LT1013/LT1014 Quad Precision Op Amp (LT1014) Dual Precision Op Amp (LT1013)
FEATURES
s
DESCRIPTION
The LT ®1014 is the first precision quad operational amplifier which directly upgrades designs in the industry standard 14-pin DIP LM324/LM348/OP-11/4156 pin configuration. It is no longer necessary to compromise specifications, while saving board space and cost, as compared to single operational amplifiers. The LT1014’s low offset voltage of 50µV, drift of 0.3µV/°C, offset current of 0.15nA, gain of 8 million, common-mode rejection of 117dB and power supply rejection of 120dB qualify it as four truly precision operational amplifiers. Particularly important is the low offset voltage, since no offset null terminals are provided in the quad configuration. Although supply current is only 350µA per amplifier, a new output stage design sources and sinks in excess of 20mA of load current, while retaining high voltage gain. Similarly, the LT1013 is the first precision dual op amp in the 8-pin industry standard configuration, upgrading the performance of such popular devices as the MC1458/ 1558, LM158 and OP-221. The LT1013’s specifications are similar to (even somewhat better than) the LT1014’s. Both the LT1013 and LT1014 can be operated off a single 5V power supply: input common-mode range includes ground; the output can also swing to within a few millivolts of ground. Crossover distortion, so apparent on previous single-supply designs, is eliminated. A full set of specifications is provided with ± 15V and single 5V supplies.
s s s s s
s s s
Single Supply Operation Input Voltage Range Extends to Ground Output Swings to Ground while Sinking Current Pin Compatible to 1458 and 324 with Precision Specs Guaranteed Offset Voltage 150µV Max. Guaranteed Low Drift 2µV/°C Max. Guaranteed Offset Current 0.8nA Max. Guaranteed High Gain 5mA Load Current 1.5 Million Min. 17mA Load Current 0.8 Million Min. Guaranteed Low Supply Current 500µA Max. Low Voltage Noise, 0.1Hz to 10Hz 0.55µVp-p Low Current Noise—Better than 0P-07, 0.07pA/√Hz
APPLICATIONS
s
s s s s
Battery-Powered Precision Instrumentation Strain Gauge Signal Conditioners Thermocouple Amplifiers Instrumentation Amplifiers 4mA–20mA Current Loop Transmitters Multiple Limit Threshold Detection Active Filters Multiple Gain Blocks
, LTC and LT are registered trademarks of Linear Technology Corporation.
3 Channel Thermocouple Thermometer
4k 3k +5V 1684Ω LT1004 1.2V 299k +5V 1M
LT1014 Distribution of Offset Voltage
700 600 VS = ±15V TA = 25°C 425 LT1014s (1700 OP AMPS) 500 TESTED FROM THREE RUNS 400 J PACKAGE 300 200 100
7 OUTPUT B 10mV/°C
LT1014
14
LT1014
–
13
260Ω
1.8k 1M 4k 6
+
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM. COLD JUNCTION COMPENSATION ACCURATE TO ±1°C FROM 0°C 60°C. USE 4TH AMPLIFIER FOR OUTPUT C.
5
+
+
12
3
11
LT1014
NUMBER OF UNITS
–
YSI 44007 5kΩ AT 25°C
2
4 1 OUTPUT A 10mV/°C
0 100 0 200 –300 –200 –100 INPUT OFFSET VOLTAGE (µV)
U
–
U
300
1
LT1013/LT1014
ABSOLUTE MAXIMUM RATINGS
Supply Voltage ...................................................... ± 22V Differential Input Voltage ....................................... ± 30V Input Voltage ............... Equal to Positive Supply Voltage ............5V Below Negative Supply Voltage Output Short-Circuit Duration .......................... Indefinite Storage Temperature Range All Grades ......................................... – 65°C to 150°C Lead Temperature (Soldering, 10 sec.)................. 300°C Operating Temperature Range LT1013AM/LT1013M/ LT1014AM/LT1014M ...................... – 55 °C to 125°C LT1013AC/LT1013C/LT1013D LT1014AC/LT1014C/LT1014D ................. 0°C to 70°C LT1013I/ LT1014I ............................... – 40°C to 85°C
