FEATURES
■ ■ ■ ■
LT5572 1.5GHz to 2.5GHz High Linearity Direct Quadrature Modulator DESCRIPTIO
The LT5572 is a direct I/Q modulator designed for high performance wireless applications, including wireless infrastructure. It allows direct modulation of an RF signal using differential baseband I and Q signals. It supports PHS, GSM, EDGE, TD-SCDMA, CDMA, CDMA2000, W-CDMA and other systems. It may also be configured as an image reject up-converting mixer by applying 90° phase-shifted signals to the I and Q inputs. The high impedance I/Q baseband inputs consist of voltage-to-current converters that in turn drive double-balanced mixers. The outputs of these mixers are summed and applied to an on-chip RF transformer which converts the differential mixer signals to a 50Ω single-ended output. The four balanced I and Q baseband input ports are intended for DC coupling from a source with a common mode voltage level of about 0.5V. The LO path consists of an LO buffer with single-ended input and precision quadrature generators that produce the LO drive for the mixers. The supply voltage range is 4.5V to 5.25V.
, LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.
■ ■ ■ ■
■ ■
■
Direct Conversion from Baseband to RF High Output: –2.5dB Conversion Gain High OIP3: +21.6dBm at 2GHz Low Output Noise Floor at 20MHz Offset: No RF: –158.6dBm/Hz POUT = 4dBm: –152.5dBm/Hz Low Carrier Leakage: –39.4dBm at 2GHz High Image Rejection: –41.2dBc at 2GHz 4-Channel W-CDMA ACPR: –67.7dBc at 2.14GHz Integrated LO Buffer and LO Quadrature Phase Generator 50Ω AC-Coupled Single-Ended LO and RF Ports High Impedance DC Interface to Baseband Inputs with 0.5V Common Mode Voltage 16-Lead QFN 4mm × 4mm Package
APPLICATIO S
■ ■
■
Infrastructure Tx for DCS, PCS and UMTS Bands Image Reject Up-Converters for DCS, PCS and UMTS Bands Low Noise Variable Phase Shifter for 1.5GHz to 2.5GHz Local Oscillator Signals
TYPICAL APPLICATIO
Direct Conversion Transmitter Application
8, 13 14 I-DAC 16 V-I I-CH EN 1 Q-CH V-I 0° 90° 7 Q-DAC BASEBAND GENERATOR 5 BALUN 11 VCC LT5572 5V 100nF ×2 RF = 1.5GHz TO 2.5GHz PA ACPR, AltCPR (dBc) –50
DOWNLINK TEST MODEL 64 DPCH 4-CH ACPR 4-CH AltCPR –60 2-CH ACPR
–70 2-CH AltCPR –80 1-CH AltCPR 2-CH NOISE 4-CH NOISE –90 –30 1-CH NOISE
5572 TA01a
2, 4, 6, 9, 10, 12, 15, 17
3 VCO/SYNTHESIZER
U
U
U
W-CDMA ACPR, AltCPR and Noise vs RF Output Power at 2.14GHz for 1, 2 and 4 Channels
–125 NOISE FLOOR AT 30MHz OFFSET (dBm/Hz) 1-CH ACPR
–135
–145
–155
–25 –15 –10 –5 –20 RF OUTPUT POWER PER CARRIER (dBm)
5572 TA01b
–165
5572f
1
LT5572 ABSOLUTE
(Note 1)
AXI U RATI GS
PACKAGE/ORDER I FOR ATIO
TOP VIEW BBMI BBPI GND VCC
BBMQ
GND
BBPQ
UF PACKAGE 16-LEAD (4mm × 4mm) PLASTIC QFN TJMAX = 125°C, θJA = 37°C/W EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB
ORDER PART NUMBER LT5572EUF
VCC
Supply Voltage .........................................................5.5V Common Mode Level of BBPI, BBMI and BBPQ, BBMQ.....................................................0.6V Voltage on Any Pin Not to Exceed ........................–500mV to (VCC + 500mV) Operating Ambient Temperature Range (Note 2).................................................... –40°C to 85°C Storage Temperature Range................... –65°C to 125°C
16 15 14 13 EN 1 GND 2 LO 3 GND 4 5 6 7 8 17 12 GND 11 RF 10 GND 9 GND
UF PART MARKING 5572
Order Options Tape and Reel: Add #TR Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF Lead Free Part Marking: http://www.linear.com/leadfree/ Consult LTC Marketing for parts specified with wider operating temperature ranges.
