LT6013/LT6014 Single/Dual 145µA, 9.5nV/√Hz, AV ≥5, Rail-to-Rail Output Precision Op Amps
FEATURES
s s
DESCRIPTIO
s s s s s s s s s s s s
35µV Maximum Offset Voltage (LT6013A) Low 1/f Noise: 200nVP-P (0.1Hz to 10Hz) 40nVRMS (0.1Hz to 10Hz) Low White Noise: 9.5nV/√Hz (1kHz) Rail-to-Rail Output Swing 145µA Supply Current per Amplifier 250pA Maximum Input Bias Current (LT6013A) AV ≥5 Stable; Up to 500pF CLOAD 0.2V/µs Slew Rate 1.4MHz Gain Bandwidth Product 120dB Minimum Voltage Gain, VS = ±15V 0.8µV/°C Maximum VOS Drift 2.7V to ±18V Supply Voltage Operation Operating Temperature Range: – 40°C to 85°C Available in SO-8 and Space Saving 3mm × 3mm DFN Packages
The LT®6013 and LT6014 op amps combine low noise and high precision input performance with low power consumption and rail-to-rail output swing. The amplifiers are stable in a gain of 5 or more and feature greatly improved CMRR and PSRR versus frequency compared to other precision op amps. Input offset voltage is factory-trimmed to less than 35µV. The low drift and excellent long-term stability ensure a high accuracy over temperature and time. The 250pA maximum input bias current and 120dB minimum voltage gain further maintain this precision over operating conditions. The LT6013 and LT6014 operate from any supply voltage from 2.7V to 36V and draw only 145µA of supply current per amplifier on a 5V supply. The output swings to within 40mV of either supply rail, making the amplifiers very useful for low voltage single supply operation. The amplifiers are fully specified at 5V and ±15V supplies and from –40°C to 85°C. The single LT6013 and dual LT6014 are both available in SO-8 and space saving 3mm × 3mm DFN packages. For unity gain stable versions, refer to the LT6010 and LT6011 data sheets.
, LTC and LT are registered trademarks of Linear Technology Corporation.
APPLICATIO S
s s s s s s
Thermocouple Amplifiers Precision Photodiode Amplifiers Instrumentation Amplifiers Battery-Powered Precision Systems Low-Voltage Precision Systems Micro-Power Sensor Interface
TYPICAL APPLICATIO
V+ VIN
Gain of 10 Single Ended to Differential Converter
+
1/2 LT6014 5 • VIN
LT6013/LT6014 0.1Hz to 10Hz Voltage Noise
INPUT VOLTAGE NOISE (0.1µV/DIV)
VS = 5V, 0V TA = 25°C EQUIVALENT RMS VOLTAGE = 40nVRMS
–
2k 8.06k 10k 2k
–
1/2 LT6014 –5 • VIN
+
V–
60134 TA01a
0
1
U
2 3 456 TIME (SEC) 7 8 9 10
60134 TA01b
U
U
60134fa
1
LT6013/LT6014
ABSOLUTE
AXI U
RATI GS (Note 1)
Maximum Junction Temperature DD Package ..................................................... 125°C S8 Package ...................................................... 150°C Storage Temperature Range DD Package ..................................... – 65°C to 125°C S8 Package ...................................... – 65°C to 150°C Lead Temperature (Soldering, 10 sec).................. 300°C
Total Supply Voltage (V+ to V–) .............................. 40V Differential Input Voltage (Note 2) .......................... 10V Input Voltage .................................................... V+ to V– Input Current (Note 2) ....................................... ±10mA Output Short-Circuit Duration (Note 3) ........... Indefinite Operating Temperature Range (Note 4) .. – 40°C to 85°C Specified Temperature Range (Note 5) ... – 40°C to 85°C
PACKAGE/ORDER I FOR ATIO
TOP VIEW *NC 1 –IN 2 +IN 3 V– 4 – + 8 *NC 7 V+ 6 OUT 5 NC
ORDER PART NUMBER LT6013CDD LT6013IDD LT6013ACDD LT6013AIDD DD PART MARKING* LBHC
TOP VIEW *NC 1 –IN 2 +IN 3 V– 4 – + 8 7 6 5 *NC V+ OUT NC
DD PACKAGE 8-LEAD (3mm × 3mm) PLASTIC DFN
TJMAX = 125°C, θJA = 160°C/W UNDERSIDE METAL CONNECTED TO V– (PCB CONNECTION OPTIONAL) *No Connection
TOP VIEW OUT A 1 –IN A 2 +IN A 3 V
–
ORDER PART NUMBER
8 V+
A B
7 OUT B 6 –IN B 5 +IN B
4
LT6014CDD LT6014IDD LT6014ACDD LT6014AIDD DD PART MARKING* LBCB
DD PACKAGE 8-LEAD (3mm × 3mm) PLASTIC DFN
TJMAX = 125°C, θJA = 160°C/W UNDERSIDE METAL CONNECTED TO V– (PCB CONNECTION OPTIONAL)
*Temperature and electrical grades are identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.
