0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LT5558

LT5558

  • 厂商:

    LINER

  • 封装:

  • 描述:

    LT5558 - 600MHz to 1100MHz High Linearity Direct Quadrature Modulator - Linear Technology

  • 数据手册
  • 价格&库存
LT5558 数据手册
FEATURES ■ ■ ■ LT5558 600MHz to 1100MHz High Linearity Direct Quadrature Modulator DESCRIPTION The LT®5558 is a direct I/Q modulator designed for high performance wireless applications, including wireless infrastructure. It allows direct modulation of an RF signal using differential baseband I and Q signals. It supports GSM, EDGE, CDMA, CDMA2000, and other systems. It may also be configured as an image reject upconverting mixer, by applying 90° phase-shifted signals to the I and Q inputs. The high impedance I/Q baseband inputs consist of voltage-to-current converters that in turn drive doublebalanced mixers. The outputs of these mixers are summed and applied to an on-chip RF transformer, which converts the differential mixer signals to a 50Ω single-ended output. The balanced I and Q baseband input ports are intended for DC coupling from a source with a common-mode voltage level of about 2.1V. The LO path consists of an LO buffer with single-ended input, and precision quadrature generators which produce the LO drive for the mixers. The supply voltage range is 4.5V to 5.25V. , LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. ■ ■ ■ ■ ■ ■ ■ Direct Conversion from Baseband to RF High OIP3: + 22.4dBm at 900MHz Low Output Noise Floor at 20MHz Offset: No RF: –158dBm/Hz POUT = 4dBm: –152.7dBm/Hz Low Carrier Leakage: –43.7dBm at 900MHz High Image Rejection: –49dBc at 900MHz 3 Channel CDMA2000 ACPR: –70.4dBc at 900MHz Integrated LO Buffer and LO Quadrature Phase Generator 50Ω AC-Coupled Single-ended LO and RF Ports High Impedance Interface to Baseband Inputs with 2.1V Common Mode Voltage 16-Lead QFN 4mm × 4mm Package APPLICATIONS ■ ■ ■ ■ ■ RFID Single-Sideband Transmitters Infrastructure TX for Cellular and ISM Bands Image Reject Up-Converters for Cellular Bands Low-Noise Variable Phase-Shifter for 600MHz to 1100MHz Local Oscillator Signals Microwave Links TYPICAL APPLICATION 600MHz to 1100MHz Direct Conversion Transmitter Application VCC 8, 13 14 IDAC 16 V-1 I-CH 1 EN 90° 7 QDAC 5 Q-CH V-1 BALUN O° 11 LT5558 ACPR, ALTCPR (dBc) CDMA2000 ACPR, AltCPR and Noise vs RF Output Power at 900MHz for 1 and 3 Carriers –40 DOWNLINK TEST MODEL 64 DPCH 3-CH ACPR 3-CH ALTCPR –60 1-CH ACPR –70 1-CH NOISE –80 1-CH ALTCPR 3-CH NOISE –150 –140 –130 –110 NOISE FLOOR AT 30MHz OFFSET (dBm/Hz) 5V 2 x 100nF ∫ RF = 600MHz TO 1100MHz PA –50 –120 ∫ BASEBAND GENERATOR 2, 4, 6, 9, 10, 12, 15, 17 3 VCO/SYNTHESIZER 5558 TA01 –90 –30 –20 –15 –10 –5 0 –25 RF OUTPUT POWER PER CARRIER (dBm) 5558 TA01b –160 5558fa 1 LT5558 ABSOLUTE MAXIMUM RATINGS (Note 1) PACKAGE/ORDER INFORMATION TOP VIEW BBMI BBPI GND VCC BBMQ BBPQ Supply Voltage ........................................................5.5V Common-Mode Level of BBPI, BBMI and BBPQ, BBMQ .......................................................2.5V Voltage on any Pin Not to Exceed....................