LT138A/LT338A LM138/LM338 5A Positive Adjustable Voltage Regulator
FEATURES
s s s s s
DESCRIPTIO
Guaranteed 1% Initial Tolerance Guaranteed 0.3% Load Regulation Guaranteed 5A Output Current 100% Thermal Limit Burn-In 12A Transient Output Current
APPLICATIO S
s s s s
High Power Linear Regulator Battery Chargers Power Driver Constant-Current Regulator
The LT®138A series of adjustable regulators provide 5A output current over an output voltage range of 1.2V to 32V. The internal voltage reference is trimmed to less than 1%, enabling a very tight output voltage. In addition to excellent line and load regulation, with full overload protection, the LT138A incorporates new current limiting circuitry allowing large transient load currents to be handled for short periods. Transient load currents of up to 12A can be supplied without limiting, eliminating the need for a large output capacitor. The LT138A is an improved version of the popular LM138 with improved circuit design and advanced process techniques to provide superior performance and reliability. The graph below shows the significant improvement in output voltage tolerance achieved by using the LT138A or LT338A.
, LTC and LT are registered trademarks of Linear Technology Corporation.
TYPICAL APPLICATIO
Parallel Regulators for Higher Current*
12
LT338A VIN VIN ADJ VOUT
0.01Ω**
OUTPUT VOLTAGE ERROR (%)
5V 8A
11 10 9 8 7 6 5 4 3 2 1 0 1% RESISTORS 2% RESISTORS LT338A 2% RESISTORS 1% RESISTORS LM338 LM338 LT338A
LT350A VIN ADJ VOUT
0.016Ω** 121Ω 1% 365Ω 1%
138/338 TA01
1
*THIS CIRCUIT WILL NOT WORK WITH LM VERSION DEVICES **CURRENT SHARING RESISTORS DEGRADE REGULATION TO 1%
U
Output Voltage Error
10 OUTPUT VOLTAGE (V) 100
138A/338A TA02
U
U
138afb
1
LT138A/LT338A LM138/LM338 ABSOLUTE AXI U RATI GS
Power Dissipation .............................. Internally Limited Input-to-Output Voltage Differential ........................ 35V Operating Junction Temperature Range LT138A/LM138 ............................... – 55°C to 150°C LT338A/LM338 ................................... 0°C to 125°C
PRECONDITIONI G
100% Thermal Limit Burn-In
PACKAGE/ORDER I FOR ATIO
BOTTOM VIEW VIN 2 CASE IS OUTPUT 1 ADJ K PACKAGE 2-LEAD TO-3 METAL CAN
TJMAX = 150°C, θJA = 35°C/ W, θJC = 1°C/ W (LT138A/LT138) TJMAX = 125°C, θJA = 35°C/ W, θJC = 1°C/ W (LT338A/LT338)
ORDER PART NUMBER LT138AK LT338AK LM138K LM338K
FRONT VIEW 3 2 1 P PACKAGE 3-LEAD PLASTIC TO-3P VOUT VIN ADJ
TJMAX = 125°C, θJA = 45°C/ W
OBSOLETE PACKAGE
Consider the P Package for Alternate Source
Consult LTC Marketing for parts specified with wider operating temperature ranges.