PACKAGE/ORDER INFORMATION
TOP VIEW V+ 8 OUTPUT A 1 A –IN A 2 – + +IN A 3 B + – 6 –IN B 5 +IN B 4 7 OUTPUT B
OUTPUT A 1 – –IN A 2 +IN A 3 V– 4 A
8 7 6 5 B –
–IN A +IN A V+ +IN B –IN B OUTPUT B
2 3 4 5 6 7
OUTPUT B –IN B +IN B
V –(CASE) H PACKAGE 8-LEAD TO-5 METAL CAN
+ B –
+ 10 +IN C C – 9 –IN C 8 OUTPUT C
J PACKAGE 8-LEAD CERAMIC DIP N PACKAGE 8-LEAD PLASTIC DIP
J PACKAGE 14-LEAD CERAMIC DIP N PACKAGE 14-LEAD PLASTIC DIP
TOP VIEW +INA 1 V– 2 +INB 3 –INB 4 – 8 7 6 5 –INA OUTA V+ OUTB
+ –
ORDER PART NUMBER LT1013DS8 LT1013IS8 PART MARKING 1013 1013I
TOP VIEW OUTPUT A 1 –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUTPUT B 7 NC 8 SO PACKAGE 16-LEAD PLASTIC SOIC 16 OUTPUT D 15 –IN D 14 +IN D 13 V – 12 +IN C 11 –IN C 10 OUTPUT C 9 NC
SO PACKAGE 8-LEAD PLASTIC SOIC NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION
ELECTRICAL CHARACTERISTICS
SYMBOL VOS PARAMETER Input Offset Voltage CONDITIONS
V S = ± 15V, VCM = 0V, TA = 25°C unless otherwise noted
LT1013AM/AC LT1014AM/AC TYP MAX 40 150 50 180 — — 0.4 0.15 12 0.55 24 22 0.07 — 0.8 20 — — — — LT1013C/D/I/M LT1014C/D/I/M TYP 60 60 200 0.5 0.2 15 0.55 24 22 0.07 UNITS MAX 300 300 800 — 1.5 30 — — — — µV µV µV µV/Mo. nA nA µVp-p nV/√Hz nV/√Hz pA/√Hz
LT1013 LT1014 LT1013D/I, LT1014D/I
MIN — — — — — — — — — —
MIN — — — — — — — — — —
ISO IB en en in
Long Term Input Offset Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Noise Voltage Density Input Noise Current Density
0.1Hz to 10Hz fO = 10Hz fO = 1000Hz fO = 10Hz
2
+
A
D
–
+
–
+
+
ORDER PART NUMBER LT1013AMH LT1013MH LT1013ACH LT1013CH
TOP VIEW V+
U
U
W
WW U
W
ORDER PART NUMBER LT1013AMJ8 LT1013MJ8 LT1013ACJ8 LT1013CJ8 LT1013ACN8 LT1013CN8 LT1013DN8 LT1013IN8
OUTPUT A 1
TOP VIEW 14 OUTPUT D 13 –IN D 12 +IN D 11 V –
ORDER PART NUMBER LT1014AMJ LT1014MJ LT1014ACJ LT1014CJ LT1014ACN LT1014CN LT1014DN LT1014IN ORDER PART NUMBER LT1014DS LT1014IS PART MARKING LT1014DS LT1014IS
+
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
V S = ± 15V, VCM = 0V, TA = 25°C unless otherwise noted
SYMBOL PARAMETER CONDITIONS LT1013AM/AC LT1014AM/AC MIN TYP MAX 100 — 1.5 0.8 +13.5 – 15.0 VCM = + 13.5V, – 15.0V VS = ± 2V to ± 18V VO = ± 10V, RL = 2k RL = 2k Per Amplifier 100 103 123 ± 13 0.2 — 400 5 8.0 2.5 +13.8 – 15.3 117 120 140 ± 14 0.4 0.35 — — — — — — — — — — — 0.50 LT1013C/D/I/M LT1014C/D/I/M MIN TYP MAX 70 — 1.2 0.5 +13.5 – 15.0 97 100 120 ± 12.5 0.2 — 300 4 7.0 2.0 +13.8 – 15.3 114 117 137 ± 14 0.4 0.35 — — — — — — — — — — — 0.55 UNITS MΩ GΩ V/µV V/µV V V dB dB dB V V/µs mA
AVOL
Input Resistance – Differential (Note 1) Common-Mode Large Signal Voltage Gain VO = ± 10V, RL = 2k VO = ± 10V, RL = 600Ω Input Voltage Range
CMRR PSRR VOUT IS
Common-Mode Rejection Ratio Power Supply Rejection Ratio Channel Separation Output Voltage Swing Slew Rate Supply Current
Note 1: This parameter is guaranteed by design and is not tested. Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically 240 op amps (or 120 ) will be better than the indicated specification.
