0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LT6012IS

LT6012IS

  • 厂商:

    LINER

  • 封装:

  • 描述:

    LT6012IS - Dual/Quad135uA, 14nV/Hz, Rail-to-Rail Output Precision Op Amp - Linear Technology

  • 数据手册
  • 价格&库存
LT6012IS 数据手册
LT6011/LT6012 Dual/Quad135µA, 14nV/√Hz, Rail-to-Rail Output Precision Op Amp FEATURES s s s s s s s s s s DESCRIPTIO 60µV Maximum Offset Voltage 300pA Maximum Input Bias Current 135µA Supply Current per Amplifier Rail-to-Rail Output Swing 120dB Minimum Voltage Gain, VS = ±15V 0.8µV/°C Maximum VOS Drift 14nV/√Hz Input Noise Voltage 2.7V to ±18V Supply Voltage Operation Operating Temperature Range: – 40°C to 85°C Space Saving 3mm × 3mm DFN Package The LT®6011/LT6012 op amps combine low noise and high precision input performance with low power consumption and rail-to-rail output swing. Input offset voltage is trimmed to less than 60µV. The low drift and excellent long-term stability guarantee a high accuracy over temperature and time. The 300pA maximum input bias current and 120dB minimum voltage gain further maintain this precision over operating conditions. The LT6011/LT6012 work on any power supply voltage from 2.7V to 36V and draw only 135µA of supply current on a 5V supply. The output swings to within 40mV of either supply rail, making the amplifier a good choice for low voltage single supply applications. The LT6011/LT6012 are specified at 5V and ±15V supplies and from –40°C to 85°C. The LT6011 (dual) is available in SO-8 and space saving 3mm × 3mm DFN packages. The LT6012 (quad) is available in SO-14 and 16-pin SSOP packages. , LTC and LT are registered trademarks of Linear Technology Corporation. SoftSpan is a trademark of Linear Technology Corporation. APPLICATIO S s s s s s Thermocouple Amplifiers Precision Photo Diode Amplifiers Instrumentation Amplifiers Battery-Powered Precision Systems Low Voltage Precision Systems TYPICAL APPLICATIO VS+ LT1236-5 5 Low Power Programmable Output Range 16-Bit SoftSpanTM DAC 20V Output Step Response + 1/2 LT6011 6 7 – C2 270pF SUPPLY CURRENT ≅ 1.6mA TO 4mA DEPENDING ON CODE 5V/DIV 0V 2 R1 R1 5V 9 0.1µF 14 13 12 11 10 CLR CS/LD SCK SDI SDO VCC 1 RCOM R2 16 15 3 4 C1 270pF VS+ R2 REF ROFS RFB 5V/DIV 0V 16-BIT DAC IOUT2 6 AGND LTC1592 GND 7 8 3 1/2 LT6011 6011 TA01 + – IOUT1 5 2 8 1 VOUT 4 VS– U 100µs/DIV 6011 TA03 U U sn60112 60112fas 1 LT6011/LT6012 ABSOLUTE AXI U RATI GS (Note 1) Maximum Junction Temperature DD Package ..................................................... 125°C All Other Packages .......................................... 150°C Storage Temperature Range DD Package ..................................... – 65°C to 125°C All Other Packages .......................... – 65°C to 150°C Lead Temperature (Soldering, 10 sec).................. 300°C Total Supply Voltage (V+ to V–) .............................. 40V Differential Input Voltage (Note 2) .......................... 