0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTC1864LCMS8

LTC1864LCMS8

  • 厂商:

    LINER

  • 封装:

  • 描述:

    LTC1864LCMS8 - μPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP - Linear Technology

  • 数据手册
  • 价格&库存
LTC1864LCMS8 数据手册
LTC1864L/LTC1865L µPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP FEATURES ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ DESCRIPTIO 16-Bit 150ksps ADCs in MSOP Package Single 3V Supply Low Supply Current: 450µA (Typ) Auto Shutdown Reduces Supply Current to 10µA at 1ksps True Differential Inputs 1-Channel (LTC1864L) or 2-Channel (LTC1865L) Versions SPI/MICROWIRETM Compatible Serial I/O 16-Bit Upgrade to 12-Bit LTC1285/LTC1288 Pin Compatible with 12-Bit LTC1860L/LTC1861L No Minimum Data Transfer Rate The LTC®1864L/LTC1865L are 16-bit A/D converters that are offered in MSOP and SO-8 packages and operate on a single 3V supply. At 150ksps, the supply current is only 450µA. The supply current drops at lower speeds because the LTC1864L/LTC1865L automatically power down between conversions. These 16-bit switched capacitor successive approximation ADCs include sample-and-holds. The LTC1864L has a differential analog input with an external reference pin. The LTC1865L offers a softwareselectable 2-channel MUX and an external reference pin on the MSOP version. The 3-wire, serial I/O, small MSOP or SO-8 package and extremely high sample rate-to-power ratio make these ADCs ideal choices for compact, low power, high speed systems. These ADCs can be used in ratiometric applications or with external references. The high impedance analog inputs and the ability to operate with reduced spans down to 1V full scale allow direct connection to signal sources in many applications, eliminating the need for external gain stages. , LTC and LT are registered trademarks of Linear Technology Corporation. MICROWIRE is a trademark of National Semiconductor Corporation. APPLICATIO S ■ ■ ■ ■ High Speed Data Acquisition Portable or Compact Instrumentation Low Power Battery-Operated Instrumentation Isolated and/or Remote Data Acquisition TYPICAL APPLICATIO Supply Current vs Sampling Frequency Single 3V Supply, 150ksps, 16-Bit Sampling ADC 1µF SUPPLY CURRENT (µA) 1000 CONV LOW = 2µs TA = 25°C VCC = 2.7V 3V 100 LTC1864L 1 2 ANALOG INPUT 0V TO 3V 3 4 VREF IN + IN – GND VCC SCK SDO CONV 8 7 6 5 1864 TA01 10 SERIAL DATA LINK TO ASIC, PLD, MPU, DSP OR SHIFT REGISTERS 1 0.1 0.01 0.1 100 1 10 SAMPLING FREQUENCY (kHz) U 1000 1864L/65L TA02 U U sn18645L 18645Lfs 1 LTC1864L/LTC1865L ABSOLUTE AXI U RATI GS Supply Voltage (VCC) ................................................. 7V Ground Voltage Difference AGND, DGND LTC1865L MSOP Package ......... ±0.3V Analog Input ............... (GND – 0.3V) to (VCC + 0.3V) Digital Input ................................ (GND – 0.3V) to 7V Digital Output .............. (GND – 0.3V) to (VCC + 0.3V) Power Dissipation .............................................. 400mW PACKAGE/ORDER I FOR ATIO TOP VIEW VREF IN + IN¯ GND 1 2 3 4 8 7 6 5 VCC SCK SDO CONV ORDER PART NUMBER TOP VIEW MS8 PACKAGE 8-LEAD PLASTIC MSOP LTC1864LCMS8 LTC1864LIMS8 LTC1864LACMS8 LTC1864LAIMS8 MS8 PART MARKING LTC7 ORDER PART NUMBER TJMAX = 150°C, θJA = 210°C/W TOP VIEW VREF 1 IN + 2 IN – 3 GND 4 8 VCC 7 SCK 6 SDO 5 CONV LTC1864LCS8 LTC1864LIS8 LTC1864LACS8 LTC1864LAIS8 S8 PART MARKING 1864L 1864LI 1864LA 864LAI S8 PACKAGE 8-LEAD PLASTIC SO TJMAX = 150°C, θJA = 175°C/W Consult LTC Marketing for parts specified with wider operating temperature ranges. CO VERTER A D PARAMETER Resolution No Missing Codes Resolution INL Transition Noise Gain Error ULTIPLEXER CHARACTERISTICS ● The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. VCC = 2.7V, VREF = 2.5V, fSCK = fSCK(MAX) as defined in Recommended Operating Conditions, unless otherwise noted. CONDITIONS ● ● (Note 3) 2 U U W WW U WU W (Notes 1, 2) Operating Temperature Range LTC1864LC/LTC1865LC/ LTC1864LAC/LTC1865LAC .................... 