The q denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 2)
SYMBOL VREF PARAMETER Reference Voltage CONDITIONS IOUT = 10mA, TJ = 25°C 3V ≤ (VIN – VOUT) ≤ 35V, 10mA ≤ IOUT ≤ 5A, P ≤ 50W ∆VOUT ∆VIN ∆VOUT ∆IOUT Line Regulation Load Regulation 3V ≤ (VIN – VOUT) ≤ 35V, (Note 3)
q q
ELECTRICAL CHARACTERISTICS
MIN 1.238 1.225
LT138A TYP MAX 1.250 1.250 0.005 0.02 5 0.1 1.262 1.270 0.01 0.04 15 0.3 30 0.6 0.01
10mA ≤ IOUT ≤ 5A, (Note 3) VOUT ≤ 5V VOUT ≥ 5V VOUT ≤ 5V VOUT ≥ 5V
q q
20 0.3 0.002
Thermal Regulation Ripple Rejection
20ms Pulse VOUT = 10V, f = 120Hz CADJ = 0µF CADJ = 10µF 10mA ≤ IOUT ≤ 5A, 3V ≤ (VIN – VOUT) ≤ 35V (VIN – VOUT) = 35V
q q q q q
60
60 75 45 0.2 3.5 100 5 5
IADJ ∆IADJ
Adjust Pin Current Adjust Pin Current Change Minimum Load Current
2
UU
U
U
U
W
WW
U
W
(Note 1)
Storage Temperature Range ................ – 65°C to 150°C Lead Temperature (Soldering, 10 sec)................. 300°C
ORDER PART NUMBER LM338P
MIN 1.19
LM138 TYP 1.24 0.005 0.02 5 0.1 20 0.3 0.002 60 75 45 0.2 3.5
MAX 1.29 0.01 0.04 15 0.3 30 0.6 0.01
UNITS V V %/V %/V mV % mV % %/W dB dB
60
100 5 5
µA µA mA
138afb
LT138A/LT338A LM138/LM338
ELECTRICAL CHARACTERISTICS
SYMBOL ISC PARAMETER Current Limit CONDITIONS (VIN – VOUT) ≤ 10V DC 0.5ms Peak (VIN – VOUT) = 30V, TJ = 25°C ∆VOUT ∆Temp ∆VOUT ∆Time en θJC Temperature Stability Long-Term Stability TA = 125°C, 1000 Hours
q q q
The q denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 2)
MIN 5 6 LT138A TYP MAX 8 12 1 1 0.3 0.001 1 2 2 1 MIN 5 6 LM138 TYP 8 12 1 1 0.3 0.003 1 1 MAX UNITS A A A % % % °C/W
RMS Output Noise (% of VOUT) 10Hz ≤ f ≤ 10kHz Thermal Resistance Junction-to-Case K Package
The q denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 2)
SYMBOL VREF PARAMETER Reference Voltage CONDITIONS IOUT = 10mA 3V ≤ (VIN – VOUT) ≤ 35V, 10mA ≤ IOUT ≤ 5A, P ≤ 50W ∆VOUT ∆VIN ∆VOUT ∆IOUT Line Regulation Load Regulation 3V ≤ (VIN – VOUT) ≤ 35V, (Note 3)
q q
MIN 1.238 1.225
LT338A TYP MAX 1.250 1.250 0.005 0.02 5 0.1 1.262 1.270 0.01 0.04 15 0.3 30 0.6 0.02
MIN 1.19
LM338 TYP 1.24 0.005 0.02 5 0.1 20 0.3 0.002 60 75 45 0.2 3.5
MAX 1.29 0.03 0.06 25 0.5 50 1 0.02
UNITS V V %/V %/V mV % mV % %/W dB dB
10mA ≤ IOUT ≤ 5A, (Note 3) VOUT ≤ 5V VOUT ≥ 5V VOUT ≤ 5V VOUT ≥ 5V
q q
20 0.3 0.002
Thermal Regulation Ripple Rejection
20ms Pulse VOUT = 10V, f = 120Hz CADJ = 0µF CADJ = 10µF 10mA ≤ IOUT ≤ 5A, 3V ≤ (VIN – VOUT) ≤ 35V (VIN – VOUT) = 35V (VIN – VOUT) ≤ 10V DC 0.5ms Peak (VIN – VOUT) = 30V, TJ = 25°C
q q q q q q q
60
60 75 45 0.2 3.5 100 5 10
60
IADJ ∆IADJ
Adjust Pin Current Adjust Pin Current Change Minimum Load Current
100 5 10
µA µA mA A A A %
ISC
Current Limit
5 6
8 12 1 2 2 1 1 0.3 0.001 1
5 6
8 12 1 1 0.3 0.003 1 1
∆VOUT ∆Temp ∆VOUT ∆Time en θJC
Temperature Stability Long-Term Stability RMS Output Noise (% of VOUT) Thermal Resistance Junction-to-Case TA = 125°C, 1000 Hours 10Hz ≤ f ≤ 10kHz K Package
q
% % °C/W
Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired. Note 2: Unless otherwise specified, these specifications apply: VIN – VOUT = 5V and IOUT = 2.5A. These specifications are applicable for power dissipations up to 50W.
Note 3: See thermal regulation specifications for changes in output voltage due to heating effects. Load and line regulation are measured at a constant junction temperature by low duty cycle pulse testing.
