LT1722/LT1723/LT1724 Single, Dual, Quad 200MHz Low Noise Precision Op Amps
FEATURES
s s s s s s s s s s s
DESCRIPTIO
3.8nV/√Hz Input Noise Voltage 3.7mA Supply Current 200MHz Gain Bandwidth Low Total Harmonic Distortion: – 85dBc at 1MHz 70V/µs Slew Rate 400µV Maximum Input Offset Voltage 300nA Maximum Input Bias Current Unity-Gain Stable Capacitive Load Stable Up to 100pF 23mA Minimum Output Current Specified at ± 5V and Single 5V
The LT®1722/LT1723/LT1724 are single/dual/quad, low noise, low power, high speed operational amplifiers. These products feature lower input offset voltage, lower input bias current and higher DC gain than devices with comparable bandwidth. The 200MHz gain bandwidth ensures high open-loop gain at video frequencies. The low input noise voltage is achieved with reduced supply current. The total noise is optimized for a source resistance between 0.8k and 12k. Due to the input bias current cancellation technique used, the resistance seen by each input does not need to be balanced. The output drives a 150Ω load to ±3V with ±5V supplies. On a single 5V supply the output swings from 1.5V to 3.5V with a 500Ω load connected to 2.5V. The amplifier is unitygain stable (CLOAD ≤ 100pF). The LT1722/LT1723/LT1724 are manufactured on Linear Technology’s advanced low voltage complementary bipolar process. The LT1722 is available in the SO-8 and 5-pin SOT-23 packages. The LT1723 is available in the SO-8 and MS8 packages. The LT1724 is available in the 14-lead SO package.
APPLICATIO S
s s s s s s
Video and RF Amplification ADSL, HDSL II, VDSL Receivers Active Filters Wideband Amplifiers Buffers Data Acquisition Systems
, LTC and LT are registered trademarks of Linear Technology Corporation.
TYPICAL APPLICATIO
C1 5pF R3 750Ω
Differential Video Line Driver Line Driver Mulitburst Video Signal
R5 2k
R7 62.5Ω VIN C2 5pF R4 2k 125Ω CAT-5 TWISTED PAIR
+VOUT 0.5V/DIV
1/2 LT1723 VIN 75Ω SOURCE
R2 2k
VIN /2 62.5Ω +VOUT LOAD –VOUT 62.5Ω –VIN /2 LOAD
VIN 1V/DIV –VOUT 0.5V/DIV
R1 75Ω
R6 62.5Ω
1723 TA01 1723 TA02
1/2 LT1723 –VIN
U
172234fa
U
U
+ + –
–
1
LT1722/LT1723/LT1724
ABSOLUTE
AXI U RATI GS (Note 1)
Operating Temperature Range (Note 4)...–40 ° C to 85°C Specified Temperature Range (Note 5) ... –40°C to 85°C Maximum Junction Temperature .......................... 150°C Storage Temperature Range ................. –65°C to 150°C Lead Temperature (Soldering, 10 sec)................. 300°C
Total Supply Voltage (V + to V –) ............................ 12.6V Input Voltage ........................................................... ±VS Differential Input Voltage (Note 2) ........................ ±0.7V Input Current (Note 2) ........................................ ±10mA Output Short-Circuit Duration (Note 3) ............ Indefinite
PACKAGE/ORDER I FOR ATIO
TOP VIEW NC 1 –IN 2 +IN 3 V– 4 8 NC V+ OUT NC
ORDER PART NUMBER
7 6 5
– +
LT1722CS8 LT1722IS8 S8 PART MARKING 1722 1722I ORDER PART NUMBER
S8 PACKAGE 8-LEAD PLASTIC SO
TJMAX = 150°C, θJA = 150°C/W
TOP VIEW OUT A 1 –IN A 2 +IN A 3 V– 4 B A 8 7 6 5 V+ OUT B –IN B +IN B
LT1723CS8 LT1723IS8 S8 PART MARKING 1723 1723I ORDER PART NUMBER LT1724CS LT1724IS
S8 PACKAGE 8-LEAD PLASTIC SO
TJMAX = 150°C, θJA = 190°C/W
TOP VIEW OUT A 1 –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUT B 7 14 OUT D
– A +
– 13 –IN D D + 12 +IN D
11 V –
+ B –
C
+ 10 +IN C – 8 –IN C
8 OUT C
S PACKAGE 14-LEAD PLASTIC SO
TJMAX = 150°C, θJA = 100°C/W
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grades are identified by a label on the shipping container.
172234fa
2
U
U
W
WW U
W
TOP VIEW OUT 1 V– 2 +IN 3 + – 4 –IN 5 V+
ORDER PART NUMBER LT1722CS5 LT1722IS5 S5 PART MARKING* LTZB ORDER PART NUMBER
S5 PACKAGE 5-LEAD PLASTIC SOT-23
TJMAX = 150°C, θJA = 250°C/W
TOP VIEW OUT A –IN A +IN A V– 1 2 3 4 8 7 6 5 V+ OUT B –IN B +IN B
A B
LT1723CMS8 LT1723IMS8 MS8 PART MARKING LTYC LTZA
MS8 PACKAGE 8-LEAD PLASTIC MSOP
TJMAX = 150°C, θJA = 250°C/W
LT1722/LT1723/LT1724
ELECTRICAL CHARACTERISTICS
SYMBOL VOS IOS IB en in RIN CIN PARAMETER Input Offset Voltage Input Offset Current Input Bias Current Input Noise Voltage Input Noise Current Input Resistance Input Capacitance Input Voltage Range + Input Voltage Range – Common Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Output Swing Output Current Short-Circuit Current Slew Rate Full Power Bandwidth Gain Bandwidth Settling Time Rise Time, Fall Time Overshoot Propagation Delay Output Resistance Channel Separation Supply Current
TA = 25°C, VS = ± 5V, VCM = 0V, unless otherwise noted.
