0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LT5579

LT5579

  • 厂商:

    LINER

  • 封装:

  • 描述:

    LT5579 - Dual 600MHz to 1.7GHz High Dynamic Range Downconverting Mixer - Linear Technology

  • 数据手册
  • 价格&库存
LT5579 数据手册
Electrical Specifications Subject to Change FeaTures n n n n n n n n n n n n n n LTC5590 Dual 600MHz to 1.7GHz High Dynamic Range Downconverting Mixer DescripTion The LTC®5590 is part of a family of dual-channel high dynamic range, high gain downconverting mixers covering the 600MHz to 4GHz RF frequency range. The LTC5590 is optimized for 600MHz to 1.7GHz RF applications. The LO frequency must fall within the 700MHz to 1.5GHz range for optimum performance. A typical application is a LTE or GSM receiver with a 700MHz to 915MHz RF input and high side LO. The LTC5590’s high conversion gain and high dynamic range enable the use of lossy IF filters in high selectivity receiver designs, while minimizing the total solution cost, board space and system-level variation. A low current mode is provided for additional power savings and each of the mixer channels has independent shutdown control. High Dynamic Range Dual Downconverting Mixer Family PART NUMBER LTC5590 LTC5591 LTC5592 LTC5593 RF RANGE 600MHz to 1.7GHz 1.3GHz to 2.3GHz 1.6GHz to 2.7GHz 2.3GHz to 4GHz LO RANGE 700MHz to 1.5GHz 1.4GHz to 2.1GHz 1.7GHz to 2.5GHz 2.4GHz to 3.6GHz Conversion Gain: 8.7dB at 900MHz IIP3: 26dBm at 900MHz Noise Figure: 9.7dB at 900MHz 15.6dB NF Under 5dBm Blocking High Input P1dB; 14.1dBm at 5V 53dB Channel-to-Channel Isolation 1.25W Power Consumption at 3.3V Low Current Mode for 12 >12 300Ω||2.3pF 0 17 53 6 MAX UNITS MHz MHz MHz MHz dB dB R||C dBm dBm dBm dB dB dB High Side LO Downmixer Application: ISEL = Low, RF = 700MHz to 1100MHz, IF = 190MHz, fLO = fRF + fIF PARAMETER Conversion Gain CONDITIONS RF = 700MHz RF = 900MHz RF = 1100MHz RF = 900 ±30MHz, LO = 1090MHz, IF = 190 ±30MHz TC = –40ºC to 105ºC, RF = 1950MHz RF = 700MHz RF = 900MHz RF = 1100MHz RF = 700MHz RF = 900MHz RF = 1100MHz TBD MIN TBD TYP 8.6 8.7 8.5 ±0.25 –0.006 25.3 26.0 24.8 9.3 9.7 9.9 TBD MAX UNITS dB dB dB dB dB/°C dBm dBm dBm dB dB dB Conversion Gain Flatness Conversion Gain vs Temperature Input 3rd Order Intercept SSB Noise Figure 5590p 3 LTC5590 ac elecTrical characTerisTics PARAMETER SSB Noise Figure Under Blocking CONDITIONS fRF = 900MHz, fLO = 1090MHz, fBLOCK = 800MHz PBLOCK = 5dBm PBLOCK = 10dBm fRF = 995MHz at –10dBm, fLO = 1090MHz, fIF = 190MHz fRF = 1026.67MHz at –10dBm, fLO = 1090MHz, fIF = 190MHz fRF = 900MHz, VCCIF = 3.3V fRF = 900MHz, VCCIF = 5V VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, TC = 25°C, PLO = 0dBm, PRF = –3dBm (∆f = 2MHz for two tone IIP3 tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3) High Side LO Downmixer Application: ISEL = Low, RF = 700MHz to 1100MHz, IF = 190MHz, fLO = fRF + fIF MIN TYP 15.6 21.2 –77 –77 10.7 14.1 MAX UNITS dB dB dBc dBc dBm dBm 2LO-2RF-Output Spurious