0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LT6703IDC-3-TRMPBF

LT6703IDC-3-TRMPBF

  • 厂商:

    LINER

  • 封装:

  • 描述:

    LT6703IDC-3-TRMPBF - Micropower, Low Voltage Comparator with 400mV Reference - Linear Technology

  • 数据手册
  • 价格&库存
LT6703IDC-3-TRMPBF 数据手册
FEATURES ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ LT6703-2/LT6703-3 Micropower, Low Voltage Comparator with 400mV Reference DESCRIPTION The LT®6703-2/LT6703-3 combine a micropower, low voltage comparator with a 400mV reference in a tiny DFN package. Operating with supplies from 1.4V up to 18V, these devices draw only 6.5μA, making them ideal for low voltage system monitoring. Hysteresis is included in the comparator, ensuring stable operation. The comparator has one input available externally while the other input is connected internally to the reference. The comparator output is open collector and the output load can be referred to any voltage up to 18V independent of supply voltage. The output stage has a guaranteed current sink capability of more than 5mA over temperature. The two versions of this part differ by the polarity of the available comparator input. The LT6703-2 has an inverting input and the LT6703-3 has a noninverting input. Both versions are offered in commercial, industrial and automotive temperature ranges. , LT, LTC, LTM and Over-The-Top are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. Internal 400mV Reference Total Threshold Error: ± 1.25% Max at 25°C Wide Supply Range: 1.4V to 18V Specified for –40 to 125°C Temperature Range Low Quiescent Current: 6.5μA Typ at 5V Internal Hysteresis: 6.5mV Typ Low Input Bias Current: ±10nA Max Over-The-Top® Input also Includes Ground Open-Collector Output Allows Level Translation Choice of Input Polarities: LT6703-2/LT6703-3 Available in a 2mm × 2mm DFN Package APPLICATIONS ■ ■ ■ ■ ■ ■ ■ Battery-Powered System Monitoring Threshold Detectors Window Comparators Relay Driving Optoisolator Driving Industrial Control Systems Handheld Instruments TYPICAL APPLICATION Micropower Supply Voltage Monitor 1.4V ≤ VIN ≤ 18V (VTH = 3V) Rising Input Threshold Voltage vs Temperature RISING INPUT THRESHOLD VOLTAGE (mV) 404 403 402 401 400 399 398 397 #4 #2 #1 FOUR TYPICAL PARTS VS = 5V 1MΩ LT6703-3 +IN VS 1MΩ + OUT #3 0.1μF 154k – 400mV REFERENCE GND VS 670323 TA01 396 –60 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 670323 G04 670323fa 1 LT6703-2/LT6703-3 ABSOLUTE MAXIMUM RATINGS (Note 1) Total Supply Voltage (VS to GND) ..........................18.5V Input Voltage (+IN, –IN) (Note 3)....................................... 18.5V to (GND – 0.3V) Output Voltage (OUT).................. 18.5V to (GND – 0.3V) Output Short-Circuit Duration (Note 2) ............ Indefinite Input Current (Note 3)..........................................