LT1389 Nanopower Precision Shunt Voltage Reference
FEATURES
s s s s s
DESCRIPTIO
Initial Voltage Accuracy: 0.05% Low Operating Current: 800nA Low Drift: 10ppm/°C Max Less Than 1Ω Dynamic Impedance Available in 1.25V, 2.5V, 4.096V and 5V SO-8 Packages
APPLICATIO S
s s s s
The LT ®1389 is a nanopower, precision shunt voltage reference. The bandgap reference uses trimmed precision thin-film resistors and improved curvature correction techniques to achieve 0.05% initial voltage accuracy with guaranteed 10ppm/°C maximum temperature drift. Voltage regulation is maintained to an ultralow 800nA operating current. Advances in design, processing and packaging achieve low temperature cycling hysteresis. The LT1389 does not require an output compensation capacitor, but is stable with capacitive loads. Low dynamic impedance makes the LT1389 reference easy to use from unregulated supplies. The LT1389 reference can be used as a high performance upgrade to the LM185/LM385, LT1004, LT1034 and LT1634 where lowest power and guaranteed temperature drift are required.
, LTC and LT are registered trademarks of Linear Technology Corporation.
Portable Meters Precision Regulators A/D and D/A Converters Calibrators
TYPICAL APPLICATIO
2.0
REFERENCE VOLTAGE CHANGE (mV)
1.5 1.0 0.5 0 – 0.5 –1.0 –1.5 – 2.0 0
IR = 0.8µA VOUT = 1.25V
5V 4.7M VOUT 1.25V LT1389-1.25
1389 TA01
10
U
Temperature Drift
20 40 50 30 TEMPERATURE (°C) 60 70
1389 TA02
U
U
1
LT1389
ABSOLUTE
(Note 1)
AXI U
RATI GS
PACKAGE/ORDER I FOR ATIO
ORDER PART NUMBER
TOP VIEW DNC* 1 DNC* 2 DNC* 3 GND 4 8 DNC* 7 DNC* 6 VOUT 5 GND
Operating Current 1.25V ............................................................... 20mA 2.5V ................................................................. 20mA 4.096V ............................................................. 10mA 5V .................................................................... 10mA Forward Current .................................................. 20mA Operating Temperature Range ..................... 0°C to 70°C Storage Temperature Range (Note 2) ... – 65°C to 150°C Lead Temperature (Soldering, 10 sec).................. 300°C
LT1389ACS8-1.25 LT1389BCS8-1.25 LT1389BCS8-2.5 LT1389BCS8-4.096 LT1389BCS8-5 S8 PART MARKING 389A12 389B12 389B25 1389B4 1389B5
S8 PACKAGE 8-LEAD PLASTIC SO
TJMAX = 125°C, θJA = 190°C/ W
*Connected internally. Do Not Connect external circuitry to these pins. Consult factory for Industrial and Military grade parts.