–500mV to (VCC + 500mV) Operating Ambient Temperature (Note 2) ............................................... –40°C to 85°C Storage Temperature Range................... –65°C to 125°C ORDER PART NUMBER LT5558EUF 12 GND 11 RF 10 GND 9 GND 16 15 14 13 EN 1 GND 2 LO 3 GND 4 5 6 GND 7 8 VCC UF PART MARKING 5558 UF PACKAGE 16-LEAD (4mm × 4mm) PLASTIC QFN TJMAX = 125°C, θJA = 37°C/W EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB Order Options Tape and Reel: Add #TR Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF Lead Free Part Marking: http://www.linear.com/leadfree/ Consult LTC Marketing for parts specified with wider operating temperature ranges. ELECTRICAL CHARACTERISTICS SYMBOL RF Output (RF) fRF S22, ON S22, OFF NFloor RF Frequency Range RF Output Return Loss RF Output Return Loss RF Output Noise Floor PARAMETER VCC = 5V, EN = High, TA = 25°C, fLO = 900MHz, fRF = 902MHz, PLO = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 2.1VDC, baseband input frequency = 2MHz, I and Q 90° shifted (upper sideband selection). PRF(OUT) = –10dBm, unless otherwise noted. (Note 3) CONDITIONS –3 dB Bandwidth –1 dB Bandwidth EN = High (Note 6) EN = Low (Note 6) No Input Signal (Note 8) PRF = 4dBm (Note 9) PRF = 4dBm (Note 10) POUT/PIN,I&Q 20 • Log (VOUT, 50Ω/VIN, DIFF, I or Q) 1VP-P DIFF CW Signal, I and Q (Note 17) (Note 7) (Notes 13, 14) (Notes 13, 15) (Note 16) EN = High, PLO = 0dBm (Note 16) EN = Low, PLO = 0dBm (Note 16) PRF = 2dBm MIN TYP 600 to 1100 680 to 960 –15.8 –13.3 –158 –152.7 –152.3 9.7 –5.1 –1.1 –26.5 7.8 65 22.4 –49 –43.7 –60 0.6 600 to 1100 –10 0 5 MAX UNITS MHz MHz dB dB dBm/Hz dBm/Hz dBm/Hz dB dB dBm dB dBm dBm dBm dBc dBm dBm % MHz dBm 5558fa GP GV POUT G3LO vs LO OP1dB OIP2 OIP3 IR LOFT EVM LO Input (LO) fLO PLO Conversion Power Gain Conversion Voltage Gain Absolute Output Power 3 • LO Conversion Gain Difference Output 1dB Compression Output 2nd Order Intercept Output 3rd Order Intercept Image Rejection Carrier Leakage (LO Feedthrough) GSM Error Vector Magnitude LO Frequency Range LO Input Power 2 LT5558 ELECTRICAL CHARACTERISTICS SYMBOL S11, ON S11, OFF NFLO GLO IIP3LO BWBB VCMBB RIN, DIFF RIN, CM ICM, COMP PLO-BB IP1dB ΔGI/Q ΔϕI/Q VCC ICC(ON) ICC(OFF) tON tOFF Enable Shutdown PARAMETER LO Input Return Loss LO Input Return Loss LO Input Referred Noise Figure LO to RF Small-Signal Gain LO Input 3rd Order Intercept Baseband Bandwidth DC Common-mode Voltage Differential Input Resistance Common Mode Input Resistance Common Mode Compliance Current range Carrier Feedthrough on BB Input 1dB compression point I/Q Absolute Gain Imbalance I/Q Absolute Phase Imbalance Supply Voltage Supply Current Supply Current, Sleep mode Turn-On Time Turn-Off Time Input High Voltage Input High Current Input Low Voltage EN = High EN = 0V EN = Low to High (Note 11) EN = High to Low (Note 12) EN = High EN = 5V EN = Low 1 230 0.5 4.5 VCC = 5V, EN = High, TA = 25°C, fLO = 900MHz, fRF = 902MHz, PLO = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 2.1VDC, baseband input frequency = 2MHz, I and Q 90° shifted (upper sideband selection). PRF(OUT) = –10dBm, unless otherwise noted. (Note 3) CONDITIONS EN = High (Note 6) EN = Low (Note 6) (Note 5) at 900MHz (Note 5) at 900MHz (Note 5) at 900MHz –3dB Bandwidth (Note 4) Between BBPI and BBMI (or BBPQ and BBMQ) (Note 20) (Notes 18, 20) POUT = 0 (Note 4) Differential Peak-to-Peak (Notes 7, 19) MIN TYP –10.6 –2.5 14.6 16.4 –3.3 400 2.1 3 100 –820 to 440 –46 3.4 0.05 0.2 5 108 0.1 0.3 1.1 5.25 135 50 MAX UNITS dB dB dB dB dBm MHz V kΩ Ω μA dBm VP-P,DIFF dB Deg V mA μA μs μs V μA V Baseband Inputs (BBPI, BBMI, BBPQ, BBMQ) Power Supply (VCC) Enable (EN), Low = Off, High = On Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: Specifications