0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LT1219LCS8

LT1219LCS8

  • 厂商:

    LINER

  • 封装:

  • 描述:

    LT1219LCS8 - Precision Rail-to-Rail Input and Output Op Amps - Linear Technology

  • 数据手册
  • 价格&库存
LT1219LCS8 数据手册
LT1218/LT1219 Precision Rail-to-Rail Input and Output Op Amps FEATURES s s s s s s DESCRIPTION The LT ®1218/LT1219 are bipolar op amps which combine rail-to-rail input and output operation with precision specifications. Unlike other rail-to-rail amplifiers, the LT1218/ LT1219’s input offset voltage is a low 90µV across the entire rail-to-rail input range, not just a portion of it. Using a patented technique, both input stages of the LT1218/ LT1219 are trimmed: one at the negative supply and the other at the positive supply. The resulting common mode rejection of 97dB minimum is much better than other railto-rail input op amps. A minimum open-loop gain of 500V/mV into a 10k load virtually eliminates all gain error. The LT1218 has conventional compensation which assures stability for capacitive loads of 1000pF or less. The LT1219 has compensation that requires the use of a 0.1µF output capacitor, which improves the amplifier’s supply rejection and reduces output impedance at high frequencies. The output capacitor’s filtering action also reduces high frequency noise, which is beneficial when driving A/D converters. High and low voltage versions of the devices are offered. Operation is specified for 3V, 5V and ± 5V supplies for the LT1218L/LT1219L and 3V, 5V and ±15V for the LT1218/ LT1219. s s s s s Rail-to-Rail Input and Output 90µV VOS(MAX) for VCM = V – to V + High Common Mode Rejection Ratio: 97dB Min C-LoadTM Stable Version (LT1219) High AVOL: 500V/mV Minimum Driving 10kΩ Load Wide Supply Range: 2V to ±15V (LT1218/LT1219) 2V to ± 5V (LT1218L/LT1219L) Shutdown Mode: IS < 30µA Low Supply Current: 420µA Max Low Input Bias Current: 18nA Typical 300kHz Gain-Bandwidth Product (LT1218) Slew Rate: 0.10V/µs (LT1218) APPLICATIONS s s s Driving A/D Converters Test Equipment Amplifiers MUX Amplifiers , LTC and LT are registered trademarks of Linear Technology Corporation. C-Load is a trademark of Linear Technology Corporation. TYPICAL APPLICATION MUX Amplifier 5V VIN1 Voltage Follower Input to Output Error 10 VS = 5V AV = 1 NO LOAD VOUT + LT1218L – SHDN ERROR (mV) 1.0 5V VIN2 0.1 + LT1218L – INPUT SELECT 74HCO4 SHDN MAXIMUM IN TO OUT ERROR = 110µV FOR 0.05V ≤ VIN ≤ 4.8V RL = 10k 0.01 0 0.05 1 2 3 4 4.95 5 INPUT VOLTAGE (V) LT1218/19 • TA02 1218/19 • TA01 U U U MAX ERROR = 110µV 0.05V ≤ VIN ≤ 4.8V 1 LT1218/LT1219 ABSOLUTE MAXIMUM RATINGS Supply Voltage LT1218/LT1219 ................................................. ± 18V LT1218L/LT1219L ............................................... ± 8V Input Current ...................................................... ± 15mA Output Short-Circuit Duration (Note 1) ......... Continuous Operating Temperature Range ................ – 40°C to 85°C Specified Temperature Range (Note 3) ... – 40°C to 85°C Storage Temperature Range ................. – 65°C to 150°C Junction Temperature........................................... 150°C Lead Temperature (Soldering, 10 sec).................. 300°C PACKAGE/ORDER INFORMATION ORDER PART NUMBER TOP VIEW VOS TRIM 1 –IN 2 +IN 3 V – 8 7 6 5 VOS TRIM V+ OUT SHDN 4 N8 PACKAGE 8-LEAD PDIP S8 PACKAGE 8-LEAD PLASTIC SO TJMAX = 150°C, θJA = 130°C/ W (N8) TJMAX = 150°C, θJA = 190°C/ W (S8) LT1218CN8 LT1218CS8 LT1218LCN8 LT1218LCS8 LT1219CN8 LT1219CS8 LT1219LCN8 LT1219LCS8 S8 PART MARKING 1218 1219 1218L 1219L Consult factory for Industrial and Military grades. TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted. SYMBOL VOS ∆VOS IB ∆IB IOS ∆IOS en in AVOL CMRR PSRR VOL PARAMETER Input Offset Voltage Input Offset Voltage Shift Input Bias Current Input Bias Current Shift Input Offset Current