VCC = 5V, EN = High, TA = 25°C, fLO = 2GHz, fRF = 2002MHz, PLO = 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, baseband input frequency = 2MHz, I and Q 90° shifted (upper sideband selection). PRF(OUT) = –10dBm, unless otherwise noted. (Note 3)
SYMBOL fRF S22(ON) S22(OFF) NFloor PARAMETER RF Frequency Range RF Output Return Loss RF Output Return Loss RF Output Noise Floor CONDITIONS –3dB Bandwidth –1dB Bandwidth EN = High (Note 6) EN = Low (Note 6) No Input Signal (Note 8) POUT = 4dBm (Note 9) POUT = 4dBm (Note 10) 20 • Log (VOUT(50Ω)/VIN(DIFF) I or Q) 1VPP(DIFF) CW Signal, I and Q (Note 17) (Note 7) (Notes 13, 14) (Notes 13, 15) (Note 16) EN = High, PLO = 0dBm (Note 16) EN = Low, PLO = 0dBm (Note 16) MIN TYP 1.5 to 2.5 1.7 to 2.15 –13.5 –12.5 –158.6 –152.5 –152.2 –2.5 1.4 –29.5 9.3 53.2 21.6 –41.2 –39.4 –58 MAX UNITS GHz GHz dB dB dBm/Hz dBm/Hz dBm/Hz dB dBm dB dBm dBm dBm dBc dBm dBm RF Output (RF)
ELECTRICAL CHARACTERISTICS
GV POUT G3LO VS LO OP1dB OIP2 OIP3 IR LOFT
Conversion Voltage Gain Output Power 3 • LO Conversion Gain Difference Output 1dB Compression Output 2nd Order Intercept Output 3rd Order Intercept Image Rejection Carrier Leakage (LO Feedthrough)
2
U
5572f
W
U
U
WW
W
LT5572
VCC = 5V, EN = High, TA = 25°C, fLO = 2GHz, fRF = 2002MHz, PLO = 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, baseband input frequency = 2MHz, I and Q 90° shifted (upper sideband selection). PRF(OUT) = –10dBm, unless otherwise noted. (Note 3)
SYMBOL LO Input (LO) fLO PLO S11(ON) S11(OFF) NFLO GLO IIP3LO BWBB VCMBB RIN IDC(IN) PLOBB IP1dB ΔGI/Q ΔϕI/Q VCC ICC(ON) ICC(OFF) tON tOFF Enable Sleep LO Frequency Range LO Input Power LO Input Return Loss LO Input Return Loss LO Input Referred Noise Figure LO to RF Small-Signal Gain LO Input 3rd Order Intercept Baseband Bandwidth DC Common Mode Voltage Differential Input Resistance Baseband Static Input Current Carrier Feedthrough to BB Input 1dB Compression Point I/Q Absolute Gain Imbalance I/Q Absolute Phase Imbalance Supply Voltage Supply Current Supply Current, Sleep Mode Turn-On Time Turn-Off Time Input High Voltage Input High Current Input Low Voltage EN = High EN = 0V EN = Low to High (Note 11) EN = High to Low (Note 12) EN = High EN = 5V EN = Low 1 230 0.5 0.25 1.3 4.5 (Note 4) POUT = 0 (Note 4) Differential Peak-to-Peak (Notes 7, 18) EN = High, PLO = 0dBm (Note 6) EN = Low (Note 6) at 2GHz (Note 5) at 2GHz (Note 5) at 2GHz (Note 5) –3dB Bandwidth Externally Applied (Note 4) –10 1.5 to 2.5 0 –15 –5.3 14.5 25 –0.5 460 0.5 90 –20 –39 2.8 0.07 0.9 5 120 5.25 145 50 0.6 5 GHz dBm dB dB dB dB dBm MHz V kΩ µA dBm VP-P(DIFF) dB Deg V mA µA µs µs V µA V PARAMETER CONDITIONS MIN TYP MAX UNITS
ELECTRICAL CHARACTERISTICS
Baseband Inputs (BBPI, BBMI, BBPQ, BBMQ)
Power Supply (VCC)
Enable (EN), Low = Off, High = On
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: Specifications over the –40°C to 85°C temperature range are assured by design, characterization and correlation with statistical process controls. Note 3: Tests are performed as shown in the configuration of Figure 7. Note 4: At each of the four baseband inputs BBPI, BBMI, BBPQ and BBMQ. Note 5: VBBPI – VBBMI = 1VDC, VBBPQ – VBBMQ = 1VDC. Note 6: Maximum value within –1dB bandwidth. Note 7: An external coupling capacitor is used in the RF output line. Note 8: At 20MHz offset from the LO signal frequency. Note 9: At 20MHz offset from the CW signal frequency. Note 10: At 5MHz offset from the CW signal frequency.