–10mA Operating Temperature Range (Note 4) LT6703C-2/-3 ...................................... –40°C to 85°C LT6703I-2/-3 ....................................... –40°C to 85°C LT6703H-2/-3 ................................... –40°C to 125°C Specified Temperature Range (Note 5) LT6703C-2/-3 ..................................... –40°C to 85°C LT6703I-2/-3 ....................................... –40°C to 85°C LT6703H-2/-3 .................................. –40°C to 125°C Maximum Junction Temperature .......................... 125°C Storage Temperature Range................... –65°C to 125°C Lead Temperature (Soldering, 10 sec) .................. 300°C PIN CONFIGURATION TOP VIEW TOP VIEW 4 4 1 OUT 2 VS 3 –IN 1 OUT 2 VS 3 +IN DC PACKAGE 3-LEAD (2mm × 2mm) PLASTIC DFN TJMAX = 125°C, θJA = 102°C/W EXPOSED PAD (PIN 4) IS GND, MUST BE SOLDERED TO PCB LT6703-2 DC PACKAGE 3-LEAD (2mm × 2mm) PLASTIC DFN TJMAX = 125°C, θJA = 102°C/W EXPOSED PAD (PIN 4) IS GND, MUST BE SOLDERED TO PCB LT6703-3 ORDER INFORMATION LEAD FREE FINISH TAPE AND REEL (MINI) LT6703CDC-2#TRMPBF LT6703IDC-2#TRMPBF LT6703HDC-2#TRMPBF LT6703CDC-3#TRMPBF LT6703IDC-3#TRMPBF LT6703HDC-3#TRMPBF TAPE AND REEL LT6703CDC-2#TRPBF LT6703IDC-2#TRPBF LT6703HDC-2#TRPBF LT6703CDC-3#TRPBF LT6703IDC-3#TRPBF LT6703HDC-3#TRPBF PART MARKING* LCWP LCWP LCWP LCTW LCTW LCTW PACKAGE DESCRIPTION 3-Lead (2mm × 2mm) Plastic DFN 3-Lead (2mm × 2mm) Plastic DFN 3-Lead (2mm × 2mm) Plastic DFN 3-Lead (2mm × 2mm) Plastic DFN 3-Lead (2mm × 2mm) Plastic DFN 3-Lead (2mm × 2mm) Plastic DFN TEMPERATURE RANGE 0°C to 70°C –40°C to 85°C –40°C to 125°C 0°C to 70°C –40°C to 85°C –40°C to 125°C TRM = 500 pieces. Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on lead based finish parts. *Temperature grades are identified by a label on the shipping container. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ 670323fa 2 LT6703-2/LT6703-3 ELECTRICAL CHARACTERISTICS SYMBOL VTH(R) VTH(F) HYS IB PARAMETER Rising Input Threshold Voltage (Note 6) HYS = VTH(R) – VTH(F) Input Bias Current TA = 25°C, unless otherwise specified. MIN 395 387 3.5 TYP 400 393.5 6.5 ±0.01 ±0.01 ±4 70 0.01 0.01 18 29 2.2 0.22 6.5 11.0 MAX 405 400 9.5 ±10 ±10 ±10 200 0.8 0.8 UNITS mV mV mV nA nA nA mV μA μA μs μs μs μs μA CONDITIONS RL = 100k, VO = 2V Swing, VS = 5V VS = 5V, RL = 100k, VO = 2V Swing VS = 1.4V, 18V, VIN = VS VS = 1.4V, VIN = 18V VS = 1.4V, 18V, VIN = 0.1V 10mV Input Overdrive, VS = 5V, IOUT = 5mA VS = 1.4V, 18V, VOUT = VS, VIN = 40mV Overdrive VS = 1.4V, VOUT = 18V, VIN = 40mV Overdrive VS = 5V, 10mV Input Overdrive, RL = 10k, VOL = 400mV VS = 5V, 10mV Input Overdrive, RL = 10k, VOH = 0.9 • VS VS = 5V, 10mV Input Overdrive, RL = 10k VO = (0.1 to 0.9) • VS VS = 5V, 10mV Input Overdrive, RL = 10k VO = (0.1 to 0.9) • VS No Load Current, VS = 5V Falling Input Threshold Voltage (Note 6) RL = 100k, VO = 2V Swing, VS = 5V VOL IOFF tPD(HL) tPD(LH) tr tf IS Output Low Voltage Output Leakage Current High-to-Low Propagation Delay Low-to-High Propagation Delay Output Rise Time Output Fall Time Supply Current The ● denotes the specifications which apply over the temperature range of 0°C ≤ TA ≤ 