Product (fRF = fLO – fIF/2) 3LO-3RF Output Spurious Product (fRF = fLO – fIF/3) Input 1dB Compression Low Power Mode, High Side LO Downmixer Application: ISEL = High, RF = 700MHz to 1100MHz, IF = 190MHz, fLO = fRF + fIF PARAMETER Conversion Gain Input 3rd Order Intercept SSB Noise Figure Input 1dB Compression CONDITIONS RF = 900MHz RF = 900MHz RF = 900MHz RF = 900MHz, VCCIF = 3.3V RF = 900MHz, VCCIF = 5V MIN TYP 7.7 21.5 9.9 10.4 10.9 MAX UNITS dB dBm dB dBm dBm Low Side LO Downmixer Application: ISEL = Low, RF = 1100MHz to 1600MHz, IF = 190MHz, fLO = fRF – fIF PARAMETER Conversion Gain CONDITIONS RF = 1200MHz RF = 1400MHz RF = 1600MHz RF = 1600 ±30MHz, LO = 1790MHz, IF = 190 ±30MHz TC = –40ºC to 105ºC, RF = 1600MHz RF = 1200MHz RF = 1400MHz RF = 1600MHz RF = 1200MHz RF = 1400MHz RF = 1600MHz fRF = 1400MHz, fLO = 1210MHz, fBLOCK = 1500MHz PBLOCK = 5dBm PBLOCK = 10dBm fRF = 1305MHz at –10dBm, fLO = 1210MHz, fIF = 190MHz fRF = 1273.33MHz at –10dBm, fLO = 1210MHz, fIF = 190MHz RF = 1400MHz, VCCIF = 3.3V RF = 1400MHz, VCCIF = 5V MIN TYP 8.6 8.4 7.7 ±0.22 –0.008 27.5 27.3 27.2 9.9 9.7 10.4 15.0 20.8 –72 –72 11.0 14.4 MAX UNITS dB dB dB dB dB/°C dBm dBm dBm dB dB dB dB dB dBc dBc dBm dBm Conversion Gain Flatness Conversion Gain vs Temperature Input 3rd Order Intercept SSB Noise Figure SSB Noise Figure Under Blocking 2RF-2LO Output Spurious Product (fRF = fLO + fIF/2) 3RF-3LO Output Spurious Product (fRF = fLO + fIF/3) Input 1dB Compression Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTC5590 is guaranteed functional over the case operating temperature range of –40°C to 105°C. (θJC = 7°C/W) Note 3: SSB Noise Figure measured with a small-signal noise source, bandpass filter and 6dB matching pad on RF input, bandpass filter and 6dB matching pad on the LO input, and no other RF signals applied. Note 4: Channel A to channel B isolation is measured as the relative IF output power of channel B to channel A, with the RF input signal applied to channel A. The RF input of channel B is 50Ω terminated and both mixers are enabled. 5590p 4 LTC5590 High Side LO VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, ISEL = Low, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain and IIP3 vs RF Frequency 28 26 24 22 IIP3 (dBm) 20 18 16 14 12 10 8 6 600 700 GC 800 900 1000 1100 RF FREQUENCY (MHz) IIP3 –40°C 25°C 85°C 105°C 17 16 15 14 12 11 10 9 8 7 6 1200 SSB NF (dB) 13 GC (dB) 16 15 14 13 12 11 10 9 8 7 6 600 700 800 900 1000 1100 RF FREQUENCY (MHz) 1200 30 600 700 800 900 1000 1100 RF FREQUENCY (MHz) 1200 Typical ac perForMance characTerisTics SSB NF vs RF Frequency –40°C 25°C 85°C 105°C Channel Isolation vs RF Frequency 60 55 50 45 40 35 ISOLATION (dB) 5590 G01 5590 G02 5590 G03 700Mhz Conversion Gain, IIP3 and NF vs LO Input Power 28 26 24 GC (dB), IIP3 (dBm) 22 20 18 16 14 12 10 8 6 –6 –4 4 –2 2 0 LO INPUT POWER (dBm) 6 5590 G04 900MHz Conversion Gain, IIP3 and NF vs LO Input Power 22 20 18 1100MHz Conversion