10V Input Voltage .................................................... V+ to V– Input Current (Note 2) ....................................... ±10mA Output Short-Circuit Duration (Note 3) ........... Indefinite Operating Temperature Range (Note 4) .. – 40°C to 85°C Specified Temperature Range (Note 5) ... – 40°C to 85°C PACKAGE/ORDER I FOR ATIO TOP VIEW OUT A 1 –IN A 2 +IN A 3 V – ORDER PART NUMBER 8 V+ OUT B –IN B +IN B A B 7 6 5 4 LT6011CDD LT6011IDD LT6011ACDD LT6011AIDD DD PART MARKING* LACD DD PACKAGE 8-LEAD (3mm × 3mm) PLASTIC DFN TJMAX = 125°C, θJA = 160°C/W UNDERSIDE METAL CONNECTED TO V– (PCB CONNECTION OPTIONAL) TOP VIEW OUT A 1 – A + 14 OUT D D 13 –IN D 12 +IN D 11 V – B C + 10 +IN C – 9 –IN C – + + – ORDER PART NUMBER LT6012CS LT6012IS LT6012ACS LT6012AIS –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUT B 7 +IN A 3 V+ 4 – A + D –IN B 6 OUT B 7 NC 8 8 OUT C S PACKAGE 14-LEAD PLASTIC SO TJMAX = 150°C, θJA = 110°C/W GN PACKAGE 16-LEAD PLASTIC SSOP TJMAX = 150°C, θJA = 135°C/W *Temperature and electrical grades are identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges. 2 – + +IN B 5 B C– + – U U W WW U W ORDER PART NUMBER TOP VIEW OUT A 1 –IN A 2 A +IN A 3 V– B 4 5 6 –IN B +IN B 8 7 V+ OUT B LT6011CS8 LT6011IS8 LT6011ACS8 LT6011AIS8 S8 PART MARKING 6011 6011I 6011A 6011AI ORDER PART NUMBER LT6012CGN LT6012IGN LT6012ACGN LT6012AIGN GN PART MARKING 6012 6012I 6012A 6012AI S8 PACKAGE 8-LEAD PLASTIC SO TJMAX = 150°C, θJA = 190°C/W TOP VIEW OUT A 1 –IN A 2 16 OUT D 15 –IN D 14 +IN D 13 V – + 12 +IN C 11 –IN C 10 OUT C 9 NC sn60112 60112fas LT6011/LT6012 ELECTRICAL CHARACTERISTICS SYMBOL VOS PARAMETER Input Offset Voltage (Note 8) The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V; VCM = 2.5V; RL to 0V; unless otherwise specified. (Note 5) CONDITIONS LT6011AS8, LT6012AS TA = 0°C to 70°C TA = – 40°C to 85°C LT6011ADD, LT6012AGN TA = 0°C to 70°C TA = – 40°C to 85°C LT6011S8, LT6012S TA = 0°C to 70°C TA = – 40°C to 85°C LT6011DD, LT6012GN TA = 0°C to 70°C TA = – 40°C to 85°C ∆VOS/∆T IOS Input Offset Voltage Drift (Note 6) Input Offset Current (Note 8) LT6011AS8, LT6011S8, LT6012AS,LT6012S LT6011ADD, LT6011DD,LT6012AGN, LT6012GN LT6011AS8, LT6011ADD, LT6012AS, LT6012AGN TA = 0°C to 70°C TA = – 40°C to 85°C LT6011S8, LT6011DD, LT6012S, LT6012GN TA = 0°C to 70°C TA = – 40°C to 85°C IB Input Bias Current (Note 8) LT6011AS8, LT6011ADD, LT6012AS, LT6012AGN TA = 0°C to 70°C TA = – 40°C to 85°C LT6011S8, LT6011DD, LT6012S, LT6012GN TA = 0°C to 70°C TA = – 40°C to 85°C Input Noise Voltage en in RIN CIN VCM CMRR PSRR AVOL Input Noise Voltage Density Input Noise Current Density Input Resistance Input Capacitance Input Voltage Range (Positive) Input Voltage Range (Negative) Common Mode Rejection Ratio Minimum Supply Voltage Power Supply Rejection Ratio Large-Signal Voltage Gain Channel Separation Guaranteed by CMRR Guaranteed by CMRR VCM = 1V to 3.8V Guaranteed by PSRR VS = 2.7V to 36V, VCM = 1/2VS RL = 10k, VOUT = 1V to 4V RL = 2k, VOUT = 1V to 4V VOUT = 1V to 4V q q q q q q q q q q MIN TYP 20 MAX 60 85 110 85 135 170 75 100 125 125 175 210 0.8 1.2 300 450 600 900 1200 1500 ±300 ±450 ± 600 ±900 ±1200 ± 1500 UNITS µV µV µV µV µV µV µV µV µV µV µV µV µV/°C µV/°C pA pA pA pA pA pA pA pA pA pA pA pA nVP-P nV/√Hz pA/√Hz GΩ MΩ pF V V dB V dB V/mV V/mV dB 25 q q 25 q q 30 q q q q 0.2 0.2 20 q q 150 q q 20 q q 150 q q 0.1Hz to 10Hz f = 1kHz f = 1kHz, Unbalanced Source Resistance Common Mode, VCM = 1V to 3.8V Differential 10 400 14 0.1 120 20 4 3.8 107 112 300 250 110 4 0.7 135 2.4 135 2000 2000 140 2.7 1 sn60112 60112fas 3 LT6011/LT6012 ELECTRICAL CHARACTERISTICS SYMBOL VOUT PARAMETER Maximum Output Swing (Positive, Referred to V +) The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V; VCM = 2.5V; RL to 0V; unless otherwise specified. (Note 5) CONDITIONS No Load, 50mV Overdrive q MIN TYP 35 120 MAX 55 65 170 220 55 