MIN TYP 100 150 40 40 3.8 1.2 35 50 2 4 –4 100 90 17 14 ±3.8 ±3.4 50 90 70 3.7 200 91 112 6 15 3 0.15 90 3.7 MAX 400 650 300 300 UNITS µV µV nA nA nV/√Hz pA/√Hz MΩ kΩ pF V V dB dB V/mV V/mV V V mA mA V/µs MHz MHz ns ns ns % ns Ω dB mA
CONDITIONS (Note 6) LT1722 SOT-23 and LT1723 MS8
f = 10kHz f = 10kHz VCM = ±3.5V Differential
5
3.5 VCM = ±3.5V VS = ±2.3V to ± 5.5V VOUT = ±3V, RL = 500Ω VOUT = ±3V, RL = 150Ω RL = 500Ω, VIN = ± 10mV RL = 150Ω, VIN = ± 10mV VOUT = ± 3V, 10mV Overdrive VOUT = 0V, VIN = ±1V AV = –1, (Note 7) 3V peak, (Note 8) f = 200kHz AV = –1, 2V, 0.1% AV = –1, 2V, 0.01% AV = 1, 10% to 90%, VIN = 0.2VP-P, RL = 150Ω AV = 1, VIN = 0.2VP-P, RL = 150Ω, RF = 0Ω 50% VIN to 50% VOUT = 0.2VP-P, RL = 150Ω AV = 1, f = 1MHz VOUT = ±3V, RL = 150Ω Per Amplifier 80 78 10 7 ±3.2 ±3.1 23 35 45 115
–3.5
CMRR PSRR AVOL VOUT IOUT ISC SR GBW tS tr, tf
RO IS
82
4.5
TA = 25°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted.
SYMBOL VOS IOS IB en in RIN CIN PARAMETER Input Offset Voltage Input Offset Current Input Bias Current Input Noise Voltage Input Noise Current Input Resistance Input Capacitance Input Voltage Range + Input Voltage Range – Common Mode Rejection Ratio Large-Signal Voltage Gain Output Swing+ Output Swing– CONDITIONS (Note 6) LT1722 SOT-23 and LT1723 MS8 MIN TYP 250 350 20 20 4 1.1 32 55 2 4 1 100 10 3.8 0.9 MAX 550 800 300 300 UNITS µV µV nA nA nV/√Hz pA/√Hz MΩ kΩ pF V V dB V/mV V V
172234fa
f = 10kHz f = 10kHz VCM = 1.5V to 3.5V Differential
5
3.5 VCM = 1.5V to 3.5V VOUT = 1.5V to 3.5V, RL = 500Ω RL = 500Ω, VIN = ±10mV RL = 500Ω, VIN = ±10mV 80 4 3.6
1.5
CMRR AVOL VOUT
1.4
3
LT1722/LT1723/LT1724
ELECTRICAL CHARACTERISTICS
SYMBOL IOUT ISC SR GBW tr, tf PARAMETER Output Current Short-Circuit Current Slew Rate Full Power Bandwidth Gain Bandwidth (Note 10) Rise Time, Fall Time Overshoot Propagation Delay Output Resistance Channel Separation Supply Current
TA = 25°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted.
MIN 10 22 40 115 TYP 20 55 70 8.7 180 5 16 3 0.19 90 3.8 MAX UNITS mA mA V/µs MHz MHz ns % ns Ω dB mA
RO IS
CONDITIONS VOUT = 3.5V or 1.5V, 10mV Overdrive VOUT = 2.5V, VIN = ±1V AV = -1, (Note 7) 1V peak, (Note 8) f = 200kHz AV = 1, 10% to 90%, VIN = 0.2VP-P, RL = 500Ω AV = 1, VIN = 0.2VP-P, RL = 500Ω 50% VIN to 50% VOUT, 0.1V, RL = 500Ω AV = 1, f = 1MHz VOUT = 1.5V to 3.5V, RL = 500Ω Per Amplifier
82
5
The q denotes the specifications which apply over the temperature range of 0°C ≤ TA ≤ 70°C. VS = ±5V, VCM = 0V, unless otherwise noted. (Note 5)
SYMBOL VOS PARAMETER Input Offset Voltage Input VOS Drift IOS IB Input Offset Current Input Bias Current Input Voltage Range + Input Voltage Range – CMRR PSRR AVOL V OUT IOUT ISC SR GBW IS Common Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Output Swing Output Current Short-Circuit Current Slew Rate Gain Bandwidth Channel Separation Supply Current V CM = ± 3.5V VS = ± 2.3V to ± 5.5V VOUT = ± 3V, RL = 500Ω V OUT = ± 3V, RL = 150 Ω R L = 500Ω , VIN = ± 10mV R L = 150Ω , VIN = ± 10mV V OUT = ± 3V, 10mV Overdrive V OUT = 0V, VIN = ± 1V A V = – 1, (Note 7) f = 200kHz V OUT = ± 3V, RL = 150 Ω Per Amplifier CONDITIONS (Note 6) LT1722 SOT-23 and LT1723 MS8 (Note 9)
q q q q q q q q q q q q q q q q q q q
MIN
TYP
MAX 700 850
UNITS µV µV µV/° C nA nA V V dB dB V/mV V/mV V V mA mA V/µs MHz dB
3
7 350 350
3.5 –3.5 75 76 9 6 ± 3.15 ± 3.05 22 30 35 100 81 5.45
mA
172234fa
4
LT1722/LT1723/LT1724
The q denotes the specifications which apply over the temperature range of 0°C ≤ TA ≤ 70°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted. (Note 5)