Input Offset Current Shift Input Noise Voltage Density Input Noise Current Density Large-Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing LOW CONDITIONS VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + f = 1kHz f = 1kHz VS = 5V, VO = 50mV to 4.8V, RL = 10k VS = 3V, VO = 50mV to 2.8V, RL = 10k VS = 5V, VCM = V – to V + VS = 3V, VCM = V – to V + VS = 2.3V to 12V, VCM = 0V, VO = 0.5V No Load ISINK = 0.5mA ISINK = 2.5mA No Load ISOURCE = 0.5mA ISOURCE = 2.5mA VS = 5V VS = 3V V S = 5V V S = 3V VS = 5V, VSHDN = 0V VS = 3V, VSHDN = 0V MIN TYP 25 25 15 30 – 18 50 5 2 5 33 0.09 1000 750 110 106 100 4 45 120 + – 0.003 V V+ – 0.065 V+ – 0.210 10 7 370 370 9 6 MAX 90 90 70 70 140 18 18 18 UNITS µV µV µV nA nA nA nA nA nA nV/√Hz pA/√Hz V/mV V/mV dB dB dB mV mV mV V V V mA mA µA µA µA µA ELECTRICAL CHARACTERISTICS – 70 250 200 97 92 90 12 90 240 VOH Output Voltage Swing HIGH ISC IS Short-Circuit Current Supply Current Positive Supply Current, SHDN V+ – 0.012 V+ – 0.130 V+ – 0.400 5 4 420 410 30 20 2 U W U U WW W LT1218/LT1219 ELECTRICAL CHARACTERISTICS SYMBOL SR GBW PARAMETER Slew Rate (LT1218/LT1218L) (LT1219/LT1219L) Gain Bandwidth Product (LT1218/LT1218L) (LT1219/LT1219L) CONDITIONS AV = – 1 AV = – 1 AV = 1000 AV = 1000 TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted. MIN TYP 0.10 0.05 0.30 0.15 MAX UNITS V/µs V/µs MHz MHz 0°C ≤ TA ≤ 70°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted. SYMBOL VOS VOS TC ∆VOS IB ∆IB IOS ∆IOS AVOL CMRR PSRR VOL PARAMETER Input Offset Voltage Input Offset Drift Input Offset Voltage Shift Input Bias Current Input Bias Current Shift Input Offset Current Input Offset Current Shift Large-Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing LOW CONDITIONS VCM = V+ VCM = V– (Note 2) VCM = V– to V+ VCM = V+ VCM = V– VCM = V– to V+ VCM = V+ VCM = V– VCM = V– to V+ VS = 5V, VO = 50mV to 4.8V, RL = 10k VS = 3V, VO = 50mV to 2.8V, RL = 10k VS = 5V, VCM = V – to V+ VS = 3V, VCM = V – to V+ VS = 2.3V to 12V, VCM = 0V, VO = 0.5V No Load ISINK = 0.5mA ISINK = 2.5mA No Load ISOURCE = 0.5mA ISOURCE = 2.5mA VS = 5V VS = 3V VS = 5V VS = 3V VS = 5V, VSHDN = 0V VS = 3V, VSHDN = 0V MIN q q q q q q q q q q q q q q q q q q q q q q q q q q q – 75 250 150 96 91 88 VOH Output Voltage Swing HIGH ISC IS Short-Circuit Current Supply Current Positive Supply Current, SHDN V+ – 0.014 V+ – 0.150 V+ – 0.480 4 3 TYP 75 75 1 25 30 – 18 50 5 3 5 1000 750 104 106 100 4 45 130 V+ – 0.004 V+ – 0.075 V+ – 0.240 7 6 370 370 9 6 MAX 200 200 3 80 75 150 25 25 25 14 100 290 485 475 36 26 UNITS µV µV µV/°C µV nA nA nA nA nA nA V/mV V/mV dB dB dB mV mV mV V V V mA mA µA µA µA µA – 40°C ≤ TA ≤ 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted. (Note 3) SYMBOL VOS VOS TC ∆VOS IB ∆IB IOS ∆IOS PARAMETER Input Offset Voltage Input Offset Drift Input Offset Voltage Shift Input Bias Current Input Bias Current Shift Input Offset Current Input Offset Current Shift CONDITIONS VCM = V + – 0.15 VCM = V – + 0.15 (Note 2) VCM = V + – 0.15 to V – + 0.15 VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 MIN q q q q q q q q q q TYP 1 30 – 80 MAX 400 400 4 105 80 160 40 40 40 UNITS µV µV µV/°C µV nA nA nA nA nA nA 3 LT1218/LT1219 ELECTRICAL CHARACTERISTICS – 40°C ≤ TA ≤ 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted. (Note 3) SYMBOL AVOL CMRR PSRR VOL PARAMETER Large-Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing LOW CONDITIONS VS = 5V, VO = 50mV to 4.8V, RL = 10k VS = 3V, VO = 50mV to 2.8V, RL = 10k VS = 5V, VCM = V + – 0.15 to V – + 0.15 VS = 3V, VCM = V + – 0.15 to V – + 0.15 VS = 2.3V to 12V, VCM = 0V, VO = 0.5V No Load ISINK = 0.5mA ISINK = 2.5mA No Load ISOURCE = 0.5mA ISOURCE = 2.5mA VS = 5V VS = 3V VS = 5V VS = 3V VS = 5V, VSHDN = 0V VS = 3V, VSHDN = 0V q q q q q q q q q q q q q q q q q MIN 150 100 93 88 86 VOH Output Voltage Swing HIGH ISC IS Short-Circuit