65 225 275 UNITS mV mV mV mV mV mV mV mV mA mA mA mA V/ µs V/ µs V/µs kHz kHz µs µs ISOURCE = 1mA, 50mV Overdrive q Maximum Output Swing (Negative, Referred to 0V) No Load, 50mV Overdrive q 40 150 q ISINK = 1mA, 50mV Overdrive ISC Output Short-Circuit Current (Note 3) VOUT = 0V, 1V Overdrive, Source q 10 4 10 4 0.06 0.05 0.04 250 225 14 21 0.09 VOUT = 5V, –1V Overdrive, Sink q SR Slew Rate AV = –10, RF = 50k, RG = 5k TA = 0°C to 70°C TA = – 40°C to 85°C f = 10kHz q q q GBW ts tr, tf ∆VOS Gain Bandwidth Product Settling Time Rise Time, Fall Time Offset Voltage Match (Note 7) 330 45 1 50 120 170 220 170 270 340 150 200 250 250 350 420 600 900 1200 1800 2400 3000 AV = –1, 0.01%, VOUT = 1.5V to 3.5V AV = 1, 10% to 90%, 0.1V Step LT6011AS8, LT6012AS TA = 0°C to 70°C TA = – 40°C to 85°C LT6011ADD, LT6012AGN TA = 0°C to 70°C TA = – 40°C to 85°C LT6011S8, LT6012S TA = 0°C to 70°C TA = – 40°C to 85°C LT6011DD, LT6012GN TA = 0°C to 70°C TA = – 40°C to 85°C q q µV µV µV µV µV µV µV µV µV µV µV µV pA pA pA pA pA pA dB dB 50 q q 50 q q 60 q q ∆IB Input Bias Current Match (Note 7) LT6011AS8, LT6011ADD, LT6012AS, LT6012AGN TA = 0°C to 70°C TA = – 40°C to 85°C LT6011S8, LT6011DD, LT6012S, LT6012GN TA = 0°C to 70°C TA = – 40°C to 85°C 50 q q q q q q ∆CMRR ∆PSRR IS Common Mode Rejection Ratio Match (Note 7) Power Supply Rejection Ratio Match (Note 7) Supply Current per Amplifier TA = 0°C to 70°C TA = – 40°C to 85°C 101 106 135 135 135 150 190 210 q q µA µA µA sn60112 60112fas 4 LT6011/LT6012 ELECTRICAL CHARACTERISTICS SYMBOL VOS PARAMETER Input Offset Voltage (Note 8) The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, VCM = 0V, RL to 0V, unless otherwise specified. (Note 5) CONDITIONS LT6011AS8, LT6012AS TA = 0°C to 70°C TA = – 40°C to 85°C LT6011ADD, LT6012AGN TA = 0°C to 70°C TA = – 40°C to 85°C LT6011S8, LT6012S TA = 0°C to 70°C TA = – 40°C to 85°C LT6011DD, LT6012GN TA = 0°C to 70°C TA = – 40°C to 85°C LT6011AS8, LT6011S8, LT6012AS, LT6012S LT6011ADD, LT6011DD, LT6012AGN, LT6012GN LT6011AS8, LT6011ADD, LT6012AS LT6012AGN TA = 0°C to 70°C TA = – 40°C to 85°C LT6011S8, LT6011DD, LT6012S, LT6012GN TA = 0°C to 70°C TA = – 40°C to 85°C LT6011AS8, LT6011ADD, LT6012AS, LT6012AGN TA = 0°C to 70°C TA = – 40°C to 85°C LT6011S8, LT6011DD, LT6012S, LT6012GN TA = 0°C to 70°C TA = – 40°C to 85°C 0.1Hz to 10Hz f = 1kHz f = 1kHz, Unbalanced Source Resistance Common Mode, VCM = ±13.5V Differential Guaranteed by CMRR VCM = –13.5V to 13.5V Guaranteed by PSRR VS = ±1.35V to ±18V RL = 10k, VOUT = –13.5V to 13.5V RL = 5k, VOUT = –13.5V to 13.5V q MIN q q TYP 30 35 q q 35 q q 40 q q q q q q ∆VOS/∆T IOS Input Offset Voltage Drift (Note 6) Input Offset Current (Note 8) 0.2 0.2 20 150 q q IB Input Bias Current (Note 8) 20 q q 150 q q MAX 135 160 185 160 210 225 150 175 200 200 250 275 0.8 1.3 300 450 600 900 1200 1500 ±300 ±450 ± 600 ±900 ±1200 ± 1500 en in RIN CIN VCM CMRR Input Noise Voltage Input Noise Voltage Density Input Noise Current Density Input Resistance Input Capacitance Input Voltage Range Common Mode Rejection Ratio Minimum Supply Voltage Power Supply Rejection Ratio Large-Signal Voltage Gain 50 ±13.5 115 q 112 q q q q PSRR AVOL VOUT Channel Separation Maximum Output Swing (Positive, Referred to V +) VOUT = –13.5V to 13.5V No Load, 50mV Overdrive ISOURCE = 1mA, 50mV Overdrive q q 112 1000 600 500 300 120 400 13 0.1 400 20 4 ± 14 135 135 ±1.2 135 2000 1500 140 