Note 11: RF power is within 10% of final value. Note 12: RF power is at least 30dB lower than in the ON state. Note 13: Baseband is driven by 2MHz and 2.1MHz tones. Drive level is set in such a way that the two resulting RF tones are –10dBm each. Note 14: IM2 measured at LO frequency + 4.1MHz Note 15: IM3 measured at LO frequency + 1.9MHz and LO frequency + 2.2MHz. Note 16: Amplitude average of the characterization data set without image or LO feedthrough nulling (unadjusted). Note 17: The difference in conversion gain between the spurious signal at f = 3 • LO – BB versus the conversion gain of the desired signal at f = LO + BB for BB = 2MHz and LO = 2GHz. Note 18: The input voltage corresponding to the output P1dB.
5572f
3
LT5572 TYPICAL PERFOR A CE CHARACTERISTICS
VCC = 5V, EN = High, TA = 25°C, fLO = 2.14GHz, PLO = 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, baseband input frequency fBB = 2MHz, I and Q 90° shifted, without image or LO feedthrough nulling. fRF = fBB + fLO (upper sideband selection). PRF(OUT) = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3) RF Output Power vs LO Frequency at 1VP-P Differential Baseband Drive
4 85°C SUPPLY CURRENT (mA) 130 RF OUTPUT POWER (dBm) 2 VOLTAGE GAIN (dB) 0 –2 –4 –6 100 4.5 –8 1.3 0 –2 –4 –6 –8 –10 –12 1.3
Supply Current vs Supply Voltage
140
120
25°C
110
–40°C
5 SUPPLY VOLTAGE (V)
Output IP3 vs LO Frequency
26 24 22 OIP3 (dBm) OIP2 (dBm) 20 18 16 14 12 10 1.3 1.5 1.7 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 1.9 2.1 2.3 LO FREQUENCY (GHz) 2.5 2.7 fBB1 = 2MHz fBB2 = 2.1MHz 65
55
OP1dB (dBm)
LO Feedthrough to RF Output vs LO Frequency
–35 –20 –25 LO FEEDTHROUGH (dBm) –40 P(2 • LO) (dBm) –30
P(3 • LO) (dBm)
–45
–50 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 1.3 1.5 1.7 1.9 2.1 2.3 LO FREQUENCY (GHz) 2.5 2.7
–55
–60
4
UW
5572 G01 5572 G04 5572 G07
Voltage Gain vs LO Frequency
5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 1.5 2.3 1.7 1.9 2.1 LO FREQUENCY (GHz) 2.5 2.7
5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 1.5 2.3 1.7 1.9 2.1 LO FREQUENCY (GHz) 2.5 2.7
5.5
5572 G02
5572 G03
Output IP2 vs LO Frequency
fIM2 = fBB1 + fBB2 + fLO fBB1 = 2MHz fBB2 = 2.1MHz 12 10 8 6 4 2
Output 1dB Compression vs LO Frequency
60
50
45 1.3
5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 1.5 1.7 1.9 2.1 2.3 LO FREQUENCY (GHz) 2.5 2.7
0 1.3
5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 1.5 2.3 1.7 1.9 2.1 LO FREQUENCY (GHz) 2.5 2.7
5572 G05
5572 G06
2 • LO Leakage to RF Output vs 2 • LO Frequency
–30 –35 –40 –45 –50 –55 –60 –65
3 • LO Leakage to RF Output vs 3 • LO Frequency