AVAILABLE OPTIO S
TEMPERATURE 0°C to 70°C OUTPUT VOLTAGE 1.250 1.250 2.500 4.096 5.000 ACCURACY (%) 0.05 0.05 0.05 0.075 0.075 TEMPERATURE COEFFICIENT (ppm/°C) 10 20 20 50 50 PART TYPE LT1389ACS8-1.25 LT1389BCS8-1.25 LT1389BCS8-2.5 LT1389BCS8-4.096 LT1389BCS8-5 PART MARKING 389A12 389B12 389B25 1389B4 1389B5
1.25V ELECTRICAL CHARACTERISTICS
PARAMETER Reverse Breakdown Voltage CONDITIONS
The q denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 3)
MIN 1.24937 – 0.05
q q
TYP 1.250 1.250 1.250 0.20 0.20 0.3 0.3 4 4 0.25 0.25 25
MAX 1.25062 0.05 1.25149 0.12 1.25237 0.19 0.4 1.0 1.0 2.0 0.6 10 20 0.7 1.5
UNITS V % V % V % mV mV mV mV µA ppm/°C ppm/°C Ω Ω µVP-P
LT1389ACS8/LT1389BCS8 (IR = 0.8µA) LT1389ACS8 (IR = 0.8µA) LT1389BCS8 (IR = 0.8µA)
1.24849 – 0.12 1.24762 – 0.19
Reverse Breakdown Change with Current (Note 4)
0.8µA ≤ IR ≤ 200µA
q
200µA ≤ IR ≤ 2mA
q
Minimum Operating Current Temperature Coefficient Reverse Dynamic Impedance (Note 5) Low Frequency Noise (Note 6) LT1389ACS8 (IR = 0.8µA) LT1389BCS8 (IR = 0.8µA) 0.8µA ≤ IR ≤ 2mA
q q q q
IR = 0.8µA, 0.1Hz ≤ f ≤ 10Hz
2
U
W
U
U
WW
U
W
LT1389
2.5V ELECTRICAL CHARACTERISTICS
PARAMETER Reverse Breakdown Voltage CONDITIONS LT1389BCS8 (IR = 0.9µA) LT1389BCS8 (IR = 0.9µA) Reverse Breakdown Change with Current (Note 4) 0.9µA ≤ IR ≤ 200µA
The q denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 3)
MIN 2.49875 – 0.05
q
TYP 2.500 2.500 0.2 0.2 0.3 0.3 8 0.25 0.25 50
MAX 2.50125 0.05 2.50475 0.19 0.5 1.5 1.0 2.5 0.7 20 0.75 2
UNITS V % V % mV mV mV mV µA ppm/°C Ω Ω µVP-P
2.49525 – 0.19
q
200µA ≤ IR ≤ 2mA
q
Minimum Operating Current Temperature Coefficient Reverse Dynamic Impedance (Note 5) Low Frequency Noise (Note 6) IR = 0.9µA 0.9µA ≤ IR ≤ 2mA
q q q
IR = 0.9µA, 0.1Hz ≤ f ≤ 10Hz
The q denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 3)
PARAMETER Reverse Breakdown Voltage CONDITIONS LT1389BCS8 (IR = 1.5µA) LT1389BCS8 (IR = 1.5µA) Reverse Breakdown Change with Current (Note 4) 1.5µA ≤ IR ≤ 200µA
q q
4.096V ELECTRICAL CHARACTERISTICS
MIN 4.09293 – 0.075 4.0788 – 0.42
TYP 4.096 4.096 0.2 0.2 0.3 0.3 12 0.75 0.75 80
MAX 4.09907 0.075 4.1132 0.42 1.5 3 4 6 1 50 2 3
UNITS V % V % mV mV mV mV µA ppm/°C Ω Ω µVP-P
200µA ≤ IR ≤ 2mA
q
Minimum Operating Current Temperature Coefficient Reverse Dynamic Impedance (Note 5) Low Frequency Noise (Note 6) IR = 1.5µA 1.5µA ≤ IR ≤ 2mA
q q q
IR = 1.5µA, 0.1Hz ≤ f ≤ 10Hz
3
LT1389
The q denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 3)
PARAMETER Reverse Breakdown Voltage CONDITIONS LT1389BCS8 (IR = 1.5µA) LT1389BCS8 (IR = 1.5µA) Reverse Breakdown Change with Current (Note 4) 1.5µA ≤ IR ≤ 200µA
q q
5V ELECTRICAL CHARACTERISTICS
MIN 4.99625 – 0.075 4.979 – 0.42
TYP 5.000 5.000 0.2 0.2 0.3 0.3 12 0.75 0.75 100
MAX 5.00375 0.075 5.021 0.42 1.5 3 4 6 1 50 2 3
UNITS V % V % mV mV mV mV µA ppm/°C Ω Ω µVP-P
200µA ≤ IR ≤ 2mA
q
Minimum Operating Current Temperature Coefficient Reverse Dynamic Impedance (Note 5) Low Frequency Noise (Note 6) IR = 1.5µA 1.5µA ≤ IR ≤ 2mA
q q q
IR = 1.5µA, 0.1Hz ≤ f ≤ 10Hz
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: If the part is stored outside of the specific operating temperature range, the output may shift due to hysteresis. Note 3: ESD (Electrostatic Discharge) sensitive device. Use proper ESD handling precautions.