2
U
U
W
WW
U
W
ORDER PART NUMBER LT6013CS8 LT6013IS8 LT6013ACS8 LT6013AIS8 S8 PART MARKING 6013 6013I 6013A 6013AI ORDER PART NUMBER
TOP VIEW OUT A 1 –IN A 2 A +IN A 3 V– B 4 5 6 –IN B +IN B 8 7 V+ OUT B
S8 PACKAGE 8-LEAD PLASTIC SO TJMAX = 150°C, θJA = 190°C/W
*No Connection
LT6014CS8 LT6014IS8 LT6014ACS8 LT6014AIS8 S8 PART MARKING 6014 6014I 6014A 6014AI
S8 PACKAGE 8-LEAD PLASTIC SO TJMAX = 150°C, θJA = 190°C/W
60134fa
LT6013/LT6014
ELECTRICAL CHARACTERISTICS
SYMBOL VOS PARAMETER Input Offset Voltage (Note 8)
The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V; VCM = 2.5V; RL to 0V; unless otherwise specified. (Note 5)
CONDITIONS LT6013AS8 TA = 0°C to 70°C TA = –40°C to 85°C LT6013S8, LT6014AS8 TA = 0°C to 70°C TA = –40°C to 85°C LT6013ADD TA = 0°C to 70°C TA = –40°C to 85°C LT6014S8 TA = 0°C to 70°C TA = –40°C to 85°C LT6013DD, LT6014ADD TA = 0°C to 70°C TA = –40°C to 85°C LT6014DD TA = 0°C to 70°C TA = –40°C to 85°C ∆VOS/∆T IOS Input Offset Voltage Drift (Note 6) Input Offset Current (Note 8) S8 Packages DD Packages LT6013AS8, LT6013ADD TA = 0°C to 70°C TA = –40°C to 85°C LT6014AS8, LT6014ADD TA = 0°C to 70°C TA = –40°C to 85°C LT6013/LT6014 (Standard grades) TA = 0°C to 70°C TA = –40°C to 85°C IB Input Bias Current (Note 8) LT6013AS8, LT6013ADD TA = 0°C to 70°C TA = –40°C to 85°C
q q
MIN
TYP 10
MAX 35 60 75 60 85 110 60 110 150 75 100 125 85 135 170 125 175 210 0.8 1.4 250 500 600 500 600 700 800 1000 1200 ±250 ±500 ±600 ±400 ±600 ±800 ±800 ±1000 ±1200 13
UNITS µV µV µV µV µV µV µV µV µV µV µV µV µV µV µV µV µV µV µV/°C µV/°C pA pA pA pA pA pA pA pA pA pA pA pA pA pA pA pA pA pA nV/√Hz nV/√Hz nVP-P nVRMS nVP-P nVRMS
20
q q
20
q q
20
q q
30
q q
30
q q q q q q
0.2 0.2 100
100
q q
150
q q
100
q q
LT6013S8, LT6013DD, LT6014AS8, LT6014ADD q TA = 0°C to 70°C q TA = –40°C to 85°C LT6014S8, LT6014DD TA = 0°C to 70°C TA = –40°C to 85°C en Input Noise Voltage Density f = 1kHz, LT6013/LT6014 f = 1kHz, LT6013A/LT6014A
q q
100
150
9.5 9.5 200 50 200 40
Input Noise Voltage (Low Frequency) Bandwidth = 0.01Hz to 1Hz Bandwidth = 0.1Hz to 10Hz
60134fa
3
LT6013/LT6014
ELECTRICAL CHARACTERISTICS
SYMBOL in PARAMETER Input Noise Current Density
The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V; VCM = 2.5V; RL to 0V; unless otherwise specified. (Note 5)
CONDITIONS f = 1kHz MIN TYP 0.15 7 1.3 5 0.4 120 20 4 Guaranteed by CMRR Guaranteed by CMRR VCM = 1V to 3.8V Guaranteed by PSRR VS = 2.7V to 36V, VCM = 1/2VS RL = 10k, VOUT = 1V to 4V RL = 2k, VOUT = 1V to 4V VOUT = 1V to 4V, LT6014 No Load, 50mV Overdrive
q q q q q q q q q
MAX
UNITS pA/√Hz pAP-P pARMS pAP-P pARMS GΩ MΩ pF V V dB V dB V/mV V/mV dB
Input Noise Current (Low Frequency) Bandwidth = 0.01Hz to 1Hz Bandwidth = 0.1Hz to 10Hz RIN CIN VCM CMRR PSRR AVOL Input Resistance Input Capacitance Input Voltage Range (Positive) Input Voltage Range (Negative) Common Mode Rejection Ratio Minimum Supply Voltage Power Supply Rejection Ratio Large-Signal Voltage Gain Channel Separation VOUT Maximum Output Swing (Positive, Referred to V +) 3.8 107 112 300 250 110 Common Mode, VCM = 1V to 3.8V Differential
4 0.7 135 2.4 135 2000 2000 140 35 120
1 2.7
55 65 170 220 55 65 225 275
mV mV mV mV mV mV mV mV mA mA mA mA V/µs V/µs V/µs MHz MHz µs µs
ISOURCE = 1mA, 50mV Overdrive
q
Maximum Output Swing (Negative, Referred to 0V)
No Load, 50mV Overdrive
q
40 150
q
ISINK = 1mA, 50mV Overdrive ISC Output Short-Circuit Current (Note 3) VOUT = 0V, 1V Overdrive, Source