SYMBOL VOS PARAMETER Input Offset Voltage Input VOS Drift IOS IB Input Offset Current Input Bias Current Input Voltage Range + Input Voltage Range – CMRR AVOL VOUT IOUT ISC SR GBW IS Common Mode Rejection Ratio Large-Signal Voltage Gain Output Swing+ Output Swing– Output Current Short-Circuit Current Slew Rate Gain Bandwidth (Note 10) Channel Separation Supply Current VCM = 1.5V to 3.5V VOUT = 1.5V to 3.5V, RL = 500Ω RL = 500 Ω , VIN = ± 10mV RL = 500 Ω , VIN = ± 10mV VOUT = 3.5V or 1.5V, 10mV Overdrive VOUT = 2.5V, V IN = ± 1V AV = –1, (Note 7) f = 200kHz VOUT = 1.5V to 3.5V, RL = 500Ω CONDITIONS (Note 6) LT1722 SOT-23 and LT1723MS8 (Note 9)
q q q q q q q q q q q q q q q q q
ELECTRICAL CHARACTERISTICS
MIN
TYP
MAX 850 950
UNITS µV µV µV/°C nA nA V V dB V/mV V V mA mA V/µs MHz dB
3
7 350 350
3.5 1.5 75 3 3.55 1.45 9 11 30 100 81 5.95
mA
The q denotes the specifications which apply over the temperature range of –40°C ≤ TA ≤ 85°C. VS = ±5V, VCM = 0V, unless otherwise noted. (Note 5)
SYMBOL VOS PARAMETER Input Offset Voltage Input VOS Drift IOS IB Input Offset Current Input Bias Current Input Voltage Range + Input Voltage Range – CMRR PSRR AVOL VOUT IOUT ISC SR GBW IS Common Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Output Swing Output Current Short-Circuit Current Slew Rate Gain Bandwidth Channel Separation Supply Current VCM = ±3.5V VS = ±2.0V to ±5.5V VOUT = ±3V, RL = 500Ω VOUT = ±3V, RL = 150Ω RL = 500Ω, VIN = ± 10mV RL = 150Ω, VIN = ± 10mV VOUT = ± 3V, 10mV Overdrive VOUT = 0V, VIN = ±1V AV = – 1, (Note 7) f = 200kHz VOUT = ±3V, RL = 150Ω CONDITIONS (Note 6) LT1722 SOT-23 and LT1723 MS8 (Note 9)
q q q q q q q q q q q q q q q q q q
MIN
TYP
MAX 900 1100
UNITS µV µV µV/°C nA nA V V dB dB V/mV V/mV V V mA mA V/µs MHz dB
3
10 400 400
3.5 –3.5 75 75 8 5 ±3.1 ±3.0 20 25 25 90 80 5.95
mA
172234fa
5
LT1722/LT1723/LT1724
The q denotes the specifications which apply over the temperature range of – 40°C ≤ TA ≤ 85°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted. (Note 5)
SYMBOL VOS PARAMETER Input Offset Voltage Input VOS Drift IOS IB Input Offset Current Input Bias Current Input Voltage Range + Input Voltage Range – CMRR AVOL VOUT IOUT ISC SR GBW IS Common Mode Rejection Ratio Large-Signal Voltage Gain Output Swing+ Output Swing– Output Current Short-Circuit Current Slew Rate Gain Bandwidth (Note 10) Channel Separation Supply Current VCM = 1.5V to 3.5V VOUT = 1.5V to 3.5V, RL = 500Ω RL = 500Ω, VIN = ± 10mV RL = 500Ω, VIN = ± 10mV VOUT = 3.5V or 1.5V, 30mV Overdrive VOUT = 2.5V, VIN = ±1V AV = – 1, (Note 7) f = 200kHz VOUT = 1.5V to 3.5V, RL = 500Ω CONDITIONS (Note 6) LT1722 SOT-23 and LT1723 MS8 (Note 9)
q q q q q q q q q q q q q q q q q
ELECTRICAL CHARACTERISTICS
MIN
TYP
MAX 1000 1200
UNITS µV µV µV/°C nA nA V V dB V/mV V V mA mA V/µs MHz dB
3
10 400 400
3.5 1.5 75 2 3.5 1.5 8 10 20 90 80 6.45
mA
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: The inputs are protected by back-to-back diodes. If the differential input voltage exceeds 0.7V, the input current should be limited to less than 10mA. Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely. Note 4: The LT1722C/LT1722I, LT1723C/LT1723I, LT1724C/LT1724I are guaranteed functional over the operating temperature range of –40°C to 85°C. Note 5: The LT1722C/LT1723C/LT1724C are guaranteed to meet specified performance from 0°C to 70°C. The LT1722C/LT1723C/LT1724C are
designed, characterized and expected to meet specified performance from –40°C to 85°C but are not tested or QA sampled at these temperatures. The LT1722I/LT1723I/LT1724I are guaranteed to meet specified performance from –40°C to 85°C. Note 6: Input offset voltage is pulse tested and is exclusive of warm-up drift. Note 7: Slew rate is measured between ±2V on the output with ±3V input for ±5V supplies and ± 1V on the output with ±1.5V input for single 5V supply. (For 5V supply, the voltage levels are 2.5V referred.) Note 8: Full power bandwidth is calculated from the slew rate: FPBW = SR/2πVP Note 9 : This parameter is not 100% tested. Note 10 : This parameter is guaranteed through correlation with slew rate.