ELECTRICAL CHARACTERISTICS
V S+ = + 5V, V S– = 0V, VOUT = 1.4V, VCM = 0V, TA = 25°C unless otherwise noted
SYMBOL VOS PARAMETER Input Offset Voltage CONDITIONS LT1013 LT1014 LT1013D/I, LT1014D/I LT1013AM/AC LT1014AM/AC MIN TYP MAX — — — — — — + 3.5 0 — — — 4.0 3.4 — 60 70 — 0.2 15 1.0 + 3.8 – 0.3 15 5 220 4.4 4.0 0.31 250 280 — 1.3 35 — — — 25 10 350 — — 0.45 LT1013C/D/I/M LT1014C/D/I/M MIN TYP MAX — — — — — — +3.5 0 — — — 4.0 3.4 — 90 90 250 0.3 18 1.0 + 3.8 – 0.3 15 5 220 4.4 4.0 0.32 450 450 950 2.0 50 — — — 25 10 350 — — 0.50 UNITS µV µV µV nA nA V/µV V V mV mV mV V V mA
IOS IB AVOL
Input Offset Current Input Bias Current Large Signal Voltage Gain Input Voltage Range Output Voltage Swing VO = 5mV to 4V, RL = 500Ω
VOUT
IS
Supply Current
Output Low, No Load Output Low, 600Ω to Ground Output Low, ISINK = 1mA Output High, No Load Output High, 600Ω to Ground Per Amplifier
3
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER VOS Input Offset Voltage VS = + 5V, 0V; VO = + 1.4V – 55°C ≤ TA ≤ 100°C VCM = 0.1V, TA = 125°C VCM = 0V, TA = 125°C (Note 2) VS = + 5V, 0V; VO = +1.4V IB AVOL CMRR PSRR VOUT Input Bias Current Large Signal Voltage Gain Common-Mode Rejection Power Supply Rejection Ratio Output Voltage Swing VS = + 5V, 0V; VO = +1.4V VO = ± 10V, RL = 2k VCM = +13.0V, – 14.9V VS = ± 2V to ± 18V RL = 2k VS = +5V, 0V RL = 600Ω to Ground Output Low Output High VS = +5V, 0V; VO = +1.4V CONDITIONS
V S = ± 15V, VCM = 0V, – 55°C ≤ TA ≤ 125°C unless otherwise noted
LT1013AM MIN TYP MAX q— 80 300
q
MIN — — — — — — — — — 0.4 96 100
LT1014AM TYP MAX 90 350 90 150 300 0.4 0.3 0.7 15 25 2.0 114 117 480 480 960 2.0 2.8 7.0 30 90 — — — —
LT1013M/LT1014M UNITS MIN TYP MAX — 110 550 µV — — — — — — — — 0.25 94 97 100 200 400 0.5 0.4 0.9 18 28 2.0 113 116 750 µV 750 µV 1500 µV 2.5 µV/°C 5.0 nA 10.0 nA 45 nA 120 nA — V/µV — dB — dB — V
IOS
Input Offset Voltage Drift Input Offset Current
q q q q q q q q
— — — — — — — — 0.5 97 100
80 120 250 0.4 0.3 0.6 15 20 2.0 114 117 ± 13.8
450 450 900 2.0 2.5 6.0 30 80 — — — —
q ± 12
± 12 ± 13.8
± 11.5 ± 13.8
q q q q
IS
Supply Current Per Amplifier
— 3.2 — —
6 3.8 0.38 0.34
15 — 0.60 0.55
— 3.2 — —
6 3.8 0.38 0.34
15 — 0.60 0.55
— 3.1 — —
6 3.8 0.38 0.34
18 — 0.7 0.65
mV V mA mA
ELECTRICAL CHARACTERISTICS
VS = ±15V, VCM = 0V, –40°C ≤ TA ≤ 85°C for LT1013I, LT1014I, 0°C ≤ TA ≤ 70°C for LT1013C, LT1013D, LT1014C, LT1014D unless otherwise noted
SYMBOL PARAMETER VOS Input Offset Voltage LT1013D/I, LT1014D/I VS = +5V, 0V; VO = 1.4V LT1013D/I, LT1014D/I VS = +5V, 0V; VO = 1.4V (Note 2) LT1013D/I, LT1014D/I VS = +5V, 0V; VO = 1.4V IB AVOL CMRR PSRR VOUT Input Bias Current Large Signal Voltage Gain Common-Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing VS = +5V, 0V; VO = 1.4V VO = ± 10V, RL = 2k VCM = +13.0V, – 15.0V VS = ± 2V to ± 18V RL = 2k VS = +5V, 0V; RL = 600Ω Output Low Output High VS = +5V, 0V; VO = 1.4V Note 2: This parameter is not 100% tested. CONDITIONS MIN q— q— q—
q q q q q q q q q
LT1013AC TYP 55 — 75 — 0.3 — 0.2 0.4 13 18 5.0 116 119 MAX 240 — 350 — 2.0 — 1.5 3.5 25 55 — — — — 13 — 0.55 0.50 MIN — — — — — — — — — — 1.0 98 101
LT1014AC TYP 65 — 85 — 0.3 — 0.2 0.4 13 20 5.0 116 119 MAX 270 — 380 — 2.0 — 1.7 4.0 25 60 — — — — 13 — 0.55 0.50
LT1013C/D/I UNITS LT1014C/D/I MIN TYP MAX — 80 400 µV — 230 1000 µV — 110 570 µV — — — — — — — 0.7 94 97 280 0.4 0.7 0.3 0.5 16 24 4.0 113 116 1200 µV 2.5 µV/°C 5.0 µV/°C 2.8 nA 6.0 nA 38 nA 90 nA — V/µV — dB — — 13 — 0.60 0.55 dB V mV V mA mA
IOS
Average Input Offset Voltage Drift Input Offset Current
— — — — — — — 1.0 98
q 101
q ± 12.5 ± 13.9
± 12.5 ± 13.9 — 3.3 — — 6 3.9 0.36 0.32
± 12.0 ± 13.9 — 3.2 — — 6 3.9 0.37 0.34
IS
Supply Current per Amplifier
— 3.3 q— q—
q q
6 3.9 0.36 0.32
The q denotes specifications which apply over the full operating temperature range.