q
8 4 8 4 0.15 0.12 0.1 1 0.9
14 21 0.2
VOUT = 5V, –1V Overdrive, Sink
q
SR
Slew Rate
AV = –10, RF = 50k, RG = 5k TA = 0°C to 70°C TA = – 40°C to 85°C f = 10kHz
q q q
GBW ts tr, tf
Gain Bandwidth Product Settling Time Rise Time, Fall Time
1.4 20 1
AV = –4, 0.01%, VOUT = 1.5V to 3.5V AV = 5, 10% to 90%, 0.1V Step
60134fa
4
LT6013/LT6014
ELECTRICAL CHARACTERISTICS
SYMBOL ∆VOS PARAMETER Offset Voltage Match (Note 7)
The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V; VCM = 2.5V; RL to 0V; unless otherwise specified. (Note 5)
CONDITIONS LT6014AS8 TA = 0°C to 70°C TA = – 40°C to 85°C LT6014ADD TA = 0°C to 70°C TA = – 40°C to 85°C LT6014S8 TA = 0°C to 70°C TA = – 40°C to 85°C LT6014DD TA = 0°C to 70°C TA = – 40°C to 85°C ∆IB Input Bias Current Match (Note 7) LT6014AS8, LT6014ADD TA = 0°C to 70°C TA = – 40°C to 85°C LT6014S8, LT6014DD TA = 0°C to 70°C TA = – 40°C to 85°C ∆CMRR ∆PSRR IS Common Mode Rejection Ratio Match (Note 7) Power Supply Rejection Ratio Match (Note 7) Supply Current LT6014 LT6014 per Amplifier TA = 0°C to 70°C TA = – 40°C to 85°C
q q
MIN
TYP 50
MAX 120 170 220 170 270 340 150 200 250 250 350 420 800 1200 1400 1600 2000 2400
UNITS µV µV µV µV µV µV µV µV µV µV µV µV pA pA pA pA pA pA dB dB
50
q q
50
q q
60
q q
200
q q
300
q q q q
101 106
135 135 145 165 210 230
q q
µA µA µA
The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, VCM = 0V, RL to 0V, unless otherwise specified. (Note 5)
SYMBOL VOS PARAMETER Input Offset Voltage (Note 8) CONDITIONS LT6013AS8 TA = 0°C to 70°C TA = –40°C to 85°C LT6013S8 TA = 0°C to 70°C TA = –40°C to 85°C LT6013ADD TA = 0°C to 70°C TA = –40°C to 85°C LT6013DD, LT6014AS8 TA = 0°C to 70°C TA = –40°C to 85°C LT6014S8 TA = 0°C to 70°C TA = –40°C to 85°C LT6014ADD TA = 0°C to 70°C TA = –40°C to 85°C LT6014DD TA = 0°C to 70°C TA = –40°C to 85°C
q q
MIN
TYP 20
MAX 60 80 110 85 110 135 85 135 170 135 160 185 150 175 200 160 210 225 200 250 275
UNITS µV µV µV µV µV µV µV µV µV µV µV µV µV µV µV µV µV µV µV µV µV
60134fa
25
q q
25
q q
30
q q
35
q q
35
q q
40
q q
5
LT6013/LT6014
ELECTRICAL CHARACTERISTICS
SYMBOL ∆VOS/∆T IOS PARAMETER Input Offset Voltage Drift (Note 6) Input Offset Current (Note 8)
The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, VCM = 0V, RL to 0V, unless otherwise specified. (Note 5)
CONDITIONS S8 Packages DD Packages LT6013AS8, LT6013ADD TA = 0°C to 70°C TA = –40°C to 85°C LT6014AS8, LT6014ADD TA = 0°C to 70°C TA = –40°C to 85°C LT6013/LT6014 (Standard grades) TA = 0°C to 70°C TA = –40°C to 85°C IB Input Bias Current (Note 8) LT6013AS8, LT6013ADD TA = 0°C to 70°C TA = –40°C to 85°C LT6013S8, LT6013DD, LT6014AS8, LT6014ADD TA = 0°C to 70°C TA = –40°C to 85°C LT6014S8, LT6014DD TA = 0°C to 70°C TA = –40°C to 85°C en Input Noise Voltage Density f = 1kHz, LT6013/LT6014 f = 1kHz, LT6013A/LT6014A
q q q q
MIN
TYP 0.2 0.2 100
MAX 0.8 1.2 250 500 600 500 600 700 800 1000 1200 ±250 ±500 ±600 ±400 ±600 ±800 ±800 ±1000 ±1200 13
UNITS µV/°C µV/°C pA pA pA pA pA pA pA pA pA pA pA pA pA pA pA pA pA pA nV/√Hz nV/√Hz nVP-P nVRMS nVP-P nVRMS pA/√Hz pAP-P pARMS pAP-P pARMS GΩ MΩ pF V dB dB
100
q q
150
q q
100
q q
100
q q
150
q q
9.5 9.5 200 50 200 40 0.15 7 1.3 5 0.4 400 20 4
q q
Input Noise Voltage (Low Frequency) Bandwidth = 0.01Hz to 1Hz Bandwidth = 0.1Hz to 10Hz in Input Noise Current Density f = 1kHz