0°C to 70°C LTC1864LI/LTC1865LI/ LTC1864LAI/LTC1865LAI ................. – 40°C to 85°C Storage Temperature Range ................. – 65°C to 150°C Lead Temperature (Soldering, 10 sec)................. 300°C ORDER PART NUMBER CONV CH0 CH1 AGND DGND 1 2 3 4 5 10 9 8 7 6 VREF VCC SCK SDO SDI MS PACKAGE 10-LEAD PLASTIC MSOP TJMAX = 150°C, θJA = 210°C/W LTC1865LCMS LTC1865LIMS LTC1865LACMS LTC1865LAIMS MS PART MARKING LTJ4 ORDER PART NUMBER TOP VIEW CONV 1 CH0 2 CH1 3 GND 4 8 VCC 7 SCK 6 SDO 5 SDI LTC1865LCS8 LTC1865LIS8 LTC1865LACS8 LTC1865LAIS8 S8 PART MARKING 1865L 1865LI 1865LA 865LAI S8 PACKAGE 8-LEAD PLASTIC SO TJMAX = 150°C, θJA = 175°C/W U LTC1864L/LTC1865L MIN TYP MAX 16 14 ±8 2 LTC1864LA/LTC1865LA MIN TYP MAX 16 15 ±6 2 ± 20 UNITS Bits Bits LSB LSBRMS mV ● ● ± 20 sn18645L 18645Lfs LTC1864L/LTC1865L CO VERTER A D PARAMETER Offset Error Input Differential Voltage Range Absolute Input Range VREF Input Range Analog Input Leakage Current CIN Input Capacitance VIN The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. VCC = 2.7V, VREF = 2.5V, fSCK = fSCK(MAX) as defined in Recommended Operating Conditions, unless otherwise noted. CONDITIONS ● DY A IC ACCURACY TA = 25°C. VCC = 3V, VREF = 3V, fSAMPLE = 150kHz, unless otherwise noted. SYMBOL PARAMETER SNR THD Signal-to-Noise Ratio 1kHz Input Signal Total Hamonic Distortion Up to 5th Harmonic 1kHz Input Signal Full Power Bandwidth Full Linear Bandwidth S/(N + D) ≥ 75dB S/(N + D) Signal-to-Noise Plus Distortion Ratio CONDITIONS LTC1864L/LTC1865L MIN TYP MAX 82 82 92 10 20 UNITS dB dB dB MHz kHz DIGITAL A D DC ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER VIH VIL IIH IIL VOH VOL IOZ ISOURCE ISINK IREF ICC PD High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current High Level Output Voltage Low Level Output Voltage Hi-Z Output Leakage Output Source Current Output Sink Current Reference Current (LTC1864L SO-8 and MSOP, LTC1865L MSOP) Supply Current Power Dissipation CONDITION VCC = 3.3V VCC = 2.7V VIN = VCC VIN = 0V VCC = 2.7V, IO = 10µA VCC = 2.7V, IO = 360µA VCC = 2.7V, IO = 400µA CONV = VCC VOUT = 0V VOUT = VCC CONV = VCC fSMPL = fSMPL(MAX) CONV = VCC After Conversion fSMPL = fSMPL(MAX) fSMPL = fSMPL(MAX) The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. VCC = 2.7V, VREF = 2.5V, unless otherwise noted. LTC1864L/LTC1865L MIN TYP MAX ● ● ● ● ● ● ● ● WU = IN + (Note 4) U WU U ULTIPLEXER CHARACTERISTICS LTC1864L/LTC1865L MIN TYP MAX ±2 0 – 0.05 – 0.05 1 ● LTC1864LA/LTC1865LA MIN TYP MAX ±2 0 – 0.05 – 0.05 1 12 5 ±5 VREF VCC + 0.05 VCC /2 VCC ±1 UNITS mV V V V V µA pF pF ±5 VREF VCC + 0.05 VCC /2 VCC ±1 – IN – ● IN + Input IN – Input LTC1864L SO-8 and MSOP, LTC1865L MSOP In Sample Mode During Conversion 12 5 UNITS V V µA µA V V 1.9 0.45 2.5 – 2.5 2.3 2.1 2.6 2.45 0.3 ±3 – 6.5 6.5 V µA mA mA ● ● ● ● 0.001 0.01 0.5 0.45 1.22 3 0.1 10 1.0 µA mA µA mA mW sn18645L 18645Lfs 3 LTC1864L/LTC1865L RECO VCC fSCK tCYC tSMPL tsuCONV thDI tsuDI tWHCLK tWLCLK tWHCONV tWLCONV thCONV full operating temperature range, otherwise specifications are TA = 25°C. SYMBOL PARAMETER Supply Voltage Clock Frequency Total Cycle Time Analog Input Sampling Time (Note 5) Setup Time CONV↓ Before First SCK ↑ (See Figure 1) Hold Time SDI After SCK ↑ Setup Time SDI Stable Before SCK ↑ SCK High Time SCK Low Time CONV High Time Between Data Transfer Cycles CONV Low Time During Data Transfer Hold Time CONV Low After Last SCK ↑ LTC1865L LTC1865L fSCK = fSCK(MAX) fSCK = fSCK(MAX) LTC1864L LTC1865L CONDITIONS E DED OPERATI G CO DITIO S The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. VCC = 2.7V, VREF = 2.5V, fSCK = fSCK(MAX) as defined in Recommended Operating Conditions, unless otherwise noted. SYMBOL tCONV tdDO tdis ten thDO tr tf PARAMETER Conversion Time (See Figure 1) Delay Time, SCK↓ to SDO Data Valid Delay Time, CONV↑ to SDO Hi-Z Delay Time, CONV↓ to SDO Enabled Time Output Data Remains Valid After SCK↓ SDO Rise Time SDO Fall Time CLOAD = 20pF CLOAD = 20pF CLOAD = 20pF CLOAD = 20pF CLOAD = 20pF CONDITIONS ● ● ● ● ● ● TI I G CHARACTERISTICS fSMPL(MAX) Maximum Sampling Frequency Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: All voltage values are with respect to GND. Note 3: Integral nonlinearity is defined as deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band. Note 4: Channel leakage current is measured while the part is in sample mode. Note 5: Assumes fSCK = fSCK(MAX) In the case of the LTC1864L SCK does not have to be clocked during this time if the SDO data word is not desired. In the case of the LTC1865L a minimum of 2 clocks are required on the SCK input after CONV falls to configure the MUX during this time. 4 U U U U WW The ● denotes specifications which apply over the LTC1864L/LTC1865L MIN TYP MAX 2.7 ● UNITS V MHz µs SCK SCK ns ns ns 1/fSCK 1/fSCK µs SCK ns 3.6 8 DC 16 • SCK + tCONV 16 14 60 30 30 45% 45% tCONV 16 26 UW LTC1864L/LTC1865L MIN TYP MAX 3.7 150 45 55 35 5 15 25 12 55 60 120 120 4.66 UNITS µs kHz ns ns ns ns ns ns ns sn18645L 18645Lfs LTC1864L/LTC1865L TYPICAL PERFOR A CE CHARACTERISTICS Supply Current vs Sampling Frequency 1000 CONV LOW = 2µs TA = 25°C VCC = 2.7V 600 500 fS = 150kHz VCC = 2.7V VREF = 2.5V SHUTDOWN CURRENT (µA) SUPPLY CURRENT (µA) SUPPLY CURRENT (µA) 100 10 1 0.1 0.01 0.1 100 1 10 SAMPLING FREQUENCY (kHz) Reference Current vs Sampling Rate 10 9 CONV LOW = 2µs TA = 25°C VCC = 2.7V VREF = 2.5V 25 REFERENCE CURRENT (µA) REFERENCE CURRENT (µA) 7 6 5 4 3 2 1 0 0 25 75 100 125 50 SAMPLING FREQUENCY (kHz) 150 15 REFERENCE CURRENT (µA) 8 Typical INL Curve 4 VCC = 2.7V VREF = 2.5V fS = 150kHz 2 1 2 ANALOG INPUT LEAKAGE (nA) DNL ERROR (LSBs) INL ERROR (LSBs) 0 –2 –4 0 16384 32768 CODE 49152 UW 1864L/65L G01 1864L/65L G04 1865 G02 Supply Current vs Temperature 20 Sleep Current vs Temperature fS = 150kHz VCC = 2.7V VREF = 2.5V 15 400 300 200 100 0 –50 –25 10 5 1000 50 25 75 0 TEMPERATURE (°C) 100 125 0 –50 –25 50 25 75 0 TEMPERATURE (°C) 100 125 1864L/65L G02 1864L/65L G03 Reference Current vs Temperature 25 fS = 150kHz VCC = 2.7V VREF = 2.5V Reference Current vs Reference Voltage fS = 150kHz TA = 25°C VCC = 3.6V 20 20 15 10 10 5 5 0 –50 –25 0 50 25 75 0 TEMPERATURE (°C) 100 125 0 0.5 1.0 1.5 2.0 2.5 3.0 REFERENCE VOLTAGE (V) 3.5 4.0 1864L/65L G05 1864L/65L G06 Typical DNL Curve 100 VCC = 2.7V VREF = 2.5V fS = 150kHz Analog Input Leakage Current vs Temperature CONV = 0V VCC = 2.7V VREF = 2.5V 75 0 50 –1 25 65536 –2 0 16384 32768 CODE 49152 65536 1865 G03 0 –50 –25 50 25 75 0 TEMPERATURE (°C) 100 125 1864L/65L G09 sn18645L 18645Lfs 5 LTC1864L/LTC1865L TYPICAL PERFOR A CE CHARACTERISTICS Change in Offset vs Reference Voltage 20 15 CHANGE IN OFFSET (LSB) GHANGE IN GAIN ERROR (LSB) fS = 150kHz TA = 25°C VCC = 3.6V CHANGE