Current Supply Current Positive Supply Current, SHDN V+ – 0.015 V+ – 0.160 V+ – 0.500 4 3 TYP 500 500 102 100 100 5 50 130 V+ – 0.004 V+ – 0.070 V+ – 0.250 7 7 410 400 15 13 MAX 15 105 300 505 495 50 40 UNITS V/mV V/mV dB dB dB mV mV mV mV mV mV mA mA µA µA µA µA LT1218L/LT1219L only; TA = 25°C, VS = ± 5V, VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted. SYMBOL VOS ∆VOS IB ∆IB IOS ∆IOS AVOL CMRR VOL PARAMETER Input Offset Voltage Input Offset Voltage Shift Input Bias Current Input Bias Current Shift Input Offset Current Input Offset Current Shift Large-Signal Voltage Gain Common Mode Rejection Ratio Output Voltage Swing LOW CONDITIONS VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VO = – 4.7V to 4.7V, RL = 10k VO = – 4.5V to 4.5V, RL = 2k VCM = V – to V + No Load ISINK = 0.5mA ISINK = 5mA No Load ISOURCE = 0.5mA ISOURCE = 5mA MIN TYP 35 35 20 30 – 18 50 5 2 5 2800 1300 114 – + 0.004 V V– + 0.045 V– + 0.180 V+ – 0.003 V+ – 0.065 V+ – 0.350 12 400 10 0.10 0.05 0.30 0.15 MAX 140 140 70 70 140 18 18 18 UNITS µV µV µV nA nA nA nA nA nA V/mV V/mV dB V V V V V V mA µA µA V/µs V/µs MHz MHz – 70 500 300 103 V– + 0.012 V– + 0.090 V– + 0.525 VOH Output Voltage Swing HIGH ISC IS SR GBW Short-Circuit Current Supply Current Positive Supply Current, SHDN Slew Rate (LT1218/LT1218L) (LT1219/LT1219L) Gain-Bandwidth Product (LT1218/LT1218L) (LT1219/LT1219L) V+ – 0.012 V+ – 0.130 V+ – 0.800 6 VSHDN = 0V AV = – 1, RL = Open, VO = ± 3.5V AV = – 1, RL = Open, VO = ± 3.5V AV = 1000 AV = 1000 430 40 0.06 0.03 0.2 0.1 4 LT1218/LT1219 ELECTRICAL CHARACTERISTICS LT1218L/LT1219L only; 0°C ≤ TA ≤ 70°C, VS = ± 5V, VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted. SYMBOL VOS ∆VOS IB ∆IB IOS ∆IOS AVOL CMRR VOL PARAMETER Input Offset Voltage Input Offset Voltage Shift Input Bias Current Input Bias Current Input Offset Current Input Offset Current Shift Large-Signal Voltage Gain Common Mode Rejection Ratio Output Voltage Swing LOW CONDITIONS VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VO = – 4.7V to 4.7V, RL = 10k VO = – 4.5V to 4.5V, RL = 2k VCM = V – to V + No Load ISINK = 0.5mA ISINK = 5mA No Load ISOURCE = 0.5mA ISOURCE = 5mA MIN q q q q q q q q q q q q q q q q q q q q – 75 375 275 100 VOH Output Voltage Swing HIGH ISC IS Short-Circuit Current Supply Current Positive Supply Current, SHDN V+ – 0.014 V+ – 0.150 V+ – 0.920 5 VSHDN = 0V q TYP 100 100 30 30 – 18 50 5 3 5 2800 1300 110 V – + 0.004 V – + 0.045 V – + 0.200 V+ – 0.004 V+ – 0.075 V+ – 0.450 10 400 11 MAX 250 250 90 75 150 25 25 20 V – + 0.014 V – + 0.100 V – + 0.580 495 54 UNITS µV µV µV nA nA nA nA nA nA V/mV V/mV dB V V V V V V mA µA µA LT1218L, LT1219L only; – 40°C ≤ TA ≤ 85°C, VS = ± 5V; VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted. (Note 3) SYMBOL VOS ∆VOS IB ∆IB IOS ∆IOS AVOL CMRR VOL PARAMETER Input Offset Voltage Input Offset Voltage Shift Input Bias Current Input Bias Current Input Offset Current Shift Input Offset Current Shift Large-Signal Voltage Gain Common Mode Rejection Ratio Output Voltage Swing LOW CONDITIONS VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VO = – 4.7V to 4.7V, RL = 10k VO = – 4.5V to 4.5V, RL = 2k VCM = V + – 0.15 to V – + 0.15 No Load ISINK = 0.5mA ISINK = 2.5mA No Load ISOURCE = 0.5mA ISOURCE = 2.5mA MIN q q q q q q q q q q q q q q q q q q q q TYP 125 125 35 MAX 500 500 120 80 160 40 40 40 – 80 300 200 98 VOH Output Voltage Swing HIGH ISC IS Short-Circuit Current Supply Current Positive Supply Current, SHDN V+ – 0.015 V+ – 0.160 V+ – 1.000 5 VSHDN = 0V q 2000 600 109 V – + 0.005 V – + 0.050 V – + 0.200 V+ – 0.004 V+ – 0.070 V+ – 0.400 10 420 18 V – + 0.015 V – + 0.105 V – + 0.620 525 60 UNITS µV µV µV nA nA nA nA nA nA V/mV V/mV dB V V V V V V mA µA µA 5 LT1218/LT1219 ELECTRICAL CHARACTERISTICS LT1218/LT1219 only; TA = 25°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted. SYMBOL