138afb
3
LT138A/LT338A LM138/LM338 TYPICAL PERFOR A CE CHARACTERISTICS
Load Regulation
0.2 VIN = 15V VOUT = 10V PRELOAD = 50mA IOUT = 3A IOUT = 5A 4
OUTPUT VOLTAGE DEVIATION (%)
ADJUSTMENT CURRENT (µA)
0.1 0 – 0.1 – 0.2 – 0.3
INPUT-OUTPUT DIFFERENTIAL (V)
– 0.4 –75 – 50 – 25
0 25 50 75 100 125 150 TEMPERATURE (°C)
138/338 G01
Temperature Stability
1.270
10
OUTPUT IMPEDANCE (Ω)
1.260
QUIESCENT CURRENT (mA)
REFERENCE VOLTAGE (V)
1.250
1.240
1.230 –50 –25
0
25 50 75 100 125 150 TEMPERATURE (°C)
138A/338A G04
Ripple Rejection
100 CADJ = 10µF 80
RIPPLE REJECTION (dB)
RIPPLE REJECTION (dB)
CADJ = 0µF 60
RIPPLE REJECTION (dB)
40 VIN – VOUT = 5V IOUT = 500mA f = 120Hz TJ = 25°C 0 5 20 15 10 25 OUTPUT VOLTAGE (V) 30 35
20
0
4
UW
138A/338A G07
Dropout Voltage
∆VOUT = 100mV 65 60 55 50 45 40 35 1 –75 – 50 – 25
Adjustment Current
3 IOUT = 5A IOUT = 3A 2 IOUT = 1A
0 25 50 75 100 125 150 TEMPERATURE (°C)
138/338 G02
30 –75
–25
25 75 TEMPERATURE (°C)
125
138A/338A G03
Output Impedance
VIN = 15V VOUT = 10V IOUT = 500mA CADJ = COUT = 0µF 5
Minimum Operating Current
1
4 TJ = 25°C 3
TJ = 150°C
0.1
0.01 CADJ = COUT = 10µF
2
TJ = – 55°C
0.001
1
0.0001
0 10 100 10k 1k FREQUENCY (Hz) 100k 1M 0 25 30 35 5 10 15 20 INPUT-OUTPUT DIFFERENTIAL (V) 40
138/338 G05
138A/338A G06
Ripple Rejection
100
80
Ripple Rejection
CADJ = 10µF
80
CADJ = 10µF
70 CADJ = 0µF 60
60 CADJ = 0µF 40
50
20
0
VIN = 15V VOUT = 10V IOUT = 0.2A 10 100 10k 1k FREQUENCY (Hz) 100k 1M
40
VIN = 15V VOUT = 10V f = 120Hz TCASE = 25°C 0.1 1 OUTPUT CURRENT (A) 10
138/338 G09
138A/338A G08
138afb
LT138A/LT338A LM138/LM338 TYPICAL PERFOR A CE CHARACTERISTICS
Current Limit
16 PEAK CURRENT LIMIT DC CURRENT LIMIT TCASE = 25°C
OUTPUT CURRENT (A)
14 12 PRELOAD = 0A
OUTPUT CURRENT (A)
OUTPUT CURRENT (A)
12
PRELOAD = 0A
PRELOAD = 5A 8
PRELOAD = 1A 4
0
0
20 10 30 INPUT-OUTPUT DIFFERENTIAL (V)
Line Transient Response
1.5
OUTPUT VOLTAGE DEVIATION (V)
OUTPUT VOLTAGE DEVIATION (V)
1.0 0.5 0 – 0.5 –1.0 –1.5
VOUT = 10V IOUT = 50mA TJ = 25°C
LOAD CURRENT (A)
INPUT VOLTAGE CHANGE (V)
1.0 0.5 0 0 10 20 TIME (µs) 30 40
APPLICATIONS INFORMATION
General The LT138A develops a 1.25V reference voltage between the output and the adjustable terminal (see Figure 1). By placing a resistor, R1, between these two terminals, a constant current is caused to flow through R1 and down through R2 to set the overall output voltage. Normally this current is the specified minimum load current of 5mA or 10mA. Because IADJ is very small and constant when compared with the current through R1, it represents a small error and can usually be ignored. It is easily seen from the output voltage equation, that even if the resistors were of exact value, the accuracy of the output is limited by the accuracy of VREF. Earlier adjustable regulators had a reference tolerance of ± 4% which is dangerously close to the ± 5% supply tolerance required in many logic and analog systems. Further, even 1% resistors can drift 0.01%/°C, adding additional error to the output voltage tolerance.