45 140 ±1.35 q Maximum Output Swing (Negative, Referred to V –) No Load, 50mV Overdrive q 45 150 q ISINK = 1mA, 50mV Overdrive 80 100 195 240 80 100 250 300 UNITS µV µV µV µV µV µV µV µV µV µV µV µV µV/ °C µV/°C pA pA pA pA pA pA pA pA pA pA pA pA nVP-P nV/√Hz pA/√Hz GΩ MΩ pF V dB dB V dB V/mV V/mV V/mV V/mV dB mV mV mV mV mV mV mV mV sn60112 60112fas 5 LT6011/LT6012 ELECTRICAL CHARACTERISTICS SYMBOL ISC PARAMETER Output Short-Circuit Current (Note 3) The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, VCM = 0V, RL to 0V, unless otherwise specified. (Note 5) CONDITIONS VOUT = 0V, 1V Overdrive (Source) q VOUT = 0V, –1V Overdrive (Sink) q SR Slew Rate GBW ts tr, tf ∆VOS Gain Bandwidth Product Settling Time Rise Time, Fall Time Offset Voltage Match (Note 7) AV = –10, RF = 50k, RG = 5k TA = 0°C to 70°C TA = – 40°C to 85°C f = 10kHz AV = –1, 0.01%, VOUT = 0V to 10V AV = 1, 10% to 90%, 0.1V Step LT6011AS8, LT6012AS TA = 0°C to 70°C TA = – 40°C to 85°C LT6011ADD, LT6012AGN TA = 0°C to 70°C TA = – 40°C to 85°C LT6011S8, LT6012S TA = 0°C to 70°C TA = – 40°C to 85°C LT6011DD, LT6012GN TA = 0°C to 70°C TA = – 40°C to 85°C LT6011AS8, LT6011ADD, LT6012AS, LT6012AGN TA = 0°C to 70°C TA = – 40°C to 85°C LT6011S8, LT6011DD, LT6012S, LT6012GN TA = 0°C to 70°C TA = – 40°C to 85°C q q q MIN 10 5 10 5 0.08 0.07 0.05 275 250 TYP 15 20 0.11 MAX 350 85 1 50 q q 50 q q 70 q q 80 q q ∆IB Input Bias Current Match (Note 7) 50 q q q q q q 270 320 370 320 420 450 300 350 400 400 500 550 600 900 1200 1800 2400 3000 ∆CMRR ∆PSRR IS Common Mode Rejection Ratio Match (Note 7) Power Supply Rejection Ratio Match (Note 7) Supply Current 109 106 135 135 260 330 380 400 UNITS mA mA mA mA V/ µs V/ µs V/µs kHz kHz µs µs µV µV µV µV µV µV µV µV µV µV µV µV pA pA pA pA pA pA dB dB µA µA µA per Amplifier TA = 0°C to 70°C TA = – 40°C to 85°C q q Note 1: Absolute Maximum Ratings are those beyond which the life if the device may be impaired. Note 2: The inputs are protected by back-to-back diodes and internal series resistors. If the differential input voltage exceeds 10V, the input current must be limited to less than 10mA. Note 3: A heat sink may be required to keep the junction temperature below absolute maximum ratings. Note 4: Both the LT6011C/LT6012C and LT6011I/LT6012I are guaranteed functional over the operating temperature range of – 40°C to 85°C. Note 5: The LT6011C/LT6012C are guaranteed to meet the specified performance from 0°C to 70°C and is designed, characterized and expected to meet specified performance from – 40°C to 85°C but is not tested or QA sampled at these temperatures. The LT6011I/LT6012I are guaranteed to meet specified performance from –40°C to 85°C. Note 6: This parameter is not 100% tested. Note 7: Matching parameters are the difference between any two amplifiers. ∆CMRR and ∆PSRR are defined as follows: (1) CMRR and PSRR are measured in µV/V for the individual amplifiers. (2) The difference between matching amplifiers is calculated in µV/V. (3) The result is converted to dB. Note 8: The specifications for VOS, IB, and IOS depend on the grade and on the package. The following table clarifies the notations. STANDARD GRADE S8 Package DFN Package S14 Package GN16 Package LT6011S8 LT6011DD LT6012S LT6012GN A GRADE LT6011AS8 LT6011ADD LT6012AS LT6012AGN sn60112 60112fas 6 LT6011/LT6012 TYPICAL PERFOR A CE CHARACTERISTICS Distribution of Input Offset Voltage 