APPLICATIO S I FOR ATIO
Single Supply Operation
The LT1013/LT1014 are fully specified for single supply operation, i.e., when the negative supply is 0V. Input common mode range includes ground; the output swings within a few millivolts of ground. Single supply operation, however, can create special difficulties, both at the input and at the output. The LT1013/LT1014 have specific circuitry which addresses these problems. At the input, the driving signal can fall below 0V— inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct prob-
8
U
W
UW
5V, 0V
Voltage Gain vs Load Resistance
10M
TA = 25°C, VS = ±15V TA = – 55°C, VS = ±15V TA = 125°C, VS = ±15V
Voltage Gain vs Frequency
140 120 100 80 60 40 20 0 –20 0.01 0.1 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz)
1013/14 TPC21
TA = 25°C CL = 100pF
1M
TA = 125°C, VS = 5V, 0V
VS = 5V, 0V
VS = ±15V
VO = ±10V WITH VS = ±15V VO = 20mV TO 3.5V WITH VS = 5V, 0V
100k 100
1k LOAD RESISTANCE TO GROUND (Ω)
10k
1013/14 TPC20
Channel Separation vs Frequency
160 VS = ±15V TA = 25°C VIN = 20Vp-p to 5kHz RL = 2k LIMITED BY THERMAL INTERACTION RS = 1kΩ 100 LIMITED BY PIN TO PIN CAPACITANCE RS = 100Ω
80 TA = 25°C VCM = 0V 100 CL = 100pF
PHASE SHIFT (DEGREES)
140
120
180 200
80
60 10 100 10k 1k FREQUENCY (Hz) 100k 1M
1013/14 TPC23
U
U
lems can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP-420: a) When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V – terminal) to the input. This can destroy the unit. On the LT1013/ LT1014, the 400Ω resistors, in series with the input (see Schematic Diagram), protect the devices even when the input is 5V below ground.
10134fc
LT1013/LT1014
APPLICATIO S I FOR ATIO
b) When the input is more than 400mV below ground (at 25°C), the input stage saturates (transistors Q3 and Q4) and phase reversal occurs at the output. This can cause lock-up in servo systems. Due to a unique phase reversal protection circuitry (Q21, Q22, Q27, Q28), the LT1013/ LT1014’s outputs do not reverse, as illustrated below, even when the inputs are at –1.5V. There is one circumstance, however, under which the phase reversal protection circuitry does not function: when the other op amp on the LT1013, or one specific amplifier of the other three on the LT1014, is driven hard into negative saturation at the output. Phase reversal protection does not work on amplifier: A when D’s output is in negative saturation. B’s and C’s outputs have no effect. B when C’s output is in negative saturation. A’s and D’s outputs have no effect. C when B’s output is in negative saturation. A’s and D’s outputs have no effect.
Voltage Follower with Input Exceeding the Negative Common Mode Range
4V 2V
4V
2V
0V 0V 6Vp-p INPUT, – 1.5V TO 4.5V LM324, LM358, OP-20 EXHIBIT OUTPUT PHASE REVERSAL 0V LT1013/LT1014 NO PHASE REVERSAL
Comparator Rise Response Time 10mV, 5mV, 2mV Overdrives
OUTPUT (V)
4
OUTPUT (V)
2
INPUT (mV)
0 0
INPUT (mV)
– 100 VS = 5V, 0V
50μs/DIV
U
D when A’s output is negative saturation. B’s and C’s outputs have no effect. At the output, the aforementioned single supply designs either cannot swing to within 600mV of ground (OP-20) or cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1013/LT1014’s all-NPN output stage maintains its low output resistance and high gain characteristics until the output is saturated. In dual supply operations, the output stage is crossover distortion-free. Comparator Applications The single supply operation of the LT1013/LT1014 lends itself to its use as a precision comparator with TTL compatible output: In systems using both op amps and comparators, the LT1013/LT1014 can perform multiple duties; for example, on the LT1014, two of the devices can be used as op amps and the other two as comparators.
4V 2V
W
U
U
Comparator Fall Response Time to 10mV, 5mV, 2mV Overdrives
4
2
0 100
0 VS = 5V, 0V
50μs/DIV
10134fc
9
LT1013/LT1014
APPLICATIO S I FOR ATIO
Low Supply Operation
100Ω*
For applications information on noise testing and calculations, please see the LT1007 or LT1008 data sheet.