Input Noise Current (Low Frequency) Bandwidth = 0.01Hz to 1Hz Bandwidth = 0.1Hz to 10Hz RIN CIN VCM CMRR Input Resistance Input Capacitance Input Voltage Range Common Mode Rejection Ratio Minimum Supply Voltage PSRR AVOL Power Supply Rejection Ratio Large-Signal Voltage Gain Guaranteed by CMRR VCM = –13.5V to 13.5V Guaranteed by PSRR VS = ±1.35V to ±18V RL = 10k, VOUT = –13.5V to 13.5V
q q q
Common Mode, VCM = ±13.5V Differential ±13.5 115 112 112 1000 600 500 300 120
±14 135 135 ±1.2 135 2000 1500 140 ±1.35
V dB V/mV V/mV V/mV V/mV dB
RL = 5k, VOUT = –13.5V to 13.5V
q
Channel Separation
VOUT = –13.5V to 13.5V, LT6014
q
60134fa
6
LT6013/LT6014
ELECTRICAL CHARACTERISTICS
SYMBOL VOUT PARAMETER Maximum Output Swing (Positive, Referred to V +)
The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, VCM = 0V, RL to 0V, unless otherwise specified. (Note 5)
CONDITIONS No Load, 50mV Overdrive
q
MIN
TYP 45 140
MAX 80 100 195 240 80 100 250 300
UNITS mV mV mV mV mV mV mV mV mA mA mA mA V/µs V/µs V/µs MHz MHz µs µs
ISOURCE = 1mA, 50mV Overdrive
q
Maximum Output Swing (Negative, Referred to V –)
No Load, 50mV Overdrive
q
45 150
q
ISINK = 1mA, 50mV Overdrive ISC Output Short-Circuit Current (Note 3) VOUT = 0V, 1V Overdrive (Source)
q
8 5 8 5 0.15 0.12 0.1 1.1 1
15 20 0.2
VOUT = 0V, –1V Overdrive (Sink)
q
SR
Slew Rate
AV = –10, RF = 50k, RG = 5k TA = 0°C to 70°C TA = – 40°C to 85°C f = 10kHz
q q q
GBW ts tr, tf ∆VOS
Gain Bandwidth Product Settling Time Rise Time, Fall Time Offset Voltage Match (Note 7)
1.6 40 0.9 50 270 320 370 320 420 450 300 350 400 400 500 550 800 1200 1400 1600 2000 2400
AV = –4, 0.01%, VOUT = 0V to 10V AV = 5, 10% to 90%, 0.1V Step LT6014AS8 TA = 0°C to 70°C TA = – 40°C to 85°C LT6014ADD TA = 0°C to 70°C TA = – 40°C to 85°C LT6014S8 TA = 0°C to 70°C TA = – 40°C to 85°C LT6014DD TA = 0°C to 70°C TA = – 40°C to 85°C
q q
µV µV µV µV µV µV µV µV µV µV µV µV pA pA pA pA pA pA dB dB
50
q q
70
q q
80
q q
∆IB
Input Bias Current Match (Note 7)
LT6014AS8, LT6014ADD TA = 0°C to 70°C TA = – 40°C to 85°C LT6014S8, LT6014DD TA = 0°C to 70°C TA = – 40°C to 85°C
200
q q
300
q q q q
∆CMRR ∆PSRR IS
Common Mode Rejection Ratio Match (Note 7) Power Supply Rejection Ratio Match (Note 7) Supply Current
LT6014 LT6014 per Amplifier TA = 0°C to 70°C TA = – 40°C to 85°C
109 106
135 135 200 250 290 310
q q
µA µA µA
60134fa
7
LT6013/LT6014
ELECTRICAL CHARACTERISTICS
Note 1: Absolute Maximum Ratings are those beyond which the life of the device may be impaired. Note 2: The inputs are protected by back-to-back diodes and internal series resistors. If the differential input voltage exceeds 10V, the input current must be limited to less than 10mA. Note 3: A heat sink may be required to keep the junction temperature below absolute maximum ratings. Note 4: The LT6013C/LT6014C and LT6013I/LT6014I are guaranteed functional over the operating temperature range of – 40°C to 85°C. Note 5: The LT6013C and LT6014C are guaranteed to meet the specified performance from 0°C to 70°C and are designed, characterized and expected to meet specified performance from – 40°C to 85°C but is not tested or QA sampled at these temperatures. The LT6013I and LT6014I are guaranteed to meet specified performance from –40°C to 85°C. Note 6: This parameter is not 100% tested. Note 7: Matching parameters are the difference between the two amplifiers. ∆CMRR and ∆PSRR are defined as follows: (1) CMRR and PSRR are measured in µV/V for the individual amplifiers. (2) The difference between matching amplifiers is calculated in µV/V. (3) The result is converted to dB. Note 8: The specifications for VOS, IB, and IOS depend on the grade and on the package. The following table clarifies the notations. STANDARD GRADE S8 Package DFN Package LT6013S8, LT6014S8 LT6013DD, LT6014DD A GRADE LT6013AS8, LT6014AS8 LT6013ADD, LT6014ADD