172234fa
6
LT1722/LT1723/LT1724 TYPICAL PERFOR A CE CHARACTERISTICS
Supply Current vs Temperature
5.0 4.5
SUPPLY CURRENT (mA)
PER AMPLIFIER
INPUT COMMON MODE RANGE (V)
INPUT BIAS CURRENT (nA)
4.0 3.5 3.0 2.5 2.0 –50 –25
VS = 5V VS = ± 5V
50 25 75 0 TEMPERATURE (°C)
Input Bias Current vs Temperature
60
INPUT VOLTAGE NOISE (nV/√Hz) 100
40
INPUT BIAS CURRENT (nA)
OPEN-LOOP GAIN (dB)
20 0 –20 –40 –60 –50 –25
VS = 5V IB– IB+ IB– IB+ VS = ± 5V 50 25 75 0 TEMPERATURE (°C) 100 125
Total Noise vs Unmatched Source Resistance
100 TOTAL NOISE VOLTAGE (nV/√Hz) VS = ± 5V TA = 25°C f = 10kHz TOTAL NOISE RESISTOR NOISE
30 25 20 15
OFFSET VOLTAGE DRIFT (µV)
VOS SHIFT (µV)
10
1 RS
+ –
100
1723 G07
0.1 0.01
0.1 1 10 SOURCE RESISTANCE, RS (kΩ)
UW
100 125
1723 G01 1723 G04
Input Common Mode Range vs Supply Voltage
0.5 V+ –0.5 –1.0 –1.5 –1.2 TA = 25°C ∆(VOS) < 500µV
Input Bias Current vs Common Mode Voltage
400 300 200 100 0 –100 –200 –300 –400 –5 –4 –3 –2 –1 0 1 2 3 4 INPUT COMMON MODE VOLTAGE (V) 5 TA = 125°C TA = 85°C TA = 25°C TA = – 45°C VS = ± 5V
2.0 1.5 1.0 0.5 V– 0
1
3 2 5 4 SUPPLY VOLTAGE (± V)
6
7
1723 G02
1723 G03
Input Noise Spectral Density
10 INPUT CURRENT NOISE (pA/√Hz)
Open-Loop Gain vs Resistive Load
89.0 86.5 84.0 81.5 79.0 76.5 74.0 100 TA = 25°C VS = ±5V, VO = ±3V
10
in
1
VS = ± 2.5V, VO = ±1V
en
1 0.01
0.1
1 10 FREQUENCY (kHz)
0.1 100
1723 G05
1000 LOAD RESISTANCE (Ω)
10000
1723 G06
Warm-Up Drift vs Time
LT1722S8 TA = 25°C TYPICAL DATA VS = ± 5V 300
VOS Shift vs VCM and VS
VS = ± 6.3V 200 100 V = ±5V S 0 VS = ±4V VS = ±3V VS = ±2.5V VS = ± 6V TA = 25°C TYPICAL PART
VS = ± 2.5V 10 5 0 0 10 20 30 40 50 60 70 80 90 100 TIME AFTER POWER-UP (SEC)
1723 G08
–100
–200 –300 –5 –4 –3 –2 –1 0 1 2 3 COMMON MODE VOLTAGE (V) 4 5
1723 G09
172234fa
7
LT1722/LT1723/LT1724 TYPICAL PERFOR A CE CHARACTERISTICS
VOS vs Temperature
200 100 0 VS = ± 5V –100 –200 VS = ± 2.5V –300 –400 –500 –60 –40 –20 TYPICAL PART
OUTPUT VOLTAGE (VP-P)
7 6 5 4 3 2 1
AV = –1, RF = 500Ω
OUTPUT VOLTAGE (VP-P)
OFFSET VOLTAGE (µV)
0 20 40 60 80 100 120 TEMPERATURE (°C)
1723 G10
Open-Loop Gain vs Temperature
86 85 84 VS = ± 5V, VO = ± 3V RL = 500Ω
–0.5
OUTPUT VOLTAGE SWING (V)
OUTPUT SHORT-CIRCIUT CURRENT (mA)
OPEN-LOOP GAIN (dB)
83 82 81 80 79 78 77 76 –50 –25
RL = 150Ω
VS = 5V, VO = ±1V
RL = 500Ω
50 25 0 75 TEMPERATURE (°C)
Gain and Phase vs Frequency
90 80 70 60 5V ± 5V PHASE ± 5V 5V 90 80 70 OVERSHOOT (%) 60
80 75 70 65 60 55 50 45 40 35 30 25 20
OUTPUT IMPEDANCE (Ω)
GAIN (dB)
50 40 30 20 10 0 TA = 25°C AV = –1 RF = RG = 500Ω 0.1 1 10 FREQUENCY (MHz) GAIN
–10 0.01
8
UW
100
1723 G13
Undistorted Output Swing vs Frequency
10 9 8 AV = 1, RF = 0Ω, RIN = 500Ω 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 10
1723 G11
Undistorted Output Swing vs Frequency
VS = 5V RL = 500Ω 2% MAX DISTORTION AV = 1, RF = 0Ω, RIN = 500Ω
AV = –1, RF = 500Ω
0 0.1
VS = ± 5V RL = 150Ω 2% MAX DISTORTION 1 FREQUENCY (MHz)
0 0.1
1 FREQUENCY (MHz)
10
1723 G12
Output Voltage Swing vs Supply Voltage
V+ TA = 25°C VIN = 10mV
110 105 100 95 90 85 80 75 70 65
Output Short-Circuit Current vs Temperature
–1.0 –1.5 –2.0
RL = 500Ω RL = 150Ω
VS = ± 5V SINK
SOURCE
2.0 1.5 1.0 0.5 V–
RL = 150Ω
SOURCE VS = 5V SINK
RL = 500Ω
125
2.0
2.5
3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (±V)
5.5
6.0
60 –50 –25
50 25 0 75 TEMPERATURE (°C)
100
125
1723 G08
1723 G15
Overshoot vs Capacitive Load
VS = ± 5V RL = 500Ω VIN = 2VP-P f = 1MHz AV = 1, RF = 500Ω, RS = 0Ω AV = –1, RF = 500Ω, RS = 0Ω AV = 1, RF = 0Ω, RS = 500Ω 10 20 30 40 50 60 70 80 CAPACITIVE LOAD (pF) 90 100
