0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LT1723CMS8

LT1723CMS8

  • 厂商:

    LINER

  • 封装:

  • 描述:

    LT1723CMS8 - Single, Dual, Quad 200MHz Low Noise Precision Op Amps - Linear Technology

  • 数据手册
  • 价格&库存
LT1723CMS8 数据手册
LT1722/LT1723/LT1724 Single, Dual, Quad 200MHz Low Noise Precision Op Amps FEATURES s s s s s s s s s s s DESCRIPTIO 3.8nV/√Hz Input Noise Voltage 3.7mA Supply Current 200MHz Gain Bandwidth Low Total Harmonic Distortion: – 85dBc at 1MHz 70V/µs Slew Rate 400µV Maximum Input Offset Voltage 300nA Maximum Input Bias Current Unity-Gain Stable Capacitive Load Stable Up to 100pF 23mA Minimum Output Current Specified at ± 5V and Single 5V The LT®1722/LT1723/LT1724 are single/dual/quad, low noise, low power, high speed operational amplifiers. These products feature lower input offset voltage, lower input bias current and higher DC gain than devices with comparable bandwidth. The 200MHz gain bandwidth ensures high open-loop gain at video frequencies. The low input noise voltage is achieved with reduced supply current. The total noise is optimized for a source resistance between 0.8k and 12k. Due to the input bias current cancellation technique used, the resistance seen by each input does not need to be balanced. The output drives a 150Ω load to ±3V with ±5V supplies. On a single 5V supply the output swings from 1.5V to 3.5V with a 500Ω load connected to 2.5V. The amplifier is unitygain stable (CLOAD ≤ 100pF). The LT1722/LT1723/LT1724 are manufactured on Linear Technology’s advanced low voltage complementary bipolar process. The LT1722 is available in the SO-8 and 5-pin SOT-23 packages. The LT1723 is available in the SO-8 and MS8 packages. The LT1724 is available in the 14-lead SO package. APPLICATIO S s s s s s s Video and RF Amplification ADSL, HDSL II, VDSL Receivers Active Filters Wideband Amplifiers Buffers Data Acquisition Systems , LTC and LT are registered trademarks of Linear Technology Corporation. TYPICAL APPLICATIO C1 5pF R3 750Ω Differential Video Line Driver Line Driver Mulitburst Video Signal R5 2k R7 62.5Ω VIN C2 5pF R4 2k 125Ω CAT-5 TWISTED PAIR +VOUT 0.5V/DIV 1/2 LT1723 VIN 75Ω SOURCE R2 2k VIN /2 62.5Ω +VOUT LOAD –VOUT 62.5Ω –VIN /2 LOAD VIN 1V/DIV –VOUT 0.5V/DIV R1 75Ω R6 62.5Ω 1723 TA01 1723 TA02 1/2 LT1723 –VIN U 172234fa U U + + – – 1 LT1722/LT1723/LT1724 ABSOLUTE AXI U RATI GS (Note 1) Operating Temperature Range (Note 4)...–40 ° C to 85°C Specified Temperature Range (Note 5) ... –40°C to 85°C Maximum Junction Temperature .......................... 150°C Storage Temperature Range ................. –65°C to 150°C Lead Temperature (Soldering, 10 sec)................. 300°C Total Supply Voltage (V + to V –) ............................ 12.6V Input Voltage ........................................................... ±VS Differential Input Voltage (Note 2) ........................ ±0.7V Input Current (Note 2) ........................................ ±10mA Output Short-Circuit Duration (Note 3) ............ Indefinite PACKAGE/ORDER I FOR ATIO TOP VIEW NC 1 –IN 2 +IN 3 V– 4 8 NC V+ OUT NC ORDER PART NUMBER 7 6 5 – + LT1722CS8 LT1722IS8 S8 PART MARKING 1722 1722I ORDER PART NUMBER S8 PACKAGE 8-LEAD PLASTIC SO TJMAX = 150°C, θJA = 150°C/W TOP VIEW OUT A 1 –IN A 2 +IN A 3 V– 4 B A 8 7 6 5 V+ OUT B –IN B +IN B LT1723CS8 LT1723IS8 S8 PART MARKING 1723 1723I ORDER PART NUMBER LT1724CS LT1724IS S8 PACKAGE 8-LEAD PLASTIC SO TJMAX = 150°C, θJA = 190°C/W TOP VIEW OUT A 1 –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUT B 7 14 OUT D – A + – 13 –IN D D + 12 +IN D 11 V – + B – C + 10 +IN C – 8 –IN C 8 OUT C S PACKAGE 14-LEAD PLASTIC SO TJMAX = 150°C, θJA = 100°C/W Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grades are identified by a label on the shipping container. 