VOS ∆VOS IB ∆IB IOS ∆IOS AVOL CMRR PSRR VOL PARAMETER Input Offset Voltage Input Offset Voltage Shift Input Bias Current Input Bias Current Input Offset Current Input Offset Current Shift Large-Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing LOW CONDITIONS VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VO = – 14.7V to 14.7V, RL = 10k VO = – 10V to 10V, RL = 2k VCM = V – to V + VS = ± 5V to ±15V No Load ISINK = 0.5mA ISINK = 5mA No Load ISOURCE = 0.5mA ISOURCE = 5mA MIN TYP 85 85 30 30 – 18 50 5 2 5 4000 2000 120 110 V – + 0.004 V – + 0.045 V – + 0.270 V+ – 0.003 V+ – 0.065 V+ – 0.580 20 425 15 0.10 0.05 0.28 0.15 MAX 200 200 70 70 140 18 18 18 UNITS µV µV µV nA nA nA nA nA nA V/mV V/mV dB dB V V V V V V mA µA µA V/µs V/µs MHz MHz – 70 1000 500 113 100 V – + 0.012 V – + 0.090 V – + 0.525 VOH Output Voltage Swing HIGH ISC IS SR GBW Short-Circuit Current Supply Current Positive Supply Current, SHDN Slew Rate (LT1218/LT1218L) (LT1219/LT1219L Gain Bandwidth Product (LT1218/LT1218L) (LT1219/LT1219L) V+ – 0.012 V+ – 0.130 V+ – 0.800 10 VSHDN = 0V AV = – 1 AV = – 1 AV = 1000 AV = 1000 550 40 LT1218/LT1219 only; 0°C ≤ TA ≤ 70°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted. SYMBOL VOS ∆VOS IB ∆IB IOS ∆IOS AVOL CMRR PSRR VOL PARAMETER Input Offset Voltage Input Offset Voltage Shift Input Bias Current Input Bias Current Input Offset Current Input Offset Current Shift Large-Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing LOW CONDITIONS VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VO = – 14.7V to 14.7V, RL = 10k VO = – 10V to 10V, RL = 2k VCM = V – to V + VS = ± 5V to ±15V No Load ISINK = 0.5mA ISINK = 5mA No Load ISOURCE = 0.5mA ISOURCE = 5mA MIN q q q q q q q q q q q q q q q q q q q – 75 750 500 109 97 VOH Output Voltage Swing HIGH V+ – 0.014 V+ – 0.150 V+ – 0.920 TYP 120 120 50 30 – 18 50 5 3 5 3000 1500 114 110 V – + 0.004 V – + 0.045 V – + 0.310 V+ – 0.003 V+ – 0.075 V+ – 0.700 MAX 300 300 105 75 150 25 25 20 V – + 0.014 V – + 0.100 V – + 0.580 UNITS µV µV µV nA nA nA nA nA nA V/mV V/mV dB dB V V V V V V 6 LT1218/LT1219 ELECTRICAL CHARACTERISTICS LT1218/LT1219 only; 0°C ≤ TA ≤ 70°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted. SYMBOL ISC IS PARAMETER Short-Circuit Current Supply Current Positive Supply Current, SHDN CONDITIONS q q MIN 8 VSHDN = 0V q TYP 17 450 20 MAX 600 54 UNITS mA µA µA LT1218, LT1219 only; – 40°C ≤ TA ≤ 85°C, VS = ± 15V; VCM = 0V = VO = 0V, VSHDN = 15V, unless otherwise noted. (Note 3) SYMBOL VOS ∆VOS IB ∆IB IOS ∆IOS AVOL CMRR PSRR VOL PARAMETER Input Offset Voltage Input Offset Voltage Shift Input Bias Current Input Bias Current Input Offset Current Input Offset Current Shift Large-Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing LOW CONDITIONS VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VO = – 14.7V to 14.7V, RL = 10k VO = – 10V to 10V, RL = 2k VCM = V + – 0.15 to V – + 0.15 VS = ± 5V to ± 15V No Load ISINK = 0.5mA ISINK = 2.5mA No Load ISOURCE = 0.5mA ISOURCE = 2.5mA MIN q q q q q q q q q q q q q q q q q q q q q TYP 150 150 50 MAX 600 600 165 80 160 40 40 40 – 80 500 400 105 96 VOH Output Voltage Swing HIGH ISC IS Short-Circuit Current Supply Current Positive Supply Current, SHDN V+ – 0.015 V+ – 0.160 V+ – 1.000 5 3000 1000 114 110 V – + 0.005 V – + 0.050 V – + 0.200 V+ – 0.004 V+ – 0.070 V+ – 0.400 14 V – + 0.015 V – + 0.105 V – + 0.620 VSHDN = 0V q 650 60 UNITS µV µV µV nA nA nA nA nA nA V/mV V/mV dB dB V V V V V V mA µA µA The q denotes specifications which apply over the full operating temperature range. Note 1: A heat sink may be required to keep the junction temperature below the Absolute Maximum Rating when the output is shorted indefinitely. Note 2: This parameter is not 100% tested. Note 3: The LT1218/LT1219 are designed, characterized and expected to meet these extended temperature limits, but are not tested at –40°C and 85°C. Guaranteed I grade part are available: consult factory. 