4
LT1013/LT1014 TYPICAL PERFORMANCE CHARACTERISTICS
Offset Voltage Drift with Temperature of Representative Units
200 VS = ±15V
10 VS = 5V, 0V, –55°C TO 125°C VS = ±15V, 0V, –55°C TO 125°C 1
CHANGE IN OFFSET VOLTAGE (µV)
INPUT OFFSET VOLTAGE (mV)
INPUT OFFSET VOLTAGE (µV)
100
0
–100
–200
0.01
–50 –25
50 25 0 75 TEMPERATURE (°C)
Common-Mode Rejection Ratio vs Frequency
120
COMMON-MODE REJECTION RATIO (dB)
POWER SUPPLY REJECTION RATIO (dB)
80 60 40 20 0 10 100
VS = 5V, 0V
VS = ± 15V
80 60 40 20 0 0.1
NEGATIVE SUPPLY
POSITIVE SUPPLY
VS = ±15V + 1VP-P SINE WAVE TA = 25°C
1k 10k FREQUENCY (Hz)
100k
1M
1
10
100 1k 10k FREQUENCY (Hz)
100k
1M
NOISE VOLTAGE (200nV/DIV)
100
Noise Spectrum
1000
180 160
SUPPLY CURRENT PER AMPLIFIER (µA)
VOLTAGE NOISE DENSITY (nV/√Hz) CURRENT NOISE DENSITY (fA/√Hz)
TA = 25°C VS = ± 2V TO ± 18V
NUMBER OF UNITS
300
100 CURRENT NOISE
30
VOLTAGE NOISE 1/f CORNER 2Hz
10
1
10 100 FREQUENCY (Hz)
UW
100
Offset Voltage vs Balanced Source Resistance
5
Warm-Up Drift
VS = ±15V TA = 25°C 4
3 LT1013 METAL CAN (H) PACKAGE 2 LT1014 1 LT1013 CERDIP (J) PACKAGE
VS = 5V, 0V, 25°C 0.1 VS = ±15V, 0V, 25°C RS RS
+ –
125
0
1k 3k 10k 30k 100k 300k 1M 3M 10M BALANCED SOURCE RESISTANCE (Ω)
0
1 3 4 2 TIME AFTER POWER ON (MINUTES)
5
Power Supply Rejection Ratio vs Frequency
120
0.1Hz to 10Hz Noise
TA = 25°C VS = ± 2V TO ± 18V
TA = 25°C
100
0
2
6 4 TIME (SECONDS)
8
10
10Hz Voltage Noise Distribution
200 VS = ± 15V TA = 25°C 328 UNITS TESTED FROM THREE RUNS
460
Supply Current vs Temperature
420
140 120 100 80 60 40 20 0
380
VS = ± 15V
340 VS = 5V, 0V 300
1k
10
20 40 50 30 VOLTAGE NOISE DENSITY (nV/√Hz)
60
260 –50 –25
50 25 0 75 TEMPERATURE (°C)
100
125
5
LT1013/LT1014 TYPICAL PERFORMANCE CHARACTERISTICS
COMMON-MODE INPUT VOLTAGE, VS = +5V, 0V (V)
Input Bias Current vs Common-Mode Voltage
5 4 3 2 1 0 –1 0 –5 –25 –10 –15 –20 INPUT BIAS CURRENT (nA) VS = ± 15V VS = 5V, 0V TA = 25°C 15 10 5 0 –5 –10 –15 –30
COMMON-MODE INPUT VOLTAGE, VS = ± 15V (V)
1.0
INPUT OFFSET CURRENT (nA)
INPUT BIAS CURRENT (nA)
Output Saturation vs Sink Current vs Temperature
10 V + = 5V TO 30V V – = 0V
SATURATION VOLTAGE (V)
20mV/DIV
ISINK = 10mA 1 ISINK = 5mA ISINK = 1mA 0.1 ISINK = 100µA ISINK = 10µA ISINK = 0 0.01 –50 –25 0 25 50 75 TEMPERATURE (°C) 100 125
AV = +1
2µs/DIV
5V/DIV
Small Signal Transient Response, VS = 5V, 0V
4V 100mV 2V 50mV 0V
0 AV = +1 RL = 600Ω TO GROUND INPUT = 0V TO 100mV PULSE 20µs/DIV AV = +1 RL = 4.7k TO 5V INPUT = 0V TO 4V PULSE 10µs/DIV AV = +1 NO LOAD INPUT = 0V TO 4V PULSE 10µs/DIV
6
UW
Input Offset Current vs Temperature
–30
VCM = 0V 0.8
Input Bias Current vs Temperature
VCM = 0V –25 –20 VS = 5V, 0V –15 –10 –5 0 –50 –25 VS = ± 15V
0.6
VS = ± 2
.5V
0.4 VS = 5V, 0V 0.2 VS = ± 15V 0 –50 –25 50 25 0 75 TEMPERATURE (°C) 100
VS
=±
2.5
V
125
50 25 75 0 TEMPERATURE (°C)
100
125
Small Signal Transient Response, VS = ± 15V
Large Signal Transient Response, VS = ± 15V
AV = +1
50µs/DIV
Large Signal Transient Response, VS = 5V, 0V
Large Signal Transient Response, VS = 5V, 0V
4V
2V
0V
LT1013/LT1014 TYPICAL PERFORMANCE CHARACTERISTICS
Output Short Circuit Current vs Time
40 –55°C 25°C 125°C VS = ± 15V
10M
SHORT CIRCUIT CURRENT (mA) SINKING SOURCING
30 20 10 0 –10 –20 –30 –40
VOLTAGE GAIN (V/V)