50k*
*RESISTOR MUST HAVE LOW THERMOELECTRIC POTENTIAL. **THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION, WITH SUPPLY VOLTAGES INCREASED TO ± 20V. VO = 1000VOS LT1013/14 F06
TYPICAL APPLICATIO S
50MHz Thermal rms to DC Converter
100k*
5V Single Supply Dual Instrumentation Amplifier
+5V 0.01 30k* 10k 1μF 30k* 3
1/2 LTC1043 +INPUT 6 5 5
300Ω* 100k* 10k* 5 10k* 0.01
0.01 INPUT 300mV– 10VRMS BRN RED
1μF
2
RED
BRN
T1A GRN
T1B
T2B GRN
T2A 10k*
2% ACCURACY, DC–50MHz. 100:1 CREST FACTOR CAPABILITY. * 0.1% RESISTOR. T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018. ENCLOSE T1 AND T2 IN STYROFOAM. 7.5mW DISSIPATION.
10
+
10k
12
–
13
LT1014
14
+INPUT 7
10 20k FULLSCALE TRIM 10k 9
–
10k*
–INPUT 13
+
–
+
–
2
LT1014
1
10k*
10k*
6
6
+5V 4 LT1014 11
–INPUT 18
2 1μ F 1μ F
7
3 R1 15
1/2 LTC1043 8 3
+
LT1014 8 0V–4V OUTPUT
11 1μ F 12 1μ F
14 16 0.01
1013/14 TA03
+
Noise Testing
–
The minimum supply voltage for proper operation of the LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical supply current at this voltage is 290μA, therefore power dissipation is only one milliwatt per amplifier.
U
Test Circuit for Offset Voltage and Offset Drift with Temperature
50k* +15V VO LT1013 OR LT1014 –15V
W
U
U
U
+5V
+ –
8 7 OUTPUT A R2
1/2 LT1013 4
+
1/2 LT1013 1 OUTPUT B R2
–
R1 OFFSET = 150μV GAIN = R2 + 1. R1 CMRR = 120dB. COMMON-MODE RANGE IS 0V TO 5V.
1013/14 TA04
10134fc
LT1013/LT1014
TYPICAL APPLICATIO S
Hot Wire Anemometer
500pF +15V Q2–Q5 CA3046 PIN 3 TO –15V Q3 1000pF 7 2k Q4 150k* 1μF 12 12k 2M FULLSCALE FLOW Q5
220 0.01μF 33k +15V 4 1 1k ZERO FLOW 5
2k*
Liquid Flowmeter
3.2k** 1M* +15V 15Ω DALE HL-25 3.2k* 1M* 2 10M RESPONSE TIME 1 100k
6.25k** 1M* T1 T2 +15V 100k 2N4391 0.1 LT1004 –1.2 383k* 2.7k 10 –15V 300pF OUTPUT 0Hz 300Hz = 0 300ML/MIN 1N4148 4.7k 1μF
+
–
9
A3 LT1014
8
100k
100k
T1 FLOW PIPE
15Ω HEATER RESISTOR
+
6.25k**
1M*
3
12
+ –
+15V 4 14
13
A4 LT1014 11 –15V
T2 FLOW
* 1% FILM RESISTOR. ** SUPPLIED WITH YSI THERMISTOR NETWORK. T1, T2 YSI THERMISTOR NETWORK = #44201. FLOW IN PIPE IS INVERSELY PROPORTIONAL TO RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE. A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED 1013/14 TA06 FREQUENCY OUTPUT.
10134fc
+
A1 LT1014
5
–
6
A2 LT1014
+
10
–
–
+
#328
3
–
2
A1 LT1014 11 –15V
10M RESPONSE TIME ADJUST 100k
3.3k –15V 500k
REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP. A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE. A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE. * 1% RESISTOR.
1μF 9 A3 LT1014 8
7 6.98k* 5k FLOW CALIB
1k*
+
+
27Ω 1W
10k*
–
6
A2 LT1014
–
U
Q1 2N6533
Q2 2k
150k*
13
A4 LT1014
14
0V–10V = 0–1000 FEET/MINUTE
1013/14 TA05
11
LT1013/LT1014
TYPICAL APPLICATIO S
5V Powered Precision Instrumentation Amplifier
200k* 2
†
+5V 20k
LT1014
–INPUT
RG (TYP 2k) 1μF 200k* 10k
†
+INPUT
†
+5V
9V Battery Powered Strain Gauge Signal Conditioner
15k +9V +9V 1N4148 1 100k 22M 4.7k 330Ω 2N2219 0.01 TO A/D RATIO REFERENCE 100k 100k +9V +9V 15k 0.068 14 3k 0.068 6 5 TO A/D CONVERT COMMAND SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT ≈ 650μA. 4.7k–0.01μF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO 1013/14 TA08 HIGH ΔV/ΔT STEPS.