7 LT1218/LT1219 TYPICAL PERFORMANCE CHARACTERISTICS VOS Distribution, VCM = 0V 30 25 PERCENT OF UNITS (%) VS = 5V, 0V VCM = 0V PERCENT OF UNITS (%) 20 15 10 5 0 –100 PERCENT OF UNITS (%) –60 –20 20 60 INPUT OFFSET VOLTAGE (µV) Supply Current vs Temperature 500 CHANGE IN OFFSET VOLTAGE (µV) INPUT BIAS CURRENT (nA) 400 SUPPLY CURRENT (µA) VS = ±15V 300 VS = ± 2.5V 200 100 0 –40 –20 40 20 0 60 TEMPERATURE (°C) Output Saturation Voltage vs Load Current (Output Low) 10 VS = 5V, 0V SATURATION VOLTAGE (V) SATURATION VOLTAGE (V) 10 1 1 TA = 85°C TA = – 40°C 0.01 0.1 TA = 25°C TA = 85°C 0.1 TA = 25°C 0.01 TA = – 40°C 0.001 0.001 1 0.01 0.1 LOAD CURRENT (mA) 10 LT1218/19 • TPC07 0.001 0.001 1 0.01 0.1 LOAD CURRENT (mA) 10 LT1218/19 • TPC08 OUTPUT VOLTAGE (400nV/DIV) 8 UW LT1218/19 • TPC01 VOS Shift, VCM = 0V to 5V 40 35 30 25 20 15 10 5 100 0 –100 VS = 5V, 0V VCM = 0V TO 5V 30 25 20 15 10 5 VOS Distribution, VCM = 5V VS = 5V, 0V VCM = 5V –60 20 60 –20 INPUT OFFSET VOLTAGE (µV) 100 0 –100 –60 –20 20 60 INPUT OFFSET VOLTAGE (µV) 100 LT1218/19 • TPC02 LT1218/19 • TPC03 Minimum Supply Voltage 200 TA = – 40°C 150 TA = 25°C 100 TA = 85°C 50 25 50 Input Bias Current vs Common Mode Voltage VS = 5V, 0V TA = 25°C TA = 85°C TA = – 40°C 0 –25 0 TA = 25°C 80 100 –50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 TOTAL SUPPLY VOLTAGE (V) 5.0 –50 –1 0 3 4 1 5 2 6 COMMON MODE VOLTAGE (V) 7 LT1218/19 • TPC04 LT1218/19 • TPC05 LT1218/19 • TPC06 Output Saturation Voltage vs Load Current (Output High) VS = 5V, 0V 0.1Hz to 10Hz Output Voltage Noise VS = ± 2.5V VCM = 0V TIME (1s/DIV) LT1218/19 • TPC09 LT1218/LT1219 TYPICAL PERFORMANCE CHARACTERISTICS Noise Voltage Spectrum 100 90 VS = 5V, 0V CURRENT NOISE (pA/√Hz) NOISE VOLTAGE (nV/√Hz) 80 70 60 50 40 30 20 10 0 1 10 100 FREQUENCY (Hz) 1000 LT1218/19 • TPC10 LT1218 Gain and Phase Shift vs Frequency 70 60 50 VS = ± 2.5V PHASE 140 120 100 70 60 50 VOLTAGE GAIN (dB) VOLTAGE GAIN (dB) 40 30 20 10 0 –10 –20 –30 1 10 GAIN 100 1000 FREQUENCY (kHz) LT1218 Gain Bandwidth and Phase Margin vs Supply Voltage 400 350 300 FREQUENCY (kHz) PHASE MARGIN GBW 70 60 50 40 30 20 10 PHASE MARGIN (DEG) 90 80 70 60 50 40 30 20 10 0 1 10 100 FREQUENCY (kHz) POWER SUPPLY REJECTION RATIO (dB) COMMON MODE REJECTION RATIO (dB) 250 200 150 100 50 0 0 5 20 15 SUPPLY VOLTAGE (V) 10 25 30 UW LT1218/19 • TPC Noise Current Spectrum 2.5 VS = 5V, 0V 2.0 1.5 VCM = 4V VCM = 2.5V 1.0 VCM = 2.5V 0.5 VCM = 4V 0 1 10 100 FREQUENCY (Hz) 1000 LT1218/19 • TPC11 LT1219 Gain and Phase Shift vs Frequency VS = ± 2.5V CL = 0.1µF 140 120 100 80 60 40 PHASE 20 0 –20 GAIN 1 10 100 1000 FREQUENCY (kHz) –40 –60 10000 80 60 40 20 0 –20 –40 –60 10000 40 30 20 10 0 –10 –20 –30 PHASE SHIFT (DEG) PHASE SHIFT (DEG) LT1218/19 • TPC12 LT1218/19 • TPC13 LT1218 Common Mode Rejection Ratio vs Frequency 80 100 VS = ± 2.5V 100 90 80 70 60 50 40 30 20 10 0 1000 LT1218/19 • TPC15 LT1219 Power Supply Rejection Ratio vs Frequency VS = ± 2.5V POSITIVE SUPPLY NEGATIVE SUPPLY 0 1 10 100 FREQUENCY (kHz) 1000 LT1218/19 • TPC16 9 LT1218/LT1219 TYPICAL PERFORMANCE CHARACTERISTICS LT1218 Power Supply Rejection Ratio vs Frequency 100 POWER SUPPLY REJECTION RATIO (dB) 90 80 VS = ± 2.5V OUTPUT IMPEDANCE (Ω) OUTPUT IMPEDANCE (Ω) 70 60 50 40 30 20 10 0 1 10 100 FREQUENCY (kHz) 1000 LT1218/19 • TPC17 POSITIVE SUPPLY NEGATIVE SUPPLY LT1218 Capacitive Load Handling 80 70 60 OVERSHOOT (%) OVERSHOOT (%) VS = ± 2.5V 50 40 30 20 10 0 10 100 1000 10000 CAPACITIVE LOAD (pF) 100000 AV = 10 AV = 1 CL = 0.22µF 40 30 20 10 0 –10 CL = 0.1µF –5 0 LOAD CURRENT (mA) LT1218/19 • TPC21 OVERSHOOT (%) AV = 5 Open-Loop Gain, VS = ± 15V 40 CHANGE IN OFFSET VOLTAGE (µV) OFFSET VOLTAGE CHANGE (µV) 30 20 10 0 RL = 2k –10 –20 –30 VS = ±15V THD + NOISE (%) RL = 10k –40 5 –20 –15 –10 –5 0 10 OUTPUT VOLTAGE (V) LT1218/19 • TPC23 10 UW LT1218/19 • TPC20 LT1218 Closed Loop Output Impedance vs Frequency 1000 VS = ±2.5V 1000 LT1219 Closed Loop Output Impedance vs Frequency VS = ±2.5V CL = 0.1µF AV = 10 100 AV = 10 10 AV = 1 100 10 AV = 1 1.0 1.0 0.1 0.1 1 10 100 FREQUENCY (kHz) 1000 0.1 0.1 1 10 100 FREQUENCY (kHz) 1000 LT1218/19 • TPC18 LT1218/19 • TPC19 LT1219 Overshoot vs Load Current, VS = ± 2.5V 70 60 50 VS = ± 2.5V AV = 1 70 60 50 40 30 20 10 LT1219 Overshoot vs Load Current, VS = ± 15V VS = ±15V AV = 1 CL = 0.22µF CL = 0.047µF CL = 0.047µF CL = 0.1µF –5 0 LOAD CURRENT (mA) LT1218/19 • TPC22 5 10 0 –10 5 10 Input Offset Drift vs Time 40 30 20 10 0 –10 –20 –30 –40 15 20 0 20 40 60 80 100 120 140 160 180 200 TIME AFTER POWER-UP (SEC) LT1218/19 • TPC24 THD + Noise vs Frequency 1 VS = ±1.5V VIN = 2VP-P RL = 10k 0.1 AV = 1 0.01 AV = – 1 VS = ±15V VS = ± 2.5V 0.001 0.01 0.1 1 FREQUENCY (kHz) 10 LT1218/19 • TPC25 LT1218/LT1219 TYPICAL PERFORMANCE CHARACTERISTICS THD + Noise vs Peak-to-Peak Voltage 10 f = 1kHz RL = 10k (ALL CURVES) 1 THD + NOISE (%) 0.1 VS = ±1.5V AV = –1 VS = ±1.5V AV = 1 VS = ± 2.5V AV = 1 VS = ± 2.5V AV = –1 AV = 1 VS = ±15V LT1218/18 • TPC27 0.01 0.001 0 1 2 3 4 INPUT VOLTAGE (PEAK-TO-PEAK) APPLICATIONS INFORMATION Rail-to-Rail Operation The LT1218/LT1219 differ from conventional op amps in the design of both the input and output stages. Figure 1 shows a simplified schematic of the amplifier. The input stage consists of two differential amplifiers, a PNP stage TRIM V+ BIAS CONTROL I1 SHDN Q5 V– V IN+ – Q1 Q2 D1 D2 IN – Q3 Q4 Q12 V+ – 300mV Q6 D3 V– Figure 1. LT1218 Simplified Schematic Diagram U W UW 5 LT1218/19 • TPC26 Small-Signal Response VS = ± 15V Large-Signal Response VS = ± 15V AV = 1 VS = ±15V LT1218/18 • TPC28 U U Q1/Q2 and an NPN stage Q3/Q4, which are active over different portions of the input common mode range. Lateral devices are used in both input stages, eliminating the need for clamps across the input pins. Each input stage is trimmed for offset voltage. A complementary output configuration (Q23 through Q26) is employed to create an D4 Q10 Q11 D5 Q17 D6 Q21 D7 Q24 Q23 Q16 V– V+ V+ V– C1 OUT C2 V+ V+ Q7 Q8 Q9 CC Q14 Q15 Q20 Q22 Q25 Q26 D8 Q13 D7 Q18 Q19 LT1218/19 • F01 11 LT1218/LT1219 APPLICATIONS INFORMATION output stage with rail-to-rail swing. The amplifier is fabricated on Linear Technology’s proprietary complementary bipolar process, which ensures very similar DC and AC characteristics for the output devices Q24 and Q26. A simple comparator Q5 steers current from current source I1 between the two input stages. When the input common mode voltage VCM is near the negative supply, Q5 is reverse biased, and I1 becomes the tail current for the PNP differential pair Q1/Q2. At the other extreme, when VCM is within about 1.3V from the positive supply, Q5 diverts I1 to the current mirror D3/Q6, which furnishes the tail current for the NPN differential pair Q3/Q4. The collector currents of the two input pairs are combined in the second stage, consisting of Q7 through Q11. Most of the voltage gain in the amplifier is contained in this stage. Differential amplifier Q14/Q15 buffers the output of the second stage, converting the output voltage to differential currents. The differential currents pass through current mirrors D4/Q17 and D5/Q16, and are converted to differential voltages by Q18 and Q19. These voltages are also buffered and applied to the output Darlington pairs Q23/Q24 and Q25/Q26. Capacitors C1 and C2 form local feedback loops around the output devices, lowering the output impedance at high frequencies. Input Offset Voltage Since the amplifier has two input stages, the input offset voltage changes depending upon which stage is active. The input offsets are random, but bounded voltages. When