TYPICAL PERFOR A CE CHARACTERISTICS
Distribution of Input Offset Voltage
30 25
PERCENT OF UNITS (%)
125
CHANGE IN OFFSET VOLTAGE (µV)
VS = 5V, 0V TA = 25°C
LT6013AS8
OFFSET VOLTAGE (µV)
20 15 10 5 0 –45 –35 –25 –15 –5
5
15
INPUT OFFSET VOLTAGE (µV)
60134 G01
Distribution of Input Bias Current
35 30
INPUT BIAS CURRENT (pA)
LT6013AS8
600 400 200 0 –200 –400 –600
–175 –125 –75 –25 25 75 125 175 INPUT BIAS CURRENT (pA)
60134 G04
CHANGE IN INPUT BIAS CURRENT (pA)
PERCENT OF UNITS (%)
25 20 15 10 5 0
8
UW
25 35
Input Offset Voltage vs Temperature
100 75 50 25 0 –25 –50 –75 –100 VS = 5V, 0V REPRESENTATIVE UNITS
Offset Voltage vs Input Common Mode Voltage
1000 900 800 700 600 500 400 300 200 100 TA = 85°C TA = 25°C VS = 5V, 0V TA = – 40°C
45
–125 –50 –25
50 25 0 75 TEMPERATURE (°C)
100
125
0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 INPUT COMMON MODE VOLTAGE (V)
60134 G03
60134 G02
Input Bias Current vs Temperature
800 VS = 5V, 0V TYPICAL PART
400 300 200 100 0 –100 –200 –300 –400
Input Bias Current vs Input Common Mode Voltage
VS = 5V, 0V TA = – 40°C
TA = 25°C TA = 85°C
–800 –50
–25
0 25 75 50 TEMPERATURE (°C)
100
125
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 INPUT COMMON MODE VOLTAGE (V)
60134 G06
60134 G05
60134fa
LT6013/LT6014 TYPICAL PERFOR A CE CHARACTERISTICS
en, in vs Frequency
1000
INPUT VOLTAGE NOISE DENSITY (nV/√Hz)
1/f CORNER = 40Hz
0.1 TOTAL NOISE 0.01 RESISTOR NOISE ONLY
10 1/f CORNER = 2Hz VOLTAGE NOISE
100
0.001
1 1
VS = 5V, 0V TA = 25°C 10 100 FREQUENCY (Hz) 1000
60134 G07
0.0001 100
1k
10k 100k 1M 10M SOURCE RESISTANCE (Ω)
100M
INPUT VOLTAGE NOISE (0.1µV/DIV)
TOTAL INPUT NOISE (µV/√Hz)
CURRENT NOISE UNBALANCED SOURCE RESISTORS
0.01Hz to 1Hz Voltage Noise
INPUT VOLTAGE NOISE (0.1µV/DIV)
VS = 5V, 0V TA = 25°C
INPUT CURRENT NOISE (2pA/DIV)
INPUT CURRENT NOISE (2pA/DIV)
0
10 20 30 40 50 60 70 80 90 100 TIME (SEC)
60134 G10
Output Voltage Swing vs Temperature
V+
OUTPUT VOLTAGE SWING (mV)
OUTPUT HIGH SATURATION VOLTAGE (V)
–20 –40 OUTPUT HIGH –60
TA = 85°C TA = 25°C 0.1 TA = – 40°C
OUTPUT LOW SATURATION VOLTAGE (V)
VS = 5V, 0V NO LOAD
60 40 20 V– – 50 – 25 0
OUTPUT LOW
75 50 25 TEMPERATURE (°C)
UW
100
60134 G11
Total Input Noise vs Source Resistance
10 VS = 5V, 0V TA = 25°C f = 1kHz 1 UNBALANCED SOURCE RESISTORS
INPUT CURRENT NOISE DENSITY (fA/√Hz)
0.1Hz to 10Hz Voltage Noise
VS = 5V, 0V TA = 25°C
0
1
2
3
456 TIME (SEC)
7
8
9
10
60134 G08
60134 G09
0.1Hz to 10Hz Current Noise
VS = 5V, 0V TA = 25°C BALANCED SOURCE RESISTANCE
0.01Hz to 1Hz Current Noise
VS = 5V, 0V TA = 25°C BALANCED SOURCE RESISTANCE
0
1
2
3
456 TIME (SEC)
7
8
9
10
0
10 20 30 40 50 60 70 80 90 100 TIME (SEC)
60134 G32
60134 G31
Output Saturation Voltage vs Load Current (Output High)
1 VS = 5V, 0V
1
Output Saturation Voltage vs Load Current (Output Low)
VS = 5V, 0V
TA = 85°C TA = 25°C 0.1 TA = – 40°C
125
0.01 0.01
0.1 1 LOAD CURRENT (mA)
10
60134 G12
0.01 0.01
0.1 1 LOAD CURRENT (mA)
10
60134 G13
60134fa
9
LT6013/LT6014 TYPICAL PERFOR A CE CHARACTERISTICS
Supply Current vs Supply Voltage
500 450 400