30 25 125 VS = 5V, 0V TA = 25°C LT6011S8, LT6012S 100 75 VS = 5V, 0V REPRESENTATIVE UNITS OFFSET VOLTAGE (µV) PERCENT OF UNITS (%) OFFSET VOLTAGE (µV) 20 15 10 5 0 –90 –70 –50 –30 –10 10 30 50 70 INPUT OFFSET VOLTAGE (µV) Distribution of Input Bias Current 25 VS = 5V, 0V TA = 25°C LT6011A, LT6012A INPUT BIAS CURRENT (pA) INPUT BIAS CURRENT (pA) 20 PERCENT OF UNITS (%) 15 10 5 0 –400 –300 –200 –100 0 100 200 300 400 INPUT BIAS CURRENT (pA) 6011 G04 en, in vs Frequency INPUT VOLTAGE NOISE DENSITY (nV/√Hz) VS = ±15V TA = 25°C CURRENT NOISE UNBALANCED SOURCE RESISTORS 100 100 1000 INPUT CURRENT NOISE DENSITY (fA/√Hz) 10 TOTAL INPUT NOISE (µV/√Hz) 0.1 TOTAL NOISE 0.01 RESISTOR NOISE ONLY 0.001 VOLTAGE NOISE 10 1 10 100 FREQUENCY (Hz) 1000 6011 G07 0.0001 100 1k 10k 100k 1M 10M SOURCE RESISTANCE (Ω) 100M NOISE VOLTAGE (0.2µV/DIV) UW 6011 G01 Input Offset Voltage vs Temperature 120 100 80 Offset Voltage vs Input Common Mode Voltage VS = ± 15V TYPICAL PART 50 25 0 –25 –50 –75 TA = 85°C 60 40 20 0 TA = 25°C TA = – 40°C –100 90 –125 –50 –25 50 25 0 75 TEMPERATURE (°C) 100 125 –20 –15 5 0 10 –10 –5 INPUT COMMON MODE VOLTAGE (V) 15 6011 G02 6011 G03 Input Bias Current vs Temperature 1600 1400 1200 1000 800 600 400 200 0 –200 –50 –25 IB+ 0 25 75 50 TEMPERATURE (°C) 100 125 IB– VS = 5V, 0V TYPICAL PART Input Bias Current vs Input Common Mode Voltage 300 VS = ±15V TYPICAL PART 13.9V TA = 85°C 200 TA = – 40°C 100 0 –14.2V –100 TA = 25°C –200 –15 10 –5 0 5 –10 COMMON MODE VOLTAGE (V) 15 1635 G06 6011 G05 Total Input Noise vs Source Resistance VS = 5V, 0V TA = 25°C f = 1kHz 1 UNBALANCED SOURCE RESISTORS 0.1Hz to 10Hz Noise VS = ±15V TA = 25°C 0 1 2 3 456 TIME (SEC) 7 8 9 10 6011 G08 6011 G09 sn60112 60112fas 7 LT6011/LT6012 TYPICAL PERFOR A CE CHARACTERISTICS 0.01Hz to 1Hz Noise VS = ±15V TA = 25°C OUTPUT VOLTAGE SWING (mV) NOISE VOLTAGE (0.2µV/DIV) V+ –20 –40 OUTPUT HIGH –60 OUTPUT HIGH SATURATION VOLTAGE (V) 0 10 20 30 40 50 60 70 80 90 100 TIME (SEC) 6011 G10 Output Saturation Voltage vs Load Current (Output Low) 1 OUTPUT LOW SATURATION VOLTAGE (V) VS = 5V, 0V 400 CHANGE IN OFFSET VOLTAGE (µV) TA = 85°C TA = 25°C 0.1 TA = – 40°C SUPPLY CURRENT (µA) 0.01 0.01 0.1 1 LOAD CURRENT (mA) THD + Noise vs Frequency 10 VS = 5V, 0V VOUT = 2VP-P TA = 25°C AV = 1: RL = 10k AV = –1: RF = RG = 10k 10 1 THD + NOISE (%) THD + NOISE (%) OUTPUT STEP (V) 0.1 0.01 AV = –1 0.001 AV = 1 0.0001 10 100 1k 10k FREQUENCY (Hz) 8 UW 6011 G13 6011 G16 Output Voltage Swing vs Temperature 1 VS = 5V, 0V NO LOAD Output Saturation Voltage vs Load Current (Output High) VS = 5V, 0V TA = 85°C TA = 25°C 0.1 TA = – 40°C 60 40 20 V– – 50 – 25 0 OUTPUT LOW 75 50 25 TEMPERATURE (°C) 100 125 0.01 0.01 0.1 1 LOAD CURRENT (mA) 10 6011 G12 6011 G11 Supply Current vs Supply Voltage 500 450 PER AMPLIFIER Warm-Up Drift 3 350 300 250 200 150 100 50 TA = 25°C TA = 85°C ±15V 2 TA = – 40°C 1 ± 2.5V 10 0 0 0 2 4 6 8 10 12 14 16 18 20 SUPPLY VOLTAGE (± V) 6011 G14 30 60 90 120 TIME AFTER POWER-ON (SECONDS) 150 6011 G15 THD + Noise vs Frequency VS = ±15V VIN = 20VP-P TA = 25°C 10 Settling Time vs Output Step VS = ±15V AV = 1 1 8 0.1 6 0.1% 0.01% 4 0.01 AV = –1 AV = 1 0.001 2 100k 0.0001 10 0 100 1k FREQUENCY (Hz) 10k 6011 G17 0 10 20 30 40 50 60 70 SETTLING TIME (µs) 80 90 6011 G18 sn60112 60112fas LT6011/LT6012 TYPICAL PERFOR A CE CHARACTERISTICS Settling Time vs Output Step 10 VS = ±15V AV = – 1 140 CHANNEL