TA = – 55°C, VS = 5V, 0V TA = 25°C, VS = 5V, 0V
VOLTAGE GAIN (dB)
125°C 25°C –55°C
1 2 0 3 TIME FROM OUTPUT SHORT TO GROUND (MINUTES)
Gain, Phase vs Frequency
20
VOLTAGE GAIN (dB)
± 15V 10 GAIN ± 15V
120 140 160
CHANNEL SEPARATION (dB)
PHASE
0
5V, 0V
–10 0.1 0.3 1 3 FREQUENCY (MHz) 10
APPLICATIONS INFORMATION
Single Supply Operation The LT1013/1014 are fully specified for single supply operation, i.e., when the negative supply is 0V. Input common-mode range includes ground; the output swings within a few millivolts of ground. Single supply operation, however, can create special difficulties, both at the input and at the output. The LT1013/LT1014 have specific circuitry which addresses these problems. At the input, the driving signal can fall below 0V— inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct problems can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP420: a) When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V – terminal) to the input. This can destroy the unit. On the LT1013/ 1014, the 400Ω resistors, in series with the input (see schematic diagram), protect the devices even when the input is 5V below ground.
U
W
UW
5V, 0V
Voltage Gain vs Load Resistance
TA = 25°C, VS = ±15V TA = – 55°C, VS = ±15V TA = 125°C, VS = ±15V
Voltage Gain vs Frequency
140 120 100 80 60 40 20 0 –20 0.01 0.1 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) VS = 5V, 0V VS = ±15V TA = 25°C CL = 100pF
1M
TA = 125°C, VS = 5V, 0V
VO = ±10V WITH VS = ±15V VO = 20mV TO 3.5V WITH VS = 5V, 0V
100k 100
1k LOAD RESISTANCE TO GROUND (Ω)
10k
Channel Separation vs Frequency
160 VS = ±15V TA = 25°C VIN = 20Vp-p to 5kHz RL = 2k LIMITED BY THERMAL INTERACTION RS = 1kΩ 100 LIMITED BY PIN TO PIN CAPACITANCE RS = 100Ω
80 TA = 25°C VCM = 0V 100 CL = 100pF
PHASE SHIFT (DEGREES)
140
120
180 200
80
60 10 100 10k 1k FREQUENCY (Hz) 100k 1M
U
U
7
LT1013/LT1014
APPLICATIONS INFORMATION
(b) When the input is more than 400mV below ground (at 25°C), the input stage saturates (transistors Q3 and Q4) and phase reversal occurs at the output. This can cause lock-up in servo systems. Due to a unique phase reversal protection circuitry (Q21, Q22, Q27, Q28), the LT1013/ 1014’s outputs do not reverse, as illustrated below, even when the inputs are at –1.5V. There is one circumstance, however, under which the phase reversal protection circuitry does not function: when the other op amp on the LT1013, or one specific amplifier of the other three on the LT1014, is driven hard into negative saturation at the output. Phase reversal protection does not work on amplifier: A when D’s output is in negative saturation. B’s and C’s outputs have no effect. B when C’s output is in negative saturation. A’s and D’s outputs have no effect. C when B’s output is in negative saturation. A’s and D’s outputs have no effect. D when A’s output is negative saturation. B’s and C’s outputs have no effect. At the output, the aforementioned single supply designs either cannot swing to within 600mV of ground (OP-20) or cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1013/1014’s all-NPN output stage maintains its low output resistance and high gain characteristics until the output is saturated. In dual supply operations, the output stage is crossover distortion-free.