70°C, (LT6703C-2/LT6703C-3) unless otherwise specified (Notes 4, 5). SYMBOL VTH(R) VTH(F) HYS IB PARAMETER Rising Input Threshold Voltage (Note 6) HYS = VTH(R) – VTH(F) Input Bias Current CONDITIONS RL = 100k, VO = 2V Swing, VS = 5V VS = 5V, RL = 100k, VO = 2V Swing VS = 1.4V, 18V, VIN = VS VS = 1.4V, VIN = 18V VS = 1.4V, 18V, VIN = 0.1V 10mV Input Overdrive, VS = 5V, IOUT = 5mA VS = 1.4V, 18V, VOUT = VS, VIN = 40mV Overdrive VS = 1.4V, VOUT = 18V, VIN = 40mV Overdrive No Load Current, VS = 5V ● ● ● ● ● ● ● ● ● ● MIN 392.5 384.5 3 TYP MAX 407.5 402.5 11 ±15 ±15 ±15 250 1 1 14.0 UNITS mV mV mV nA nA nA mV μA μA μA Falling Input Threshold Voltage (Note 6) RL = 100k, VO = 2V Swing, VS = 5V VOL IOFF IS Output Low Voltage Output Leakage Current Supply Current The ● denotes the specifications which apply over the temperature range of –40°C ≤ TA ≤ 85°C, (LT6703I-2/LT6703I-3) unless otherwise specified (Notes 4, 5). SYMBOL VTH(R) VTH(F) HYS IB PARAMETER Rising Input Threshold Voltage (Note 6) HYS = VTH(R) – VTH(F) Input Bias Current CONDITIONS RL = 100k, VO = 2V Swing, VS = 5V VS = 5V, RL = 100k, VO = 2V Swing VS = 1.4V, 18V, VIN = VS VS = 1.4V, VIN = 18V VS = 1.4V, 18V, VIN = 0.1V 10mV Input Overdrive, VS = 5V, IOUT = 5mA VS = 1.4V, 18V, VOUT = VS, VIN = 40mV Overdrive VS = 1.4V, VOUT = 18V, VIN = 40mV Overdrive No Load Current, VS = 5V ● ● ● ● ● ● ● ● ● ● MIN 392 383.5 2 TYP MAX 408 403.5 11.5 ±15 ±15 ±15 250 1 1 15.0 UNITS mV mV mV nA nA nA mV μA μA μA 670323fa Falling Input Threshold Voltage (Note 6) RL = 100k, VO = 2V Swing, VS = 5V VOL IOFF IS Output Low Voltage Output Leakage Current Supply Current 3 LT6703-2/LT6703-3 ELECTRICAL CHARACTERISTICS The ● denotes the specifications which apply over the temperature range of –40°C ≤ TA ≤ 125°C, (LT6703H-2/LT6703H-3) unless otherwise specified (Notes 4, 5). SYMBOL VTH(R) VTH(F) HYS IB PARAMETER Rising Input Threshold Voltage (Note 6) HYS = VTH(R) – VTH(F) Input Bias Current CONDITIONS RL = 100k, VO = 2V Swing, VS = 5V VS = 5V, RL = 100k, VO = 2V Swing VS = 1.4V, 18V, VIN = VS VS = 1.4V, VIN = 18V VS = 1.4V, 18V, VIN = 0.1V 10mV Input Overdrive, VS = 5V, IOUT = 5mA VS = 1.4V, 18V, VOUT = VS, VIN = 40mV Overdrive VS = 1.4V, VOUT = 18V, VIN = 40mV Overdrive No Load Current, VS = 5V ● ● ● ● ● ● ● ● ● ● MIN 392 382.5 2 TYP MAX 410 404.5 13.5 ±45 ±45 ±50 250 1 1 17.0 UNITS mV mV mV nA nA nA mV μA μA μA Falling Input Threshold Voltage (Note 6) RL = 100k, VO = 2V Swing, VS = 5V VOL IOFF IS Output Low Voltage Output Leakage Current Supply Current Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely. Note 3: The inputs are protected by ESD diodes to the ground pin. If the input voltage exceeds –0.3V below ground, the input current should be limited to less than 10mA. Note 4: The LT6703C-2/-3, and LT6703I-2/-3 are guaranteed functional over the operating temperature range of –40°C to 85°C. The LT6703H-2/-3, is guaranteed functional over the operating temperature range of –40°C to 125°C. Note 5: The