LT338A VIN VIN ADJ VOUT VREF R1 VOUT
U
W
UW
138A/338A G10
Current Limit
14 12 10
Current Limit
PRELOAD CURRENT = 0 TCASE = 25°C
10 PRELOAD = 5A 8 6 4 2 VIN = 10V VOUT = 5V TCASE = 25°C 1 TIME (ms)
138A/338A G11
VIN – VOUT = 10V 8 6 4 2 0 0.1 VIN – VOUT = 15V VIN – VOUT = 20V VIN – VOUT = 30V
40
0 0.1
10
100
1 TIME (ms)
10
100
138A/338A G12
Load Transient Response
3 2 1 0 –1 –2 –3 6 4 2 0 0 10 20 TIME (µs) 30 40 VIN = 15V VOUT = 10V TCASE = 25°C PRELOAD = 100mA CL = 1µF CADJ = 10µF CL = 0 CADJ = 0
CL = 1µF CL = 10µF
COUT = 0 CADJ = 0
138A/338A G13
138A/338A G14
U
U
+
IADJ 50µA R2 VOUT = VREF 1 + R2 + IADJ • R2 R1
()
138A/338A F01
Figure 1. Basic Adjustable Regulator
138afb
5
LT138A/LT338A LM138/LM338
APPLICATIONS INFORMATION
For example, using 2% resistors and ± 4% tolerance for VREF, calculations will show that the expected range of a 5V regulator design would be 4.66V ≤ VOUT ≤ 5.36V or approximately ± 7%. If the same example were used for a 15V regulator, the expected tolerance would be ± 8%. With these results most applications required some method of trimming, usually a trim pot. This solution is both expensive and not conductive to volume production. One of the enhancements of Linear Technology’s adjustable regulators over existing devices is the tightened initial tolerance of VREF. This allows relatively inexpensive 1% or 2% film resistors to be used for R1 and R2 to set the output voltage within an acceptable tolerance. With a guaranteed 1% reference, a 5V power supply design, using ± 2% resistors, would have a worst-case manufacturing tolerance of ± 4%. If 1% resistors are used, the tolerance will drop to ± 2.5%. A plot of the worst-case output voltage tolerance as a function of resistor tolerance is shown on the front page of this data sheet. For convenience, a table of standard 1% resistor values is shown in Table 1.
Table 1. 0.5% and 1% Standard Resistance Values
1.00 1.02 1.05 1.07 1.10 1.13 1.15 1.18 1.21 1.24 1.27 1.30 1.33 1.37 1.40 1.43 1.47 1.50 1.54 1.58 1.62 1.65 1.69 1.74 1.78 1.82 1.87 1.91 1.96 2.00 2.05 2.10 2.15 2.21 2.26 2.32 2.37 2.43 2.49 2.55 2.61 2.67 2.74 2.80 2.87 2.94 3.01 3.09 3.16 3.24 3.32 3.40 3.48 3.57 3.65 3.74 3.83 3.92 4.02 4.12 4.22 4.32 4.42 4.53 4.64 4.75 4.87 4.99 5.11 5.23 5.36 5.49 5.62 5.76 5.90 6.04 6.19 6.34 6.49 6.65 6.81 6.98 7.15 7.32 7.50 7.68 7.87 8.06 8.25 8.45 8.66 8.87 9.09 9.31 9.53 9.76
Standard resistance values are obtained from the Decade Table by multiplying by multiples of 10. As an example, 1.21 can represent 1.21Ω, 12.1Ω, 121Ω, 1.21k etc.