172234fa 2 U U W WW U W TOP VIEW OUT 1 V– 2 +IN 3 + – 4 –IN 5 V+ ORDER PART NUMBER LT1722CS5 LT1722IS5 S5 PART MARKING* LTZB ORDER PART NUMBER S5 PACKAGE 5-LEAD PLASTIC SOT-23 TJMAX = 150°C, θJA = 250°C/W TOP VIEW OUT A –IN A +IN A V– 1 2 3 4 8 7 6 5 V+ OUT B –IN B +IN B A B LT1723CMS8 LT1723IMS8 MS8 PART MARKING LTYC LTZA MS8 PACKAGE 8-LEAD PLASTIC MSOP TJMAX = 150°C, θJA = 250°C/W LT1722/LT1723/LT1724 ELECTRICAL CHARACTERISTICS SYMBOL VOS IOS IB en in RIN CIN PARAMETER Input Offset Voltage Input Offset Current Input Bias Current Input Noise Voltage Input Noise Current Input Resistance Input Capacitance Input Voltage Range + Input Voltage Range – Common Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Output Swing Output Current Short-Circuit Current Slew Rate Full Power Bandwidth Gain Bandwidth Settling Time Rise Time, Fall Time Overshoot Propagation Delay Output Resistance Channel Separation Supply Current TA = 25°C, VS = ± 5V, VCM = 0V, unless otherwise noted. MIN TYP 100 150 40 40 3.8 1.2 35 50 2 4 –4 100 90 17 14 ±3.8 ±3.4 50 90 70 3.7 200 91 112 6 15 3 0.15 90 3.7 MAX 400 650 300 300 UNITS µV µV nA nA nV/√Hz pA/√Hz MΩ kΩ pF V V dB dB V/mV V/mV V V mA mA V/µs MHz MHz ns ns ns % ns Ω dB mA CONDITIONS (Note 6) LT1722 SOT-23 and LT1723 MS8 f = 10kHz f = 10kHz VCM = ±3.5V Differential 5 3.5 VCM = ±3.5V VS = ±2.3V to ± 5.5V VOUT = ±3V, RL = 500Ω VOUT = ±3V, RL = 150Ω RL = 500Ω, VIN = ± 10mV RL = 150Ω, VIN = ± 10mV VOUT = ± 3V, 10mV Overdrive VOUT = 0V, VIN = ±1V AV = –1, (Note 7) 3V peak, (Note 8) f = 200kHz AV = –1, 2V, 0.1% AV = –1, 2V, 0.01% AV = 1, 10% to 90%, VIN = 0.2VP-P, RL = 150Ω AV = 1, VIN = 0.2VP-P, RL = 150Ω, RF = 0Ω 50% VIN to 50% VOUT = 0.2VP-P, RL = 150Ω AV = 1, f = 1MHz VOUT = ±3V, RL = 150Ω Per Amplifier 80 78 10 7 ±3.2 ±3.1 23 35 45 115 –3.5 CMRR PSRR AVOL VOUT IOUT ISC SR GBW tS tr, tf RO IS 82 4.5 TA = 25°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted. SYMBOL VOS IOS IB en in RIN CIN PARAMETER Input Offset Voltage Input Offset Current Input Bias Current Input Noise Voltage Input Noise Current Input Resistance Input Capacitance Input Voltage Range + Input Voltage Range – Common Mode Rejection Ratio Large-Signal Voltage Gain Output Swing+ Output Swing– CONDITIONS (Note 6) LT1722 SOT-23 and LT1723 MS8 MIN TYP 250 350 20 20 4 1.1 32 55 2 4 1 100 10 3.8 0.9 MAX 550 800 300 300 UNITS µV µV nA nA nV/√Hz pA/√Hz MΩ kΩ pF V V dB V/mV V V 172234fa f = 10kHz f = 10kHz VCM = 1.5V to 3.5V Differential 5 3.5 VCM = 1.5V to 3.5V VOUT = 1.5V to 3.5V, RL = 500Ω RL = 500Ω, VIN = ±10mV RL = 500Ω, VIN = ±10mV 80 4 3.6 1.5 CMRR AVOL VOUT 1.4 3 LT1722/LT1723/LT1724 ELECTRICAL CHARACTERISTICS SYMBOL IOUT ISC SR GBW tr, tf PARAMETER Output Current Short-Circuit Current Slew Rate Full Power Bandwidth Gain Bandwidth (Note 10) Rise Time, Fall Time Overshoot Propagation Delay Output Resistance Channel Separation Supply Current TA = 25°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted. MIN 10 22 40 115 TYP 20 55 70 8.7 180 5 16 3 0.19 90 3.8 MAX UNITS mA mA V/µs MHz MHz ns % ns Ω dB mA RO IS CONDITIONS VOUT = 3.5V or 1.5V, 10mV Overdrive VOUT = 2.5V, VIN = ±1V AV = -1, (Note 7) 1V peak, (Note 8) f = 200kHz AV = 1, 10% to 90%, VIN = 0.2VP-P, RL = 500Ω AV = 1, VIN = 0.2VP-P, RL = 500Ω 50% VIN to 50% VOUT, 0.1V, RL = 500Ω AV = 1, f = 1MHz VOUT = 1.5V to 3.5V, RL = 500Ω Per Amplifier 82 5 The q denotes the specifications which apply over the temperature range of 0°C ≤ TA ≤ 70°C. VS = ±5V, VCM = 0V, unless otherwise noted. (Note 5) SYMBOL VOS PARAMETER Input Offset Voltage Input VOS Drift IOS IB Input Offset Current Input Bias Current Input Voltage Range + Input Voltage Range – CMRR PSRR AVOL V OUT IOUT ISC SR GBW IS Common Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Output Swing Output Current Short-Circuit Current Slew Rate Gain Bandwidth Channel