Voltage Follower with Input Exceeding the Negative Common-Mode Range
4V 2V
4V
2V
0V 0V 6Vp-p INPUT, – 1.5V TO 4.5V LM324, LM358, OP-20 EXHIBIT OUTPUT PHASE REVERSAL 0V LT1013/LT1014 NO PHASE REVERSAL
Comparator Rise Response Time 10mV, 5mV, 2mV Overdrives
OUTPUT (V) 4 OUTPUT (V) 4
2
INPUT (mV)
0 0
INPUT (mV)
– 100 VS = 5V, 0V 50µs/DIV
8
U
W
U
U
Comparator Applications The single supply operation of the LT1013/1014 lends itself to its use as a precision comparator with TTL compatible output: In systems using both op amps and comparators, the LT1013/1014 can perform multiple duties; for example, on the LT1014, two of the devices can be used as op amps and the other two as comparators.
4V
2V
Comparator Fall Response Time to 10mV, 5mV, 2mV Overdrives
2
0 100
0 VS = 5V, 0V 50µs/DIV
LT1013/LT1014
APPLICATIONS INFORMATION
Low Supply Operation The minimum supply voltage for proper operation of the LT1013/1014 is 3.4V (three Ni-Cad batteries). Typical supply current at this voltage is 290µA, therefore power dissipation is only one milliwatt per amplifier.
100Ω*
For applications information on noise testing and calculations, please see the LT1007 or LT1008 data sheet.
50k*
*RESISTOR MUST HAVE LOW THERMOELECTRIC POTENTIAL. **THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION, WITH SUPPLY VOLTAGES INCREASED TO ± 20V. VO = 1000VOS
TYPICAL APPLICATIONS
50MHz Thermal rms to DC Converter
100k*
5V Single Supply Dual Instrumentation Amplifier
+5V 0.01 30k* 10k 1µF 30k* 3
1/2 LTC1043
300Ω* 100k* 10k* 5 10k* 0.01
0.01 INPUT 300mV– 10VRMS BRN RED
1µF
RED
BRN
T1A GRN
T1B
T2B GRN
T2A 10k*
2% ACCURACY, DC–50MHz. 100:1 CREST FACTOR CAPABILITY. * 0.1% RESISTOR. T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018. ENCLOSE T1 AND T2 IN STYROFOAM. 7.5mW DISSIPATION.
+
10k
12
–
13
LT1014
14
10 20k FULLSCALE TRIM 10k 9
–
10k*
+
–
+
–
2
+INPUT
1 10k* 10k*
6
LT1014
2
6 +5V 4 LT1014 11 7
1µF 3
–INPUT
18
15
1/2 LTC1043 +INPUT 7 8 3
11
+
LT1014 8 0V–4V OUTPUT
1µF 12
–INPUT
13 16
14
0.01
+
Noise Testing
–
U
W
U
U
U
Test Circuit for Offset Voltage and Offset Drift with Temperature
50k* +15V
VO LT1013 OR LT1014 –15V
+5V 5 5
+ –
8 7 OUTPUT A R2
1/2 LT1013 6 1µF 4
R1
+
1/2 LT1013 1 OUTPUT B R2
2 1µF
–
R1 OFFSET = 150µV GAIN = R2 + 1. R1 CMRR = 120dB. COMMON-MODE RANGE IS 0V TO 5V.
9
LT1013/LT1014
TYPICAL APPLICATIONS
Hot Wire Anemometer
500pF +15V Q2–Q5 CA3046 PIN 3 TO –15V Q3 1000pF 7 2k Q4 150k* 1µF 12 12k 2M FULLSCALE FLOW Q5
2k*
Liquid Flowmeter
3.2k** 1M* +15V 15Ω DALE HL-25 3.2k* 1M* 2 10M RESPONSE TIME 1 100k
6.25k** 1M* T1 T2 +15V 100k 2N4391 0.1 LT1004 –1.2 383k* 2.7k 10 –15V 300pF OUTPUT 0Hz 300Hz = 0 300ML/MIN 1N4148 4.7k 1µF
10
+
–
9
A3 LT1014
8
100k
100k
T1 FLOW PIPE
15Ω HEATER RESISTOR
+
6.25k**
1M*
3
12
+ –
+15V 4 14
13
A4 LT1014 11 –15V
T2 FLOW
* 1% FILM RESISTOR. ** SUPPLIED WITH YSI THERMISTOR NETWORK. T1, T2 YSI THERMISTOR NETWORK = #44201. FLOW IN PIPE IS INVERSELY PROPORTIONAL TO RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE. A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED FREQUENCY OUTPUT.
