0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTPL-P033DS50

LTPL-P033DS50

  • 厂商:

    LITEON(光宝)

  • 封装:

    6-SMD,鸥翼裸焊盘

  • 描述:

    LED NEUTRAL WHT 4400K-5100K 6SMD

  • 数据手册
  • 价格&库存
LTPL-P033DS50 数据手册
LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only 1. Description The LTPL (LiteOn Power LED) is a revolutionary, energy efficient and ultra compact new light source, combining the lifetime and reliability advantages of Light Emitting Diodes with the brightness of conventional lighting. It gives you total design freedom and unmatched brightness, creating a new opportunities for solid state lighting to displace conventional lighting technologies. Features Applications  High power LED light source  Portable (flashlight, bicycle)  Instant light (less than 100 ns)  Downlighters/Orientation  Low voltage DC operated  Decorative/Entertainment  Low thermal resistance  Bollards/Security/Garden  RoHS Compliant  Cove/Undershelf/Task  Lead free reflow solder compatible  Traffic signaling/Beacons/ Rail crossing and Wayside  Indoor/Outdoor Commercial Residential Architectural  Edge_lit signs (Exit, point of sale) 2. Outline Dimensions Notes 1. All dimensions are in millimeters. 2. Tolerance is ±0.2 mm (.008") unless otherwise noted. Part No.: LTPL-P033DS50 BNC-OD-C131/A4 Page: 1 of 13 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only 3. Rating and Characteristics Absolute Maximum Ratings at Ta=25°C Parameter Symbol Rating Unit Power Dissipation Po 1.6 W Forward Current IF 500 mA Forward Pulse Current IFP 500 mA Reverse Voltage VR 5 V Junction Temperature Tj 105 °C Thermal Resistance, Junction-Case Rth, J-C 4.8 °C/W Thermal Resistance, Junction-Ambient Rth, J-A 13.5 °C/W Operating Temperature Range Topr -40 - 85 °C Storage Temperature Range Tstg -40 - 125 °C Notes 1. The pulse mode condition is 1/10 duty cycle with 100 msec pulse width. 2. Forbid to operating at reverse voltage condition for long. 3. The location of case temperature is the thermal PAD temperature around of LED sample. 4. The location of ambient temperature is the air temperature in the chamber. Part No.: LTPL-P033DS50 BNC-OD-C131/A4 Page: 2 of 13 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Electro-Optical Characteristics at Ta=25°C Parameter Symbol MIN. TYP. MAX. Test Condition Unit Forward Voltage VF 2.79 3.1 3.27 IF= 350mA V Reverse Current IR 100 VR = 5V µA Luminous Flux ΦV 125.0 151.2 IF = 350mA lm Efficiency η 115 IF = 350mA lm/W Color Rendering Ra 65 IF = 350mA View Angle 130.0 2θ1/2 120 IF = 350mA X 0.355 IF = 350mA Y 0.371 ° Chromaticity Coordinates Correlated Color Temperature CCT 4400 K 5100 Notes 1. Luminous flux is the total luminous flux output as initial measured with an integrated sphere. 2. IS CAS140B is for the luminous flux (lm) and the CIE1931 chromaticity coordinates (x, y) testing. 3. The chromaticity coordinates (x, y) is derived from the CIE 1931 chromaticity diagram. 4. Luminous flux measurement allowance is ±7.5%. 5. Forward voltage measurement allowance is ±0.1V. 6. Color coordinates (x, y) measurement allowance is ±0.005. 7. Color rendering (Ra) measurement allowance is ±2. Part No.: LTPL-P033DS50 BNC-OD-C131/A4 Page: 3 of 13 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Typical Electrical / Optical Characteristics Curves 100% Relative Intensity (%) 80% 60% 40% 20% 0% 400 450 500 550 600 650 700 750 Wavelength (nm) Fig 1. Relative Spectrum of Emission 0° 100% 90% 30° Relative Intensity (%) 80% 70% 60% 60° 50% 40% 30% 20% 10% 0% 90° 60 30° 0° 50 100 Fig 2. Radiation Characteristics Part No.: LTPL-P033DS50 BNC-OD-C131/A4 Page: 4 of 13 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only 500 Forward Current I F (mA) 400 Forward Current IF (mA) 400 300 200 100 Rth, J-A = 25oC/W 350 Rth, J-A = 20oC/W 300 Rth, J-A = 15oC/W 250 Rth, J-A = 10oC/W 200 150 100 50 0 0 2.5 2.7 2.9 3.1 3.3 50 3.5 Forward Voltage VF (V) 70 90 110 130 Ambient Temperature (°C) Fig 3. Forward Current Fig 4. Forward Current Derating Curve 0.39 1.4 0.38 Chromaticity Coordinates x,y Relative Luminous Flux 1.2 1.0 0.8 0.6 0.4 0.2 0.37 0.36 y 0.35 x 0.34 0.33 0.32 0.0 0.31 