0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTV-155E

LTV-155E

  • 厂商:

    LITEON(光宝)

  • 封装:

    SOIC6

  • 描述:

    OPTOCOUPLER IGBT DVR OUT 5SOP

  • 数据手册
  • 价格&库存
LTV-155E 数据手册
LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only MSL: Level 1 APPROVAL SHEET PRODUCT NAME LITE-ON PART NO. CUSTOMER NAME CUSTOMER PART NO. ISSUED DATE ISSUED DEPARTMENT: ISSUED BY: PHOTO-COUPLER IGBT GATE DRIVER LTV-155E LG PDP EAV62035601 22 October 2012 PRODUCT DEVELOPMENT (PD) MARK LIN / WALLACE HSU (PD ENGINEER) REVIEWED BY: DIO TZENG (PD PRINCIPAL ENGINEER) APPROVED BY: KEVIN LIN (PD MANAGER) __________________________ QUALITY ASSURANCE: JEFFREY SU (DQE MANAGER) __________________________ LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Table of contents 1.0 2.0 3.0 4.0 5.0 6.0 Cover Table of contents Type document revision history Datasheet & application notes & IR-Reflow profile Package assembly specifications Package inspection 6.1 X-ray 6.2 Top view & bottom view (Lead co-planarity spec) 6.3 Chip dimensions 7.0 Product qualification report (Reliability report, ESD, Latch up test) 8.0 Packing specification 9.0 QC flow 9.1 Assembly QC flow 9.2 FAB QC flow 9.3 Abnormal Lot checking flow in final test 9.4 Testing QC flow 10.0 Manufacturing control plan 11.0 Electrical characteristics 11.1 Actual measured value of product electrical characters 11.2 Actual measured value of important electrical characteristics by operation temperature 11.3 Actual measured value of important electrical characteristics by voltage 12.0 Actual measurement value of each exterior part 13.0 Mean time to failure 14.0 Delaminating evaluation 15.0 CTQ actual measurement results in QC flow 16.0 SDS/SGS LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only 3.0 Type Document Revision History Rev. Date Initiator Description of Change A B 22 October 2012 4 December 2012 11 January 2013 Wallace Hsu Wallace Hsu Dio Tzeng Original To update safety approval, MSL and Pb free information Cover page revised, Abnormal Lot management, Lead Co-planarity, Fab QC Flow, Delaminating Evaluation, REEL and internal and external packing material, MSDS / SGS LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only 4.0 Datasheet & Application Notes & IR-Reflow Profile LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only LTV-155E Plasma Display Panel (PDP) Industrial Inverter MOS FET/ IGBT Gate Driver Description The LTV-155E optocoupler is ideally Features suited for driving power IGBTs and MOSFETs • 0.6A maximum peak output current used in plasma display panel. It contains an • 2.5mA maximum supply current (ICC) AlGaAs an • Wide operating range: 10 to 30 Volts (VCC) integrated circuit with a power output stage. • Rail to rail output voltage The Optocoupler operational parameters are • Guaranteed performance over temperature -40oC ~ +100oC. • Threshold input current: IFLH = 7.5mA (max) • Common mode transient immunity: ±20kV/µs LED optically coupled to guaranteed over the temperature range from o o -40 C ~ +100 C. (min) Functional Diagram • Isolation voltage: 3750 Vrms (min) • Fast switching speed, 200ns max propagation delay • MSL 1 Level • Safety approval UL/ cUL 1577, Cert. No.E113898. 