1723 G17
Output Impedance vs Frequency
100 TA = 25°C VS = ± 5V AV = 100 1 AV = 10 AV = 1
10
PHASE (DEG)
50 40 30 20 10 0 –10 100
1723 G16
0.1
0.01
0.001 0.01
0.1
1 10 FREQUENCY (MHz)
100
1723 G18
172234fa
LT1722/LT1723/LT1724 TYPICAL PERFOR A CE CHARACTERISTICS
Gain vs Frequency, AV = 1
9 8 7 6 TA = 25°C AV = 1 RF = 0Ω NO RL ± 5V 5V
GAIN (dB)
GAIN (dB)
4 3 2 1 0 –1 1 10 FREQUENCY (MHz) 100
1723 G19
4 3 2 1
RF = 500Ω
GAIN (dB)
5
CL = 100pF
CL = 50pF
CL = 0pF
Channel Separation vs Frequency
–10 –20 –30
CROSSTALK (dB) POWER SUPPLY REJECTION RATIO (dB)
90 80 70 60 50 40 30 20 10 0 0.01 0.1 +PSRR –PSRR
COMMON MODE REJECTION RATIO (dB)
TA = 25°C VO = 6VP-P RL = 150Ω
–40 –50 –60 –70 –80 –90 0.1 1 10 FREQUENCY (MHz) 100
1723 G22
Slew Rate vs Temperature
100 90 80 VS = ± 2.5V, SR + VS = ± 5V, SR +
PHASE MARGIN (DEG)
GAIN BANDWIDTH (MHz)
SLEW RATE (V/µs)
70 60 50 40 30 TA = 25°C AV = –1 RG = RF = 500Ω 0 75 50 25 TEMPERATURE (°C) 100 125 VS = ± 5V, SR – VS = ± 2.5V, SR –
20 – 50 – 25
UW
1723 G40
Gain vs Frequency, AV = 1
9 8 7 6 5 TA = 25°C AV = 1 NO RL NO CL ± 5V 5V
9
Gain vs Frequency, AV = – 1
8 7 6 5 4 3 2 1 CL = 0pF CL = 50pF TA = 25°C AV = –1 RF = RG = 500Ω NO RL ± 5V 5V CL = 100pF
RF = 1k
0 –1 1
RF = 0Ω 10 FREQUENCY (MHz) 100
1723 G20
0 –1 1 10 FREQUENCY (MHz) 100
1723 G21
Power Supply Rejection Ratio vs Frequency
100 TA = 25°C VS = ± 5V AV = 1 110 100 90 80 70 60 50 40 30 20
Common Mode Rejection Ratio vs Frequency
TA = 25°C VS = ± 5V
1 10 FREQUENCY (MHz)
100
1723 G23
10 0.01
0.1
1 10 FREQUENCY (MHz)
100
1723 G24
Phase Margin vs Supply Voltage
80 75 70 65 60 55 50 45 40 35 2.5 3 3.5 4 5 4.5 SUPPLY VOLTAGE (± V) 5.5 6 CL = 55pF RL = 500Ω CL = 5pF CL = 25pF RL = 500Ω RL = 150Ω RL = 150Ω TA = 25°C AV = –1 VIN = – 20dBm RG = RF = 500Ω 220 215 RL = 500Ω RL = 150Ω 210 205 200 195 190 185
Gain Bandwidth vs Supply Voltage
TA = 25°C AV = –1 VIN = – 20dBm RG = RF = 500Ω
RL = 150Ω
CL = 25pF
CL = 5pF
CL = 55pF CL = 25pF
RL = 500Ω
CL = 5pF
CL = 55pF
180 2.5
3
5 3.5 4.5 4 SUPPLY VOLTAGE (± V)
5.5
6
1723 G41
1723 G42
172234fa
9
LT1722/LT1723/LT1724 TYPICAL PERFOR A CE CHARACTERISTICS
Slew Rate vs Supply Voltage
80 75 VIN_P-P = VS, VOUT_MES AT 2/3 OF VIN_P-P
HARMONIC DISTORTION (dBc)
SR –
70 65 60 55 50 2 2.5 3 3.5 4 4.5 5 5.5 SUPPLY VOLTAGE (± V) 6 6.5 SR+ SR – VIN = ± 1.5V, VOUT_MES AT ±1V TA = 25°C AV = –1 RF = RG = RL = 500Ω
–60 –70 –80 –90
HARMONIC DISTORTION (dBc)
SLEW RATE (V/µs)
Harmonic Distortion vs Frequency AV = 2, VO = 0.2VP-P
–40 –50 –60 –70 –80 –90 RL = 500Ω, 2ND 0.1 1 FREQUENCY (MHz) 10
1723 G28
HARMONIC DISTORTION (dBc)
HARMONIC DISTORTION (dBc)
–60 RL = 150Ω, 3RD –70 –80 –90 RL = 500Ω, 2ND 0.1 1 FREQUENCY (MHz) 10
1723 G29
HARMONIC DISTORTION (dBc)
VS = ± 5V AV = 2 RF = 500Ω VO = 0.2VP-P
RL = 150Ω, 3RD RL = 150Ω, 2ND
RL = 500Ω, 3RD
–100
Harmonic Distortion vs Frequency AV = 1, VO = 2VP-P
–40 –50 –60 –70 –80 –90 RL = 150Ω, 2ND RL = 500Ω, 3RD RL = 500Ω, 2ND VS = 5V AV = 1 RF = 0Ω RIN = 500Ω VO = 2VP-P RL = 150Ω, 3RD –40 –50 –60 –70 –80 –90
HARMONIC DISTORTION (dBc)
HARMONIC DISTORTION (dBc)
–100 0.1 1 FREQUENCY (MHz) 10
1723 G31
10
UW
SR
+
1723 G25
Harmonic Distortion vs Frequency AV = 1, VO = 0.2VP-P
–40 –50 VS = ± 5V AV = 1 RF = 0Ω RIN = 0Ω VO = 0.2VP-P –40 –50 –60 –70 –80
Harmonic Distortion vs Frequency AV = 1, VO = 0.2VP-P
VS = 5V AV = 1 RF = 0Ω RIN = 0Ω VO = 0.2VP-P RL = 500Ω, 3RD RL = 150Ω, 3RD RL = 150Ω, 2ND –90
RL = 150Ω, 3RD RL = 150Ω, 2ND RL = 500Ω, 3RD 0.1 1 FREQUENCY (MHz) 10
