0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTC1350CNW

LTC1350CNW

  • 厂商:

    LINER

  • 封装:

  • 描述:

    LTC1350CNW - 3.3V Low Power EIA/TIA-562 3-Driver/5-Receiver Transceiver - Linear Technology

  • 数据手册
  • 价格&库存
LTC1350CNW 数据手册
LTC1350 3.3V Low Power EIA/TIA-562 3-Driver/ 5-Receiver Transceiver FEATURES ■ ■ DESCRIPTIO ■ ■ ■ ■ ■ ■ ■ ■ Low Supply Current: 300µA Receivers 4 and 5 Kept Alive in Shutdown: 35µA ESD Protection: ±10kV Operates from a Single 3.3V Supply Uses Small Capacitors: 0.1µF Operates to 120kBaud Three-State Outputs are High Impedance When Off Output Overvoltage Does Not Force Current Back into Supplies EIA/TIA-562 I/O Lines Can Be Forced to ± 25V Without Damage Flowthrough Architecture The LTC®1350 is a 3-driver/5-receiver EIA/TIA-562 transceiver with very low supply current. In the no load condition, the supply current is only 300µA. The charge pump only requires four 0.1µF capacitors. In Shutdown mode, two receivers are kept alive and the supply current is only 35µA. All RS232 outputs assume a high impedance state in Shutdown or with the power off. The LTC1350 is fully compliant with all data rate and overvoltage EIA/TIA-562 specifications. The transceiver can operate up to 120kbaud with a 1000pF and 3kΩ load. Both driver outputs and receiver inputs can be forced to ± 25V without damage and can survive multiple ± 10kV ESD strikes. , LTC and LT are registered trademarks of Linear Technology Corporation. APPLICATIO S ■ ■ Notebook Computers Palmtop Computers TYPICAL APPLICATIO V+ VCC C1 + 3-Drivers/5-Receivers with Shutdown 1 2 3 LTC1350 28 27 26 25 24 23 22 21 20 19 18 17 16 15 LTC1350 • TA01 Quiescent and Shutdown Supply Current vs Temperature 600 500 QUIESCENT CURRENT (µA) V– C2 + C2 – DR1 IN RX1 OUT DR2 IN RX2 OUT RX3 OUT RX4 OUT DR3 IN RX5 OUT GND NC NC TEST CONDITION: VCC = 3.3V ALL DRIVER INPUTS TIED TO VCC 4 C1– 5 DR1 OUT 6 RX1 IN 7 DR2 OUT 8 RX2 IN 9 RX3 IN 10 RX4 IN 11 DR3 OUT 12 RX5 IN 13 ON/OFF 14 NC 400 300 200 100 0 –40 –20 U 85 75 65 55 45 SHUTDOWN CURRENT 35 0 100 SHUTDOWN CURRENT (µA) U U QUIESCENT CURRENT 40 20 60 0 TEMPERATURE (˚C) 80 LTC1350 • TA02 1350fa 1 LTC1350 ABSOLUTE AXI U RATI GS PACKAGE/ORDER I FOR ATIO TOP VIEW V+ C1+ 1 28 V– 27 C2+ 26 C2– 25 DR1 IN 24 RX1 OUT 23 DR2 IN 22 RX2 OUT 21 RX3 OUT 20 RX4 OUT 19 DR3 IN 18 RX5 OUT 17 GND 16 NC 15 NC NW PACKAGE 28-LEAD PDIP VCC 2 3 Supply Voltage (VCC) ................................................ 5V Input Voltage Driver ....................................... – 0.3V to V CC + 0.3V Receiver ............................................... – 25V to 25V ON/OFF Pin ................................ – 0.3V to VCC + 0.3V Output Voltage Driver .................................................... – 25V to 25V Receiver .................................... – 0.3V to VCC + 0.3V Short-Circuit Duration V + ................................................................... 