Note 4: Output requires 0.1µF for operating current greater than 1mA. Note 5: This parameter is guaranteed by “reverse breakdown change with current” test. Note 6: Peak-to-peak noise is measured with a single highpass filter at 0.1Hz and 2-pole lowpass filter at 10Hz.
4
LT1389 1.25V TYPICAL PERFOR A CE CHARACTERISTICS
Reverse Characteristics
1.0 TA = – 40°C TO 85°C
REFERENCE VOLTAGE CHANGE (mV)
2.0 REVERSE VOLTAGE CHANGE (mV) 1.5 1.0 0.5 0 IR = 250µA – 0.5 –1.0 –1.5 – 2.0 – 40 –20 40 20 TEMPERATURE (°C) 0 60 80 IR = 0.8µA
REVERSE CURRENT (µA)
0.8
0.6
0.4
0.2
0
0
0.8 0.4 1.2 REVERSE VOLTAGE (V)
1.6
1389-1.25 G01
Reverse Dynamic Impedance
1000 TA = 25°C f = 25Hz
DYNAMIC IMPEDANCE (kΩ)
DYNAMIC IMPEDANCE (Ω)
FORWARD VOLTAGE (V)
100
10
1
0.1 0.001
0.01 0.1 1 REVERSE CURRENT (mA)
10
1389-1.25 G04
0.1Hz to 10Hz Noise
25 20 IR = 0.8µA
NOISE VOLTAGE (µV/DIV)
15 10 5 0 –5 –10 –15 – 20 – 25 0 10 20 30 40 50 TIME (SEC) 60 70
1389-1.25 G07
UW
100 10 1 0.1 1.5V 1V 0.5V 0V 5V 0V
Temperature Drift
1.2 1.0 0.8
Reverse Voltage Change vs Current
– 40°C 0.6 0.4 0.2 0 0.001 25°C
85°C
0.1 1 0.01 REVERSE CURRENT (mA)
10
1389-1.25 G03
1389-1.25 G02
Dynamic Impedance vs Frequency
TA = 25°C
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Forward Characteristics
TA = 25°C
IR = 0.8µA COUT = 0µF
IR = 0.8µA COUT = 0.047µF IR = 10µA COUT = 0.1µF
IR = 10µA COUT = 0µF 0.01 0.01 0.1 1 FREQUENCY (kHz) 10
1389-1.25 G05
0 0.001
0.01 0.1 1 10 FORWARD CURRENT (mA)
100
1389-1.25 G06
Response Time
1.5V 1V 0.5V 0V 5V 0V IR = 0.8µA COUT = 0µF 1ms/DIV
1389-1.25 G08
Response Time
IR = 0.8µA COUT = 0.1µF
200ms/DIV
1389-1.25 G09
5
LT1389 2.5V TYPICAL PERFOR A CE CHARACTERISTICS
Reverse Characteristics
1000 TA = – 40°C TO 85°C
REVERSE VOLTAGE CHANGE (mV)
800
REVERSE CURRENT (nA)
REVERSE VOLTAGE CHANGE (mV)
600
400
200
0
0
0.4
0.8
1.2 1.6 2.0 REVERSE VOLTAGE (V)
2.4
2.8
1389-2.5 G01
Reverse Dynamic Impedance
1000 TA = 25°C f = 25Hz
FORWARD VOLTAGE (V)
100
DYNAMIC IMPEDANCE (kΩ)
DYNAMIC IMPEDANCE (Ω)
10
1
0.1 0.001
0.01 0.1 1 REVERSE CURRENT (mA)
10
1389-2.5 G04
0.1Hz to 10Hz Noise
100 80 IR = 0.9µA
NOISE VOLTAGE (µV/DIV)
60 40 20 0 – 20 – 40 – 60 – 80
–100
0
10
20
30 40 50 TIME (SEC)
60
70
1389-2.5 G07
6
UW
Temperature Drift
4.0 3.0 2.0 1.0 0 –1.0 – 2.0 – 3.0 – 4.0 – 40 –20 0 20 40 60 80 IR = 0.9µA IR = 250µA
2.0
Reverse Voltage Change vs Current
1.6
– 40°C
1.2
0.8 25°C 0.4 85°C
0 0.001
TEMPERATURE (°C)
1389-2.5 TA02
0.01 0.1 1 REVERSE CURRENT (mA)