10134fc
0.068
1 15
LT1014
499 9 9
12
+
10
–
7 74C221
100k LT1014 8
+
+
5
12
–
–
+
3
–
2
4 LT1014 11
100k 350Ω STRAIN GAUGE BRIDGE 13
+
20k
5
–
6
LT1014
7
10k*
* 1% FILM RESISTOR. MATCH 10k's 0.05% 400,000 GAIN EQUATION: A = + 1. RG † FOR HIGH SOURCE IMPEDANCES, USE 2N2222 AS DIODES.
47μF
6
+
12
–
†
+
3
+
TO INPUT CABLE SHIELDS
8
LT1014 10
–
–
U
9
1
10k*
10k*
10k 13
+5V 4 14 OUTPUT
LT1014 11
10k*
1013/14 TA07
7
499
13
LT1014
14
TO A/D
LT1013/LT1014
TYPICAL APPLICATIO S
5V Powered Motor Speed Controller No Tachometer Required
+5V 47
100k 82Ω A1 1/2 LT1013 2 330k 0.47 3
1M 2k 6.8M 0.068 1/4 CD4016 5V 8 7 A2 1/2 LT1013 5 EIN 0V–3V 4
2N2222
10Ω +5V 0.05 20k 0.33 1N4148 100k 100Ω
2N2222 4.7k 820 2N2222
0.1
270Ω 820
TTL INPUT MEETS ALL VPP PROGRAMMING SPECS WITH NO TRIMS AND RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED. SUITABLE FOR BATTERY POWERED USE (600μA QUIESCENT CURRENT). *1% METAL FILM.
LT1013
120k
LT1004 1.2V
+
+
3
0.005 5
–
1N4148
–
–
+
U
+
1k Q3 2N5023
+
1N4148 6 3.3M 0.47 0.068 1N4148 2k Q2
–
1
2k
Q1 2N3904 1N4001
1N4001
MOTOR = CANON–FN30–R13N1B. A1 DUTY CYCLE MODULATES MOTOR. A2 SAMPLES MOTORS BACK EMF.
1013/14 TA09
5V Powered EEPROM Pulse Generator
+5V DALE #TC-10-04 1N4148 1N4148 1N4148
4.7M 2 1 1N4148 6 8 LT1013 4 7 1k 2N2222 OUTPUT 100K* 21V 600μs RC
6.19K
1013/14 TA10
10134fc
13
LT1013/LT1014
TYPICAL APPLICATIO S
Methane Concentration Detector with Linearized Output
+5V 1 * 1% METAL FILM RESISTOR SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813
LT1004 1.2V 390k* 9
–5V 0.033 CD4016 8 100k* 1N4148 (4) 13
–
A3 LT1014
2.7k
10
+
11 5 LTC1044 4 2 10μF 3 8 +5V
–5V
SENSOR Q1
2 5k 1000ppm TRIM
– +
+5V 4 A1 LT1014 1 100k* 6
3
+9V INPUT 10k
10k
+9V 8 5 7
100μA
1
LT1013 3 120k 1%
LT1013 6 47k
330k +9V LT1004 1.2V
4
L = DALE TE-3/Q3/TA. SHORT CIRCUIT CURRENT = 30mA. ≈ 75% EFFICIENCY. SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.
14
–
+
+
–
+
+
10μF
2N2905
U
14
–
A4 LT1014 14
74C04
12
+
74C04
470pF 470pF 10k +5V 1 14 CA3046 Q2 1000pF Q3 Q4 –5V 1N4148 OUTPUT 500ppm-10,000ppm 50Hz 1kHz 2k 74C04
–
A2 LT1014 7
2k
150k*
5
+
12k*
1013/14 TA11
Low Power 9V to 5V Converter
L
+
1N4148 47 HP5082-2811 VD = 200mV
2N5434 390k 1% 2
5V 20mA
1013/14 TA12
10134fc
LT1013/LT1014
TYPICAL APPLICATIO S
5V Powered 4mA–20mA Current Loop Transmitter†
+5V Q3 2N2905 820Ω
68Ω 10k 0.33
Q4 2N2222 100pF
2k
1
A1 1/2 LT1013 4
4.3k
† 12-BIT ACCURACY. * 1% FILM. T1 = PICO-31080.