30 sec V – ................................................................... 30 sec Driver Output .............................................. Indefinite Receiver Output .......................................... Indefinite Operating Temperature Range Commercial (LTC1350C) ........................ 0°C to 70°C Industrial (LTC1350I) ........................ – 40°C to 85°C Storage Temperature Range ................ – 65°C to 150°C Lead Temperature (Soldering, 10 sec)................. 300°C ORDER PART NUMBER LTC1350CG LTC1350CNW LTC1350CSW LTC1350IG LTC1350INW LTC1350ISW C1– 4 DR1 OUT 5 RX1 IN 6 DR2 OUT 7 RX2 IN 8 RX3 IN 9 RX4 IN 10 DR3 OUT 11 RX5 IN 12 ON/OFF 13 NC 14 G PACKAGE 28-LEAD SSOP SW PACKAGE 28-LEAD PLASTIC SO WIDE TJMAX = 125°C, θJA = 96°C/W (G) TJMAX = 125°C, θJA = 56°C/W (NW) TJMAX = 125°C, θJA = 85°C/W (SW) Consult LTC Marketing for parts specified with wider operating temperature ranges. DC ELECTRICAL CHARACTERISTICS PARAMETER Any Driver Output Voltage Swing Logic Input Voltage Level Logic Input Current Output Short-Circuit Current Output Leakage Current Any Receiver Input Voltage Thresholds Hysteresis Input Resistance Output Voltage Output Short-Circuit Current Output Leakage Current CONDITIONS 3k to GND The ● denotes specifications which apply over the full operating temperature range. VCC = 3.3V, C1 = C2 = C3 = C4 = 0.1µF, unless noted. MIN Positive Negative ● ● ● ● ● ● TYP 4.5 – 4.5 1.4 1.4 MAX UNITS V V V V µA µA mA µA V V V kΩ V V mA µA 3.7 – 3.7 2.0 Input Low Level (VOUT = High) Input High Level (VOUT = Low) VIN = VCC VIN = 0V VOUT = 0V Shutdown (Note 3), VOUT = ± 20V Input Low Threshold Input High Threshold VIN = ± 10V Output Low, IOUT = – 1.6mA (VCC = 3.3V) Output High, IOUT = 160µA (VCC = 3.3V) Sinking Current, VOUT = VCC Shutdown (Note 3), 0V ≤ VOUT ≤ VCC 0.8 5 –5 ±9 ±10 10 1.3 1.7 0.4 5 0.2 3.2 – 20 1 500 ● ● ● ● ● ● 0.8 0.1 3 3.0 –3 2.4 1 7 0.4 10 2 U 1350fa W U U WW W LTC1350 DC ELECTRICAL CHARACTERISTICS PARAMETER Power Supply Generator V + Output Voltage V – Output Voltage Supply Rise Time Power Supply VCC Supply Current CONDITIONS IOUT = 0mA IOUT = 5mA IOUT = 0mA IOUT = – 5mA Shutdown to Turn-On The ● denotes specifications which apply over the full operating temperature range. VCC = 3.3V, C1 = C2 = C3 = C4 = 0.1µF, unless noted. MIN TYP 5.7 5.5 – 5.3 – 5.0 0.2 ● ● ● ● ● ● ● ● MAX UNITS V V V V ms No Load (All Drivers VIN = VCC)(Note 2) 0°C ≤ TA ≤ 70°C No Load (All Drivers VIN = 0)(Note 2) 0°C ≤ TA ≤ 70°C No Load (All Drivers VIN = VCC)(Note 2) 0°C ≤ TA ≤ 85°C No Load (All Drivers VIN = VCC)(Note 2) – 40°C ≤ TA ≤ 0°C No Load (All Drivers VIN = 0)(Note 2) – 40°C ≤ TA ≤ 85°C Shutdown (Note 3) ON/OFF Threshold Low ON/OFF Threshold High 2.0 0.3 0.5 