Separation Supply Current V CM = ± 3.5V VS = ± 2.3V to ± 5.5V VOUT = ± 3V, RL = 500Ω V OUT = ± 3V, RL = 150 Ω R L = 500Ω , VIN = ± 10mV R L = 150Ω , VIN = ± 10mV V OUT = ± 3V, 10mV Overdrive V OUT = 0V, VIN = ± 1V A V = – 1, (Note 7) f = 200kHz V OUT = ± 3V, RL = 150 Ω Per Amplifier CONDITIONS (Note 6) LT1722 SOT-23 and LT1723 MS8 (Note 9) q q q q q q q q q q q q q q q q q q q MIN TYP MAX 700 850 UNITS µV µV µV/° C nA nA V V dB dB V/mV V/mV V V mA mA V/µs MHz dB 3 7 350 350 3.5 –3.5 75 76 9 6 ± 3.15 ± 3.05 22 30 35 100 81 5.45 mA 172234fa 4 LT1722/LT1723/LT1724 The q denotes the specifications which apply over the temperature range of 0°C ≤ TA ≤ 70°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted. (Note 5) SYMBOL VOS PARAMETER Input Offset Voltage Input VOS Drift IOS IB Input Offset Current Input Bias Current Input Voltage Range + Input Voltage Range – CMRR AVOL VOUT IOUT ISC SR GBW IS Common Mode Rejection Ratio Large-Signal Voltage Gain Output Swing+ Output Swing– Output Current Short-Circuit Current Slew Rate Gain Bandwidth (Note 10) Channel Separation Supply Current VCM = 1.5V to 3.5V VOUT = 1.5V to 3.5V, RL = 500Ω RL = 500 Ω , VIN = ± 10mV RL = 500 Ω , VIN = ± 10mV VOUT = 3.5V or 1.5V, 10mV Overdrive VOUT = 2.5V, V IN = ± 1V AV = –1, (Note 7) f = 200kHz VOUT = 1.5V to 3.5V, RL = 500Ω CONDITIONS (Note 6) LT1722 SOT-23 and LT1723MS8 (Note 9) q q q q q q q q q q q q q q q q q ELECTRICAL CHARACTERISTICS MIN TYP MAX 850 950 UNITS µV µV µV/°C nA nA V V dB V/mV V V mA mA V/µs MHz dB 3 7 350 350 3.5 1.5 75 3 3.55 1.45 9 11 30 100 81 5.95 mA The q denotes the specifications which apply over the temperature range of –40°C ≤ TA ≤ 85°C. VS = ±5V, VCM = 0V, unless otherwise noted. (Note 5) SYMBOL VOS PARAMETER Input Offset Voltage Input VOS Drift IOS IB Input Offset Current Input Bias Current Input Voltage Range + Input Voltage Range – CMRR PSRR AVOL VOUT IOUT ISC SR GBW IS Common Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Output Swing Output Current Short-Circuit Current Slew Rate Gain Bandwidth Channel Separation Supply Current VCM = ±3.5V VS = ±2.0V to ±5.5V VOUT = ±3V, RL = 500Ω VOUT = ±3V, RL = 150Ω RL = 500Ω, VIN = ± 10mV RL = 150Ω, VIN = ± 10mV VOUT = ± 3V, 10mV Overdrive VOUT = 0V, VIN = ±1V AV = – 1, (Note 7) f = 200kHz VOUT = ±3V, RL = 150Ω CONDITIONS (Note 6) LT1722 SOT-23 and LT1723 MS8 (Note 9) q q q q q q q q q q q q q q q q q q MIN TYP MAX 900 1100 UNITS µV µV µV/°C nA nA V V dB dB V/mV V/mV V V mA mA V/µs MHz dB 3 10 400 400 3.5 –3.5 75 75 8 5 ±3.1 ±3.0 20 25 25 90 80 5.95 mA 172234fa 5 LT1722/LT1723/LT1724 The q denotes the specifications which apply over the temperature range of – 40°C ≤ TA ≤ 85°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted. (Note 5) SYMBOL VOS PARAMETER Input Offset Voltage Input VOS Drift IOS IB Input Offset Current Input Bias Current Input Voltage Range + Input Voltage Range – CMRR AVOL VOUT IOUT ISC SR GBW IS Common Mode Rejection Ratio Large-Signal Voltage Gain Output Swing+ Output Swing– Output Current Short-Circuit Current Slew Rate Gain Bandwidth (Note 10) Channel Separation Supply Current VCM = 1.5V to 3.5V VOUT = 1.5V to 3.5V, RL = 500Ω RL = 500Ω, VIN = ± 10mV RL = 500Ω, VIN = ± 10mV VOUT = 3.5V or 1.5V, 30mV Overdrive VOUT = 2.5V, VIN = ±1V AV = – 1, (Note 7) f = 200kHz VOUT = 1.5V to 3.5V, RL = 500Ω CONDITIONS (Note 6) LT1722 SOT-23 and LT1723 MS8 (Note 9) q q q q q q q q q q q q q q q q q ELECTRICAL CHARACTERISTICS MIN TYP MAX 1000 1200 UNITS µV µV µV/°C nA nA V V dB V/mV V V mA mA V/µs MHz dB 3 10 400 400 3.5 1.5 75 2 3.5 1.5 8 10 20 90 80 6.45 mA Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: The inputs are protected by back-to-back diodes. If the differential input voltage exceeds 0.7V, the input current should be limited to less than 10mA. Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely. Note 4: The LT1722C/LT1722I, LT1723C/LT1723I, LT1724C/LT1724I are guaranteed functional over the operating temperature range of –40°C to 85°C. Note 5: The LT1722C/LT1723C/LT1724C are guaranteed to meet specified performance from 0°C to 70°C. The LT1722C/LT1723C/LT1724C are designed, characterized and expected to meet specified performance from –40°C to 85°C but are not tested or QA sampled at these temperatures. The LT1722I/LT1723I/LT1724I are guaranteed to meet specified performance from –40°C to 85°C. Note 6: Input offset voltage is pulse tested and is exclusive of warm-up drift. Note 7: Slew rate is measured between ±2V on the output with ±3V input for ±5V supplies and ± 1V on the output with ±1.5V input for single 5V supply. (For 5V supply, the voltage levels are 2.5V referred.) Note 8: Full power bandwidth is calculated from the slew rate: FPBW = SR/2πVP Note 9 : This parameter is not 100% tested. Note 10 : This parameter is guaranteed through correlation with slew rate. 172234fa 6 LT1722/LT1723/LT1724 TYPICAL PERFOR A CE CHARACTERISTICS Supply Current vs Temperature 5.0 4.5 SUPPLY CURRENT (mA) PER AMPLIFIER INPUT COMMON MODE RANGE (V) INPUT BIAS CURRENT (nA) 4.0 3.5 3.0 2.5 2.0 –50 –25 VS = 5V VS = ± 5V 50 25 75 0 TEMPERATURE (°C) Input Bias Current vs Temperature 60 INPUT VOLTAGE NOISE (nV/√Hz) 100 40 INPUT BIAS CURRENT (nA) OPEN-LOOP GAIN (dB) 20 0 –20 –40 –60 –50 –25 VS = 5V IB– IB+ IB– IB+ VS = ± 5V 50 25 75 0 TEMPERATURE (°C) 100 125 Total Noise vs Unmatched Source Resistance 100 TOTAL NOISE VOLTAGE (nV/√Hz) VS = ± 5V TA = 25°C f = 10kHz TOTAL NOISE RESISTOR NOISE 30 25 20 15 OFFSET VOLTAGE DRIFT (µV) VOS SHIFT (µV) 10 1 RS + – 100 1723 G07 0.1 0.01 0.1 1 10 SOURCE RESISTANCE, RS (kΩ) UW 100 125 1723 G01 1723 G04 Input Common Mode Range vs Supply Voltage 0.5 V+ –0.5 –1.0 –1.5 –1.2 TA = 25°C ∆(VOS) < 500µV Input Bias Current vs Common Mode Voltage 400 300 200 100 0 –100 –200 –300 –400 –5 –4 –3 –2 –1 0 1 2 3 4 INPUT COMMON MODE VOLTAGE (V) 5 TA = 125°C TA = 85°C TA = 25°C TA = – 45°C VS = ± 5V 2.0 1.5 1.0 0.5 V– 0 1 3 2 5 4 SUPPLY VOLTAGE (± V) 6 7 1723 G02 1723 G03 Input Noise Spectral Density 10 INPUT CURRENT NOISE (pA/√Hz) Open-Loop Gain vs Resistive Load 89.0 86.5 84.0 81.5 79.0 76.5 74.0 100 TA = 25°C VS = ±5V, VO = ±3V 10 in 1 VS = ± 2.5V, VO = ±1V en 1 0.01 0.1 1 10 FREQUENCY (kHz) 0.1 100 1723 G05 1000 LOAD RESISTANCE (Ω) 10000 1723 G06 Warm-Up Drift vs Time LT1722S8 TA = 25°C TYPICAL DATA VS = ± 5V 300 VOS Shift vs VCM and VS VS = ± 6.3V 200 100 V = ±5V S 0 VS = ±4V VS = ±3V VS = ±2.5V VS = ± 6V TA = 25°C TYPICAL PART VS = ± 2.5V 10 5 0 0 10 20 30 40 50 60 70 80 90 100 TIME AFTER POWER-UP (SEC) 1723 G08 –100 –200 –300 –5 –4 –3 –2 –1 0 1 2 3 COMMON MODE VOLTAGE (V) 4 5 1723 G09 172234fa 7 LT1722/LT1723/LT1724 TYPICAL PERFOR A CE CHARACTERISTICS VOS vs Temperature 200 100 0 VS = ± 5V –100 –200 VS = ± 2.5V –300 –400 –500 –60 –40 –20 TYPICAL PART OUTPUT VOLTAGE (VP-P) 7 6 5 4 3 2 1 AV = –1, RF = 500Ω OUTPUT VOLTAGE (VP-P) OFFSET VOLTAGE (µV) 0 20 40 60 80 100 120 TEMPERATURE (°C) 1723 G10 Open-Loop Gain vs Temperature 86 85 84 VS = ± 5V, VO = ± 3V RL = 500Ω –0.5 OUTPUT VOLTAGE SWING (V) OUTPUT SHORT-CIRCIUT CURRENT (mA) OPEN-LOOP GAIN (dB) 83 82 81 80 79 78 77 76 –50 –25 RL = 150Ω VS = 5V, VO = ±1V RL = 500Ω 50 25 0 75 TEMPERATURE (°C) Gain and Phase vs Frequency 90 80 70 60 5V ± 5V PHASE ± 5V 5V 90 80 70 OVERSHOOT (%) 60 80 75 70 65 60 55 50 45 40 35 30 25 20 OUTPUT IMPEDANCE (Ω) GAIN (dB) 50 40 30 20 10 0 TA = 25°C AV = –1 RF = RG = 500Ω 0.1 1 10 FREQUENCY (MHz) GAIN –10 0.01 8 UW 100 1723 G13 Undistorted Output Swing vs Frequency 10 9 8 AV = 1, RF = 0Ω, RIN = 500Ω 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 10 1723 G11 Undistorted Output Swing vs Frequency VS = 5V RL = 500Ω 