the amplifier switches between stages, offset voltages may go up, down or remain flat; but will not exceed the guaranteed limits. This behavior is illustrated in three distribution plots of input offset voltage in the Typical Performance Characteristics section. Overdrive Protection Two circuits prevent the output from reversing polarity when the input voltage exceeds the common mode range. When the noninverting input exceeds the positive supply by approximately 300mV, the clamp transistor Q12 (Figure 1) turns on, pulling the output of the second stage low, which forces the output high. For input below the negative supply, diodes D1 and D2 turn on, overcoming the saturation of the input pair Q1/Q2. When overdriven, the amplifier draws input current that exceeds the normal input bias current. Figures 2 and 3 show typical input current as a function of input voltage. The input current must be less than 10mA for the phase reversal protection to work properly. When the amplifier is severely overdriven, an external resistor should be used to limit the overdrive current. 110 100 90 80 70 60 50 40 30 20 10 0 –500 –300 –100 VS 100 300 500 T = 85°C T = 70°C MEASURED AS A FOLLOWER + – INPUT BIAS CURRENT (nA) INPUT BIAS CURRENT (nA) 12 U W U U T = 25°C T = –55°C COMMON MODE VOLTAGE RELATIVE TO POSITIVE SUPPLY (mV) LT1218/19 • F02 Figure 2. Input Bias Current vs Common Mode Voltage 0 –10 –20 –30 –40 –50 –60 –70 – 80 – 90 –100 –110 –800 –600 – 400 –200 VS 200 T = – 55°C T = 25°C T = 70°C T = 85°C MEASURED AS A FOLLOWER + – COMMON MODE VOLTAGE RELATIVE TO NEGATIVE SUPPLY (mV) LT1218/19 • F03 Figure 3. Input Bias Current vs Common Mode Voltage LT1218/LT1219 APPLICATIONS INFORMATION Shutdown The biasing of the LT1218/LT1219 is controlled by the SHDN pin. When the SHDN pin is low, the part is shut down. In the shutdown mode, the output looks like a 40pF capacitor and the supply current is less than 30µA. The SHDN pin is referenced to the positive supply through an internal bias circuit (see Figure 1). The SHDN pin current with the pin low is typically 3µA. The switching time between the shutdown and active states is about 20µs, however, the total time to settle will be greater by the slew time of the amplifier. For example, if the DC voltage at the amplifier output is 0V in shutdown and –2V in the active mode, an additional 20µs is required. Figures 4a and 4b show the switching waveforms for a sinusoidal and a –2V DC input to the LT1218. SHDN 74C906 0V VOUT LT1218/19 • F05 Figure 5. Shutdown Interface Trim Pins SHDN 0V Trim pins are provided for compatibility with other single op amps. Input offset voltage can be adjusted over a ± 2.3mV range with a 10k potentiometer. V+ RL = 10V VS = ± 2.5V LT1218/19 • F04a Figure 4a 10k 1 0V VOUT Figure 6. Optional Offset Nulling SHDN 0V RL = 10V VS = ± 2.5V Improved Supply Rejection in the LT1219 The LT1219 is a variation of the LT1218 offering greater supply rejection and lower high frequency output impedance. The LT1219 requires a 0.1µF load capacitance for LT1218/19 • F04a Figure 4b + 3 – 2 LT1218/ LT1219 4 V– – + U W U U The SHDN pin can be driven directly from CMOS logic if the logic and the LT1218/LT1219 are operated from the same supplies. For higher supply operation, an interface is required. An easy way to interface between supplies is to use open-drain logic, an example is shown in Figure 5. Because the SHDN pin is referenced to the positive supply, the logic used should have a breakdown voltage greater than the positive supply. 