LT6703C-2/-3, are guaranteed to meet the specified performance from 0°C to 70°C. The LT6703C-2/-3 are designed, characterized and expected to meet specified performance from –40°C to 85°C but are not tested or QA sampled at these temperatures. The LT6703I-2/-3, are guaranteed to meet specified performance from –40°C to 85°C. The LT6703H-2/-3, is guaranteed to meet specified performance from –40°C to 125°C. Note 6: VTH defines the threshold voltage of the comparator and combines the effect of offset and reference accuracy. 670323fa 4 LT6703-2/LT6703-3 PIN FUNCTIONS VS LT6703-2 –IN LT6703-3 +IN OUT VS – + 400mV REFERENCE VS + OUT – 400mV REFERENCE 670323 PF02 VS 670323 PF03 GND GND OUT: Open-Collector Output of Comparator. This pin provides drive for up to 40mA of load current. Off-state voltage may be as high as 18V above GND, regardless of VS used. GND: Ground. This pin is also the low side return of the internal 400mV reference. IN: External Input for Comparator. The voltage on this pin can range from –0.3V to 18V with respect to GND regardless of VS used. The input is noninverting for the LT6703-3, and inverting for the LT6703-2. The other comparator input is internally connected to the 400mV reference. VS: Supply Voltage. The parts are characterized for operation with 1.4V ≤ VS ≤ 18V with respect to GND. 670323fa 5 LT6703-2/LT6703-3 TYPICAL PERFORMANCE CHARACTERISTICS Distribution of Rising Input Threshold Voltage 18 16 PERCENT OF UNITS (%) 14 12 10 8 6 4 2 0 394 396 398 400 402 404 406 RISING INPUT THRESHOLD VOLTAGE (mV) 670323 G01 Distribution of Falling Input Threshold Voltage 18 16 PERCENT OF UNITS (%) 14 12 10 8 6 4 2 0 388 390 392 394 396 398 400 FALLING INPUT THRESHOLD VOLTAGE (mV) 670323 G02 Distribution of Hysteresis 20 18 16 PERCENT OF UNITS (%) 14 12 10 8 6 4 2 0 4 4.8 5.6 6.4 7.2 HYSTERESIS (mV) 8 8.8 670323 G03 VS = 5V TA = 25°C VS = 5V TA = 25°C VS = 5V TA = 25°C Rising Input Threshold Voltage vs Temperature RISING INPUT THRESHOLD VOLTAGE (mV) 403 402 401 400 399 398 397 #4 #2 RISING INPUT THRESHOLD VOLTAGE (mV) 404 #1 FOUR TYPICAL PARTS VS = 5V 403.0 402.5 402.0 401.5 401.0 400.5 400.0 399.5 Rising Input Threshold Voltage vs Temperature VS = 1.4V VS = 5V VS = 12V VS = 18V RISING INPUT THRESHOLD VOLTAGE (mV) 403.0 402.5 402.0 401.5 401.0 400.5 400.0 399.5 399.0 Rising Input Threshold Voltage vs Supply Voltage TA = 25°C TA = 85°C TA = 125°C TA = – 55°C #3 396 –60 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 670323 G04 399.0 –60 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 670323 G05 2 4 8 10 12 14 6 SUPPLY VOLTAGE (V) 16 18 670323 G06 670323fa 6 LT6703-2/LT6703-3 TYPICAL PERFORMANCE CHARACTERISTICS Hysteresis vs Temperature 10 FOUR TYPICAL PARTS 9 VS = 5V #1 #2 8 #3 #4 7 6 5 4 3 2 –60 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 670323 G07 Hysteresis vs Temperature 10 9 8 HYSTERESIS (mV) 7 6 5 4 3 2 –60 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 670323 G08 Hysteresis vs