0 100 200 300 400 Forward Current IF (mA) Fig 5. Relative Luminous Flux Part No.: LTPL-P033DS50 BNC-OD-C131/A4 500 0 100 200 300 400 500 Forward Current IF (mA) Fig 6. Chromaticity Coordinate Shift Page: 5 of 13 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only 4. Category Code Table V1 G U1 Chromaticity Coordinate Categories Code N1 N4 x y 0.3579 0.3577 Code N2 x y Code 0.3526 0.3539 N3 x y 0.3479 0.3522 0.3634 0.3906 0.3569 0.3860 0.3513 0.3836 0.3697 0.3952 0.3634 0.3906 0.3572 0.3884 0.3631 0.3614 0.3579 0.3577 0.3529 0.3561 0.3430 0.3482 0.3452 0.3788 0.3513 0.3836 0.3479 0.3522 Forward Voltage Categories Code Min Max GH 2.79 3.27 Luminous Flux Categories Code Min Max V2 125.0 137.5 V3 137.5 151.2 V4 151.2 166.3 V5 166.3 183 Notes 1. The chromaticity coordinates is operated performance with forward current 350mA. 2. The luminous flux is operated performance with forward current 350mA Part No.: LTPL-P033DS50 BNC-OD-C131/A4 Page: 6 of 13 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only 0.43 0.42 0.41 0.4 0.39 0.38 0.37 0.36 0.35 0.34 0.33 0.32 4400K 5100K N4 0.33 0.34 N3 0.35 N2 N1 0.36 0.37 0.38 Notes 1. The value is all dies operated performance. 2. The chromaticity coordinates (x, y) is derived from the CIE 1931 chromaticity diagram. 3. IS CAS140B is for the luminous flux (lm) and the CIE1931 chromaticity coordinates (x, y) testing. The chromaticity coordinates (x, y) guarantee should be added ± 0.005 tolerance. Part No.: LTPL-P033DS50 BNC-OD-C131/A4 Page: 7 of 13 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only 5. Reflow Soldering Characteristics tP TP Temperature Ramp-up TL tL TSmax TSmin Preheat, tS 25°C to Peak, t Ramp-dow n Time Profile Feature Lead Free Assembly Average Ramp-Up Rate (TSmax to TP) 3°C / second max Preheat Temperature Min (TSmin) 150°C Preheat Temperature Max (TSmax) 200°C Preheat Time (tSmin to tSmax) 60 – 180 seconds Time Maintained Above Temperature (TL) 217°C Time Maintained Above Time (tL) 60 – 150 seconds Peak / Classification Temperature (TP) 260°C Time Within 5°C of Actual Peak Temperature (t P) 5 seconds Ramp – Down Rate 6°C / second max Time 25°C to Peak Temperature 8 minutes max Notes: 1. The LEDs can be soldered using the reflow soldering or hand soldering method. The recommended hand soldering condition is 350°C max. and 2secs ma x. for one time only. 2. All temperatures refer to topside of the package, measured on the package body surface. 3. The soldering condition referring to J-STD-020B. If the LEDs were unpacked more than 72hrs, we recommend baking the LEDs at 60℃ at least 12 hours before soldering process. 4. The soldering profile could be further referred to different soldering grease material characteristic. The grease vendor will provide this information. 5. A rapid-rate process is not recommended for the LEDs cooling down from the peak temperature. 6. Although the recommended reflow conditions are specified above, the reflow or hand soldering condition at the lowest possible temperature is desirable for the LEDs. 7. LiteOn cannot make a guarantee on the LEDs which have been already assembled using the dip soldering method Part No.: LTPL-P033DS50 BNC-OD-C131/A4 Page: 8 of 13 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only 6. Recommend Solder Pad Solder Pad Design Notes: 1. All dimensions are in millimeters 2. The circle metallization board and lead contact pad is electrically isolated. Part No.: LTPL-P033DS50 BNC-OD-C131/A4 Page: 9 of 13 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only 7. Package Dimensions of Tape and Reel Notes: 1. All dimension are in millimeters. (inches) 2. Empty component pockets sealed with top cover tape. 3. 