10
1389-2.5 G03
Dynamic Impedance vs Frequency
100 TA = 25°C
1.0 0.9 0.8
Forward Characteristics
TA = 25°C
10 IR = 0.9µA COUT = 0µF 1
0.7 0.6 0.5 0.4 0.3 0.2 0.1
IR = 0.9µA COUT = 0.033µF IR = 10µA COUT = 0.22µF
0.1 IR = 10µA COUT = 0µF 0.01 0.01
0.1 1 FREQUENCY (kHz)
10
1389-2.5 G05
0 0.001
0.01 0.1 1 10 FORWARD CURRENT (mA)
100
1389-2.5 G06
Response Time
3V 2V 1V 0V 5V 0V IR = 0.9µA COUT = 0µF 1ms/DIV
1389-2.5 G08
Response Time
3V 2V 1V 0V 5V 0V IR = 0.9µA COUT = 0.1µF 200ms/DIV
1389-2.5 G09
LT1389 4.096V TYPICAL PERFOR A CE CHARACTERISTICS
Reverse Characteristics
1000 TA = – 40°C TO 85°C
REFERENCE VOLTAGE CHANGE (mV)
REVERSE VOLTAGE CHANGE (mV)
800
REVERSE CURRENT (nA)
600
400
200
0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 REVERSE VOLTAGE (V)
1389-4 G01
Reverse Dynamic Impedance
1000 TA = 25°C f = 25Hz 100
DYNAMIC IMPEDANCE (kΩ)
DYNAMIC IMPEDANCE (Ω)
FORWARD VOLTAGE (V)
100
10
1
0.1 0.001
0.01 0.1 1 REVERSE CURRENT (mA)
10
1389-4 G04
Response Time
4V 0V 10V 0V IR = 1.5µA COUT = 0µF 2ms/DIV
1389-4 G08
UW
8 6 4 2 0 –2 –4 –6 –8 – 40
10 1 0.1 0.01 0.01
Temperature Drift
2.0
Reverse Voltage Change vs Current
1.6 – 40°C 1.2
IR = 250µA IR = 1.5µA
0.8 25°C 0.4 85°C
–20
40 20 TEMPERATURE (°C)
0
60
80
0 0.001
0.1 1 0.01 REVERSE CURRENT (mA)
10
1389-4 G03
1389-4 G02
Dynamic Impedance vs Frequency
TA = 25°C
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Forward Characteristics
TA = 25°C
IR = 1.5µA COUT = 0µF
IR = 1.5µA COUT = 0.047µF
IR = 10µA COUT = 0µF
IR = 10µA COUT = 0.68µF 10
1389-4 G05
0.1 1 FREQUENCY (kHz)
0 0.001
0.01 0.1 1 10 FORWARD CURRENT (mA)
100
1389-4 G06
Response Time
4V 0V 10V 0V IR = 1.5µA COUT = 0.1µF 200ms/DIV
1389-4 G09
7
LT1389 5V TYPICAL PERFOR A CE CHARACTERISTICS
Reverse Characteristics
1000 TA = – 40°C TO 85°C
REFERENCE VOLTAGE CHANGE (mV)
REVERSE VOLTAGE CHANGE (mV)
800
REVERSE CURRENT (nA)
600
400
200
0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 REVERSE VOLTAGE (V)
1389-4 G01
Reverse Dynamic Impedance
1000 TA = 25°C f = 25Hz
DYNAMIC IMPEDANCE (kΩ)
DYNAMIC IMPEDANCE (Ω)
FORWARD VOLTAGE (V)
100
10
1
0.1 0.001
0.01 0.1 1 REVERSE CURRENT (mA)
1389-5 G04
Response Time
4V 2V 0V 10V 0V IR = 1.5µA COUT = 0µF 2ms/DIV
1389-5 G08
8
UW
10
Temperature Drift
8 6 4 2 0 –2 –4 –6 –8 – 40 IR = 1.5µA IR = 250µA 2.0
Reverse Voltage Change vs Current
1.6 – 40°C 1.2 25°C
0.8
0.4
85°C
–20
40 20 TEMPERATURE (°C)
0
60
80
0 0.001
0.1 1 0.01 REVERSE CURRENT (mA)
10
1389-4 G03