SEPARATION (dB) COMMON MODE REJECTION RATIO (dB) 8 OUTPUT STEP (V) 6 0.1% 0.01% 4 2 0 0 10 20 30 40 50 60 70 SETTLING TIME (µs) 80 90 PSRR vs Frequency 140 POWER SUPPLY REJECTION RATIO (dB) 120 100 80 VS = 5V, 0V TA = 25°C OUTPUT IMPEDANCE (Ω) OPEN-LOOP GAIN (dB) +PSRR 60 –PSRR 40 20 0 0.1 1 10 100 1k 10k 100k FREQUENCY (Hz) 1M Gain and Phase vs Frequency 60 50 40 OPEN-LOOP GAIN (dB) 30 20 10 0 GAIN PHASE –200 –160 VS = 5V, 0V TA = 25°C RL = 10k –80 10 5 PHASE SHIFT (DEG) 0 GAIN (dB) –5 –10 –15 –20 1k 10k 100k FREQUENCY (Hz) 1M 6011 G26 GAIN (dB) –10 – 240 – 20 –30 – 40 1k 10k 100k 1M FREQUENCY (Hz) UW 6011 G19 6011 G22 6011 G25 Channel Separation vs Frequency 160 VS = 5V, 0V TA = 25°C 160 140 120 100 80 60 40 20 0 CMRR vs Frequency TA = 25°C 120 100 80 60 40 20 0 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M VS = ± 15V VS = 5V, 0V 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M 6011 G20 6011 G21 Output Impedance vs Frequency 1000 VS = 5V, 0V TA = 25°C Open-Loop Gain vs Frequency 140 120 100 80 60 40 20 0 VS = 5V, 0V TA = 25°C RL = 10k 100 10 AV = 100 1 AV = 10 0.1 AV = 1 0.01 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M –20 –40 0.01 0.1 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 6011 G24 6011 G23 Gain vs Frequency, AV = 1 VS = 5V, 0V TA = 25°C CL = 500pF CL = 50pF 10 5 Gain vs Frequency, AV = – 1 VS = 5V, 0V TA = 25°C CL = 500pF 0 CL = 50pF –5 –10 –15 –20 1k 10k 100k FREQUENCY (Hz) 1M 6011 G27 –120 –280 10M sn60112 60112fas 9 LT6011/LT6012 TYPICAL PERFOR A CE CHARACTERISTICS Small-Signal Transient Response Large-Signal Transient Response Rail-to-Rail Output Swing 5V 20mV/DIV AV = 1 2µs/DIV APPLICATIO S I FOR ATIO Preserving Input Precision Preserving the input accuracy of the LT6011/LT6012 requires that the applications circuit and PC board layout do not introduce errors comparable to or greater than the 25µV typical offset of the amplifiers. Temperature differentials across the input connections can generate thermocouple voltages of 10’s of microvolts so the connections to the input leads should be short, close together and away from heat dissipating components. Air currents across the board can also generate temperature differentials. The extremely low input bias currents (20pA typical) allow high accuracy to be maintained with high impedance sources and feedback resistors. The LT6011/LT6012 low input bias currents are obtained by a cancellation circuit on-chip. This causes the resulting I B + a nd I B – t o be uncorrelated, as implied by the IOS specification being comparable to IB. Do not try to balance the input resistances in each input lead; instead keep the resistance at either input as low as possible for maximum accuracy. Leakage currents on the PC board can be higher than the input bias current. For example, 10GΩ of leakage between a 15V supply lead and an input lead will generate 1.5nA! Surround the input leads with a guard ring driven to the same potential as the input common mode to avoid excessive leakage in high impedance applications. Input Protection The LT6011/LT6012 feature on-chip back-to-back diodes between the input devices, along with 500Ω resistors in 10 U W UW 2V/DIV 0V 1V/DIV 0V 6011 G28 A V = –1 VS = ±15V 50µs/DIV 6011 G29 AV = –1 VS = 5V, 0V 100µs/DIV 6011 G30 UU series with either input. This internal protection limits the input current to approximately 10mA (the maximum allowed) for