over the –40°C to 85°C temperature range are assured by design, characterization and correlation with statistical process controls. Note 3: Tests are performed as shown in the configuration of Figure 7. Note 4: At each of the four baseband inputs BBPI, BBMI, BBPQ and BBMQ. Note 5: VBBPI - VBBMI = 1VDC, VBBPQ - VBBMQ = 1VDC. Note 6: Maximum value within –1dB bandwidth. Note 7: An external coupling capacitor is used in the RF output line. Note 8: At 20MHz offset from the LO signal frequency. Note 9: At 20MHz offset from the CW signal frequency. Note 10: At 5MHz offset from the CW signal frequency. Note 11: RF power is within 10% of final value. Note 12: RF power is at least 30dB lower than in the ON state. Note 13: Baseband is driven by 2MHz and 2.1MHz tones. Drive level is set in such a way that the two resulting RF tones are –10dBm each. Note 14: IM2 measured at LO frequency + 4.1MHz Note 15: IM3 measured at LO frequency + 1.9MHz and LO frequency + 2.2MHz. Note 16: Amplitude average of the characterization data set without image or LO feedthrough nulling (unadjusted). Note 17: The difference in conversion gain between the spurious signal at f = 3 • LO - BB versus the conversion gain at the desired signal at f = LO + BB for BB = 2MHz and LO = 900MHz. Note 18: Common mode current range where the common mode (CM) feedback loop biases the part properly. The common mode current is the sum of the current flowing into the BBPI (or BBPQ) pin and the current flowing into the BBMI (or BBMQ) pin. Note 19: The input voltage corresponding to the output P1dB. Note 20: BBPI and BBMI shorted together (or BBPQ and BBMQ shorted together). 5558fa 3 LT5558 TYPICAL PERFORMANCE CHARACTERISTICS VCC = 5V, EN = High, TA = 25°C, fLO = 900MHz, fRF = 902MHz, PLO = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 2.1VDC, baseband input frequency = 2MHz, I and Q 90° shifted, without image or LO feedthrough nulling. fRF = fBB + fLO (upper side-band selection). PRF(OUT) = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3) RF Output Power vs LO Frequency at 1VP-P Differential Voltage Gain vs LO Frequency Supply Current vs Supply Voltage Baseband Drive 130 2 0 SUPPLY CURRENT (mA) 120 85°C 110 25°C 100 RF OUTPUT POWER (dBm) VOLTAGE GAIN (dB) –2 –4 –6 –8 –10 –12 550 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 650 750 950 1050 1150 1250 LO FREQUENCY (MHz) 5558 G02 –2 –4 –6 –8 –10 –12 –14 –16 550 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 650 750 850 950 1050 1150 1250 5558 G03 –40°C 90 4.5 4.75 5 SUPPLY VOLTAGE (V) 5.25 5558 G01 850 LO FREQUENCY (MHz) Output IP3 vs LO Frequency 26 24 22 OIP3 (dBm) 20 18 16 14 12 550 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 650 750 950 1050 1150 1250 LO FREQUENCY (MHz) 5558 G04 Output IP2 vs LO Frequency 75 fIM2 = fBB, 1 + fBB, 2 + fLO fBB, 1 = 2MHz 70 fBB, 2 = 2.1MHz 10 8 6 4 2 0 Output 1dB Compression vs LO Frequency fBB, 1 = 2MHz fBB, 2 = 2.1MHz 60 55 50 45 550 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 650 750 950 1050 1150 1250 LO FREQUENCY (MHz) 5558 G05 OP1dB (dBm) 65 OIP2 (dBm) 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 650 750 850 950 1050 1150 1250 5558 G06 850 850 –2 550 LO FREQUENCY (MHz) LO Feedthrough to RF Output vs LO Frequency –40 –40 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 2 • LO Leakage to RF Output vs 2 • LO Frequency –45 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 