IN OFFSET (LSB) 10 5 0 –5 –10 –15 –20 0 2 3 1 REFERENCE VOLTAGE (V) 4 1864L/65L G10 Change in Gain Error vs Temperature 5 4 CHANGE IN GAIN ERROR (LSB) VCC = 2.7V VREF = 2.5V 3 2 800 FREQUENCY 1 0 –1 –2 –3 –4 –5 –50 –25 50 25 75 0 TEMPERATURE (°C) 100 125 648 600 400 200 0 407 689 576 291 169 52 152 45 20 07 00 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 CODE 1864L/65L G14 AMPLITUDE (dB) SINAD vs Input Frequency 100 90 80 70 SINAD (dB) THD (dB) 50 40 30 20 10 0 1 fS = 125kHz TA = 25°C VCC = 3V VIN = 0dB VREF = 3V 10 INPUT FREQUENCY (kHz) 100 1864L/65L G16 –50 –60 –70 –80 –90 SFDR (dB) 60 SINAD 6 UW 1864L/65L G13 Change in Offset vs Temperature 5 4 3 2 1 0 –1 –2 –3 –4 –5 –50 –25 50 25 75 0 TEMPERATURE (°C) 100 125 VCC = 2.7V VREF = 2.5V 5 4 3 2 1 0 –1 –2 –3 –4 –5 Change in Gain Error vs Reference Voltage fS = 150kHz TA = 25°C VCC = 3.6V 0 2 3 1 REFERENCE VOLTAGE (V) 4 1864L/65L G12 1864L/65L G11 Histogram of 4096 Conversions of a DC Input Voltage 1200 1040 1000 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 4096 Point FFT Nonaveraged fS = 125kHz TA = 25°C VCC = 3V VIN = 0.946045kHz VREF = 3V 0 5 10 15 20 25 30 35 40 45 50 55 60 65 INPUT FREQUENCY (kHz) 1864L/65L G15 THD vs Input Frequency 0 SNR –10 –20 –30 –40 fS = 125kHz TA = 25°C VCC = 3V VIN = 0dB VREF = 3V 100 90 80 70 60 50 40 30 20 10 1 10 INPUT FREQUENCY (kHz) 100 1864L/65L G17 SFDR vs Input Frequency –100 fS = 125kHz TA = 25°C VCC = 3V VIN = 0dB VREF = 3V 1 10 INPUT FREQUENCY (kHz) 100 1864L/65L G18 0 sn18645L 18645Lfs LTC1864L/LTC1865L PI FU CTIO S LTC1864L VREF (Pin 1): Reference Input. The reference input defines the span of the A/D converter and must be kept free of noise with respect to GND. IN +, IN– (Pins 2, 3): Analog Inputs. These inputs must be free of noise with respect to GND. GND (Pin 4): Analog Ground. GND should be tied directly to an analog ground plane. CONV (Pin 5): Convert Input. A logic high on this input starts the A/D conversion process. If the CONV input is left high after the A/D conversion is finished, the part powers LTC1865L (MSOP Package) CONV (Pin 1): Convert Input. A logic high on this input starts the A/D conversion process. If the CONV input is left high after the A/D conversion is finished, the part powers down. A logic low on this input enables the SDO pin, allowing the data to be shifted out. CH0, CH1 (Pins 2, 3): Analog Inputs. These inputs must be free of noise with respect to AGND. AGND (Pin 4): Analog Ground. AGND should be tied directly to an analog ground plane. DGND (Pin 5): Digital Ground. DGND should be tied directly to an analog ground plane. SDI (Pin 6): Digital Data Input. The A/D configuration word is shifted into this input. LTC1865L (SO-8 Package) CONV (Pin 1): Convert Input. A logic high on this input starts the A/D conversion process. If the CONV input is left high after the A/D conversion is finished, the part powers down. A logic low on this input enables the SDO pin, allowing the data to be shifted out. CH0, CH1 (Pins 2, 3): Analog Inputs. These inputs must be free of noise with respect to GND. GND (Pin 4): Analog Ground. GND should be tied directly to an analog ground plane. SDI (Pin 5): Digital Data Input. The A/D configuration word is shifted into this input. SDO (Pin 6): Digital Data Output. The A/D conversion result is shifted out of this output. SCK (Pin 7): Shift Clock Input. This clock synchronizes the serial data transfer. VCC (Pin 8): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane. VREF is tied internally to this pin. sn18645L 18645Lfs U U U down. A logic