0.3 0.3 0.5 35 1.4 1.4 0.6 1.0 1.0 1.5 1.5 50 0.8 mA mA mA mA mA µA V V AC CHARACTERISTICS PARAMETER Slew Rate Driver Propagation Delay (TTL to EIA/TIA-562) Receiver Propagation Delay (EIA/TIA-562 to TTL) The ● denotes specifications which apply over the full operating temperature range. VCC = 5V, C1 = C2 = C3 = C4 = 0.1µF, unless noted. CONDITIONS RL = 3k, CL = 51pF RL = 3k, CL = 1000pF t HLD (Figure 1) t LHD (Figure 1) t HLR (Figure 2) t LHR (Figure 2) MIN 3 ● ● ● ● TYP 8 5 2 2 0.3 0.3 MAX 30 3.5 3.5 0.8 0.8 UNITS V/µs V/µs µs µs µs µs Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired. Note 2: Supply current is measured with driver and receiver outputs unloaded. Note 3: Supply current measurement in Shutdown mode is performed with VON/OFF = 0V. 1350fa 3 LTC1350 TYPICAL PERFOR A CE CHARACTERISTICS Driver Output Voltage vs Temperature 5 4 DRIVER OUTPUT VOLTAGE (V) 3 2 1 0 –1 –2 –3 –4 –5 –40 –20 VCC = 3.3V OUTPUT HIGH THRESHOLD VOLTAGE (V) 1.8 1.6 1.4 1.2 1.0 –40 –20 SUPPLY CURRENT (mA) ALL DRIVERS WITH LOAD, RL = 3k VCC = 3.3V OUTPUT LOW 40 20 0 60 TEMPERATURE (°C) VCC Supply Current vs Temperature 5.0 4.5 4.0 RL = 3k 3 DRIVERS LOADED LEAKAGE CURRENT (µA) 45 40 35 30 25 20 15 10 5 40 20 0 60 TEMPERATURE (°C) 80 100 0 SHORT-CIRCUIT CURRENT (mA) SUPPLY CURRENT (mA) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 –40 –20 RL = 3k 1 DRIVER LOADED Receiver Short-Circuit Current vs Temperature 40 35 30 25 20 15 10 5 0 –40 –20 0 ISC+ ISC– SHORT-CIRCUIT CURRENT (mA) 40 60 20 TEMPERATURE (˚C) 4 UW 80 LTC1350 • TPC01 LTC1350 • TPC04 Receiver Input Thresholds vs Temperature 2.2 2.0 30 25 20 15 10 5 0 40 20 60 0 TEMPERATURE (˚C) 80 100 Supply Current vs Data Rate VCC = 3.3V RL = 3k CL = 2500pF 3 DRIVERS ACTIVE VTH+ VTH– 100 0 20 80 100 60 40 DATA RATE (k Baud) 120 140 LT1350 • TPC02 LTC1350 • TPC03 Driver Leakage in Shutdown vs Temperature 16 14 12 10 8 6 4 2 60 70 Driver Short-Circuit Current vs Temperature ISC– VOUT = – 20V ISC+ VOUT = 20V 0 10 30 20 40 50 TEMPERATURE (°C) 0 –40 –20 0 40 60 20 TEMPERATURE (˚C) 80 100 LTC1350 • TPC05 LTC1350 • TPC06 Driver Output Waveforms DRIVER OUTPUT RL = 3k CL = 1000pF DRIVER OUTPUT RL = 3k Receiver Output Waveform RECEIVER OUTPUT CL = 50pF INPUT INPUT LTC1350 • TPC08 LTC1350 • TPC09 80 100 LTC1350 • TPC07 1350fa LTC1350 PI FU CTIO S VCC: 3.3V Input Supply Pin. Supply current is typically 35µA in the Shutdown mode. This pin should be decoupled with a 0.1µF ceramic capacitor. GND: Ground Pin. ON/OFF: TTL/CMOS Compatible Shutdown Pin. A logic low puts the device in the Shutdown mode with receivers 4 and 5 kept alive and the supply current equal to 35µA. All driver and other receiver outputs are in high impedance state. This pin cannot float. Positive Supply Output. ≅ 2VCC – 1V. This pin requires an external capacitor (C = 0.1µF) for charge