2% MAX DISTORTION AV = 1, RF = 0Ω, RIN = 500Ω AV = –1, RF = 500Ω 0 0.1 VS = ± 5V RL = 150Ω 2% MAX DISTORTION 1 FREQUENCY (MHz) 0 0.1 1 FREQUENCY (MHz) 10 1723 G12 Output Voltage Swing vs Supply Voltage V+ TA = 25°C VIN = 10mV 110 105 100 95 90 85 80 75 70 65 Output Short-Circuit Current vs Temperature –1.0 –1.5 –2.0 RL = 500Ω RL = 150Ω VS = ± 5V SINK SOURCE 2.0 1.5 1.0 0.5 V– RL = 150Ω SOURCE VS = 5V SINK RL = 500Ω 125 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (±V) 5.5 6.0 60 –50 –25 50 25 0 75 TEMPERATURE (°C) 100 125 1723 G08 1723 G15 Overshoot vs Capacitive Load VS = ± 5V RL = 500Ω VIN = 2VP-P f = 1MHz AV = 1, RF = 500Ω, RS = 0Ω AV = –1, RF = 500Ω, RS = 0Ω AV = 1, RF = 0Ω, RS = 500Ω 10 20 30 40 50 60 70 80 CAPACITIVE LOAD (pF) 90 100 1723 G17 Output Impedance vs Frequency 100 TA = 25°C VS = ± 5V AV = 100 1 AV = 10 AV = 1 10 PHASE (DEG) 50 40 30 20 10 0 –10 100 1723 G16 0.1 0.01 0.001 0.01 0.1 1 10 FREQUENCY (MHz) 100 1723 G18 172234fa LT1722/LT1723/LT1724 TYPICAL PERFOR A CE CHARACTERISTICS Gain vs Frequency, AV = 1 9 8 7 6 TA = 25°C AV = 1 RF = 0Ω NO RL ± 5V 5V GAIN (dB) GAIN (dB) 4 3 2 1 0 –1 1 10 FREQUENCY (MHz) 100 1723 G19 4 3 2 1 RF = 500Ω GAIN (dB) 5 CL = 100pF CL = 50pF CL = 0pF Channel Separation vs Frequency –10 –20 –30 CROSSTALK (dB) POWER SUPPLY REJECTION RATIO (dB) 90 80 70 60 50 40 30 20 10 0 0.01 0.1 +PSRR –PSRR COMMON MODE REJECTION RATIO (dB) TA = 25°C VO = 6VP-P RL = 150Ω –40 –50 –60 –70 –80 –90 0.1 1 10 FREQUENCY (MHz) 100 1723 G22 Slew Rate vs Temperature 100 90 80 VS = ± 2.5V, SR + VS = ± 5V, SR + PHASE MARGIN (DEG) GAIN BANDWIDTH (MHz) SLEW RATE (V/µs) 70 60 50 40 30 TA = 25°C AV = –1 RG = RF = 500Ω 0 75 50 25 TEMPERATURE (°C) 100 125 VS = ± 5V, SR – VS = ± 2.5V, SR – 20 – 50 – 25 UW 1723 G40 Gain vs Frequency, AV = 1 9 8 7 6 5 TA = 25°C AV = 1 NO RL NO CL ± 5V 5V 9 Gain vs Frequency, AV = – 1 8 7 6 5 4 3 2 1 CL = 0pF CL = 50pF TA = 25°C AV = –1 RF = RG = 500Ω NO RL ± 5V 5V CL = 100pF RF = 1k 0 –1 1 RF = 0Ω 10 FREQUENCY (MHz) 100 1723 G20 0 –1 1 10 FREQUENCY (MHz) 100 1723 G21 Power Supply Rejection Ratio vs Frequency 100 TA = 25°C VS = ± 5V AV = 1 110 100 90 80 70 60 50 40 30 20 Common Mode Rejection Ratio vs Frequency TA = 25°C VS = ± 5V 1 10 FREQUENCY (MHz) 100 1723 G23 10 0.01 0.1 1 10 FREQUENCY (MHz) 100 1723 G24 Phase Margin vs Supply Voltage 80 75 70 65 60 55 50 45 40 35 2.5 3 3.5 4 5 4.5 SUPPLY VOLTAGE (± V) 5.5 6 CL = 55pF RL = 500Ω CL = 5pF CL = 25pF RL = 500Ω RL = 150Ω RL = 150Ω TA = 25°C AV = –1 VIN = – 20dBm RG = RF = 500Ω 220 215 RL = 500Ω RL = 150Ω 210 205 200 195 190 185 Gain Bandwidth vs Supply Voltage TA = 25°C AV = –1 VIN = – 20dBm RG = RF = 500Ω RL = 150Ω CL = 25pF CL = 5pF CL = 55pF CL = 25pF RL = 500Ω CL = 5pF CL = 55pF 180 2.5 3 5 3.5 4.5 4 SUPPLY VOLTAGE (± V) 5.5 6 1723 G41 1723 G42 172234fa 9 LT1722/LT1723/LT1724 TYPICAL PERFOR A CE CHARACTERISTICS Slew Rate vs Supply Voltage 80 75 VIN_P-P = VS, VOUT_MES AT 2/3 OF VIN_P-P HARMONIC DISTORTION (dBc) SR – 70 65 60 55 50 2 2.5 3 3.5 4 4.5 5 5.5 SUPPLY VOLTAGE (± V) 6 6.5 SR+ SR – VIN = ± 1.5V, VOUT_MES AT ±1V TA = 25°C AV = –1 RF = RG = RL = 500Ω –60 –70 –80 –90 HARMONIC DISTORTION (dBc) SLEW RATE (V/µs) Harmonic Distortion vs Frequency AV = 2, VO = 0.2VP-P –40 –50 –60 –70 –80 –90 RL = 500Ω, 2ND 0.1 1 FREQUENCY (MHz) 10 1723 G28 HARMONIC DISTORTION (dBc) HARMONIC DISTORTION (dBc) –60 RL = 150Ω, 3RD –70 –80 –90 RL = 500Ω, 2ND 0.1 1 FREQUENCY (MHz) 10 1723 G29 HARMONIC DISTORTION (dBc) VS = ± 5V AV = 2 RF = 500Ω VO = 0.2VP-P RL = 150Ω, 3RD RL = 150Ω, 2ND RL = 500Ω, 3RD –100 Harmonic Distortion vs Frequency AV = 1, VO = 2VP-P –40 –50 –60 –70 –80 –90 RL = 150Ω, 2ND RL = 500Ω, 3RD RL = 500Ω, 2ND VS = 5V AV = 1 RF = 0Ω RIN = 500Ω VO = 2VP-P RL = 150Ω, 3RD –40 –50 –60 –70 –80 –90 HARMONIC DISTORTION (dBc) HARMONIC DISTORTION (dBc) –100 0.1 