low on this input enables the SDO pin, allowing the data to be shifted out. SDO (Pin 6): Digital Data Output. The A/D conversion result is shifted out of this pin. SCK (Pin 7): Shift Clock Input. This clock synchronizes the serial data transfer. VCC (Pin 8): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane. SDO (Pin 7): Digital Data Output. The A/D conversion result is shifted out of this output. SCK (Pin 8): Shift Clock Input. This clock synchronizes the serial data transfer. VCC (Pin 9): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane. VREF (Pin 10): Reference Input. The reference input defines the span of the A/D converter and must be kept free of noise with respect to AGND. 7 LTC1864L/LTC1865L FUNCTIONAL BLOCK DIAGRA PIN NAMES IN PARENTHESES REFER TO LTC1865L CONVERT CLK IN (CH0) + IN – (CH1) GND TEST CIRCUITS Load Circuit for t dDO, t r, t f, t dis and t en TEST POINT 3k SDO 20pF VCC tdis WAVEFORM 2, ten tdis WAVEFORM 1 1864 TC01 Voltage Waveforms for t en CONV CONV SDO ten 1864 TC03 Voltage Waveforms for SDO Delay Times, t dDO and t hDO SCK VIL tdDO thDO VOH SDO VOL 1864 TC02 8 W VCC CONV (SDI) SCK BIAS AND SHUTDOWN DATA IN 16 BITS SERIAL PORT SDO U U + – 16-BIT SAMPLING ADC DATA OUT 1864/65 BD VREF Voltage Waveforms for SDO Rise and Fall Times, t r, t f VOH VOL tr tf SDO 1864 TC04 Voltage Waveforms for t dis VIH SDO WAVEFORM 1 (SEE NOTE 1) tdis SDO WAVEFORM 2 (SEE NOTE 2) 90% 10% NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL 1864 TC05 sn18645L 18645Lfs LTC1864L/LTC1865L APPLICATIO S I FOR ATIO LTC1864L OPERATION Operating Sequence The LTC1864L conversion cycle begins with the rising edge of CONV. After a period equal to t CONV, the conversion is finished. If CONV is left high after this time, the LTC1864L goes into sleep mode drawing only leakage current. On the falling edge of CONV, the LTC1864L goes into sample mode and SDO is enabled. SCK synchronizes the data transfer with each bit being transmitted from SDO on the falling SCK edge. The receiving system should capture the data from SDO on the rising edge of SCK. After completing the data transfer, if further SCK clocks are applied with CONV low, SDO will output zeros indefinitely. See Figure 1. CONV tCONV SLEEP MODE 1 SCK DON'T CARE 2 3 4 5 6 7 SDO Hi-Z Figure 1. LTC1864L Operating Sequence 1µ F VCC 1111111111111111 1111111111111110 • • • 0000000000000001 0000000000000000 VIN* *VIN = IN + – IN – Figure 2. LTC1864L Transfer Curve U Analog Inputs The LTC1864L has a unipolar differential analog input. The converter will measure the voltage between the “IN + ” and “IN – ” inputs. A zero code will occur when IN+ minus IN – equals zero. Full scale occurs when IN+ minus IN – equals VREF minus 1LSB. See Figure 2. Both the “IN+ ” and “IN – ” inputs are sampled at the same time, so common mode noise on the inputs is rejected by the ADC. If “IN – ” is grounded and VREF is tied to VCC, a rail-to-rail input span will result on “IN+ ” as shown in Figure 3. Reference Input The voltage on the reference input of the LTC1864L defines the full-scale range of the A/D converter. The LTC1864L can operate with reference voltages from VCC to 1V. t SMPL 8 9 10 11 12 13 14 15 16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0* Hi-Z *AFTER COMPLETING THE DATA TRANSFER, IF FURTHER SCK CLOCKS ARE APPLIED WITH CONV LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY 1854 F01 W UU 0V 1LSB LTC1864L 1 VIN = 0V TO VCC 2 3 4 VREF VREF – 1LSB VREF – 2LSB VREF IN + IN – GND VCC SCK SDO CONV 8 7 6 5 1864 F03 SERIAL DATA LINK TO ASIC, PLD, MPU, DSP