+
A1 LT1014
5
–
6
+
10
–
–
+
#328
3
–
2
+15V 4 1 1k ZERO FLOW
A1 LT1014 11 –15V
REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP. A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE. A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE. * 1% RESISTOR.
+
5
10M RESPONSE TIME ADJUST 100k
3.3k –15V 500k
1µF 9 A3 LT1014 8
A2 LT1014
7 6.98k* 5k FLOW CALIB
1k*
+
27Ω 1W
10k*
0.01µF 33k
–
6
A2 LT1014
–
U
Q1 2N6533 220
Q2 2k
150k*
13
A4 LT1014
14
0V–10V = 0–1000 FEET/MINUTE
LT1013/LT1014
TYPICAL APPLICATIONS
5V Powered Precision Instrumentation Amplifier
200k* 2
†
+5V 20k
LT1014
–INPUT
RG (TYP 2k) 1µF 200k* 10k
†
+INPUT
†
+5V
9V Battery Powered Strain Gauge Signal Conditioner
15k +9V +9V 1N4148 1 100k 22M 4.7k 330Ω 2N2219 0.01 TO A/D RATIO REFERENCE 100k 100k +9V +9V 15k 0.068 14 3k 0.068 6 5 TO A/D CONVERT COMMAND SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT ≈ 650µA. 4.7k–0.01µF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO HIGH ∆V/∆T STEPS. 9 7 74C221 9 499 1 15 100k 350Ω STRAIN GAUGE BRIDGE 13
0.068
LT1014
100k LT1014 8
+
10
+
+
5
12
–
–
–
+
3
–
2
4 LT1014 11
+
20k
5
–
6
LT1014
7
10k*
* 1% FILM RESISTOR. MATCH 10k's 0.05% 400,000 GAIN EQUATION: A = + 1. RG † FOR HIGH SOURCE IMPEDANCES, USE 2N2222 AS DIODES.
47µF
6
7
499
+
12
–
†
+
3
+
TO INPUT CABLE SHIELDS
8
LT1014 10
–
–
U
9
1
10k*
10k*
10k 13
+5V 4 14 OUTPUT
LT1014 11
10k*
13
LT1014
14
TO A/D
11
LT1013/LT1014
TYPICAL APPLICATIONS
5V Powered Motor Speed Controller No Tachometer Required
+5V 47
100k 82Ω A1 1/2 LT1013 2 330k 0.47 3
2k 6.8M 0.068 1/4 CD4016 5V 8 7 A2 1/2 LT1013 5 EIN 0V–3V 4
DALE #TC-10-04 1N4148 2N2222 10Ω +5V 0.05 2N2222 4.7k 820 2N2222 0.1 1N4148 100k 20k 0.33
270Ω 820
TTL INPUT MEETS ALL VPP PROGRAMMING SPECS WITH NO TRIMS AND RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED. SUITABLE FOR BATTERY POWERED USE (600µA QUIESCENT CURRENT). *1% METAL FILM.
LT1013
120k
LT1004 1.2V
12
+
+
3
0.005 5
–
1N4148
–
–
+
U
+
1k Q3 2N5023
+
1M 1N4148 6 3.3M 0.47 0.068 1N4148 2k Q2
–
1
2k
Q1 2N3904 1N4001
1N4001
MOTOR = CANON–FN30–R13N1B. A1 DUTY CYCLE MODULATES MOTOR. A2 SAMPLES MOTORS BACK EMF.
5V Powered EEPROM Pulse Generator
+5V 1N4148 1N4148
100Ω
4.7M 2 1 1N4148 6 8 LT1013 4 7 1k 2N2222 OUTPUT 100K* 21V 600µs RC
6.19K
LT1013/LT1014
TYPICAL APPLICATIONS
Methane Concentration Detector with Linearized Output
+5V 1 * 1% METAL FILM RESISTOR SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813
LT1004 1.2V 390k* 9
0.033
–
A3 LT1014 8
2.7k
10
+
11 5 LTC1044 4 2 10µF 3 8 +5V
–5V
SENSOR Q1
2 5k 1000ppm TRIM
– +
+5V 4 A1 LT1014 1 100k* 6
3
+9V INPUT 10k
10k
+9V 8 5 7
100µA
1
LT1013 3 120k 1%
LT1013 6 47k
330k +9V LT1004 1.2V
4
L = DALE TE-3/Q3/TA. SHORT CIRCUIT CURRENT = 30mA. ≈ 75% EFFICIENCY. SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.