Gain, IIP3 and NF vs LO Input Power 22 20 18 GC (dB), IIP3 (dBm) 28 26 24 22 20 18 16 14 12 10 8 6 –6 –4 4 –2 2 0 LO INPUT POWER (dBm) 6 5590 G06 28 26 24 GC (dB), IIP3 (dBm) 22 20 18 16 14 12 10 8 6 –6 –4 4 –2 2 0 LO INPUT POWER (dBm) 6 5590 G05 22 20 18 IIP3 –40°C 25°C 85°C 16 14 12 10 NF GC 8 6 4 2 0 SSB NF (dB) IIP3 –40°C 25°C 85°C 16 14 12 10 8 6 4 2 0 SSB NF (dB) IIP3 –40°C 25°C 85°C 16 14 12 10 8 6 4 2 0 SSB NF (dB) NF GC NF GC Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply) 28 26 24 GC (dB), IIP3 (dBm) 22 20 18 16 14 12 10 8 6 3 3.5 3.2 3.1 3.4 3.3 VCC, VCCIF SUPPLY VOLTAGE (V) GC NF IIP3 –40°C 25°C 85°C 22 20 18 16 14 12 10 8 6 4 2 0 3.6 5590 G07 Conversion Gain, IIP3 and NF vs Supply Voltage (Dual Supply) 28 26 24 GC (dB), IIP3 (dBm) 22 20 18 16 14 12 10 8 6 3 4 3.5 5 4.5 VCCIF SUPPLY VOLTAGE (V) GC NF IIP3 –40°C 25°C 85°C 22 20 GC (dB), IIP3 (dBm), P1dB (dBm) 18 16 14 12 10 8 6 4 2 0 5.5 5590 G08 Conversion Gain, IIP3 and RF Input P1dB vs Temperature 28 26 24 22 20 18 16 14 12 10 8 6 –40 GC 20 –10 80 50 CASE TEMPERATURE (°C) 110 5590 G09 IIP3 VCCIF = 3.3V VCCIF = 5V SSB NF (dB) SSB NF (dB) P1dB 5590p 5 LTC5590 High Side LO VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, ISEL = Low, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1. 2-Tone IF Output Power, IM3 and IM5 vs RF Input Power 20 10 OUTPUT POWER/TONE (dBm) 0 –10 –20 –30 –40 –50 –60 –70 –80 –12 –6 –9 3 –3 0 RF INPUT POWER (dBm/TONE) 6 5590 G10 Typical ac perForMance characTerisTics Single-Tone IF Output Power, 2 × 2 and 3 × 3 Spurs vs RF Input Power 20 10 OUTPUT POWER (dBm) 0 –10 –20 –30 –40 –50 –60 –70 –80 –12 –9 LO = 1090MHz PLO = 0dBm 3LO-3RF RF = 1026.67MHz 2 × 2 and 3 × 3 Spur Suppression vs LO Input Power –60 –65 RF = 900MHz PIN = –10dBm LO = 1090MHz IFOUT RF = 900MHz RELATIVE SPUR LEVEL (dBc) IFOUT –70 –75 2LO-2RF RF = 995MHz IM3 IM5 2LO-2RF RF = 995MHz –80 3LO-3RF RF = 1026.67MHz –6 0 –3 RF INPUT POWER (dBm) 3 6 5590 G11 –85 –6 –3 3 0 LO INPUT POWER (dBm) 6 5590 G12 SSB Noise Figure vs RF Blocker Power 24 22 20 SSB NF (dBc) 18 16 14 12 10 8 –20 –15 5 –10 –5 0 RF BLOCKER POWER (dBm) 10 5590 G13 LO Leakage vs LO Frequency 0 –10 LO LEAKAGE (dBm) –20 LO-IF –30 –40 –50 –60 800 LO-RF 70 60 50 ISOLATION (dB) 40 30 RF Isolation vs RF Frequency RF-LO PLO = –3dBm PLO = 0dBm PLO = 3dBm PLO = 6dBm RF = 900MHz BLOCKER = 800MHz RF-IF 20 10 0 600 700 800 900 1000 1100 RF FREQUENCY (MHz) 1200 900 1000 1100 1200 1300 LO FREQUENCY (MHz) 1400 5590 G14 5590 G15 TBD TBD TBD 5590p 6 LTC5590 Low Power Mode, High Side LO VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, ISEL = High, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain and IIP3 vs RF Frequency 23 22 21 20 IIP3 (dBm) 19 18 17 16 15 14 13 12 600 700 800 900 1000 1100 RF FREQUENCY (MHz) GC IIP3 –40°C 25°C 85°C 105°C 16 15 14 13 11 10 9 8 7 6 6 600 700 800 900 1000 1100 RF FREQUENCY (MHz) 1200 5 1200 8 SSB NF (dB) 12 GC (dB) 12 14 16 Typical ac perForMance