storage. The capacitor may be tied to ground or VCC. With multiple devices, the V + and V – pins may be paralleled into common capacitors. For a large number of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple. V –: Negative Supply Output. V – ≅ – (2VCC – 1.3V). This pin requires an external capacitor (C = 0.1µF) for charge storage. V +: V+ C1+, C1–, C2+, C2–: Commutating Capacitor Inputs. These pins require two external capacitors (C = 0.1µF): one from C1+ to C1– and another from C2+ to C2 –. To maintain charge pump efficiency, the capacitor’s effective series resistance should be less than 20Ω. DR IN: EIA/TIA-562 Driver Input Pins. Inputs are TTL/ CMOS compatible. Inputs should not be allowed to float. Tie unused inputs to VCC. DR OUT: Driver Outputs at EIA/TIA-562 Voltage Levels. Outputs are in a high impedance state when in the Shutdown mode or VCC = 0V. The driver outputs are protected against ESD to ±10kV for human body model discharges. RX IN: Receiver Inputs. These pins can be forced to ± 25V without damage. The receiver inputs are protected against ESD to ±10kV for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity. RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels. Receiver 1, 2 and 3 outputs are in a high impedance state when in Shutdown mode to allow data line sharing. Receivers 4 and 5 are kept alive in Shutdown. SWITCHI G TI E WAVEFOR S DR INPUT DR OUTPUT t LHD VCC 1.4V 1.4V 0V V+ 0V t HLD LTC1350 • F01 Figure 1. Driver Propagation Delay Timing RX INPUT RX OUTPUT t LHR 1.7V Figure 2. Receiver Propagation Delay Timing W W U U U U 0V V– VCC 1.3V 0V 2.4V 0.8V t HLR VCC 0V LTC1350 • F02 1350fa 5 LTC1350 TEST CIRCUITS Driver Timing Test Load DRIVER OUTPUT DRIVER 51pF 3k Receiver Timing Test Load RX OUTPUT RX INPUT RX 51pF DRIVER INPUT LTC1350 • TA04 LTC1350 • TA03 ESD Test Circuit V+ C1 0.1µF C2 0.1µF DR1 OUT RX1 IN RS232 LINE PINS PROTECTED TO ±10kV DR2 OUT RX2 IN RX3 IN RX4 IN DR3 OUT RX5 IN ON/OFF NC VCC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 LTC1350 28 27 26 25 24 23 22 21 20 19 18 17 16 15 DR1 IN RX1 OUT DR2 IN RX2 OUT RX3 OUT RX4 OUT DR3 IN RX5 OUT GND NC NC LTC1350 • TC01 V– C3 0.1µF C4 0.1µF 1350fa 6 LTC1350 PACKAGE DESCRIPTIO 7.8 – 8.2 0.42 ± 0.03 RECOMMENDED SOLDER PAD LAYOUT 5.00 – 5.60** (.197 – .221) 0.09 – 0.25 (.0035 – .010) 0.55 – 0.95 (.022 – .037) NOTE: 1. CONTROLLING DIMENSION: MILLIMETERS MILLIMETERS 2. DIMENSIONS ARE IN (INCHES) 3. DRAWING NOT TO SCALE *DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .152mm (.006") PER SIDE **DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE .600 – .625 (15.240 – 15.875) .008 – .015 (0.203 – 0.381) +.035 .625 –.015 INCHES MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm) NOTE: 1. DIMENSIONS ARE ( +0.889 15.87 –0.381 ) Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. U