1 FREQUENCY (MHz) 10 1723 G31 10 UW SR + 1723 G25 Harmonic Distortion vs Frequency AV = 1, VO = 0.2VP-P –40 –50 VS = ± 5V AV = 1 RF = 0Ω RIN = 0Ω VO = 0.2VP-P –40 –50 –60 –70 –80 Harmonic Distortion vs Frequency AV = 1, VO = 0.2VP-P VS = 5V AV = 1 RF = 0Ω RIN = 0Ω VO = 0.2VP-P RL = 500Ω, 3RD RL = 150Ω, 3RD RL = 150Ω, 2ND –90 RL = 150Ω, 3RD RL = 150Ω, 2ND RL = 500Ω, 3RD 0.1 1 FREQUENCY (MHz) 10 1723 G26 RL = 500Ω, 2ND RL = 500Ω, 2ND –100 –100 0.1 1 FREQUENCY (MHz) 10 1723 G27 Harmonic Distortion vs Frequency AV = 2, VO = 0.2VP-P –40 –50 VS = 5V AV = 2 RF = 500Ω VO = 0.2VP-P –40 –50 –60 –70 –80 –90 Harmonic Distortion vs Frequency AV = 1, VO = 2VP-P VS = ± 5V AV = 1 RF = 0Ω RIN = 500Ω VO = 2VP-P RL = 150Ω, 2ND RL = 150Ω, 2ND RL = 150Ω, 3RD RL = 500Ω, 3RD RL = 500Ω, 2ND RL = 500Ω, 3RD –100 –100 0.1 1 FREQUENCY (MHz) 10 1723 G30 Harmonic Distortion vs Frequency AV = 2, VO = 2VP-P VS = ± 5V AV = 2 RF = 500Ω VO = 2VP-P RL = 150Ω, 2ND RL = 150Ω, 3RD RL = 500Ω, 2ND RL = 500Ω, 3RD –100 0.1 1 FREQUENCY (MHz) 10 1723 G32 172234fa LT1722/LT1723/LT1724 TYPICAL PERFOR A CE CHARACTERISTICS Harmonic Distortion vs Frequency AV = 2, VO = 2VP-P –40 –50 –60 –70 –80 RL = 500Ω, 3RD –90 RL = 500Ω, 2ND VS = 5V AV = 2 RF = 500Ω VO = 2VP-P OUTPUT STEP (V) HARMONIC DISTORTION (dBc) RL = 150Ω, 3RD RL = 150Ω, 2ND –100 0.1 1 FREQUENCY (MHz) 10 1723 G33 Large-Signal Transient, AV = 1 1V/DIV AV = 1 RS = 500Ω RF = 0 Ω 50ns/DIV Large-Signal Transient, AV = –1 1V/DIV AV = – 1 RG = 500Ω RF = 500Ω 50ns/DIV UW Settling Time vs Output Step 3.0 2.5 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 60 0.1% SETTLING 70 80 90 100 110 120 130 140 SETTLING TIME (ns) 1723 G43 0.1% SETTLING 0.01% SETTLING VS = ± 5V AV = –1 RF = 500Ω CF = 0pF 0.01% SETTLING Small-Signal Transient, AV = 1 Small-Signal Transient, AV = 1 50mV/DIV 50mV/DIV 1723 G34 AV = 1 RS = 0 Ω RF = 0 Ω CL = 0pF 50ns/DIV 1723 G35 AV = 1 RS = 0 Ω RF = 0 Ω CL = 100pF 50ns/DIV 1723 G36 Small-Signal Transient, AV = –1 Small-Signal Transient, AV = –1 50mV/DIV 50mV/DIV 1723 G37 AV = – 1 RG = 500Ω RF = 500Ω CL = 0pF 50ns/DIV 1723 G38 AV = – 1 RG = 500Ω RF = 500Ω CL = 100pF 50ns/DIV 1723 G39 172234fa 11 LT1722/LT1723/LT1724 APPLICATIO S I FOR ATIO The LT1722/LT1723/LT1724 may be inserted directly into many operational amplifier applications improving both DC and AC performance, as well as noise and distortion. Layout and Passive Components The LT1722/LT1723/LT1724 amplifiers are more tolerant of less than ideal layouts than other high speed amplifiers. For maximum performance (for example, fast settling time) use a ground plane, short lead lengths and RF quality bypass capacitors (0.01µF to 0.1µF). For high drive current applications, use low ESR supply bypass capacitors (1µF to 10µF tantalum). The output/input parasitic coupling should be minimized when high frequency performance is required. The parallel combination of the feedback resistor and gain setting resistor on the inverting input combine with the input capacitance to form a pole that can cause peaking or even oscillations. In parallel with the feedback resistor, a capacitor of value: CF > RG • CIN/RF should be used to cancel the input pole and optimize dynamic performance. For unity-gain applications where a feedback resistor is used, such as an I-to-V converter, CF should be five times greater than CIN; an optimum value for CF is 10pF. Input Considerations Each of the LT1722/LT1723/LT1724 inputs is protected with back-to-back diodes across the bases of the NPN input devices. If greater than 0.7V differential input voltages are anticipated, the input current must be limited to less than 10mA with an external series resistor. Each input also has two ESD clamp diodes—one to each supply. If an input is driven beyond the supply, limit the current with an external