Bypass Capacitors Input bypassing using a 1µF tantalum or 25µf electrolytic is recommended when the input filter capacitors are more than 5 inches from the device. Improved ripple rejection
6
U
W
U
U
(80dB) can be accomplished by adding a 10µF capacitor from the ADJ pin to ground. Increasing the size of the capacitor to 20µF will help ripple rejection at low output voltage since the reactance of this capacitor should be small compared to the voltage setting resistor, R2. For improved AC transient response and to prevent the possibility of oscillation due to unknown reactive load, a 1µF capacitor is also recommended at the output. Because of their low impedance at high frequencies, the best type of capacitor to use is solid tantalum. Protection Diodes The LT138A/LT338A do not require a protection diode from the adjustment terminal to the output (see Figure 2). Improved internal circuitry eliminates the need for this diode when the adjustment pin is bypassed with a capacitor to improve ripple rejection. If a very large output capacitor is used, such as a 100µF shown in Figure 2, the regulator could be damaged or destroyed if the input is accidentally shorted to ground or crowbarred, due to the output capacitor discharging into the output terminal of the regulator. To prevent this, a diode D1 as shown, is recommended to safely discharge the capacitor.
D1 1N4002
LT338A VIN VIN ADJ VOUT R1 NOT NEEDED VOUT
CADJ 10µF
+
R2
COUT 100µF
138A/338A F02
Figure 2
Load Regulation Because the LT138A is a three-terminal device, it is not possible to provide true remote load sensing. Load regulation will be limited by the resistance of the wire connecting the regulator to the load. The data sheet specification for load regulation is measured at the bottom of the package. Negative side sensing is a true Kelvin connection, with the bottom of the output divider returned to the
138afb
LT138A/LT338A LM138/LM338
APPLICATIONS INFORMATION
negative side of the load. Although it may not be immediately obvious, best load regulation is obtained when the top of the resistor divider, R1, is connected directly to the case not to the load. This is illustrated in Figure 3. If R1 were connected to the load, the effective resistance between the regulator and the load would be:
LT338A VIN VIN ADJ VOUT CONNECT R1 TO CASE R1 RL R2 CONNECT R2 TO LOAD
138A/338A F03
R2 + R1 RP , RP = Parasitic Line Re sistance R1
Connected as shown, RP is not multiplied by the divider ratio. RP is about 0.004Ω per foot using 16 gauge wire. This translates to 4mV/ft at 1A load current, so it is important to keep the positive lead between regulator and load as short as possible, and use large wire or PC board traces.
TYPICAL APPLICATIONS
Improving Ripple Rejection
LT338A VIN
+
*C1 IMPROVES RIPPLE REJECTION, XC SHOULD BE SMALL COMPARED TO R2
1.2V to 25V Adjustable Regulator
LT338A VIN VIN ADJ VOUT R1 240Ω R2 5k VOUT†
+
*NEEDED IF DEVICE IS FAR FROM FILTER CAPACITORS **OPTIONAL, IMPROVES TRANSIENT RESPONSE
†
VOUT = 1.25V 1 + R2 R1
U
W
U
U
U
RP PARASITIC LINE RESISTANCE
Figure 3. Connections for Best Load Regulation
VIN 1µF ADJ
VOUT
R1 121Ω 1% R2 365Ω 1%
5V
+
CL* 10µF
138A/338A TA03
C1* 1µF
+
C2** 1µF
138A/338A TA04
()
138afb
7