1389-5 G02
Dynamic Impedance vs Frequency
100 TA = 25°C
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Forward Characteristics
TA = 25°C
10
1 IR = 1.5µA COUT = 0µF 0.1 IR = 10µA COUT = 0µF 0.01 0.01
IR = 1.5µA COUT = 0.047µF
IR = 10µA COUT = 0.1µF 10
1389-4 G05
0.1 1 FREQUENCY (kHz)
0 0.001
0.01 0.1 1 10 FORWARD CURRENT (mA)
100
1389-5 G06
Response Time
4V 2V 0V 10V 0V IR = 1.5µA COUT = 0.1µF 200ms/DIV
1389-5 G09
LT1389
APPLICATIO S I FOR ATIO
The reverse characteristics of the LT1389 resembles a simple resistor Zener diode parallel connection. This well behaved characteristic is important to the proper operation of circuits like Figure 1. The adjustable output voltage reference depends upon positive feedback from the LT1495’s output to start-up and regulate the bias current for the LT1389. The LT1389 has no negative resistance regions that can interfere with the proper start-up of the buffered reference.
– 1.25V V RB = OUT 0.8µA LT1389-1.25
Figure 1. Adjustable Output Voltage Reference
DNC DNC DNC GND
Figure 2. Guard Ring to Reduce Board Leakage
U
Board leakage is a concern for a nanopower precision shunt voltage reference. The LT1389 requires attention to detail in board layout in order to maximize its performance. 1.5GΩ of leakage between a DNC pin and a 5V supply will conduct 2.5nA which induces a 0.2% error in VOUT. Board leakage can be minimized by encircling the DNC pins with a guard ring operated at a potential of VOUT. By tying the guard ring to VOUT as shown in Figure 2, leakage paths are eliminated.
VIN ≥ 10.5V
W
UU
+
LT1495 VOUT 1.5V TO 10V R1 249k TO 8.66M R2 1.24M
1389 F01
–
BOARD METAL TRACE 1 2 LT1389 3 4 6 5 VOUT GND
1389 F02
8 7
DNC DNC
9
LT1389
TYPICAL APPLICATIO S
2.5V Output, Low Noise Reference
1µF VIN ≥ 3V 10k
510k 10k 1k
+
100k
20µF* 20µF*
1389 TA04
+
LT1389-2.5
*WET SLUG TANTALUM
Micropower Voltage and Current Reference
ZTX214C
1/2 LT1495
IOUT = 1µA R1 TO R3: MAR5 SERIES, IRC (512) 992-7900
10
–
2 AAA ALKALINE CELLS
R3 249k 0.1%
LT1389-1.25
+
–
+
U
LT1495
2.5V
R4 300k 5%
+
1/2 LT1495
–
R1 200k 0.1% R2 1M 0.1%
COM
VOUT = 1.5V
1389 TA03
LT1389
PACKAGE DESCRIPTIO
0.010 – 0.020 × 45° (0.254 – 0.508) 0.008 – 0.010 (0.203 – 0.254) 0°– 8° TYP
0.014 – 0.019 (0.355 – 0.483) TYP *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
0.016 – 0.050 (0.406 – 1.270)
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
U
Dimensions in inches (millimeters) unless otherwise noted.