characTerisTics SSB NF vs RF Frequency –40°C 25°C 85°C 105°C 2-Tone IF Output Power, IM3 and IM5 vs RF Input Power 20 10 OUTPUT POWER (dBm/tone) 0 –10 –20 –30 –40 –50 –60 –70 –80 –12 3 –6 –9 0 –3 RF INPUT POWER (dBm/tone) 6 5590 G21 IFOUT RF1 = 899MHz RF2 = 901MHz LO = 1090MHz IM3 10 IM5 5590 G19 5590 G20 700MHz Conversion Gain, IIP3 and NF vs LO Input Power 24 22 20 GC (dB), IIP3 (dBm) 18 16 14 12 10 8 6 –6 GC NF –40°C 25°C 85°C IIP3 20 18 16 GC (dB), IIP3 (dBm) 14 12 10 8 6 4 –4 4 –2 2 0 LO INPUT POWER (dBm) 6 5590 G22 900MHz Conversion Gain, IIP3 and NF vs LO Input Power 24 22 20 18 16 14 12 10 8 6 –6 GC NF SSB NF (dB) IIP3 –40°C 25°C 85°C 20 18 16 14 12 10 8 6 4 –4 4 –2 2 0 LO INPUT POWER (dBm) 6 5590 G23 1100MHz Conversion Gain, IIP3 and NF vs LO Input Power 24 22 20 GC (dB), IIP3 (dBm) 18 16 14 12 10 8 6 –6 GC –40°C 25°C 85°C NF SSB NF (dB) IIP3 20 18 16 14 12 10 8 6 4 –4 4 –2 2 0 LO INPUT POWER (dBm) 6 5590 G24 SSB NF (dB) 2 2 2 Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply) 24 22 20 GC (dB), IIP3 (dBm) 18 16 14 12 10 8 6 3 GC NF IIP3 –40°C 25°C 85°C 20 18 16 14 12 10 8 6 4 3.5 3.2 3.1 3.4 3.3 VCC, VCCIF Supply Voltage (V) 2 3.6 5590 G25 Conversion Gain, IIP3 and NF vs Supply Voltage (Dual Supply) 24 22 20 GC (dB), IIP3 (dBm) 18 16 14 12 10 8 6 3 GC NF IIP3 –40°C 25°C 85°C SSB NF (dB) 20 18 16 14 12 10 8 6 4 5 4 3.5 4.5 VCC, VCCIF Supply Voltage (V) 2 5.5 5590 G26 Conversion Gain, IIP3 and RF Input P1dB vs Temperature 24 22 GC (dB), IIP3 (dBm), P1dB (dBm) 20 18 16 14 12 10 8 6 –40 P1dB GC 80 20 –10 50 CASE TEMPERATURE (°C) 110 5590 G27 IIP3 VCCIF = 3.3V VCCIF = 5V SSB NF (dB) 5590p 7 LTC5590 Low Side LO VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, ISEL = Low, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests, ∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain and IIP3 vs RF Frequency 30 28 26 24 IIP3 (dBm) 22 20 18 16 14 12 10 8 1100 1200 1300 1400 1500 1600 RF FREQUENCY (MHz) GC IIP3 –40°C 25°C 85°C 105°C 16 15 14 13 SSB NF (dB) 12 11 10 9 8 7 6 1700 GC (dB) 16 15 14 13 12 11 10 9 8 7 6 1100 1200 1300 1400 1500 1600 RF FREQUENCY (MHz) 1700 Typical ac perForMance characTerisTics SSB NF vs RF Frequency –40°C 25°C 85°C 105°C SSB Noise Figure vs RF Blocker Level 24 22 20 SSB NF (dB) 18 16 14 12 10 8 –20 –15 0 5 –10 –5 RF BLOCKER LEVEL (dBm) 10 5590 G30 PLO = –3dBm PLO = 0dBm PLO = 3dBm PLO = 6dBm RF = 1400MHz BLOCKER = 1500MHz 5590 G28 5590 G29 1200MHz Conversion Gain, IIP3 and NF vs LO Input Power 30 26 GC (dB), IIP3 (dBm) 22 18 14 10 6 GC NF 24 20 GC (dB), IIP3 (dBm) –40°C 25°C 16 85°C 12 8 4 0 30 26 22 18 14 10 6 1400MHz Conversion Gain, IIP3 and NF vs LO Input Power 24 20 GC (dB), IIP3 (dBm) –40°C 25°C 85°C 16 SSB NF (dB) 12 8 4 0 30 26 22 18 14 10 6 1600MHz Conversion Gain, IIP3 and NF vs LO Input Power 24 20 –40°C 25°C 85°C 16 SSB NF (dB) 12 8 4 0 IIP3 IIP3 IIP3 SSB NF (dB) NF GC NF GC –6 –4 2 –2 0 LO INPUT POWER (dBm) 4 6 5590 G33 –6 –4 2 –2 0 LO INPUT POWER (dBm) 