OR SHIFT REGISTERS 1864 F02 Figure 3. LTC1864L with Rail-to-Rail Input Span sn18645L 18645Lfs 9 LTC1864L/LTC1865L APPLICATIO S I FOR ATIO LTC1865L OPERATION Operating Sequence The LTC1865L conversion cycle begins with the rising edge of CONV. After a period equal to t CONV, the conversion is finished. If CONV is left high after this time, the LTC1865L goes into sleep mode drawing only leakage current. The LTC1865L’s 2-bit data word is clocked into the SDI input on the rising edge of SCK after CONV goes low. Additional inputs on the SDI pin are then ignored until the next CONV cycle. The shift clock (SCK) synchronizes the data transfer with each bit being transmitted on the falling SCK edge and captured on the rising SCK edge in both transmitting and receiving systems. The data is transmitted and received simultaneously (full duplex). After completing the data transfer, if further SCK clocks are applied with CONV low, SDO will output zeros indefinitely. See Figure 4. Analog Inputs The two bits of the input word (SDI) assign the MUX configuration for the next requested conversion. For a given channel selection, the converter will measure the voltage between the two channels indicated by the “+” and “–” signs in the selected row of Table 1. In SINGLE-ENDED MUX MODE DIFFERENTIAL MUX MODE CONV tCONV SLEEP MODE SDI DON’T CARE SCK DON'T CARE SDO Hi-Z *AFTER COMPLETING THE DATA TRANSFER, IF FURTHER SCK CLOCKS ARE APPLIED WITH CONV LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY Figure 4. LTC1865L Operating Sequence 10 U single-ended mode, all input channels are measured with respect to GND. A zero code will occur when the “+” input minus the “–” input equals zero. Full scale occurs when the “+” input minus the “–” input equals VREF minus 1LSB. See Figure 5. Both the “+” and “–” inputs are sampled at the same time so common mode noise is rejected. The input span in the SO-8 package is fixed at VREF = VCC. If the “–” input in differential mode is grounded, a rail-to-rail input span will result on the “+” input. Reference Input The reference input of the LTC1865L SO-8 package is internally tied to VCC. The span of the A/D converter is therefore equal to VCC. The voltage on the reference input of the LTC1865L MSOP package defines the span of the A/D converter. The LTC1865L MSOP package can operate with reference voltages from 1V to VCC. Table 1. Multiplexer Channel Selection MUX ADDRESS SGL/DIFF ODD/SIGN 0 1 1 1 0 0 1 0 CHANNEL # 0 1 + + + – – + GND – – 1864 TBL1 W UU t SMPL S/D O/S 1 2 3 4 5 6 7 DON’T CARE 8 9 10 11 12 13 14 15 16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0* Hi-Z 1864 F04 sn18645L 18645Lfs LTC1864L/LTC1865L APPLICATIO S I FOR ATIO GENERAL ANALOG CONSIDERATIONS Grounding The LTC1864L/LTC1865L should be used with an analog ground plane and single point grounding techniques. Do not use wire wrapping techniques to breadboard and evaluate the device. To achieve the optimum performance, use a printed circuit board. The ground pins (AGND and DGND for the LTC1865L MSOP package and GND for the LTC1864L and LTC1865L SO-8 package) should be tied directly to the analog ground plane with minimum lead length. Bypassing For good performance, the VCC and VREF pins must be free of noise and ripple. Any changes in the VCC/VREF voltage with respect to ground during the conversion cycle can 1111111111111111 1111111111111110 • • • 0000000000000001 0000000000000000 VIN* *VIN = (SELECTED “+” CHANNEL) – (SELECTED “–” CHANNEL) REFER TO TABLE 1 Figure 5. LTC1865L Transfer Curve U induce errors or noise