S8 Package 8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG # 05-08-1610)
0.189 – 0.197* (4.801 – 5.004) 8 7 6 5
0.228 – 0.244 (5.791 – 6.197)
0.150 – 0.157** (3.810 – 3.988)
1
2
3
4
0.053 – 0.069 (1.346 – 1.752)
0.004 – 0.010 (0.101 – 0.254)
0.050 (1.270) BSC
SO8 1298
11
LT1389
TYPICAL APPLICATIO S
Single Cell Li-Ion Battery Supervisory Circuit, IQ = 10µA
OFF VBAT 1.75V RS 620k 5% CHARGER SW T0 LOAD
+
A1 1/4 LT1496
–
R1 500k 0.1%
1.25V R2 1.25M 0.1%
–
R4 1.25M 0.1%
LT1389-1.25
D1, D2: 1N458 R1 TO R4: CAR6 SERIES IRC (512) 992-7900 SW: PMOS SPECIFIED FOR MAXIMUM LOAD CURRENT
Precision Undervoltage Lockout Circuit
VBATT R1 3.57M B 0.1% Li-Ion CELL A 4.1V R2 3M 0.1% R3 2.05M 1% SW1 TO LOAD
+
U1 1/2 LT1495
U2 LT1389 1.250V R4 150k 1%
–
1389 TA06
R1, R2: IRC CAR6 SERIES (512) 992-7900 SW1: PMOS SPECIFIED FOR MAXIMUM LOAD CURRENT
RELATED PARTS
PART NUMBER LTC 1440 LT1460 LT1461 LT1495 LTC1540 LT1634 LTC1798
®
DESCRIPTION Micropower Comparator with Reference Micropower Series Reference Micropower Precision LDO Series Reference 1.5µA Precision Rail-to-Rail Dual Op Amp Nanopower Comparator with Reference Micropower Precision Shunt Voltage Reference 6µA Low Dropout Series Reference
COMMENTS 3.7µA Max Supply Current, 1% 1.182V Reference, MSOP, PDIP and SO-8 Packages 0.075% Max, 10ppm/°C Max Drift, 2.5V, 5V and 10V Versions, MSOP, PDIP, SO-8, SOT-23 and TO-92 Packages 3ppm/°C Max Drift, 0°C to 70°C, –40°C to 85°C, –40°C to 125°C Options in SO-8 1.5µA Max Supply Current, 100pA Max IOS 600nA Max Supply Current, 2% 1.182V Reference, MSOP and SO-8 Packages 0.05% Max, 10ppm/°C Max Drift, 1.25V, 2.5V, 4.096V, 5V, 10µA Maximum Supply Current Available in Adjustable, 2.5V, 3V, 4.096V and 5V
1389fa LT/TP 0200 2K REV A • PRINTED IN USA
12
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408)432-1900 q FAX: (408) 434-0507 q www.linear-tech.com
+
–
+
–
U
A2 1/4 LT1496
RH1 10M 5% D1 RH2 10M 5% D2
R3 1.75M 0.1%
RSW 1M 5% BATTERY
A
VBAT
+
A3 1/4 LT1496
A4 1/4 LT1496
1389 TA05
RSW 1M 5% R5 10M 5%
© LINEAR TECHNOLOGY CORPORATION 1998