–
+
+
–
+
+
10µF
U
14 –5V CD4016 100k* 1N4148 (4) 13
–
A4 LT1014 14
74C04
12
+
74C04
470pF 470pF 10k +5V 1 14 CA3046 Q2 1000pF Q3 Q4 –5V 1N4148 OUTPUT 500ppm-10,000ppm 50Hz 1kHz 2k 74C04
–
A2 LT1014 7
2k
150k*
5
+
12k*
Low Power 9V to 5V Converter
2N2905 L
+
1N4148 47 HP5082-2811 VD = 200mV
2N5434 390k 1% 2
5V 20mA
13
LT1013/LT1014
TYPICAL APPLICATIONS
5V Powered 4mA–20mA Current Loop Transmitter†
+5V Q3 2N2905 820Ω
68Ω 10k 0.33
Q4 2N2222 100pF
2k
1
A1 1/2 LT1013 4
4.3k
† 12-BIT ACCURACY. * 1% FILM. T1 = PICO-31080.
+5V LT1004 1.2V
7
A2 1/2 LT1013
Fully Floating Modification to 4mA-20mA Current Loop†
T1 +5V 8 TO INVERTER DRIVE 7 A1 1/2 LT1013 4 4k* 10k* 4.3k +5V LT1004 1.2V 2k 4mA TRIM INPUT 0V–4V 301Ω* 1k 20mA TRIM
†
0.1Ω 3 6 100k 1 68k* A2 1/2 LT1013
2 4mA-20mA OUT FULLY FLOATING 8-BIT ACCURACY.
5
14
–
+
–
+
–
+
U
74C04 (6)
+
0.002 10k
10µF
Q1 2N2905
T1 10µF 1N4002 (4)
+
820Ω
Q2 2N2905
100k +5V 8 2 10k* 10k* 20mA TRIM 1k 4mA TRIM 80k* 6 4mA-20mA OUT TO LOAD 2.2kΩ MAXIMUM 100Ω*
3
4k* 10k*
5
INPUT 0 TO 4V
+
10µF
1N4002 (4)
– +
LT1013/LT1014
TYPICAL APPLICATIONS
5V Powered, Linearized Platinum RTD Signal Conditioner
2M 499Ω Q1 167Ω Q2 200k 2N4250 (2) 1.5k SENSOR 6 3 2M 200k 2 A4 1/4 LT1014 9
5k LINEARITY
GAIN TRIM 1k 3.01k
ROSEMOUNT 118MF
8.25k 50k ZERO TRIM 274k
7
A3 1/4 LT1014
5
+5V 2.4k 5% LT1009 2.5V
+5V
14
A1 1/4 LT1014 11
ALL RESISTORS ARE TRW-MAR-6 METAL FILM. RATIO MATCH 2M–200K ± 0.01%. TRIM SEQUENCE: SET SENSOR TO 0 ° VALUE. ADJUST ZERO FOR 0V OUT. SET SENSOR TO 100 °C VALUE. ADJUST GAIN FOR 1.000V OUT. SET SENSOR TO 400 °C. ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.
Strain Gauge Bridge Signal Conditioner
+5V 220 1.2VOUT REFERENCE TO A/D CONVERTER FOR RATIOMETRIC OPERATION 1mA MAXIMUM LOAD
+5V
1 8 100µF 2 LTC1044 4 5 100µF
1/2 LT1013 3 4
+
V ≈ –VREF C
* 1% FILM RESISTOR. PRESSURE TRANSDUCER–BLH/DHF–350. CIRCLED LETTER IS PIN NUMBER.
–
0.1
8
LT1004 1.2V 2 39k
VREF 301k
E
D PRESSURE TRANSDUCER 350Ω
A 0.33 6
–
4
13 10k 12 250k
10k ZERO TRIM 100k
5
+
7 1/2 LT1013 OUTPUT
–
0.047
+
A2 1/4 LT1014
1
150Ω
10
–
–
+
+
+
–
U
8
OUTPUT 0V–4V = 0°C–400°C ± 0.05°C
+
0V–3.5V 0psi–350psi
2k GAIN TRIM
+
46k*
100Ω*
15
LT1013/LT1014
TYPICAL APPLICATIONS
LVDT Signal Conditioner
7 0.005 30k +5V 5 0.005 FREQUENCY = 1.5kHz 7 YEL-BLK LVDT RDBLUE BLUE –5V GRN 10k 4.7k 2N4338 1N914 LT1004 1.2V 0.01 1.2k YEL-RD BLK 12 100k 14 13 100k 2 LVDT = SCHAEVITZ E-100. 100k PHASE TRIM 1µF 1/2 LTC1043 +5V 2 10µF 3 8
30k
+
LT1013
6
–
Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation
–INPUT
2R 10M
1/4 LT1014 +INPUT R 5M 2R 10M 10pF
16
–
13
+
12
+
5
R3 V+ 4 14 INPUT BIAS CURRENT TYPICALLY