+5V LT1004 1.2V
7
A2 1/2 LT1013
Fully Floating Modification to 4mA-20mA Current Loop†
T1 +5V 8 TO INVERTER DRIVE 7 A1 1/2 LT1013 4 4k* 10k* 4.3k +5V LT1004 1.2V 2k 4mA TRIM INPUT 0V–4V
1013/14 TA14
0.1Ω 3 6 100k 1 68k* A2 1/2 LT1013
2 4mA-20mA OUT FULLY FLOATING
5
301Ω* 1k 20mA TRIM
†
–
+
–
+
–
+
U
74C04 (6)
+
0.002 10k
10μF
Q1 2N2905
T1 10μF 1N4002 (4)
+
820Ω
Q2 2N2905
100k +5V 8 2 10k* 10k* 20mA TRIM 1k 4mA TRIM 80k* 6 4mA-20mA OUT TO LOAD 2.2kΩ MAXIMUM 100Ω*
3
4k* 10k*
5
INPUT 0 TO 4V
1013/14 TA13
+
10μF
1N4002 (4)
– +
8-BIT ACCURACY.
10134fc
15
LT1013/LT1014
TYPICAL APPLICATIO S
5V Powered, Linearized Platinum RTD Signal Conditioner
2M 499Ω Q1 167Ω Q2 200k 2N4250 (2) 1.5k SENSOR 6 3 2M 200k 2 A4 1/4 LT1014 9
5k LINEARITY
GAIN TRIM 1k 3.01k
ROSEMOUNT 118MF
8.25k 50k ZERO TRIM 274k
7
A3 1/4 LT1014
5
+5V 2.4k 5% LT1009 2.5V
+5V
14
A1 1/4 LT1014 11
ALL RESISTORS ARE TRW-MAR-6 METAL FILM. RATIO MATCH 2M–200K ± 0.01%. TRIM SEQUENCE: SET SENSOR TO 0° VALUE. ADJUST ZERO FOR 0V OUT. SET SENSOR TO 100°C VALUE. ADJUST GAIN FOR 1.000V OUT. SET SENSOR TO 400°C. ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.
Strain Gauge Bridge Signal Conditioner
+5V 220 1.2VOUT REFERENCE TO A/D CONVERTER FOR RATIOMETRIC OPERATION 1mA MAXIMUM LOAD
+5V
1 8 100μF 2 LTC1044 4 5 100μF
1/2 LT1013 3 4
+
V ≈ –VREF C
* 1% FILM RESISTOR. PRESSURE TRANSDUCER–BLH/DHF–350. CIRCLED LETTER IS PIN NUMBER.
16
–
0.1
8
LT1004 1.2V 2 39k
VREF 301k
E
D PRESSURE TRANSDUCER 350Ω
–
4
13 10k 12 250k
10k ZERO TRIM 100k A 0.33 6
+
A2 1/4 LT1014
1
150Ω
10
–
–
+
+
+
–
U
8
OUTPUT 0V–4V = 0°C–400°C ± 0.05°C
1013/14 TA15
5
+
7 1/2 LT1013 OUTPUT
+
–
0.047
0V–3.5V 0psi–350psi
2k GAIN TRIM
+
46k*
100Ω*
1013/14 TA16
10134fc
LT1013/LT1014
TYPICAL APPLICATIO S
LVDT Signal Conditioner
7 0.005 30k +5V 5 0.005 FREQUENCY = 1.5kHz 7 YEL-BLK LVDT RDBLUE BLUE –5V GRN 10k 4.7k 2N4338 1N914 LT1004 1.2V 0.01 1.2k YEL-RD BLK 12 100k 14 13 100k 2 LVDT = SCHAEVITZ E-100. 100k PHASE TRIM 1μF 1/2 LTC1043 +5V 2 10μF 3 8
30k
+
LT1013
6
–
Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation
–INPUT
2R 10M
1/4 LT1014 +INPUT R 5M 2R 10M 10pF
–
13
+
12
+
5
R3 V+ 4 14 INPUT BIAS CURRENT TYPICALLY