1723 G26
RL = 500Ω, 2ND
RL = 500Ω, 2ND
–100
–100 0.1 1 FREQUENCY (MHz) 10
1723 G27
Harmonic Distortion vs Frequency AV = 2, VO = 0.2VP-P
–40 –50 VS = 5V AV = 2 RF = 500Ω VO = 0.2VP-P –40 –50 –60 –70 –80 –90
Harmonic Distortion vs Frequency AV = 1, VO = 2VP-P
VS = ± 5V AV = 1 RF = 0Ω RIN = 500Ω VO = 2VP-P
RL = 150Ω, 2ND
RL = 150Ω, 2ND RL = 150Ω, 3RD RL = 500Ω, 3RD RL = 500Ω, 2ND
RL = 500Ω, 3RD
–100
–100 0.1 1 FREQUENCY (MHz) 10
1723 G30
Harmonic Distortion vs Frequency AV = 2, VO = 2VP-P
VS = ± 5V AV = 2 RF = 500Ω VO = 2VP-P RL = 150Ω, 2ND RL = 150Ω, 3RD RL = 500Ω, 2ND
RL = 500Ω, 3RD –100 0.1 1 FREQUENCY (MHz) 10
1723 G32
172234fa
LT1722/LT1723/LT1724 TYPICAL PERFOR A CE CHARACTERISTICS
Harmonic Distortion vs Frequency AV = 2, VO = 2VP-P
–40 –50 –60 –70 –80 RL = 500Ω, 3RD –90 RL = 500Ω, 2ND VS = 5V AV = 2 RF = 500Ω VO = 2VP-P
OUTPUT STEP (V)
HARMONIC DISTORTION (dBc)
RL = 150Ω, 3RD RL = 150Ω, 2ND
–100 0.1 1 FREQUENCY (MHz) 10
1723 G33
Large-Signal Transient, AV = 1
1V/DIV
AV = 1 RS = 500Ω RF = 0 Ω
50ns/DIV
Large-Signal Transient, AV = –1
1V/DIV
AV = – 1 RG = 500Ω RF = 500Ω
50ns/DIV
UW
Settling Time vs Output Step
3.0 2.5 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 60 0.1% SETTLING 70 80 90 100 110 120 130 140 SETTLING TIME (ns)
1723 G43
0.1% SETTLING 0.01% SETTLING VS = ± 5V AV = –1 RF = 500Ω CF = 0pF 0.01% SETTLING
Small-Signal Transient, AV = 1
Small-Signal Transient, AV = 1
50mV/DIV
50mV/DIV
1723 G34
AV = 1 RS = 0 Ω RF = 0 Ω CL = 0pF
50ns/DIV
1723 G35
AV = 1 RS = 0 Ω RF = 0 Ω CL = 100pF
50ns/DIV
1723 G36
Small-Signal Transient, AV = –1
Small-Signal Transient, AV = –1
50mV/DIV
50mV/DIV
1723 G37
AV = – 1 RG = 500Ω RF = 500Ω CL = 0pF
50ns/DIV
1723 G38
AV = – 1 RG = 500Ω RF = 500Ω CL = 100pF
50ns/DIV
1723 G39
172234fa
11
LT1722/LT1723/LT1724
APPLICATIO S I FOR ATIO
The LT1722/LT1723/LT1724 may be inserted directly into many operational amplifier applications improving both DC and AC performance, as well as noise and distortion. Layout and Passive Components The LT1722/LT1723/LT1724 amplifiers are more tolerant of less than ideal layouts than other high speed amplifiers. For maximum performance (for example, fast settling time) use a ground plane, short lead lengths and RF quality bypass capacitors (0.01µF to 0.1µF). For high drive current applications, use low ESR supply bypass capacitors (1µF to 10µF tantalum). The output/input parasitic coupling should be minimized when high frequency performance is required. The parallel combination of the feedback resistor and gain setting resistor on the inverting input combine with the input capacitance to form a pole that can cause peaking or even oscillations. In parallel with the feedback resistor, a capacitor of value: CF > RG • CIN/RF should be used to cancel the input pole and optimize dynamic performance. For unity-gain applications where a feedback resistor is used, such as an I-to-V converter, CF should be five times greater than CIN; an optimum value for CF is 10pF. Input Considerations Each of the LT1722/LT1723/LT1724 inputs is protected with back-to-back diodes across the bases of the NPN input devices. If greater than 0.7V differential input voltages are anticipated, the input current must be limited to less than 10mA with an external series resistor. Each input also has two ESD clamp diodes—one to each supply. If an input is driven beyond the supply, limit the current with an external resistor to less than 10mA. The input stage protection circuit is shown in Figure 1. The input currents of the LT1722/LT1723/LT1724 are typically in the tens of nA range due to the bias current cancellation technique used at the input. As the input offset current can be greater than either input current,