4 6 5590 G31 –6 –4 2 –2 0 LO INPUT POWER (dBm) 4 6 5590 G32 Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply) 30 26 GC (dB), IIP3 (dBm) 22 18 14 10 6 GC 24 20 GC (dB), IIP3 (dBm) –40°C 25°C 16 85°C 12 8 4 0 3.6 5590 G34 Conversion Gain, IIP3 and NF vs Supply Voltage (Dual Supply) 30 26 22 18 14 10 6 GC 24 GC (dB), IIP3 (dBm), P1dB (dBm) 20 –40°C 25°C 85°C 16 SSB NF (dB) 12 8 4 0 5.5 5590 G35 Conversion Gain, IIP3 and RF Input P1dB vs Temperature 30 26 22 18 14 10 6 –40 GC 50 80 –10 20 CASE TEMPERATURE (°C) 110 5590 G36 IIP3 IIP3 IIP3 VCCIF = 3.3V VCCIF = 5V SSB NF (dB) NF NF P1dB 3 3.4 3.5 3.1 3.2 3.3 VCC, VCCIF SUPPLY VOLTAGE (V) 3 4.5 5 3.5 4 VCCIF SUPPLY VOLTAGE (V) 5590p 8 LTC5590 Typical Dc perForMance characTerisTics ISEL = Low VCC Supply Current vs Supply Voltage (Mixer and LO Amplifier) 196 194 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 192 190 188 186 184 182 180 3 3.1 3.3 3.4 3.5 3.2 VCC SUPPLY VOLTAGE (V) 3.6 5590 G37 ENA = ENB = High, test circuit shown in Figure 1. VCCIF Supply Current vs Supply Voltage (IF Amplifier) 260 240 VCC = 3.3V 480 105°C SUPPLY CURRENT (mA) 85°C 460 440 420 400 380 360 340 320 300 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 VCCIF SUPPLY VOLTAGE (V) 5.4 Total Supply Current vs Temperature (VCC + VCCIF) VCCIF = VCC 105°C 85°C 220 200 180 160 140 120 VCC = 3.3V, VCCIF = 5V (DUAL SUPPLY) 25°C –40°C 25°C VCC = VCCIF = 3.3V (SINGLE SUPPLY) –40°C 280 –40 20 50 80 –10 CASE TEMPERATURE (°C) 110 5590 G39 5590 G38 ISEL = High VCC Supply Current vs Supply Voltage (Mixer and LO Amplifier) 130 128 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 126 124 122 120 118 116 3 3.1 3.3 3.4 3.5 3.2 VCC SUPPLY VOLTAGE (V) 3.6 5590 G40 VCCIF Supply Current vs Supply Voltage (IF Amplifier) 170 VCC = 3.3V 105°C SUPPLY CURRENT (mA) 85°C 25°C 110 –40°C 90 70 300 280 260 240 220 200 Total Supply Current vs Temperature (VCC + VCCIF) VCCIF = VCC 105°C 85°C 150 130 VCC = 3.3V, VCCIF = 5V (DUAL SUPPLY) 25°C –40°C VCC = VCCIF = 3.3V (SINGLE SUPPLY) 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 VCCIF SUPPLY VOLTAGE (V) 5.4 180 –40 20 50 80 –10 CASE TEMPERATURE (°C) 110 5590 G42 5590 G41 5590p 9 LTC5590 pin FuncTions RFA, RFB (Pins 1, 6): Single-Ended RF Inputs for Channels A and B. These pins are internally connected to the primary sides of the RF input transformers, which have low DC resistance to ground. Series DC-blocking capacitors should be used to avoid damage to the integrated transformer when DC voltage is present at the RF inputs. The RF inputs are impedance matched when the LO input is driven with a 0±6dBm source between 700MHz and 1.5GHz and the channels are enabled. CTA, CTB (Pins 2, 5): RF Transformer Secondary CenterTap on Channels A and B. These pins may require bypass capacitors to ground to optimize IIP3 performance. Each pin has an internally generated bias voltage of 1.2V and must be DC-isolated from ground and VCC. GND (Pins 3, 4, 7, 13, 