15V LT1218/ LT1219 SHDN –15V 5V 8 7 OUT LT1218/19 • F06 13 LT1218/LT1219 APPLICATIONS INFORMATION compensation. The output capacitance forms a filter, which reduces pickup from the supply and lowers the output impedance. This additional filtering is helpful in mixed analog/digital systems with common supplies or systems employing switching supplies. Filtering also reduces high frequency noise, which may be beneficial when driving A/D converters. Figures 7a and 7b show the outputs of the LT1218/LT1219 perturbed by a 200mVP-P 50kHz square wave added to the positive supply. The LT1219 power supply rejection is about ten times greater than that of the LT1218 at 50kHz. Note the 5-to-1 scale change in the output voltage traces. The tolerance of the external compensation capacitor is not critical. The plots of Overshoot vs Load Current in the Typical Performance Characteristics section illustrate the effect of a capacitive load. V+ (AC) VOUT LT1218/19 • F07a Figure 7a. LT1218 Power Supply Rejection Test TYPICAL APPLICATIONS Buffer for 12-Bit A/D Converter 3V 0.1µF VIN 1µF + LT1219 LT1004-1.2 – 0.1µF 1 2 3 4 VREF + IN VCC CLK LTC1285 – IN DOUT GND CS/SHDN LT1218/19 • TA03 14 U W U U U V+ (AC) VOUT LT1218/19 • F07b Figure 7b. LT1219 Power Supply Rejection Test High-Side Current Source VCC RSENSE 0.2Ω 1k 0.0033µF 100Ω Q1 MTP23P06 8 7 6 5 TO µP 40k RP 10k – LT1218 + ILOAD 5V < VCC < 30V 0A < ILOAD < 1A AT VCC = 5V 0mA < ILOAD < 160mA AT VCC = 30V Q2 2N4340 LT1218/19 • TA04 LT1218/LT1219 TYPICAL APPLICATIONS Positive Supply Current Sense VCC R1 200Ω PACKAGE DESCRIPTION 0.300 – 0.325 (7.620 – 8.255) 0.009 – 0.015 (0.229 – 0.381) 0.065 (1.651) TYP 0.005 (0.127) MIN 0.100 ± 0.010 (2.540 ± 0.254) 0.125 (3.175) MIN 0.018 ± 0.003 (0.457 ± 0.076) ( +0.025 0.325 –0.015 8.255 +0.635 –0.381 ) *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm) 0.010 – 0.020 × 45° (0.254 – 0.508) 0.008 – 0.010 (0.203 – 0.254) 0°– 8° TYP 0.053 – 0.069 (1.346 – 1.752) 0.014 – 0.019 (0.355 – 0.483) *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE 0.016 – 0.050 0.406 – 1.270 Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. U U RS 0.2Ω – LT1218 Q1 TP0610L VO R2 20k 1218/19 • TA06 + ILOAD LOAD R2 VO = (ILOAD)(RS) R1 = (ILOAD)(20Ω) () Dimensions in inches (millimeters) unless otherwise noted. N8 Package 8-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510) 0.045 – 0.065 (1.143 – 1.651) 0.130 ± 0.005 (3.302 ± 0.127) 0.400* (10.160) MAX 8 7 6 5 0.255 ± 0.015* 0.015 (6.477 ± 0.381) (0.380) MIN 1 2 3 4 N8 0695 S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610) 8 0.189 – 0.197* (4.801 – 5.004) 7 6 5 0.228 – 0.244 (5.791 – 6.197) 0.004 – 0.010 (0.101 – 0.254) 0.150 – 0.157** (3.810 – 3.988) 0.050 (1.270) TYP 1 2 3 4 SO8 0996 15 LT1218/LT1219 TYPICAL APPLICATION 8-Channel, 12-Bit Data Acquisition System with Programmable Gain 5V 1µF 1 2 3 4 INPUTS 5 6 7 8 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 16 V+ 15 D 14 V– 13 12 11 10 9 64R 32R 16R 8R 4R 2R R GAIN MUX CHANNEL GAIN 0 1 1 2 2 4 3 8 4 16 5 32 6 64 7 128 R 20 21 22 23 24 1 2 3 18 8 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 LTC1598 MUXOUT COM NC GND 4, 9 NC 12 13 8-CHANNEL MUX 12-BIT SAMPLING ADC CSADC CSMUX 10 6 5, 14 11 7 µP/µC 5V 1µF + LT1219L DOUT DIN CS CLK GND – LTC1391 8-CHANNEL MUX RELATED PARTS PART NUMBER LTC 1152 LT1366/LT1367 LT1466/LT1467 ® DESCRIPTION Rail-to-Rail Input and Output, Zero-Drift Op Amp Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps Dual/Quad Micropower, Rail-to-Rail Input and Output Op Amps 16 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417q (408) 432-1900 FAX: (408) 434-0507q TELEX: 499-3977 q www.linear-tech.com U 0.1µF 17 ADCIN 16 15, 19 VREF VCC 5V 1µF + CLK DOUT DIN – 1218/19 • TA05 COMMENTS High DC Accuracy, 10µV VOS(MAX), 100nV/°C Drift, 0.7MHz GBW, 0.5V/µs Slew Rate, Maximum Supply Current 3mA 475µV VOS(MAX), 400kHz GBW, 0.13V/µs Slew Rate, Maximum Supply Current 520µA per Op Amp Maximum Supply Current 75µA per Op Amp, 390µV VOS(MAX), 120kHz Gain Bandwidth 12189f LT/TP 0697 7K • PRINTED IN USA © LINEAR TECHNOLOGY CORPORATION 1997
LT1219LCS8 价格&库存

很抱歉,暂时无法提供与“LT1219LCS8”相匹配的价格&库存,您可以联系我们找货

免费人工找货