12
U
VS+ D3 REXT +IN +IN Q1 D2 R I1 VS – I2
1723 F01
W
UU
D1 Q2
D5 –IN
REXT –IN
D4
D6
Figure 1. Input Stage Protection
adding resistance to balance source resistance is not recommended. The value of the source resistor should be below 12k as it actually degrades DC accuracy and also increases noise. Total Input Noise The total input noise of the LT1722/LT1723/LT1724 is optimized for a source resistance between 0.8k and 12k. Within this range, the total input noise is dominated by the noise of the source resistance itself. When the source resistance is below 0.8k, voltage noise of the amplifier dominates. When the source resistance is above 12k, the input noise current is the dominant contributor. Capacitive Loading The LT1722/LT1723/LT1724 drive capacitive loads up to 100pF with unity gain. As the capacitive load increases, both the bandwidth and the phase margin decrease causing peaking in the frequency response and overshoot in the transient response. When there is a need to drive a larger capacitive load, a 25Ω series resistance assures stability with any value of load capacitor. A feedback capacitor also helps to reduce any peaking. Power Dissipation The LT1722/LT1723/LT1724 combine high speed and large output drive in a small package. Maximum junction temperature (TJ) is calculated from the ambient temperature (TA), power dissipation per amplifier (PD) and number of amplifiers (n) as follows: TJ = TA + (n • PD • θJA)
172234fa
LT1722/LT1723/LT1724
APPLICATIO S I FOR ATIO
Power dissipation is composed of two parts. The first is due to the quiescent supply current and the second is due to on-chip dissipation caused by the load current. Worst-case instantaneous power dissipation for a given resistive load in one amplifier occurs at the maximum supply current and when the output voltage is at half of either supply voltage (or the maximum swing if less than half supply voltage). Therefore PD(MAX) in one amplifier is: PD(MAX) = (V+ – V–)(IS(MAX)) + (V+/2)2/RL or PD(MAX) = (V+ – V–)(IS(MAX)) + (V+ – VO(MAX))(VO(MAX)/RL) Example. Worst-case conditions are: both op amps in the LT1723IS8 are at TA = 85°C, VS = ±5V, RL = 150Ω, VOUT = 2.5V. PD(MAX) = 2 •[(10V)(5.95mA) + (2.5V)2/150Ω] = 203mW TJ(MAX) = 85°C + (203mW)(190°C/W) = 124°C which is less than the absolute maximum rating at 150°C.
SI PLIFIED SCHE ATIC
VS+ R1 R2 I5 Q3 D1 +IN Q1 Q2 –IN Q5 Q6 Q7 Q8 OUT Q9 Q11 I1 I2 I3 I4
1723 SS
D2 R
U
Circuit Operation The LT1722/LT1723/LT1724 circuit topology is a voltage feedback amplifier. The operation of the circuit can be understood by referring to the Simplified Schematic. The first stage is a folded cascode formed by the transistors Q1 through Q4. A degeneration resistor, R, is used in the input stage. The current mirror Q5, Q6 is bootstrapped by Q7. The capacitor, C, assures the bandwidth and the slew rate performance. The output stage is formed by complementary emitter followers, Q8 through Q11. The diodes D1 and D2 protect against input reversed biasing. The remaining part of the circuit assures optimum voltage and current biases for all stages. Low noise, reduced current supply, high speed and DC accurate parameters are distinctive features of the LT1722/ LT1723/LT1724.