SUPPLY CURRENT (µA)
PER AMPLIFIER
CHANGE IN OFFSET VOLTAGE (µV)
300 250 200 150 100 50 0
TA = 85°C TA = 25°C
2
THD + NOISE (%)
350
TA = – 40°C
0
2
4
6 8 10 12 14 16 18 20 SUPPLY VOLTAGE (± V)
60134 G14
THD + Noise vs Frequency
10 VS = ±15V VOUT = 20VP-P TA = 25°C AV = 5
OUTPUT STEP (V)
CHANNEL SEPARATION (dB)
1
THD + NOISE (%)
0.1
0.01
0.001
0.0001 10
100 1k FREQUENCY (Hz)
CMRR vs Frequency
160
COMMON MODE REJECTION RATIO (dB)
140 120 100 80 60 40 20 0 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M
POWER SUPPLY REJECTION RATIO (dB)
POWER SUPPLY REJECTION RATIO (dB)
TA = 25°C
10
UW
60134 G17
Warm-Up Drift
3
THD + Noise vs Frequency
10 VS = 5V, 0V VOUT = 2VP-P TA = 25°C AV = 5
1
±15V
0.1
1
± 2.5V
0.01
0.001
0 30 60 90 120 TIME AFTER POWER-ON (SECONDS) 150
0.0001 10
100
1k 10k FREQUENCY (Hz)
100k
60134 G16
60134 G15
Settling Time vs Output Step
4 VS = 5V, 0V AV = 5 TA = 25°C
160
Channel Separation vs Frequency
140 120 100 80 60 40 20 LT6014 VS = 5V, 0V TA = 25°C
0.1% 0.01%
3
2
1
0 10k 0 5 15 10 20 SETTLING TIME (µs) 25 30
0 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M
60134 G18
60134 G20
PSRR vs Frequency, Single Supply
140 120 100 80 60 40 20 0 0.1 1 10 100 1k 10k 100k FREQUENCY (Hz) 1M VS = 5V, 0V TA = 25°C
140 120 100 80 60 40 20 0
PSRR vs Frequency, Split Supplies
VS = ±15V TA = 25°C POSITIVE SUPPLY
NEGATIVE SUPPLY
0.1
1
10 100 1k 10k 100k FREQUENCY (Hz)
1M
60134 G21
60134 G19
60134 G22
60134fa
LT6013/LT6014 TYPICAL PERFOR A CE CHARACTERISTICS
Output Impedance vs Frequency
1000 VS = 5V, 0V TA = 25°C
OPEN-LOOP GAIN (dB)
100
OUTPUT IMPEDANCE (Ω)
OPEN-LOOP GAIN (dB)
10 AV = 100 1 AV = 10 0.1 AV = 5 0.01 1 10 100 1k FREQUENCY (Hz) 10k 100k
60134 G23
Gain vs Frequency, AV = 5
22 18 14
GAIN (dB)
VS = 5V, 0V TA = 25°C CL = 500pF CL = 50pF
10 6 2 –2 1k 10k 100k FREQUENCY (Hz) 1M
60134 G26
GAIN (dB)
Small-Signal Transient Response
20mV/DIV
AV = 5
2µs/DIV
UW
Open-Loop Gain vs Frequency
140 120 100 80 60 40 20 0 –20 –40 0.01 0.1 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz)
60134 G24
Gain and Phase vs Frequency
60 50 40 30 20 10 0 GAIN –200 PHASE –160 VS = 5V, 0V TA = 25°C RL = 10k –80
VS = 5V, 0V TA = 25°C RL = 10k
–120 PHASE SHIFT (DEG)
–10 – 240
– 20 –30 – 40 1k 10k 100k 1M FREQUENCY (Hz)
–280 10M
60134 G25
Gain vs Frequency, AV = – 4
20 16 CL = 500pF 12 CL = 50pF 8 4 0 –4 1k 10k 100k FREQUENCY (Hz) 1M
60134 G27
VS = 5V, 0V TA = 25°C
Large-Signal Transient Response
5V
Rail-to-Rail Output Swing
5V
1V/DIV
1V/DIV
0V
0V
60134 G28
AV = –4 VS = 5V, 0V RL = 2k
20µs/DIV
60134 G29
AV = –4 VS = 5V, 0V RL = 2k
100µs/DIV
60134 G30
60134fa
11
LT6013/LT6014
APPLICATIO S I FOR ATIO
Not Unity-Gain Stable The LT6013 and LT6014 amplifiers are optimized for the lowest possible noise and smallest package size, and are intentionally decompensated to be stable in a gain configuration of 5 or greater. Do not connect the amplifiers in a gain less than 5 (such as unity-gain). For a unity-gain stable amplifier with similar performance though slightly higher noise and lower bandwidth, see the LT6010 and LT6011/LT6012 datasheets. Figure 1 shows simple inverting and non-inverting op amp configurations and indicates how to achieve a gain of 5 or greater. For more general feedback networks, determine the gain that the op amp “sees” as follows: 1. Suppose the op amp is removed from the circuit. 2. Apply a small-signal voltage at the output node of the op amp.