resistor to less than 10mA. The input stage protection circuit is shown in Figure 1. The input currents of the LT1722/LT1723/LT1724 are typically in the tens of nA range due to the bias current cancellation technique used at the input. As the input offset current can be greater than either input current, 12 U VS+ D3 REXT +IN +IN Q1 D2 R I1 VS – I2 1723 F01 W UU D1 Q2 D5 –IN REXT –IN D4 D6 Figure 1. Input Stage Protection adding resistance to balance source resistance is not recommended. The value of the source resistor should be below 12k as it actually degrades DC accuracy and also increases noise. Total Input Noise The total input noise of the LT1722/LT1723/LT1724 is optimized for a source resistance between 0.8k and 12k. Within this range, the total input noise is dominated by the noise of the source resistance itself. When the source resistance is below 0.8k, voltage noise of the amplifier dominates. When the source resistance is above 12k, the input noise current is the dominant contributor. Capacitive Loading The LT1722/LT1723/LT1724 drive capacitive loads up to 100pF with unity gain. As the capacitive load increases, both the bandwidth and the phase margin decrease causing peaking in the frequency response and overshoot in the transient response. When there is a need to drive a larger capacitive load, a 25Ω series resistance assures stability with any value of load capacitor. A feedback capacitor also helps to reduce any peaking. Power Dissipation The LT1722/LT1723/LT1724 combine high speed and large output drive in a small package. Maximum junction temperature (TJ) is calculated from the ambient temperature (TA), power dissipation per amplifier (PD) and number of amplifiers (n) as follows: TJ = TA + (n • PD • θJA) 172234fa LT1722/LT1723/LT1724 APPLICATIO S I FOR ATIO Power dissipation is composed of two parts. The first is due to the quiescent supply current and the second is due to on-chip dissipation caused by the load current. Worst-case instantaneous power dissipation for a given resistive load in one amplifier occurs at the maximum supply current and when the output voltage is at half of either supply voltage (or the maximum swing if less than half supply voltage). Therefore PD(MAX) in one amplifier is: PD(MAX) = (V+ – V–)(IS(MAX)) + (V+/2)2/RL or PD(MAX) = (V+ – V–)(IS(MAX)) + (V+ – VO(MAX))(VO(MAX)/RL) Example. Worst-case conditions are: both op amps in the LT1723IS8 are at TA = 85°C, VS = ±5V, RL = 150Ω, VOUT = 2.5V. PD(MAX) = 2 •[(10V)(5.95mA) + (2.5V)2/150Ω] = 203mW TJ(MAX) = 85°C + (203mW)(190°C/W) = 124°C which is less than the absolute maximum rating at 150°C. SI PLIFIED SCHE ATIC VS+ R1 R2 I5 Q3 D1 +IN Q1 Q2 –IN Q5 Q6 Q7 Q8 OUT Q9 Q11 I1 I2 I3 I4 1723 SS D2 R U Circuit Operation The LT1722/LT1723/LT1724 circuit topology is a voltage feedback amplifier. The operation of the circuit can be understood by referring to the Simplified Schematic. The first stage is a folded cascode formed by the transistors Q1 through Q4. A degeneration resistor, R, is used in the input stage. The current mirror Q5, Q6 is bootstrapped by Q7. The capacitor, C, assures the bandwidth and the slew rate performance. The output stage is formed by complementary emitter followers, Q8 through Q11. The diodes D1 and D2 protect against input reversed biasing. The remaining part of the circuit assures optimum voltage and current biases for all stages. Low noise, reduced current supply, high speed and DC accurate parameters are distinctive features of the LT1722/ LT1723/LT1724. Q4 VBIAS C Q10 VS– 172234fa W W UU W 13 LT1722/LT1723/LT1724 PACKAGE DESCRIPTIO 0.62 MAX 3.85 MAX 2.62 REF RECOMMENDED SOLDER PAD LAYOUT PER IPC CALCULATOR 0.20 BSC 0.90 – 1.45 DATUM ‘A’ 0.35 – 0.55 REF 0.09 – 0.20 (NOTE 3) NOTE: 1. DIMENSIONS ARE IN MILLIMETERS 2. DRAWING NOT TO SCALE 3. DIMENSIONS ARE INCLUSIVE OF PLATING 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR 5. MOLD FLASH SHALL NOT EXCEED 0.254mm 6. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ) .050 BSC 8 N N .245 MIN .160 ±.005 .228 – .244 (5.791 – 6.197) 1 .030 ±.005 TYP 2 3 N/2 RECOMMENDED SOLDER PAD LAYOUT .010 – .020 × 45° (0.254 – 0.508) .008 – .010 (0.203 – 0.254) 0°– 8° TYP NOTE: 1. DIMENSIONS IN .014 – .019 (0.355 – 0.483) TYP INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) 14 U S5 Package 5-Lead Plastic SOT-23 (Reference LTC DWG # 05-08-1633) 0.95 REF 2.80 – 3.10 (NOTE 4) 1.22 REF 1.4 MIN 2.60 – 3.00 1.50 – 1.75 (NOTE 4) PIN ONE 0.25 – 0.50 TYP 5 PLCS NOTE 3 0.95 BSC 0.90 – 1.30 0.00 – 0.15 1.90 BSC S5 SOT-23 0502 ATTENTION: ORIGINAL SOT23-5L PACKAGE. MOST SOT23-5L PRODUCTS CONVERTED TO THIN SOT23 PACKAGE, DRAWING # 05-08-1635 AFTER APPROXIMATELY APRIL 2001 SHIP DATE S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .189 – .197 (4.801 – 5.004) NOTE 3 7 6 5 .045 ±.005 .150 – .157 (3.810 – 3.988) NOTE 3 N/2 1 2 3 4 .053 – .069 (1.346 – 1.752) .004 – .010 (0.101 – 0.254) .016 – .050 (0.406 – 1.270) .050 (1.270) BSC SO8 0502 172234fa LT1722/LT1723/LT1724 PACKAGE DESCRIPTIO 5.23 (.206) MIN 0.42 ± 0.04 (.0165 ± .0015) TYP RECOMMENDED SOLDER PAD LAYOUT DETAIL “A” 0° – 6° TYP 4.90 ± 0.15 (1.93 ± .006) 3.00 ± 0.102 (.118 ± .004) NOTE 4 GAUGE PLANE 0.53 ± 0.015 (.021 ± .006) DETAIL “A” 0.18 (.077) SEATING PLANE 0.22 – 0.38 (.009 – .015) TYP 0.13 ± 0.076 (.005 ± .003) MSOP (MS8) 0802 NOTE: 1. DIMENSIONS IN MILLIMETER/(INCH) 2. DRAWING NOT TO SCALE 3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX .050 BSC N 14 13 .245 MIN 1 .030 ±.005 TYP 2 3 RECOMMENDED SOLDER PAD LAYOUT 1 .010 – .020 × 45° (0.254 – 0.508) 2 3 4 5 6 7 .008 – .010 (0.203 – 0.254) .016 – .050 (0.406 – 1.270) NOTE: 1. DIMENSIONS IN INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. U MS8 Package 8-Lead Plastic MSOP (Reference LTC DWG # 05-08-1660) 0.889 ± 0.127 (.035 ± .005) 3.2 – 3.45 (.126 – .136) 0.65 (.0256) BSC 3.00 ± 0.102 (.118 ± .004) (NOTE 3) 8 7 65 0.52 (.206) REF 0.254 (.010) 1 1.10 (.043) MAX 23 4 0.86 (.034) REF 0.65 (.0256) BSC S Package 14-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .337 – .344 (8.560 – 8.738) NOTE 3 12 11 10 9 8 .045 ±.005 N .160 ±.005 .228 – .244 (5.791 – 6.197) N/2 N/2 .150 – .157 (3.810 – 3.988) NOTE 3 .053 – .069 (1.346 – 1.752) 0° – 8° TYP .004 – .010 (0.101 – 0.254) .014 – .019 (0.355 – 0.483) TYP .050 (1.270) BSC S14 0502 172234fa 15 LT1722/LT1723/LT1724 TYPICAL APPLICATIO 4- to 2-Wire Local Echo Cancellation Differential Receiver Amplifier 10pF VD LINE DRIVER VL 100Ω LINE RELATED PARTS PART NUMBER LT1677 DESCRIPTION Single, Low Noise Rail-to-Rail Amplifier COMMENTS 3V Operation, 2.5mA Supply Current, 4.5nV/√Hz Max en, 60µV Max VOS 1.6mA Supply Current, 350µV VOS, 2.3V Operation 2.5V Operation, 550µVMAX VOS, 3.5nV/√Hz 2.5V Operation, –90dBc at 5MHz Distortion 5V Operation, 3.6mA Supply Current, 40mA Min Output Current 2nV/√Hz, 2.5mA on Single 3V Supply LT1800/LT1801/LT1802 Single/Dual/Quad, Low Power, 80MHz Rail-to-Rail Precision Amplifier LT1806/LT1807 LT1809/LT1810 Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifiers Single/Dual, Low Distortion 180MHz Rail-to-Rail Amplifiers LT1812/LT1813/LT1814 Single/Dual/Quad, 3mA, 750V/µs Amplifiers LT6202/LT6203/LT6204 Single/Dual/Quad, 100MHz, Low Noise Rail-to-Rail Op Amp 16 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 q FAX: (408) 434-0507 q U 2k – 2k 10pF + + 1/2 LT1739 – 1/2 LT1739 50Ω (n = 1) n:1 1k 1k – 1/2 LT1723 + L • •R n2 VR LINE RECEIVER + 1/2 LT1723 – 50Ω 1k 1k 1723 TA03 172234fa LT/TP 1002 1K REV A • PRINTED IN USA www.linear.com © LINEAR TECHNOLOGY CORPORATION 2002
LT1723CMS8 价格&库存

很抱歉,暂时无法提供与“LT1723CMS8”相匹配的价格&库存,您可以联系我们找货

免费人工找货