–35 –40 –45 –50 –55 –60 2.6 3 3.4 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 3.8 4.2 4.6 2 • LO FREQUENCY (GHz) 5 5.4
5572 G08
–70 3.9
5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 4.5 5.1 5.7 6.3 6.9 7.5 3 • LO FREQUENCY (GHz) 8.1
5572 G09
5572f
LT5572 TYPICAL PERFOR A CE CHARACTERISTICS
VCC = 5V, EN = High, TA = 25°C, fLO = 2.14GHz, PLO = 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, baseband input frequency fBB = 2MHz, I and Q 90° shifted, without image or LO feedthrough nulling. fRF = fBB + fLO (upper sideband selection). PRF(OUT) = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3) Noise Floor vs RF Frequency
–156 fLO = 2GHz (FIXED) –25 –30 IMAGE REJECTION (dBc) –35 S11 (dB) –20 –40 –45 –50 –55 1.3 LO PORT, EN = HIGH, PLO = –10dBm RF PORT, EN = HIGH, NO LO RF PORT, EN = LO RF PORT, EN = HIGH, PLO = 0dBm 2.5 2.7
–158 NOISE FLOOR (dBm/Hz)
–160
–162 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 1.3 1.5 1.7 1.9 2.1 2.3 RF FREQUENCY (GHz) 2.5 2.7
–164
–166
Absolute I/Q Gain Imbalance vs LO Frequency
0.2 ABSOLUTE I/Q GAIN IMBALANCE (dB) ABSOLUTE I/Q PHASE IMBALANCE (DEG) 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 5
VOLTAGE GAIN (dB)
0.1
0 1.3 1.5 1.7 1.9 2.1 2.3 LO FREQUENCY (GHz) 2.5 2.7
Output IP3 vs LO Power
22 20 LO FEEDTHROUGH (dBm) 18 16 OIP3 (dBm) 14 12 10 8 6 4 –20 –16 fBB1 = 2MHz fBB2 = 2.1MHz 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C –12 –8 –4 0 LO INPUT POWER (dBm) 4 8 –30 –35 –40 –45 –50 –55
IMAGE REJECTION (dBc)
UW
5572 G10 5572 G16
Image Rejection vs LO Frequency
0
LO and RF Port Return Loss vs RF Frequency
LO PORT, EN = LOW –10 LO PORT, EN = HIGH, PLO = 0dBm
–30
5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 1.5 1.7 1.9 2.1 2.3 LO FREQUENCY (GHz) 2.5 2.7
–40
–50 1.3 1.5
1.7 1.8 2.1 2.3 RF FREQUENCY (GHz)
5572 G11
5572 G12
Absolute I/Q Phase Imbalance vs LO Frequency
5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C –2 –4 –6 –8 –10 –12 –14 –16 0 1.3 1.5 1.7 1.9 2.1 2.3 LO FREQUENCY (GHz) 2.5 2.7
Voltage Gain vs LO Power
4
3
2
1
–18 –20 –16
5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C –12 –4 0 –8 LO INPUT POWER (dBm) 4 8
5572 G15
5572 G13
5572 G14
LO Feedthrough vs LO Power
–25 –30 –35 –40 –45 –50
Image Rejection vs LO Power
5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C
–60 –20
5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C –16 –4 0 –12 –8 LO INPUT POWER (dBm) 4 8
–55 –20
–16
–4 0 –12 –8 LO INPUT POWER (dBm)
4
8
5572 G17
5572 G18
5572f
5
LT5572 TYPICAL PERFOR A CE CHARACTERISTICS
RF CW Output Power, HD2 and HD3 vs CW Baseband Voltage and Temperature
–10 RF –20 HD3 –30 HD2, HD3 (dBc) –40 –50 –60 –70 –80 0 1 HD2 –10 –20 0 –20 HD3 –30 HD2, HD3 (dBc) –40 –50 –60 –70 –80 0 1 HD2 –10 –20 RF CW OUTPUT POWER (dBm) 10 –10 RF 0 RF CW OUTPUT POWER (dBm) LO FEEDTHROUGH (dBm) –35