Supply Voltage 10 9 8 HYSTERESIS (mV) 7 6 5 4 3 2 2 4 8 10 12 14 6 SUPPLY VOLTAGE (V) 16 18 TA = 25°C TA = 85°C TA = 125°C TA = – 55°C VS = 1.4V VS = 5V VS = 12V VS = 18V HYSTERESIS (mV) 670323 G09 Minimum Supply Voltage 1 0 THRESHOLD SHIFT (mV) SUPPLY CURRENT (μA) –1 –2 –3 –4 –5 0.9 TA = 25°C TA = 85°C TA = 125°C TA = – 55°C 1.1 1.5 1.3 1.7 SUPPLY VOLTAGE (V) 1.9 670323 G10 Quiescent Supply Current vs Supply Voltage 10 TA = 25°C TA = 85°C TA = 125°C TA = – 55°C SUPPLY CURRENT (μA) 50 Start-Up Supply Current TA = 25°C TA = 85°C TA = 125°C TA = – 55°C 9 NO LOAD CURRENT 8 7 6 5 4 1.4 3.4 5.4 7.4 9.4 11.4 13.4 15.4 17.4 SUPPLY VOLTAGE (V) 670323 G11 40 30 20 10 0 0 0.2 0.4 0.6 0.8 1.0 1.2 SUPPLY VOLTAGE (V) 1.4 670323 G12 670323fa 7 LT6703-2/LT6703-3 TYPICAL PERFORMANCE CHARACTERISTICS Supply Current vs Output Sink Current 1000 TA = – 40°C VS = 1.4V VS = 5V VS = 12V VS = 18V 1000 Supply Current vs Output Sink Current TA = 25°C VS = 1.4V VS = 5V VS = 12V VS = 18V 1000 Supply Current vs Output Sink Current TA = 85°C VS = 1.4V VS = 5V VS = 12V VS = 18V SUPPLY CURRENT (μA) SUPPLY CURRENT (μA) 100 100 SUPPLY CURRENT (μA) 100 670323 G14 100 10 10 10 1 0.001 0.1 1 10 0.01 OUTPUT SINK CURRENT (mA) 100 670323 G13 1 0.001 0.1 1 10 0.01 OUTPUT SINK CURRENT (mA) 1 0.001 0.01 0.1 1 10 OUTPUT SINK CURRENT (mA) 100 670323 G15 Below Ground Input Bias Current 10000 VS = 18V –0.3V < VIN < 0V TA = 25°C TA = 85°C TA = 125°C TA = – 55°C 3 Low Level Input Bias Current CURRENT IS POSITIVE GOING 2 INTO THE DEVICE INPUT BIAS CURRENT (nA) INPUT BIAS CURRENT (nA) 1 0 –1 –2 –3 –4 –5 –6 VS = 18V 0V < VIN < 1V TA = 25°C TA = 85°C TA = 125°C TA = – 55°C 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 INPUT VOLTAGE (V) 1 10 High Level Input Bias Current CURRENT IS GOING INTO THE DEVICE INPUT BIAS CURRENT (nA) 1000 1 100 0.1 10 0.01 1 –0.3 CURRENT IS GOING OUT OF THE DEVICE –7 –0.2 –0.1 INPUT VOLTAGE (V) 0 670323 G16 0.001 1 VS = 18V VIN > 1V TA = 25°C TA = 85°C TA = 125°C 3 5 7 9 11 13 INPUT VOLTAGE (V) 15 17 670323 G17 670323 G18 670323fa 8 LT6703-2/LT6703-3 TYPICAL PERFORMANCE CHARACTERISTICS Output Saturation Voltage vs Output Sink Current 1000 OUTPUT SATURATION VOLTAGE (mV) OUTPUT SATURATION VOLTAGE (mV) TA = – 40°C VS = 1.4V VS = 5V VS = 12V VS = 18V 1000 Output Saturation Voltage vs Output Sink Current OUTPUT SATURATION VOLTAGE (mV) TA = 25°C VS = 1.4V VS = 5V VS = 12V VS = 18V 1000 Output Saturation Voltage vs Output Sink Current TA = 85°C VS = 1.4V VS = 5V VS = 12V VS = 18V 100 100 100 10 0.001 0.01 0.1 1 10 OUTPUT SINK CURRENT (mA) 100 670323 G19 10 0.001 0.01 0.1 1 10 OUTPUT SINK CURRENT (mA) 100 670323 G20 10 0.001 0.1 1 10 0.01 OUTPUT SINK CURRENT (mA) 100 670323 G21 Output Short-Circuit Current 80 SHORT-CIRCUIT CURRENT (mA) SHORT-CIRCUIT CURRENT (mA) 70 60 50 40 30 20 10 0 0 2 4 VS = 5V TA = 25°C TA = 85°C TA = 125°C TA = – 55°C 8 10 12 14 6 OUTPUT VOLTAGE (V) 16 18 80 70 60 50 40 30 20 10 0 Output Short-Circuit Current 10 OUTPUT LEAKAGE CURRENT (nA) Output Leakage Current 1 TA = 25°C VS = 1.4V VS = 5V VS = 12V VS = 18V 0.1 0.01 VS = 5V TA = 25°C TA = 85°C TA = 125°C TA = – 55°C 0.001 0 2 4 8 10 12 14 6 OUTPUT VOLTAGE (V) 16 18 0 2 4 6 8 10 12 14 OUTPUT VOLTAGE (V) 16 18 670323 G22 670323 G23 670323 G24 Propagation Delay vs Input Overdrive 60 50 PROPAGATION DELAY (μs) 40 30 20 10 0 TA = 25°C LH NONINV HL NONINV LH INV HL INV 100 Rise and Fall Times vs Output Pull-Up Resistor VS = 5V CL = 20pF TA = 25°C RISE 1 FALL VO(NINV) 5V/DIV DC VO(INV) 5V/DIV DC VIN 10mV/DIV AC Noninverting and Inverting Comparator Propagation Delay RISE AND FALL TIME (μs) 10 0.1 0 20 60 80 40 INPUT OVERDRIVE (mV) 100 670323 G25 0.01 0.1 1 10 100 OUTPUT PULL-UP RESISTOR (kΩ) 1000 670323 G27 20μs/DIV VS = 5V TA = 25°C RLOAD = 10k CONNECTED TO VS VIN(OVERDRIVE) = 10mV OVER THE INPUT VOLTAGE THRESHOLDS 670323 G26 670323fa 9 LT6703-2/LT6703-3 APPLICATIONS INFORMATION The LT6703-2/LT6703-3 devices are micropower comparators with a built-in 400mV reference. Features include wide supply voltage range (1.4V to 18V), Over-The-Top input and output range, 2% accurate rising input threshold voltage and 6.5mV typical built-in hysteresis. Internal Reference Each comparator has one input available externally. The two versions of the part differ by the polarity of the available input (i.e., inverting or noninverting). The other comparator input is connected internally to the 400mV reference. The rising input threshold voltage of the comparator is designed to be equal to that of the reference (i.e., ≈400mV). The reference voltage is established with respect to the device GND connection. Hysteresis Each comparator has built-in 6.5mV (typical) of hysteresis to simplify designs, to insure stable operation in the presence of noise at the inputs, and to reject supply rail noise that might be induced by state change load transients. The hysteresis is designed such that the falling input threshold voltage is nominally 393.5mV. External positive feedback R3 circuitry can be employed to increase effective hysteresis if desired, but such circuitry will provide an apparent effect on both the rising and falling input thresholds (the actual internal thresholds remain unaffected). Comparator Input The comparator input can range from ground to 18V, regardless of the supply voltage used. The typical input current for inputs well above the threshold (i.e., >800mV) is a few pA leaking into the input. With decreasing input voltage, a small bias current begins to be drawn out of the input, reaching a few nA when at ground potential. The input may be forced 100mV below ground without causing an improper output, though some additional bias current will begin to flow from the ESD input protection diode. Inputs driven further negative than 100mV below ground will not cause damage provided the current is limited to 10mA. Comparator Output The comparator output is open collector and capable of sinking 40mA typical. Load currents are directed