15, 24, Exposed Pad Pin 25): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad metal of the package provides both electrical contact to ground and good thermal contact to the printed circuit board. IFGNDB, IFGNDA (Pins 8, 23): DC Ground Returns for the IF Amplifiers. These pins must be connected to ground to complete the DC current paths for the IF amplifiers. Chip inductors may be used to tune LO-IF and RF-IF leakage. Typical DC current is 95mA for each pin. IFB+, IFB–, IFA–, IFA+ (Pins 9, 10, 21, 22): Open-Collector Differential Outputs for the IF Amplifiers of Channels B and A. These pins must be connected to a DC supply through impedance matching inductors, or transformer center-taps. Typical DC current consumption is 48mA into each pin. IFBB, IFBA (Pins 11, 20): Bias Adjust Pins for the IF Amplifiers. These pins allow independent adjustment of the internal IF buffer currents for channels B and A, respectively. The typical DC voltage on these pins is 2.2V. If not used, these pins must be DC isolated from ground and VCC. VCCB and VCCA (Pins 12, 19): Power Supply Pins for the LO Buffers and Bias Circuits. These pins must be connected to a regulated 3.3V supply with bypass capacitors located close to the pins. Typical current consumption is 94mA per pin. ENB, ENA (Pins 14, 17): Enable Pins. These pins allow Channels B and A, respectively, to be independently enabled. An applied voltage of greater than 2.5V activates the associated channel while a voltage of less than 0.3V disables the channel. Typical input current is less than 10μA. These pins must not be allowed to float. LO (Pin 16): Single-Ended Local Oscillator Input. This pin is internally connected to the primary side of the LO input transformer and has a low DC resistance to ground. Series DC-blocking capacitors should be used to avoid damage to the integrated transformer when DC voltage present at LO input. The LO input is internally matched to 50Ω for all states of ENA and ENB. ISEL (Pin 18): Low Current Select Pin. When this pin is pulled low (25dBm IIP3, 10dB NF 3.3V/200mA Supply , 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps 27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Transformer 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports 40dB Dynamic Range, ±1dB Accuracy Overtemperature, 1.5mA Supply Current 40MHz to 10GHz, Up to 57dB Dynamic Range, ±0.5dB Accuracy Overtemperature 40MHz to 6GHz, Up to 60dB Dynamic Range, >40dB Channel-to-Channel Isolation, Difference Output for vs WR Measurement 72.4dB SNR, >88dB SFDR, 790mW Power Consumption 74.8dB SNR, 185mW/Channel Power Consumption 65.4dB SNR, 78dB SFDR, 740mW Power Consumption 5590p 14-Bit, 125Msps Dual ADC 16-Bit, 125Msps Dual ADC Ultralow Power 12-Bit, 250Msps ADC 20 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● LT 0311 • PRINTED IN USA www.linear.com  LINEAR TECHNOLOGY CORPORA TION 2011
LT5579 价格&库存

很抱歉,暂时无法提供与“LT5579”相匹配的价格&库存,您可以联系我们找货

免费人工找货