VCC = 5V, EN = High, TA = 25°C, fLO = 2.14GHz, PLO = 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, baseband input frequency fBB = 2MHz, I and Q 90° shifted, without image or LO feedthrough nulling. fRF = fBB + fLO (upper sideband selection). PRF(OUT) = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3) RF CW Output Power, HD2 and HD3 vs CW Baseband and Supply Voltage
10 –30
25°C –30 85°C –40°C –40 HD2 = MAX POWER AT fLO + 2 • fBB OR fLO – 2 • fBB –50 HD3 = MAX POWER AT fLO + 3 • fBB OR fLO – 3 • fBB –60 2 3 5 4
5572 G19
I AND Q BASEBAND VOLTAGE (VP-P,DIFF)
Image Rejection vs CW Baseband Voltage
–35 10 0 IMAGE REJECTION (dBc) –40 PLOAD (dBm) IM2, IM3 (dBc) –10
PLOAD (dBm) IM2, IM3 (dBc)
–45
–50
–55
5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 0 1 3 4 5 2 I AND Q BASEBAND VOLTAGE (VP-P,DIFF)
5572 G22
Voltage Gain Distribution
35 30 PERCENTAGE (%) 25 20 15 10 5 0 –3.2 –2.8 –2.4 –2.0 –1.6 VOLTAGE GAIN (dB) –1.2
5572 G25
–40°C 25°C 85°C
PERCENTAGE (%)
6
UW
LO Feedthrough to RF Output vs CW Baseband Voltage
–40
–30 5V 5.5V 4.5V –40 HD2 = MAX POWER AT fLO + 2 • fBB OR fLO – 2 • fBB –50 HD3 = MAX POWER AT fLO + 3 • fBB OR fLO – 3 • fBB –60 2 3 5 4
5572 G20
–45 5V, –40°C 5V, 25°C 5V, 85°C 4.5V, 25°C 5.5V, 25°C 0 1 3 4 5 2 I AND Q BASEBAND VOLTAGE (VP-P,DIFF)
5572 G21
–50
–55
I AND Q BASEBAND VOLTAGE (VP-P,DIFF)
RF 2-Tone Power (Each Tone), IM2 and IM3 vs Baseband Voltage and Temperature
25°C 85°C –40°C RF 10 0 –10
RF 2-Tone Power (Each Tone), IM2 and IM3 vs Baseband and Supply Voltage
5V 5.5V 4.5V RF
–20 IM2 = POWER AT fLO + 4.1MHz –30 IM3 = MAX POWER AT fLO + 1.9MHz –40 OR fLO + 2.2MHz –50 –60 –70
IM3
IM3 –20 IM2 = POWER AT fLO + 4.1MHz –30 IM3 = MAX POWER AT fLO + 1.9MHz –40 OR fLO + 2.2MHz –50 –60 –70 fBBI = 2MHz, 2.1MHz, 0° fBBQ = 2MHz, 2.1MHz, 90°
IM2
IM2
fBBI = 2MHz, 2.1MHz, 0° fBBQ = 2MHz, 2.1MHz, 90°
0.1 1 10 I AND Q BASEBAND VOLTAGE (VP-P,DIFF, EACH TONE)
5572 G23
1 10 0.1 I AND Q BASEBAND VOLTAGE (VP-P,DIFF, EACH TONE)
5572 G24
Noise Floor Distribution
fLO = 2GHz 40 35 –40°C 25°C 85°C 30 fLO = 2GHz fNOISE = 2.02GHz 25 20 15 10 5 0 –159.4 –159 –158.6 –158.2 –157.8 5572 G26 NOISE FLOOR (dBm/Hz)
5572f
LT5572 TYPICAL PERFOR A CE CHARACTERISTICS
VCC = 5V, EN = High, TA = 25°C, fLO = 2.14GHz, PLO = 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, baseband input frequency fBB = 2MHz, I and Q 90° shifted, without image or LO feedthrough nulling. fRF = fBB + fLO (upper sideband selection). PRF(OUT) = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3) LO Leakage Distribution
45 40 35 PERCENTAGE (%) 30 25 20 15 10 5 0