Q4 VBIAS C Q10 VS–
172234fa
W
W
UU
W
13
LT1722/LT1723/LT1724
PACKAGE DESCRIPTIO
0.62 MAX
3.85 MAX 2.62 REF
RECOMMENDED SOLDER PAD LAYOUT PER IPC CALCULATOR
0.20 BSC 0.90 – 1.45 DATUM ‘A’
0.35 – 0.55 REF 0.09 – 0.20 (NOTE 3) NOTE: 1. DIMENSIONS ARE IN MILLIMETERS 2. DRAWING NOT TO SCALE 3. DIMENSIONS ARE INCLUSIVE OF PLATING 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR 5. MOLD FLASH SHALL NOT EXCEED 0.254mm 6. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ)
.050 BSC 8 N N .245 MIN .160 ±.005 .228 – .244 (5.791 – 6.197) 1 .030 ±.005 TYP 2 3 N/2
RECOMMENDED SOLDER PAD LAYOUT
.010 – .020 × 45° (0.254 – 0.508) .008 – .010 (0.203 – 0.254) 0°– 8° TYP
NOTE: 1. DIMENSIONS IN
.014 – .019 (0.355 – 0.483) TYP INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
14
U
S5 Package 5-Lead Plastic SOT-23
(Reference LTC DWG # 05-08-1633)
0.95 REF 2.80 – 3.10 (NOTE 4) 1.22 REF 1.4 MIN 2.60 – 3.00 1.50 – 1.75 (NOTE 4) PIN ONE 0.25 – 0.50 TYP 5 PLCS NOTE 3 0.95 BSC 0.90 – 1.30 0.00 – 0.15 1.90 BSC
S5 SOT-23 0502
ATTENTION: ORIGINAL SOT23-5L PACKAGE. MOST SOT23-5L PRODUCTS CONVERTED TO THIN SOT23 PACKAGE, DRAWING # 05-08-1635 AFTER APPROXIMATELY APRIL 2001 SHIP DATE
S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
.189 – .197 (4.801 – 5.004) NOTE 3 7 6 5
.045 ±.005
.150 – .157 (3.810 – 3.988) NOTE 3 N/2
1
2
3
4
.053 – .069 (1.346 – 1.752)
.004 – .010 (0.101 – 0.254)
.016 – .050 (0.406 – 1.270)
.050 (1.270) BSC
SO8 0502
172234fa
LT1722/LT1723/LT1724
PACKAGE DESCRIPTIO
5.23 (.206) MIN
0.42 ± 0.04 (.0165 ± .0015) TYP
RECOMMENDED SOLDER PAD LAYOUT DETAIL “A” 0° – 6° TYP 4.90 ± 0.15 (1.93 ± .006) 3.00 ± 0.102 (.118 ± .004) NOTE 4
GAUGE PLANE 0.53 ± 0.015 (.021 ± .006) DETAIL “A” 0.18 (.077) SEATING PLANE 0.22 – 0.38 (.009 – .015) TYP 0.13 ± 0.076 (.005 ± .003)
MSOP (MS8) 0802
NOTE: 1. DIMENSIONS IN MILLIMETER/(INCH) 2. DRAWING NOT TO SCALE 3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX
.050 BSC N 14 13
.245 MIN
1 .030 ±.005 TYP
2
3
RECOMMENDED SOLDER PAD LAYOUT 1 .010 – .020 × 45° (0.254 – 0.508) 2 3 4 5 6 7
.008 – .010 (0.203 – 0.254)
.016 – .050 (0.406 – 1.270) NOTE: 1. DIMENSIONS IN
INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
U
MS8 Package 8-Lead Plastic MSOP
(Reference LTC DWG # 05-08-1660)
0.889 ± 0.127 (.035 ± .005) 3.2 – 3.45 (.126 – .136) 0.65 (.0256) BSC 3.00 ± 0.102 (.118 ± .004) (NOTE 3) 8 7 65 0.52 (.206) REF 0.254 (.010) 1 1.10 (.043) MAX 23 4 0.86 (.034) REF 0.65 (.0256) BSC
S Package 14-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
.337 – .344 (8.560 – 8.738) NOTE 3 12 11 10 9 8
.045 ±.005
N .160 ±.005 .228 – .244 (5.791 – 6.197) N/2 N/2 .150 – .157 (3.810 – 3.988) NOTE 3
.053 – .069 (1.346 – 1.752) 0° – 8° TYP
.004 – .010 (0.101 – 0.254)
.014 – .019 (0.355 – 0.483) TYP
.050 (1.270) BSC
S14 0502
172234fa
15
LT1722/LT1723/LT1724
TYPICAL APPLICATIO
4- to 2-Wire Local Echo Cancellation Differential Receiver Amplifier
10pF
VD LINE DRIVER
VL 100Ω LINE
RELATED PARTS
PART NUMBER LT1677 DESCRIPTION Single, Low Noise Rail-to-Rail Amplifier COMMENTS 3V Operation, 2.5mA Supply Current, 4.5nV/√Hz Max en, 60µV Max VOS 1.6mA Supply Current, 350µV VOS, 2.3V Operation 2.5V Operation, 550µVMAX VOS, 3.5nV/√Hz 2.5V Operation, –90dBc at 5MHz Distortion 5V Operation, 3.6mA Supply Current, 40mA Min Output Current 2nV/√Hz, 2.5mA on Single 3V Supply
LT1800/LT1801/LT1802 Single/Dual/Quad, Low Power, 80MHz Rail-to-Rail Precision Amplifier LT1806/LT1807 LT1809/LT1810 Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifiers Single/Dual, Low Distortion 180MHz Rail-to-Rail Amplifiers
LT1812/LT1813/LT1814 Single/Dual/Quad, 3mA, 750V/µs Amplifiers LT6202/LT6203/LT6204 Single/Dual/Quad, 100MHz, Low Noise Rail-to-Rail Op Amp
16
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 q FAX: (408) 434-0507
q
U
2k
–
2k 10pF
+ +
1/2 LT1739
–
1/2 LT1739 50Ω (n = 1) n:1
1k
1k
–
1/2 LT1723
+
L
•
•R
n2
VR LINE RECEIVER
+
1/2 LT1723
–
50Ω 1k 1k
1723 TA03
172234fa LT/TP 1002 1K REV A • PRINTED IN USA
www.linear.com
© LINEAR TECHNOLOGY CORPORATION 2002