3 • LO Leakage to RF Output vs 3 • LO Frequency 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C LO FEEDTHROUGH (dBm) 2 • LO LEAKAGE (dBm) 3 • LO LEAKAGE (dBm) –42 –45 –50 –55 –44 –50 –60 –46 –55 –65 –48 550 650 750 950 1050 1150 1250 LO FREQUENCY (MHz) 5558 G07 850 –60 1.1 1.3 2.3 2 • LO FREQUENCY (GHz) 1.5 1.7 1.9 2.1 2.5 5558 G08 –70 1.65 1.95 2.25 2.55 2.85 3.15 3.5 3.75 3 • LO FREQUENCY (GHz) 5558 G09 5558fa 4 LT5558 fRF = 902MHz, PLO = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 2.1VDC, baseband input frequency = 2MHz, I and Q 90° shifted, without image or LO feedthrough nulling. fRF = fBB + fLO (upper side-band selection). PRF(OUT) = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3) Noise Floor vs RF Frequency –157 fLO = 900MHz (FIXED) NO BASEBAND SIGNAL IMAGE REJECTION (dBc) –30 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C S11 (dB) TYPICAL PERFORMANCE CHARACTERISTICS VCC = 5V, EN = High, TA = 25°C, fLO = 900MHz, LO and RF Port Return Loss vs RF Frequency 0 Image Rejection vs LO Frequency LO PORT, EN = LOW –10 LO PORT, EN = HIGH, PLO = 0dBm –158 NOISE FLOOR (dBm/Hz) –35 –159 –40 –20 RF PORT, EN = LOW RF PORT, EN = HIGH, PLO = 0dBm –160 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 650 750 850 950 1050 1150 1250 5558 G24 –45 –161 –30 –50 LO PORT, EN = HIGH, PLO = –10dBm RF PORT, EN = HIGH, NO LO 650 750 850 950 1050 1150 1250 5558 G25 –162 550 –55 550 650 750 850 950 1050 1150 1250 5558 G10 –40 550 RF FREQUENCY (MHz) LO FREQUENCY (MHz) FREQUENCY (MHz) Absolute I/Q Gain Imbalance vs LO Frequency 0.2 ABSOLUTE I/Q PHASE IMBALANCE (DEG) ABSOLUTE I/Q GAIN IMBALANCE (dB) 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 0.1 4 Absolute I/Q Phase Imbalance vs LO Frequency –2 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C –4 –6 VOLTAGE GAIN (dB) –8 –10 –12 –14 –16 –18 0 550 650 750 850 950 1050 1150 1250 5558 G12 Voltage Gain vs LO Power 3 2 1 0 550 650 750 850 950 1050 1150 1250 5558 G11 –20 –20 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C –16 –12 –8 –4 0 4 8 5558 G13 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO INPUT POWER (dBm) Output IP3 vs LO Power 24 22 LO FEEDTHROUGH (dBm) –42 20 OIP3 (dBm) 18 16 14 12 10 –20 fBB, 1 = 2MHz fBB, 2 = 2.1MHz –16 –12 –8 –4 0 4 8 5558 G14 LO Feedthrough vs LO Power –40 –35 Image Rejection vs LO Power 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C –44 IMAGE REJECTION (dBc) –40 –45 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C –16 –12 –8 –4 0 4 8 5558 G16 –46 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C –16 –12 –8 –4 0 4 8 5558 G15 –50 –48 –50 –20 –55 –20 LO INPUT POWER (dBm) LO INPUT POWER (dBm) LO INPUT POWER (dBm) 5558fa 5 LT5558 TYPICAL PERFORMANCE CHARACTERISTICS VCC = 5V, EN = High, TA = 25°C, fLO = 900MHz, fRF = 902MHz, PLO = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 2.1VDC, baseband input frequency = 2MHz, I and Q 90° shifted, without image or LO feedthrough nulling. fRF = fBB + fLO (upper side-band selection). PRF(OUT) = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3) RF CW Output Power, HD2 and HD3 vs CW Baseband Voltage and Temperature –10 –20 RF –30 HD2, HD3 (dBc) –40 HD3 –50 HD2 –60 –70 –80 0 1 2 3 –40°C 25°C 85°C 4 5 I AND Q BASEBAND VOLTAGE (VP-P, DIFF) –40 –50 –60 5558 G17 RF CW Output Power, HD2 and HD3 vs CW Baseband Voltage and Supply Voltage 10 0 RF CW OUTPUT POWER (dBm) –10 –20 –30 –10 –20 RF –30 HD2, HD3 (dBc) –40 HD3 –50 HD2 –60 –70 –80 0 4 5 I AND Q BASEBAND VOLTAGE (VP-P, DIFF) 1 2 3 4.5V 5V 5.5V –40 –50 –60 5558 G18 LO Feedthrough to RF Output vs CW Baseband Voltage 10 0 RF CW OUTPUT POWER (dBm) LO FEEDTHROUGH (dBm) –10 –20 –30 –35 –30 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C –40 –45 –50 0 1 2 3 4 5 I AND Q BASEBAND VOLTAGE (VP-P, DIFF) 5558 G19 HD2 = MAX POWER AT fLO + 2 • fBB OR fLO – 2 • fBB HD3 = MAX POWER AT fLO + 3 • fBB OR fLO – 3 • fBB HD2 = MAX POWER AT fLO + 2 • fBB OR fLO – 2 • fBB HD3 = MAX POWER AT fLO + 3 • fBB OR fLO – 3 • fBB Image Rejection vs CW Baseband Voltage –40 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 10 0 PTONE (dBm) IM2, IM3, (dBc) –10 –20 RF Two-Tone Power (Each Tone), IM2 and IM3 vs Baseband Voltage and Temperature 10 0 PTONE (dBm) IM2, IM3, (dBc) RF –10 RF Two-Tone Power (Each Tone), IM2 and IM3 vs Baseband Voltage and Supply Voltage RF IMAGE REJECTIOIN (dBc) –45 –50 fBBI = 2MHz, 2.1MHz, 0° –30 fBBQ = 2MHz, 2.1MHz, 90° –40 –50 –60 –70 IM3 IM2 –40°C 25°C 85°C –20 fBBI = 2MHz, 2.1MHz, 0° fBBQ = 2MHz, 2.1MHz, 90° –30 –40 –50 –60 –70 IM3 IM2 –55 4.5V 5V 5.5V –60 0 4 5 I AND Q BASEBAND VOLTAGE (VP-P, DIFF) 5558 G20 1 2 3 –80 1 10 0.1 I AND Q BASEBAND VOLTAGE (VP-P, DIFF, EACH TONE) 5558 G21 –80 1 10 0.1 I AND Q BASEBAND VOLTAGE (VP-P, DIFF, EACH TONE) 5558 G22 IM2 = POWER AT fLO + 4.1MHz IM3 = MAX POWER AT fLO + 1.9MHz OR fLO + 2.2MHz IM2 = POWER AT fLO + 4.1MHz IM3 = MAX POWER AT fLO + 1.9MHz OR fLO + 2.2MHz 5558fa 6 LT5558 VCC = 5V, EN = High, TA = 25°C, fLO = 900MHz, fRF = 902MHz, PLO = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 2.1VDC, baseband input frequency = 2MHz, I and Q 90° shifted, without image or LO feedthrough nulling. fRF = fBB + fLO (upper side-band selection). PRF(OUT) = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3) Gain Distribution 30 25 PERCENTAGE (%) 20 15 10 5 0 0 –158 –157.5 –157 NOISE FLOOR (dBm/Hz) 5558 G27 TYPICAL PERFORMANCE CHARACTERISTICS Noise Floor Distribution VBB = 400mVP-P 20 –40°C 25°C 85°C PERCENTAGE (%) 40 LO Leakage Distribution –40°C 25°C 85°C VBB = 400mVP-P –40°C 25°C 85°C 15 PERCENTAGE (%) 30 10 20 5 10 0 8 –7.5 –7 –6.5 –6 –5.5 –5 –4.5 –4 –3.5 GAIN (dB) 5558 G26 –50 –48 –46 –44 –42 –40 LO LEAKAGE (dBm) –38 –36 5558 G28 Image Rejection Distribution 20 VBB = 400mVP-P LO FEEDTHROUGH (dBm), IR (dBc) –40°C 25°C 85°C –40 LO Feedthrough and Image Rejection vs Temperature After Calibration at 25°C CALIBRATED WITH PRF = –10dBm fBBI = 2MHz, 0° fBBQ = 2MHz, 90° + ϕCAL LO FEEDTHROUGH –60 15 PERCENTAGE (%) –50 10 5 –70 5 –80 IMAGE REJECTION 0 40dB Dynamic Range LTC5507 100kHz to 1000MHz RF Power Detector LTC5508 300MHz to 7GHz RF Power Detector LTC5509 300MHz to 3GHz RF Power Detector LTC5530 300MHz to 7GHz Precision RF Power Detector LTC5531 300MHz to 7GHz Precision RF Power Detector LTC5532 300MHz to 7GHz Precision RF Power Detector LT5534 50MHz to 3GHz Loq RF Power Detector with 60dB Dynamic Range LTC5536 Precision 600MHz to 7GHz RF Detector with Fast Comparater LT5537 Wide Dynamic Range Loq RF/IF Detector High Speed ADCs LTC2220-1 12-Bit, 185Msps ADC LTC2249 LTC2255 14-Bit, 80Msps ADC 14-Bit, 125Msps ADC 16 Linear Technology Corporation (408) 432-1900 ● FAX: (408) 434-0507 ● 1630 McCarthy Blvd., Milpitas, CA 95035-7417 www.linear.com © LINEAR TECHNOLOGY CORPORATION 2006
LT5558 价格&库存

很抱歉,暂时无法提供与“LT5558”相匹配的价格&库存,您可以联系我们找货

免费人工找货