a 10V differential input voltage. Use additional external series resistors to limit the input current to 10mA in applications where differential inputs of more than 10V are expected. For example, a 1k resistor in series with each input provides protection against 30V differential voltage. Input Common Mode Range The LT6011/LT6012 output is able to swing close to each power supply rail (rail-to-rail out), but the input stage is limited to operating between V – + 1V and V+ – 1.2V. Exceeding this common mode range will cause the gain to drop to zero, however, no phase reversal will occur. Total Input Noise The LT6011/LT6012 amplifier contributes negligible noise to the system when driven by sensors (sources) with impedance between 20kΩ and 1MΩ . Throughout this range, total input noise is dominated by the 4kTRS noise of the source. If the source impedance is less than 20kΩ, the input voltage noise of the amplifier starts to contribute with a minimum noise of 14nV/√Hz for very low source impedance. If the source impedance is more than 1MΩ, the input current noise of the amplifier, multiplied by this high impedance, starts to contribute and eventually dominate. Total input noise spectral density can be calculated as: vn(TOTAL) = en2 + 4kTRS + (in RS )2 sn60112 60112fas LT6011/LT6012 APPLICATIO S I FOR ATIO where en = 14nV/√Hz , in = 0.1pA/√Hz and RS is the total impedance at the input, including the source impedance. Capacitive Loads The LT6011/LT6012 can drive capacitive loads up to 500pF in unity gain. The capacitive load driving capability increases as the amplifier is used in higher gain configurations. A small series resistance between the output and the load further increases the amount of capacitance that the amplifier can drive. VREF RG + – RF VIN INVERTING: AV = – RF/RG OP AMP INPUTS DO NOT MOVE, BUT ARE FIXED AT DC BIAS POINT VREF INPUT DOES NOT HAVE TO BE RAIL-TO-RAIL Figure 1. Some Op Amp Configurations Do Not Require Rail-to-Rail Inputs to Achieve Rail-to-Rail Outputs SI PLIFIED SCHE ATIC V + (One Amplifier) R3 Q7 R4 Q8 Q5 Q3 Q4 Q21 B A Q22 C2 R1 500Ω –IN D1 +IN R2 500Ω Q1 Q2 D2 Q17 C B A Q11 Q15 Q9 Q10 V– U Rail-to-Rail Operation The LT6011/LT6012 outputs can swing to within millivolts of either supply rail, but the inputs can not. However, for most op amp configurations, the inputs need to swing less than the outputs. Figure 1 shows the basic op amp configurations, lists what happens to the op amp inputs and specifies whether or not the op amp must have rail-to-rail inputs. Select a rail-to-rail input op amp only when really necessary, because the input precision specifications are usually inferior. + – RF 6011 F01 W W UU VIN VIN + – RG VREF NONINVERTING: AV = 1 + RF/RG INPUTS MOVE BY AS MUCH AS VIN, BUT THE OUTPUT MOVES MORE INPUT MAY NOT HAVE TO BE RAIL-TO-RAIL NONINVERTING: AV = 1 INPUTS MOVE BY AS MUCH AS OUTPUT INPUT MUST BE RAIL-TO-RAIL FOR OVERALL CIRCUIT RAIL-TO-RAIL PERFORMANCE W R5 R6 Q6 RC1 C1 Q18 Q19 Q13 D3 D4 Q12 D5 Q14 C3 Q20 OUT Q16 6011 SS sn60112 60112fas 11 LT6011/LT6012 PACKAGE DESCRIPTIO U DD Package 8-Lead Plastic DFN (3mm × 3mm) (Reference LTC DWG # 05-08-1698) R = 0.115 TYP 5 0.675 ± 0.05 0.38 ± 0.10 8 3.00 ± 0.10 (4 SIDES) PIN 1 PACKAGE TOP MARK OUTLINE (DD8) DFN 0203 3.5 ± 0.05 1.65 ± 0.05 2.15 ± 0.05 (2 SIDES) 1.65 ± 0.10 (2 SIDES) 0.28 ± 0.05 0.50 BSC 2.38 ± 0.05 (2 SIDES) RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS 0.200 REF 0.75 ± 0.05 4 0.28 ± 0.05 2.38 ± 0.10 (2 SIDES) 1 0.50 BSC 0.00 – 0.05 BOTTOM VIEW—EXPOSED PAD NOTE: 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1) 2. ALL DIMENSIONS ARE IN MILLIMETERS 3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 4. EXPOSED PAD SHALL BE SOLDER PLATED sn60112 60112fas 12 LT6011/LT6012 PACKAGE DESCRIPTIO U S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .189 – .197 (4.801 – 5.004) NOTE 3 8 7 6 5 .045 ±.005 .050 BSC .160 ±.005 .228 – .244 (5.791 – 6.197) .150 – .157 (3.810 – 3.988) NOTE 3 1 2 3 4 .053 – .069 (1.346 – 1.752) 0°– 8° TYP .004 – .010 (0.101 – 0.254) .014 – .019 (0.355 – 0.483) TYP .050 (1.270) BSC SO8 0303 .245 MIN .030 ±.005 TYP RECOMMENDED SOLDER PAD LAYOUT .010 – .020 × 45° (0.254 – 0.508) .008 – .010 (0.203 – 0.254) .016 – .050 (0.406 – 1.270) NOTE: 1. DIMENSIONS IN INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) sn60112 60112fas 13 LT6011/LT6012 PACKAGE DESCRIPTIO U S14 Package 14-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .045 ±.005 .050 BSC N 14 13 .337 – .344 (8.560 – 8.738) NOTE 3 12 11 10 9 8 N .160 ±.005 .228 – .244 (5.791 – 6.197) 1 .030 ±.005 TYP 2 3 N/2 N/2 .150 – .157 (3.810 – 3.988) NOTE 3 1 .010 – .020 × 45° (0.254 – 0.508) .008 – .010 (0.203 – 0.254) 0° – 8° TYP 2 3 4 5 6 7 .053 – .069 (1.346 – 1.752) .004 – .010 (0.101 – 0.254) .014 – .019 (0.355 – 0.483) TYP .050 (1.270) BSC S14 0502 .245 MIN RECOMMENDED SOLDER PAD LAYOUT .016 – .050 (0.406 – 1.270) NOTE: 1. DIMENSIONS IN INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) sn60112 60112fas 14 LT6011/LT6012 PACKAGE DESCRIPTIO U GN Package 16-Lead Plastic SSOP (Narrow .150 Inch) (Reference LTC DWG # 05-08-1641) .045 ± .005 .189 – .196* (4.801 – 4.978) 16 15 14 13 12 11 10 9 .009 (0.229) REF .150 – .165 .229 – .244 (5.817 – 6.198) .0165 ± .0015 .150 – .157** (3.810 – 3.988) .0250 TYP 1 .015 ± .004 × 45° (0.38 ± 0.10) .007 – .0098 (0.178 – 0.249) .016 – .050 (0.406 – 1.270) NOTE: 1. CONTROLLING DIMENSION: INCHES INCHES 2. DIMENSIONS ARE IN (MILLIMETERS) 3. DRAWING NOT TO SCALE *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE 0° – 8° TYP .053 – .068 (1.351 – 1.727) 23 4 56 7 8 .004 – .0098 (0.102 – 0.249) .008 – .012 (0.203 – 0.305) .0250 (0.635) BSC GN16 (SSOP) 0502 .254 MIN RECOMMENDED SOLDER PAD LAYOUT sn60112 60112fas Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 15 LT6011/LT6012 TYPICAL APPLICATIO U Low Power Hall Sensor Amplifier VS HALL ELEMENT ASAHI-KASEI HW-108A (RANK D) www.asahi-kasei.co.jp 6 10k OFFSET VS ADJUST 1 400Ω ×4 3 LT1782 4 6 26.7k 1% 2 3 + – 8 1 VS 4 LT1790-1.25 1, 2 1/2 LT6011 2 49.9k 1k VOUT 7.87k 1% 49.9k + 100k 1% VS = 3V TO 18V IS = ~ 600µA VOUT = ~ 40mV/mT – – 1/2 LT6011 7 5 + 4 6011 TA02 RELATED PARTS PART NUMBER LT1112/LT1114 LT1880 LT1881/LT1882 LT1884/LT1885 DESCRIPTION Dual/Quad Low Power, Picoamp Input Precision Op Amp Rail-to-Rail Output, Picoamp Input Precision Op Amp Dual/Quad Rail-to-Rail Output, Picoamp Input Precision Op Amp Dual/Quad Rail-to-Rail Output, Picoamp Input Precision Op Amp COMMENTS 250pA Input Bias Current SOT-23 CLOAD Up to 1000pF 9.5nV/√Hz Input Noise sn60112 60112fas 16 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 q FAX: (408) 434-0507 q LT/TP 0903 1K REV A • PRINTED IN USA www.linear.com © LINEAR TECHNOLOGY CORPORATION 2003
LT6012IS 价格&库存

很抱歉,暂时无法提供与“LT6012IS”相匹配的价格&库存,您可以联系我们找货

免费人工找货