VREF RG VIN
+ –
RF
VIN
INVERTING: SIGNAL GAIN = –RF/RG OP AMP GAIN = 1 + RF/RG STABLE IF 1 + RF/RG ≥ 5
Figure 1. Use LT6013 and LT6014 in a Gain of 5 or Greater
10k 10k VIN 2.5k 1nF 10k VIN VOUT 3k 1nF
+ –
UNITY GAIN FOLLOWER
Figure 2. Stabilizing Op Amp for Unity Gain Operation
60134fa
12
U
3. Find the differential voltage that would appear across the two inputs of the op amp. 4. The ratio of the output voltage to the input voltage is the gain that the op amp “sees”. This ratio must be 5 or greater. Do not place a capacitor bigger than 200pF between the output to the inverting input unless there is a 5 times larger capacitor from that input to AC ground. Otherwise, the op amp gain would drop to less than 5 at high frequencies, and the stability of the loop would be compromised. The LT6013 and LT6014 can be used in lower gain configurations when an impedance is connected between the op amp inputs. Figure 2 shows inverting and noninverting unity gain connections. The RC network across the op amp inputs results in a large enough noise gain at high frequencies, thereby ensuring stability. At low frequencies, the capacitor is an open circuit so the DC precision (offset and noise) remains very good.
+ –
RF RG VREF NONINVERTING: SIGNAL GAIN = 1 + RF/RG OP AMP GAIN = 1 + RF/RG STABLE IF 1 + RF/RG ≥ 5 UNITY-GAIN: DO NOT USE VIN
W
UU
+ –
60134 F01
–
VOUT
+
60134 F02
UNITY GAIN INVERTER
LT6013/LT6014
APPLICATIO S I FOR ATIO
Preserving Input Precision
Preserving the input accuracy of the LT6013 and LT6014 requires that the applications circuit and PC board layout do not introduce errors comparable to or greater than the 10µV typical offset of the amplifiers. Temperature differentials across the input connections can generate thermocouple voltages of 10’s of microvolts so the connections to the input leads should be short, close together and away from heat dissipating components. Air currents across the board can also generate temperature differentials. The extremely low input bias currents allow high accuracy to be maintained with high impedance sources and feedback resistors. The LT6013 and LT6014 low input bias currents are obtained by a cancellation circuit on-chip. This causes the resulting I B+ and IB– to be uncorrelated, as implied by the IOS specification being comparable to IB. Do not try to balance the input resistances in each input lead; instead keep the resistance at either input as low as possible for maximum accuracy. Leakage currents on the PC board can be higher than the input bias current. For example, 10GΩ of leakage between a 15V supply lead and an input lead will generate 1.5nA! Surround the input leads with a guard ring driven to the same potential as the input common mode to avoid excessive leakage in high impedance applications. Input Protection The LT6013/LT6014 features on-chip back-to-back diodes between the input devices, along with 500Ω resistors in series with either input. This internal protection limits the input current to approximately 10mA (the maximum allowed) for a 10V differential input voltage. Use additional external series resistors to limit the input current to 10mA in applications where differential inputs of more than 10V
U
are expected. For example, a 1k resistor in series with each input provides protection against 30V differential voltage. Input Common Mode Range The LT6013/LT6014 output is able to swing close to each power supply rail (rail-to-rail out), but the input stage is limited to operating between V – + 1V and V+ – 1.2V. Exceeding this common mode range will cause the gain to drop to zero; however, no phase reversal will occur. Total Input Noise The LT6013 and LT6014 amplifiers contribute negligible noise to the system when driven by sensors (sources) with impedance between 10kΩ and 1MΩ. Throughout this range, total input noise is dominated by the 4kTRS noise of the source. If the source impedance is less than 10kΩ, the input voltage noise of the amplifier starts to contribute with a minimum noise of 9.5nV/√Hz for very low source impedance. If the source impedance is more than 1MΩ, the input current noise of the amplifier, multiplied by this high impedance, starts to contribute and eventually dominate. Total input noise spectral density can be calculated as:
W
UU
vn(TOTAL) = en2 + 4kTRS + (in RS )2
where en = 9.5nV/√Hz , in = 0.15pA/√Hz and RS is the total impedance at the input, including the source impedance. Capacitive Loads The LT6013 and LT6014 can drive capacitive loads up to 500pF at a gain of 5. The capacitive load driving capability increases as the amplifier is used in higher gain configurations. A small series resistance between the output and the load further increases the amount of capacitance that the amplifier can drive.