out of the GND pin of the part. The output off-state voltage may range between –0.3V and 18V with respect to ground, regardless of the supply voltage used. As with any opencollector device, the outputs of multiple comparators may be tied together to implement wire-AND logic functions. Power Supplies The comparator circuitry operates from a single 1.4V to 18V supply. A minimum 0.1μF bypass capacitor is required between the VS pin and GND. When an output load is connected to the supply rail near the part and the output is sinking more than 5mA, a 1μF bypass capacitor is recommended. In instances where the supply is relatively “soft” (such as with small batteries) and susceptible to load steps, an additional 47Ω series decoupling resistor can further improve isolation of supply transients from the VS pin. VS R1 VIN R2 +IN LT6703-3 GND 670323 F01 R4 OUT VOUT THRESHOLD EQUATIONS: VIN (L TO H) = (400mV) • (R1) • VIN (H TO L) = (393mV) • (R1) • ( ( 1 R1 1 R1 + 1 R2 + 1 R3 ) 1 + 1 R2 + R3 + R4 )( ) – VS • R1 R3 + R4 Figure 1. Additional Hysteresis Circuit 670323fa 10 LT6703-2/LT6703-3 PACKAGE DESCRIPTION DC Package 3-Lead Plastic DFN (2mm × 2mm) (Reference LTC DWG # 05-08-1717 Rev Ø) 1.35 ± 0.05 (2 SIDES) 1.00 ± 0.05 1.30 ± 0.05 (2 SIDES) 2.00 ± 0.05 PACKAGE OUTLINE 0.25 ± 0.05 0.50 BSC RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS 1.35 ± 0.05 (2 SIDES) R = 0.05 TYP 2.00 ± 0.10 (4 SIDES) 1.00 ± 0.05 (2 SIDES) PIN 1 BAR TOP MARK (SEE NOTE 6) PIN 1 NOTCH R = 0.20 OR 0.25 × 45° CHAMFER 3 1 R = 0.115 TYP 0.25 ± 0.05 0.50 BSC (DC3) DFN 1205 REV Ø 0.40 ± 0.05 0.200 REF 0.75 ± 0.05 0.70 ± 0.05 BOTTOM VIEW—EXPOSED PAD 0.00 – 0.05 NOTE: 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (W-TBD) 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 670323fa Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 11 LT6703-2/LT6703-3 TYPICAL APPLICATIONS 1.8V VS 15V 0V +IN GND LT6703-3 OUT 10k VOUT 1.8V 0V Level Translator High Voltage to Low Voltage 1.8V 15V VS 1.8V 0V +IN GND LT6703-3 OUT VOUT 0V 10k 15V Level Translator Low Voltage to High Voltage 12V 5V LED (ON IF ILOAD > 4A) ILOAD LOAD –IN RS 0.19 GND 670323 TA02 VS LT6703-2 OUT 1k Low Side Current Sense Alarm RELATED PARTS PART NUMBER LT1017/LT1018 LTC1441/LTC1442 LTC1998 LT6700 DESCRIPTION Micropower Dual Comparator Micropower Dual Comparator with 1% Reference Micropower Comparator for Battery Monitoring Dual Micropower Comparator with 400mV Reference COMMENTS 1.1V (Min) Supply Voltage, ±1.4mV (Max) Input Offset 1.182 ±1% Reference, ±10mV (Max) Input Offset 2.5μA Typ Supply Current, Adjustable Threshold and Hysteresis 1.4V to 18V Supply Voltage, 6.5μA Typical Supply Current 670323fa 12 Linear Technology Corporation (408) 432-1900 ● FAX: (408) 434-0507 ● LT 0507 REV A • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 www.linear.com © LINEAR TECHNOLOGY CORPORATION 2006
LT6703IDC-3-TRMPBF 价格&库存

很抱歉,暂时无法提供与“LT6703IDC-3-TRMPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货