in the output code. Bypass the VCC and VREF pins directly to the analog ground plane with a minimum of 1µF tantalum. Keep the bypass capacitor leads as short as possible. Analog Inputs Because of the capacitive redistribution A/D conversion techniques used, the analog inputs of the LTC1864L/ LTC1865L have capacitive switching input current spikes. These current spikes settle quickly and do not cause a problem if source resistances are less than 200Ω or high speed op amps are used (e.g., the LT®1211, LT1469, LT1807, LT1810, LT1630, LT1226 or LT1215). But if large source resistances are used, or if slow settling op amps drive the inputs, take care to ensure the transients caused by the current spikes settle completely before the conversion begins. 1LSB VCC VCC – 1LSB VCC – 2LSB 1864 F05 W UU 0V sn18645L 18645Lfs 11 C3 10µF 6.3V 1206 C4 0.1µF RN1 330 3 + 2 3 C8 470pF 1205 U3 LTC1864LAIMS8 C21 47pF U8A 74AC14 1 V 2 REF +IN 3 –IN 4 GND 8 VCC 7 SCLK 6 DOUT 5 CONV 1 2 3 4 8 7 6 5 R5 402Ω 1% 7 LTC1864L/LTC1865L E8 C7 100pF 1206 AGND 2 U2 OPT 6 R1 100Ω 1206 – E9 J2 1 C6 –15V 0.1µF ON APPLICATIO S I FOR ATIO IN – C9 100pF 1206 R6 402Ω 1% C22 47pF U8B 74AC14 IN – BUF OFF JP2 R2 100Ω 5632 3 IN– –IN GND JP3 ANALOG GROUND PLANE 16 15 14 13 12 11 10 9 QB VCC QC QA QD A QE OENB QF LCLK QG SCLK QH RESET GND SQH U5 74HC595ADT 1 2 3 4 5 6 7 8 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 U4 3.3VDIG 74HC595ADT 16 QB V 15 CC QC QA 14 QD A 13 QE OENB 12 QF LCLK 11 QG SCLK 10 RESET QH 9 GND SQH 1 2 3 4 5 6 7 8 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 3.3VDIG 3.3VDIG C23 0.1µF C24 0.1µF C15 3.3VDIG 0.1µF U9C 74AC00 U9D 74AC00 U9B 74AC00 U12A 74AC109 16 2 6 VCC Q J 3 7 Q K 4 CLK 1 CLR 5 8 GND PRE U12B 74AC109 16 JP4 14 10 VCC CONV Q J 3 13 91 Q K 12 2 EXT INT CLK 15 CLR 11 8 PRE GND 3.3VDIG 3.3VDIG C17 0.1µF C16 0.1µF C10 3.3VDIG 0.1µF E2 CONV U9A 74AC00 3.3VDIG 1 U8D 74AC14 U8E 74AC14 GND U8F 74AC14 2 3 EN EXT JP5 E3 ENABLE DATA E7 DGND E6 E4 E5 DGND DOUT 3.3VDIG U7 74HC163AD R7 20k 3.3VDIG P0 3.3VDIG P0 2 4 6 U6 74HC163AD C18 0.1µF CKIN 1 OUT DIV 5 1+ V 2 GND 3 SET 4 3 INT JP6 CLK 1 2 EXT CKIN 3 2 JP7 EXTCK CLKOUT J3 CLKIN U10 LTC1799 C19 3.3VDIG 0.1µF R9 51Ω 2365 JP8 P1 R8 1M 1 3 5 P1 P2 P2 2 4 6 1 2 3 4 5 6 7 8 VCC RCO Q0 Q1 Q2 Q3 ENT LO VCC RCO Q0 Q1 Q2 Q3 ENT LO R10 10k 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 RESET CLK P0 P1 P2 P3 ENP GND 16 15 14 13 12 11 10 9 JP9 RESET CLK P0 P1 P2 P3 ENP GND U8C 74AC14 U13A 74AC32 U13D 74AC32 P3 CLK U13B 74AC32 U13C 74AC32 NOTES: UNLESS OTHERWISE SPECIFIED INSTALL SHUNTS ON JP1, JP3-JP7 PIN 1 AND PIN2; ON JP8 AND JP9 PIN 2 AND PIN 4, PIN 3 AND PIN 5. 1864/65 AI1 1 3 5 sn18645L 18645Lfs P3 U 2 W 4 1 UU 12 LTC1864L Evaluation Circuit Schematic 15V R4 2Ω C13 0.1µF C14 0.1µF J4 3201S40G1 C12 10µF 6.3V 1206 3.3VAN 3.3VDIG 3.3VDIG 3.3VDIG 6 C1 0.1µF 3 BUF C2 1µF 10V 0805 3.3VAN R3 2Ω 1 LT1121-3.3 3 VIN VOUT GND 2 JP1 +IN E1 15V U1 LT1460DCS8-2.5 15V 2 VIN C20 0.1µF VOUT GND 4 J1 IN + IN + 1 5632 C5 15V 0.1µF IN+ LTC1864L/LTC1865L APPLICATIO S I FOR ATIO Component Side Silk Screen for LTC1864L Evaluation Circuit Component Side Showing Traces (Note Wider Traces on Analog Side) Ground Layer with Separate Analog and Digital Grounds U Bottom Side Showing Traces (Note Almost No Analog Traces on Board Bottom) Supply Layer with 5V Digital Supply and Analog Ground Repeated sn18645L 18645Lfs W UU 13 LTC1864L/LTC1865L PACKAGE DESCRIPTIO 5.23 (.206) MIN 0.42 ± 0.04 (.0165 ± .0015) TYP RECOMMENDED SOLDER PAD LAYOUT DETAIL “A” 0° – 6° TYP 4.90 ± 0.15 (1.93 ± .006) 0.254 (.010) GAUGE PLANE 0.18 (.077) SEATING PLANE 0.22 – 0.38 (.009 – .015) TYP 0.13 ± 0.076 (.005 ± .003) MSOP (MS8) 0802 NOTE: 1. DIMENSIONS IN MILLIMETER/(INCH) 2. DRAWING NOT TO SCALE 3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX 14 U MS8 Package 8-Lead Plastic MSOP (Reference LTC DWG # 05-08-1660) 0.889 ± 0.127 (.035 ± .005) 3.2 – 3.45 (.126 – .136) 0.65 (.0256) BSC 3.00 ± 0.102 (.118 ± .004) (NOTE 3) 8 7 65 0.52 (.206) REF 3.00 ± 0.102 (.118 ± .004) NOTE 4 1 23 4 0.53 ± 0.015 (.021 ± .006) DETAIL “A” 1.10 (.043) MAX 0.86 (.034) REF 0.65 (.0256) BSC sn18645L 18645Lfs LTC1864L/LTC1865L PACKAGE DESCRIPTIO .050 BSC 8 .245 MIN .030 ±.005 TYP RECOMMENDED SOLDER PAD LAYOUT .010 – .020 × 45° (0.254 – 0.508) .008 – .010 (0.203 – 0.254) 0°– 8° TYP NOTE: 1. DIMENSIONS IN INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) 5.23 (.206) MIN 0.50 0.305 ± 0.038 (.0197) (.0120 ± .0015) BSC TYP RECOMMENDED SOLDER PAD LAYOUT GAUGE PLANE 12345 0.53 ± 0.01 (.021 ± .006) DETAIL “A” 0.18 (.007) SEATING PLANE 0.17 – 0.27 (.007 – .011) TYP 0.13 ± 0.076 (.005 ± .003) MSOP (MS) 0802 NOTE: 1. DIMENSIONS IN MILLIMETER/(INCH) 2. DRAWING NOT TO SCALE 3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. U S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .189 – .197 (4.801 – 5.004) NOTE 3 7 6 5 .045 ±.005 .160 ±.005 .228 – .244 (5.791 – 6.197) .150 – .157 (3.810 – 3.988) NOTE 3 1 2 3 4 .053 – .069 (1.346 – 1.752) .004 – .010 (0.101 – 0.254) .016 – .050 (0.406 – 1.270) .014 – .019 (0.355 – 0.483) TYP .050 (1.270) BSC SO8 0303 MS Package 10-Lead Plastic MSOP (Reference LTC DWG # 05-08-1661) 0.889 ± 0.127 (.035 ± .005) 3.2 – 3.45 (.126 – .136) 3.00 ± 0.102 (.118 ± .004) (NOTE 3) 10 9 8 7 6 0.497 ± 0.076 (.0196 ± .003) REF 0.254 (.010) DETAIL “A” 0° – 6° TYP 4.90 ± 0.15 (1.93 ± .006) 3.00 ± 0.102 (.118 ± .004) NOTE 4 1.10 (.043) MAX 0.86 (.034) REF 0.50 (.0197) BSC sn18645L 18645Lfs 15 LTC1864L/LTC1865L TYPICAL APPLICATIO AGND 1µF RELATED PARTS PART NUMBER 12-Bit Serial I/O ADCs LTC1860L/LTC1861L LTC1860/LTC1861 14-Bit Serial I/O ADCs LTC1417 LTC1418 16-Bit Serial I/O ADCs LTC1609 LTC1864/LTC1865 References LT1460 LT1790 Op Amps LT1468/LT1469 LT1806/LT1807 LT1809/LT1810 Single/Dual 90MHz, 16-Bit Accurate Op Amps Single/Dual 325MHz Low Noise Op Amps Single/Dual 180MHz Low Distortion Op Amps 22V/µs Slew Rate, 75µV/125µV Offset 140V/µs Slew Rate, 3.5nV/√Hz Noise, – 80dBc Distortion 350V/µs Slew Rate, – 90dBc Distortion at 5MHz Micropower Precision Series Reference Micropower Low Dropout Reference Bandgap, 130µA Supply Current, 10ppm/°C, Available in SOT-23 60µA Supply Current, 10ppm/°C, SOT-23 200ksps 250ksps 65mW 4.25mW Configurable Bipolar or Unipolar Input Ranges, 5V MSOP, SO-8, 1- and 2-Channel, 5V Supply 400ksps 200ksps 20mW 15mW 16-Pin SSOP, Unipolar or Bipolar, Reference, 5V or ±5V Serial/Parallel I/O, Internal Reference, 5V or ±5V 150ksps 250ksps 1.22mW 4.25mW Pin Compatible with LTC1864L/LTC1865L Pin Compatible with LTC1864/LTC1865 SAMPLE RATE POWER DISSIPATION DESCRIPTION 16 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● U Tiny 2-Chip Data Acquisition System 3V 0.1µF 8 1µ F 3V + VIN 3 LTC6910-1 4 5 VREF 1 499Ω 270pF VCC – 2 7 6 IN+ SCK LTC1864L SDO IN – GND CONV ADC GAIN CONTROL CONTROL LTC6910-1 (IN TSOT-23 PACKAGE) COMPACTLY ADDS 40dB OF INPUT GAIN RANGE TO THE LTC1864L (IN MSOP 8-PIN PACKAGE). SINGLE 3V SUPPLY 1864L/65L TA03 sn18645L 18645Lfs LT/TP 0403 2K • PRINTED IN USA www.linear.com © LINEAR TECHNOLOGY CORPORATION 2001
LTC1864LCMS8 价格&库存

很抱歉,暂时无法提供与“LTC1864LCMS8”相匹配的价格&库存,您可以联系我们找货

免费人工找货