60134fa
13
LT6013/LT6014
SI PLIFIED SCHE ATIC
V+ R3 Q7 R4
Q3
R1 500Ω –IN D1 +IN R2 500Ω Q1 Q2 D2
V–
14
W
W
(One Amplifier)
R5
R6
Q6 Q8 Q5 Q4 Q21 B A Q22 C2 D3 D4 Q12 D5 RC1 C1
Q18
Q19
Q13 OUT
Q16 Q17 C B A Q11 Q15 Q9 Q10
Q14
C3 Q20
60134 SS
60134fa
LT6013/LT6014
PACKAGE DESCRIPTIO U
DD Package 8-Lead Plastic DFN (3mm × 3mm)
(Reference LTC DWG # 05-08-1698)
R = 0.115 TYP 5 0.675 ± 0.05 0.38 ± 0.10 8 3.00 ± 0.10 (4 SIDES) PACKAGE OUTLINE 0.25 ± 0.05 0.50 BSC 2.38 ± 0.05 (2 SIDES) RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS PIN 1 TOP MARK (NOTE 6)
(DD8) DFN 1203
3.5 ± 0.05 1.65 ± 0.05 2.15 ± 0.05 (2 SIDES)
1.65 ± 0.10 (2 SIDES)
0.200 REF
0.75 ± 0.05
4 0.25 ± 0.05 2.38 ± 0.10 (2 SIDES)
1 0.50 BSC
0.00 – 0.05
BOTTOM VIEW—EXPOSED PAD NOTE: 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1) 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE
S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
.189 – .197 (4.801 – 5.004) NOTE 3 8 7 6 5 .053 – .069 (1.346 – 1.752)
.045 ±.005 .050 BSC
.004 – .010 (0.101 – 0.254)
.245 MIN
.160 ±.005
.228 – .244 (5.791 – 6.197)
.150 – .157 (3.810 – 3.988) NOTE 3
.014 – .019 (0.355 – 0.483) TYP .010 – .020 × 45° (0.254 – 0.508) .008 – .010 (0.203 – 0.254)
.050 (1.270) BSC
.030 ±.005 TYP RECOMMENDED SOLDER PAD LAYOUT NOTE: 1. DIMENSIONS IN
1
2
3
4
0°– 8° TYP
INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
.016 – .050 (0.406 – 1.270)
SO8 0303
60134fa
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
15
LT6013/LT6014
TYPICAL APPLICATIO U
Low Power Hall Sensor Amplifier
VS 1µF VS 4 LT1790-1.25 1, 2 6 10k OFFSET VS ADJUST 1 400Ω ×4 3 LT1782 4 HALL ELEMENT ASAHI-KASEI HW-108A (RANK D) www.asahi-kasei.co.jp 2 3
+ –
8 1 +
1/2 LT6014 2
49.9k 499Ω 499Ω 0.1µF VOUT 49.9k
7.87k 1%
+
100k 1% VS = 3V TO 18V IS = ~ 600µA VOUT = ~ 40mV/mT
–
6 26.7k 1%
–
1/2 LT6014 7 –
5
+
4
60134 TA02
Precision Micropower Photodiode Amplifier
C1 20pF
R1 100k VS+
GAIN: AZ = 100kΩ =
VOUT IPHOTODIODE
IPHOTODIODE
10% TO 90% RISE TIME: tr = 3.2µs BANDWIDTH: BW = 110kHz
–
880nm IR PHOTODIODE λ OPTO-DIODE CORP ODD-45W LT6013 CD 170pF VOUT VS = ±1.35V TO ±18V C1, CD SATISFY GAIN OF 5 STABILITY REQUIREMENT AT AC OUTPUT OFFSET = 60µV MAX FOR LT6013AS8
60134 TA04
+
VS
–
RELATED PARTS
PART NUMBER LT1112/LT1114 LT1880 LT1881/LT1882 LT1884/LT1885 LT6011/LT6012 LT6010 DESCRIPTION Dual/Quad Low Power, Picoamp Input Precision Op Amps Rail-to-Rail Output, Picoamp Input Precision Op Amp COMMENTS 250pA Input Bias Current SOT-23
Dual/Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps CLOAD Up to 1000pF Dual/Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps 9.5nV/√Hz Input Noise Dual/Quad Low Power Rail-to-Rail Output, Precision Op Amps Single Low Power Rail-to-Rail Output, Precision Op Amp 14nV/√Hz, Unity-Gain Stable Version of LT6014 200pA Input Bias Current, Shutdown Feature
60134fa
16
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 q FAX: (408) 434-0507
q
LT/TP 0404 1K REV A • PRINTED IN USA
www.linear.com
© LINEAR TECHNOLOGY CORPORATION 2004