G Package 28-Lead Plastic SSOP (5.3mm) (Reference LTC DWG # 05-08-1640) 9.90 – 10.50* (.390 – .413) 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1.25 ± 0.12 5.3 – 5.7 7.40 – 8.20 (.291 – .323) 0.65 BSC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 2.0 (.079) 0° – 8° 0.65 (.0256) BSC 0.22 – 0.38 (.009 – .015) 0.05 (.002) G28 SSOP 0802 NW Package 28-Lead PDIP (Wide .600 Inch) (Reference LTC DWG # 05-08-1520) 1.467* (36.957) MAX 28 27 26 25 24 23 22 21 20 19 18 17 16 15 .505 – .560* (12.827 – 14.224) 1 .150 ± .005 (3.810 ± 0.127) .015 (0.381) MIN 2 3 4 5 6 7 8 9 10 11 12 13 14 .045 – .065 (1.143 – 1.651) .070 (1.778) TYP .120 (3.175) MIN .035 – .080 (0.889 – 2.032) .100 (2.54) BSC .018 ± .003 (0.457 ± 0.076) NW28 1002 1350fa 7 LTC1350 PACKAGE DESCRIPTIO .030 ±.005 TYP N .050 BSC .045 ±.005 .697 – .712 (17.70 – 18.08) NOTE 4 28 27 26 25 24 23 22 21 20 19 18 17 16 15 .420 MIN 1 2 3 N/2 N/2 RECOMMENDED SOLDER PAD LAYOUT .291 – .299 (7.391 – 7.595) NOTE 4 .010 – .029 × 45° (0.254 – 0.737) 0° – 8° TYP .005 (0.127) RAD MIN .009 – .013 (0.229 – 0.330) NOTE 3 .016 – .050 (0.406 – 1.270) NOTE: 1. DIMENSIONS IN INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS 4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) RELATED PARTS PART NUMBER LT 1137A LTC1327 LTC1337 LTC1348 LTC1385 LTC1386 LTC2844 LTC2845 LTC2846 ® DESCRIPTION 5V, 3 Driver, 5 Receiver RS232 Transceiver 3.3V, 3 Driver, 5 Receiver RS562 Transceiver 5V, 3 Driver, 5 Receiver RS232 Transceiver 3.3V to 5V, 3 Driver, 5 Receiver RS232 Transceiver 3.3V, 2 Driver, 2 Receiver RS562 Transceiver 3.3V, 2 Driver, 2 Receiver RS562 Transceiver 3.3V, Software-Selectable Multiprotocol Transceiver 3.3V, Software-Selectable Multiprotocol Transceiver 3.3V, Software-Selectable Multiprotocol Transceiver 8 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7487 (408) 432-1900 ● FAX: (408) 434-0507 ● WWW.linear.com U SW Package 28-Lead Plastic Small Outline (Wide .300 Inch) (Reference LTC DWG # 05-08-1620) N .325 ±.005 NOTE 3 .394 – .419 (10.007 – 10.643) 1 .093 – .104 (2.362 – 2.642) 2 3 4 5 6 7 8 9 10 11 12 13 14 .037 – .045 (0.940 – 1.143) .050 (1.270) BSC .014 – .019 (0.356 – 0.482) TYP .004 – .012 (0.102 – 0.305) S28 (WIDE) 0502 COMMENTS ± 15kV ESD per IEC 1000-4 300µA Supply Current, 0.2µA in Shutdown 300µA Supply Current, 1µA in Shutdown True RS232 on 3.3V, 5 Receivers Active in Shutdown 200µA Supply Current, 2 Receivers Active in Shutdown 200µA Supply Current, Narrow 16-Pin SO 4 Drivers, 4 Receivers for Control Signals Including LL 5 Drivers, 5 Receivers for Control Signals Including LL, RL and TM 4 Drivers, 4 Receivers with Termination for Data/Clock 1350fa LW/TP 0103 1K REV A • PRINTED IN USA  LINEAR TECHNOLOGY CORPORATION 1993
LTC1350CNW 价格&库存

很抱歉,暂时无法提供与“LTC1350CNW”相匹配的价格&库存,您可以联系我们找货

免费人工找货