1000 pieces per 7 inch real. (Min. packing quantities are 500 pieces for remainders) 4. The maximum number of consecutive missing LED is two. 5. In accordance with EIA-481-1-L23 specifications. Part No.: LTPL-P033DS50 BNC-OD-C131/A4 Page: 10 of 13 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Reliability Test Test Point Number of Damaged o 1000 Hours 0/22 -40 C, IF = 500mA o 1000 Hours 0/11 Wet High Temperature Operation Life 85℃/ 85%RH, IF = 500mA 1000 Hours 0/22 Powered Wet High Temperature Operation Life 85℃/ 85%RH, IF = 500mA 30min ON/30min OFF 1000 Hours 0/22 High Temperature Storage Life 125℃ 1000 Hours 0/11 Low Temperature Storage Life - 40℃ 1000 Hours 0/11 Thermal Cycle - 40℃~100℃ 30min dwell, 5 min transfer 300 cycle 0/22 Thermal Shock - 40℃~120℃ 20min dwell, 20 sec transfer 400 cycle 0/22 Resistance to Soldering Heat 265℃, 5secs according to MSL rating 3 Times 0/11 Solder ability Tsld = 245±5 C, 3 sec 1 Time 0/6 Salt Mist Test 35℃, 30g/m2/day 48 Hours 0/6 Test Item Test Condition High Temperature Operating Life 85 C, IF = 500mA Low Temperature Operating Life o Criteria for Judging the Damage Criteria for Judgment Item Symbol Test Condition Min. Forward Voltage Vf IF = 500mA Luminous Intensity Lm IF = 500mA Part No.: LTPL-P033DS50 BNC-OD-C131/A4 Max. U.S.L. x 1.1 L.S.L. x 0.7 Page: 11 of 13 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only 8. Cautions Application The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications).Consult Liteon’s Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices). Storage This product is qualified as Moisture Sensitive Level 4 per JEDEC J-STD-020 Precaution when handing this moisture sensitive product is important to ensure the reliability of the product. The package is sealed: o The LEDs should be stored at 30 C or less and 90%RH or less. And the LEDs are limited to use within one year, while the LEDs is packed in moisture-proof package with the desiccants inside. The package is opened: o The LEDs should be stored at 30 C or less and 60%RH or less. Moreover, the LEDs are limited to solder process within 72hrs. If the Humidity Indicator shows the pink color in 10% even higher or exceed the storage limiting time since opened, that we recommended to be with workable desiccants in original package. Drive Method An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below. LED Circuit model A LED Circuit model B (A) Recommended circuit. (B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs. Part No.: LTPL-P033DS50 BNC-OD-C131/A4 Page: 12 of 13 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only ESD (Electrostatic Discharge) Static Electricity or power surge will damage the LED. Suggestions to prevent ESD damage:  Use a conductive wrist band or anti-electrostatic glove when handling these LEDs.  All devices, equipment, and machinery must be properly grounded.  Work tables, storage racks, etc. should be properly grounded.  Use ion blower to neutralize the static charge which might have built up on surface of the LED’s plastic lens as a result of friction between LEDs during storage and handling. ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, low forward voltage, or “no light up” at low currents. To verify for ESD damage, check for “light up” and VF of the suspect LEDs at low currents. The VF of “good” LEDs should be >2.0V@0.1mA for InGaN product. Suggested Checking List Static-Safe Workstation & Work Areas 1. Static-safe working stations or work-areas have ESD signs. 2. All surfaces and objects at all static-safe workstation and within 1 ft measure less than 100V. 3. All ionizer activated, positioned towards the units. 4. Each work surface mats grounding is good. Personnel Grounding 1. Every person (including visitors) handling ESD sensitive (ESDS) items wear wrist strap, heel strap or conductive shoes with conductive flooring. 2. If conductive footwear used, conductive flooring also present. 3. Garments, hairs or anything closer than 1 ft to ESD items measure less than 100V. 4. The wrist strap or heel strap/conductive shoes are checked daily and result recorded. 5. All wrist strap or heel strap checkers calibration up to date. Device Handling 1. Each ESDS items identified by EIA-471 labels on item or packaging.. 2. No static charge generators (e.g. plastics) inside shielding containers with ESDS items. 3. All flexible conductive and dissipative package materials are inspected before reuse or recycles Part No.: LTPL-P033DS50 BNC-OD-C131/A4 Page: 13 of 13
LTPL-P033DS50 价格&库存

很抱歉,暂时无法提供与“LTPL-P033DS50”相匹配的价格&库存,您可以联系我们找货

免费人工找货