LT138A/LT338A LM138/LM338
TYPICAL APPLICATIONS
5V Regulator with Shutdown
LT338A VIN VIN VOUT ADJ 1µF 1k TTL 1k 2N3904 365Ω 1% 121Ω 1% 5V
LT338A VIN VIN ADJ VIN 25Ω 121Ω 6 1 8 365Ω 100pF VOUT
LM301A 3
+
RETURN
8
–
+
U
+
138A/338A TA05
Temperature Compensated Lead Acid Battery Charger
LT338A VIN ADJ VOUT 243Ω 1% 10k 50Ω 2N3906 2k 50k
138A/338A TA07
3A
12V
Remote Sensing
RP (MAX DROP 300mV)
VOUT 5V
7
2 RL
1k 5µF
4
25Ω
RETURN
138A/338A TA06
138afb
SCHE ATIC DIAGRA W W
VIN 310Ω 5.6k 300Ω Q1 Q26 200Ω Q6 Q9 Q15 Q14 1.6k Q21 C3 5pF Q18 Q10 Q16 Q8 Q11 Q12 Q13 C1 30pF Q17 2.4k 3Ω 4.1k 10Ω 12k 0.01Ω VOUT ADJ
138A/338A SS
310Ω 20k Q23 Q24
190Ω
50Ω
Q27 120Ω Q28 D1
Q2 Q19 6.7k 12k
Q4
LT138A/LT338A
30k 4k 3k 12.4k Q22 16k Q25 Q20 130Ω
Q5
400Ω
160k
18k
D2
+ +
Q1 4.1k 5.1k C2 30pF
160Ω
Q3
Q7
160k
180Ω
LT138A/LT338A LM138/LM338
138afb
9
LT138A/LT338A LM138/LM338
PACKAGE DESCRIPTION
K Package 2-Lead TO-3 Metal Can
(Reference LTC DWG # 05-08-1310)
0.320 – 0.350 (8.13 – 8.89)
0.420 – 0.480 (10.67 – 12.19)
0.425 – 0.435 (10.80 – 11.05) 0.067 – 0.077 (1.70 – 1.96)
10
U
0.760 – 0.775 (19.30 – 19.69) 0.060 – 0.135 (1.524 – 3.429)
0.038 – 0.043 (0.965 – 1.09) 1.177 – 1.197 (29.90 – 30.40) 0.655 – 0.675 (16.64 – 17.15) 0.210 – 0.220 (5.33 – 5.59) 0.151 – 0.161 (3.86 – 4.09) DIA, 2PLCS 0.167 – 0.177 (4.24 – 4.49) R 0.490 – 0.510 (12.45 – 12.95) R
K2 (TO-3) 1098
OBSOLETE PACKAGE
138afb
LT138A/LT338A LM138/LM338
PACKAGE DESCRIPTION
P Package 3-Lead Plastic TO-3P (Similar to TO-247)
(Reference LTC DWG # 05-08-1450)
0.560 (14.224) 0.325 (8.255) 0.275 (6.985)
0.580 (14.732) 0.700 (17.780)
0.830 – 0.870 (21.08 – 22.10) 0.580 – 0.6OO (14.73 – 15.24)
0.098 (2.489) 0.124 (3.149)
0.780 – 0.800 (19.81 – 20.32)
BOTTOM VIEW OF TO-3P HATCHED AREA IS SOLDER PLATED COPPER HEAT SINK
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
U
0.620 – 0.64O (15.75 – 16.26)
0.187 – 0.207 (4.75 – 5.26) MOUNTING HOLE 18° – 22° 0.115 – 0.145 (2.92 – 3.68) DIA 0.060 – 0.080 (1.52 – 2.03)
0.170 – 0.2OO (4.32 – 5.08) EJECTOR PIN MARKS 0.105 – 0.125 (2.67 – 3.18) DIA
3° – 7° 0.170 (4.32) MAX
0.042 – 0.052 (1.07 – 1.32) 0.074 – 0.084 (1.88 – 2.13)
0.215 (5.46) BSC 0.113 – 0.123 (2.87 – 3.12)
0.087 – 0.102 (2.21 – 2.59) 0.020 – 0.040 (0.51 – 1.02)
P3 0996
138afb
11
LT138A/LT338A LM138/LM338
TYPICAL APPLICATIONS
Lamp Flasher
LT338A 15V
+
VIN 1µF ADJ
VOUT 10µF
OFF
12k
1k 2N3904
12k
12k
RELATED PARTS
PART NUMBER LT1083/LT1084/LT1085 LT1580 LT1581 LT1584/LT1585/LT1587 LT1764 DESCRIPTION 3A/5A/7.5A Low Dropout Regulators 7A Fast Transient Response Regulator with 0.7V Dropout 10A Fast Transient Response Regulator 7A/4.6A/3A Low Dropout Fast Transient Response Regulator 3A Fast Transient Response Regulator COMMENTS Fixed Outputs, VIN Up to 30V For 3.3V to 2.xxV Applications For 3.3V to 2.xxV Applications For 1.2V to 3.3V Outputs from 5V Dropout Voltage 340mV, Low Noise: 40µVRMS
12
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 q FAX: (408) 434-0507
q
U
Automatic Light Control
LT338A VIN ADJ VOUT 1.2k
10µF
10µF
+ + +
TTL OR CMOS
12V
138A/338A TA09
138A/338A TA08
Protected High Current Lamp Driver
15V LT338A VOUT ADJ VIN 12V 5A
10k
138A/338A TA10
138afb LT/CPI 1101 1.5K REV B • PRINTED IN THE USA
www.linear.com
© LINEAR TECHNOLOGY CORPORATION 1991