3750 Vrms/1 min 6 5 4 VDE DIN EN60747-5-5, Cert. No. 40015248 VIORM = 560 Vpeak 1. Anode 3. Cathode 4. GND 5. Vo (Output) 6. Vcc SHIELD 1 3 Application • Plasma Display Panel . • IGBT/MOSFET gate drive • Industrial Inverter • Induction heating • Uninterruptible power supply (UPS) Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4, Page : 1 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Package Dimensions SOP-5 Package (LTV-155E) Date Code *1 Factory Code *2. Rank *3 Notes : 1. All Dimensions in Millimeters 2. Mold flash per side is 0.15mm Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 Page : 2 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Taping Dimensions LTV-155E-TP1 LTV-155E-TP Description Symbol Dimensions in millimeters ( inches ) Tape wide Pitch of sprocket holes W P0 Distance of compartment F P2 12±0.3 (0.47) 4±0.1 (0.15) 5.5±0.1 (0.217) 2±0.1 (0.079) Distance of compartment to compartment P1 8±0.1 (0.315) Quantity Per Reel Package Type LTV-155E Quantities(pcs) 3000 Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 Page : 3 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Parameter Symbol Min Max Units Storage Temperature TST -55 125 o Operating Temperature TA -40 100 o Isolation Voltage VISO 3750 Supply Voltage VCC 0 C C VRMS 35 V 260 °C IF(AVG) 25 mA VR 5 V IF(TRAN) 1 A tr(IN) /tf(IN) 500 ns PI 45 mW IOH(PEAK) 0.6 A IOL(PEAK) 0.6 A VO 35 V PO 250 mW PT 295 mW Lead Solder Temperature Note Input Average Forward Input Current Reverse Input Voltage Peak Transient Input Current ( 5V IFLH - 2.6 7.5 mA Threshold Input Voltage High to Low VCC=15V, VO < 5V VFHL 0.8 - - V V6-5=2V IOPH1 - -0.5 -0.2 V6-5=10V IOPH2 - - -0.4 V5-4=2V IOPL1 0.2 0.5 - V5-4=10V IOPL2 0.4 - - 9 9.55 - 9 Output High level output current (1) Vcc=15V, IF=10mA, 3, 5, 15 A Low level output current (1) Vcc=15V, IF=0mA, 4, 6, 16 High level output voltage VCC=10V. IF = 10mA, IO = -100mA VOH Low level output voltage VCC=10V, IF = 0mA, IO = 100mA VOL - 0.3 1 2, 18 High Level Supply Current VCC=10 to 20V IF = 10mA, VO=Open ICCH - 1.5 3.0 7, 8, 19 Low Level Supply Current VCC=10 to 20V IF = 0mA, VO=Open 1, 17 V mA ICCL - 1.5 7, 8, 20 3.0 All Typical values at TA = 25°C, unless otherwise specified. Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 Page : 6 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Switching Specifications Parameter Test Condition Min Typ Max L→H Ta=25 oC IF=0→10mA TPLH - 115 170 H→L Ta=25 oC IF=10→0mA TPHL - 110 170 IF=0→10mA TPLH 50 115 200 IF=10→0mA TPHL 50 110 200 IF=0→10mA |tPHL- tPLH| - 5 50 IF=0→10mA Tr - 30 - IF=10→0mA Tf - 15 - |CMH| -20 - - Propagation Delay Time L→H H→L Switching Dispersion Symbol Time VCC=20V IF= 10mA Rg= 30 Ω, Cg= 1 nF, f= 250 kHz, Duty= 50% Units Fig 10, 11, 12, 13, 14, 21 ns Output Rise Time (90 to 10%) Output Fall Time (90 to 10%) Common Mode Transient Immunity at HIGH Level Output IF=10mA,VCM=1000V, o TA=25 C, VCC=20V Common Mode Transient Immunity at LOW Level Output VF=0V,VCM=1000V, o TA=25 C, VCC=20V - 21 kV/µs |CML| 20 - 22 - Specified over recommended operating conditions (TA = -40 to 100°C, IF= 10 to 15mA, VF(OFF) = -3.0 to 0.8 V, VCC = 10 to 30 V) unless otherwise specified. Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 Page : 7 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Isolation Characteristics Parameter Test Condition Symbol Min Typ Max Units Note - - V 2, 3 2 Withstand Insulation Test Voltage RH ≤ 40-60%, t = 1min, TA = 25oC VISO 3750 Input-Output Resistance VI-O = 500V DC RI-O - 10 12 - Ω Input-Output Capacitance f = 1MHz, TA = 25 C CI-O - 0.92 - pF o Specified over recommended operating conditions (TA = -40 to 100°C, IF= 10 to 15mA, VF(OFF) = -3.0 to 0.8 V, VCC = 10 to 30 V) unless otherwise specified. Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 Page : 8 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Typical Performance Curves IF=10mA Iout=-100mA VCC=10V VEE=0V -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -40 -20 0 20 40 60 80 0.6 VOL-OUTPUT LOW VOLTAGE-V (VOH-VCC)-HIGH OUTPUT VOLTAGE DROP-V 0 -0.1 0.5 0.4 0.3 VF(off)=0V Iout=100mA VCC=10V VEE=0V 0.2 0.1 0 100 -40 -20 0 ℃ TA-TEMPERATURE-℃ 0 -0.5 f=200Hz DUTY CYCLE=0.2% IF=10mA VCC=15V VEE=0V -1.5 -2 -40 -20 0 20 40 60 80 1.5 1 100 0 -40 -20 0 (V5-4) - Output Low Voltage DropV (V6-5) - Output High Voltage DropV 4 2 100℃ ℃ f=200Hz DUTY CYCLE=0.2% IF=10mA VCC=15V VEE=0V 0 -3 -2.5 -2 -1.5 -1 -0.5 0 IOH - Output High Current-A Figure 5 : Output High Voltage drop vs. High Current Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 20 40 60 80 100 Figure 4: Output Low Current vs. Temperature 8 6 100 ℃ TA- TEMPERATURE-℃ 12 10 80 0.5 Figure 3: Output High Current vs. Temperature 25℃ ℃ 60 f=200Hz DUTY CYCLE=99.8% IF=0mA VCC=15V VEE=0V TA- TEMPERATURE-℃ ℃ -40℃ ℃ 40 Figure 2: Output Low Voltage vs. Temperature IOL- OUTPUT LOW CURRENT-A IOH- OUTPUT HIGH CURRENT-A Figure 1: Output High Voltage drop vs. Temperature -1 20 TA-TEMPERATURE-℃ 12 f=200Hz DUTY CYCLE=99.8% IF=0mA VCC=15V VEE=0V 10 8 100℃ ℃ 25℃ ℃ -40℃ ℃ 6 4 2 0 0 0.5 1 1.5 2 IOL - Ouput Low Current-A Figure 6 : Output High Voltage drop vs. Low Current Page : 9 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Typical Performance Curves 1.7 ICC-SUPPLY CURRENT-mA ICC-SUPPLY CURRENT-mA 2 1.8 1.6 IF=10mA for ICCH VF=0V for ICCL VEE=0V 1.65 1.4 1.2 1 0.8 IF=10mA for ICCH VF=0V for ICCL VCC=20V VEE=0V 0.6 0.4 0.2 1.6 1.55 ICCH ICCL ICCH ICCL 1.5 0 -40 -20 0 20 40 60 ℃ TA-TEMPERATURE-℃ 80 100 15 20 25 30 VCC-V Figure 7 : Supply Current vs. Temperature Figure 8 : Supply Current vs. Supply Voltage IFLH-LOW HIGH CURRENT THRESHOLD-mA 4 3.5 3 2.5 2 1.5 1 VCC=15V VEE=0V 0.5 0 -40 -20 0 20 40 60 80 100 TA-TEMPERATURE-℃ Figure 9 : Low to High Threshold Current vs. Temperature Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 Page : 10 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Typical Performance Curves 150 140 130 160 IF=10mA TA=25℃ ℃ f=250kHz Rg=30Ω, Cg=1nF DUTY CYCLE=50% TP-PROPAGATION DELAY-ns TP-PROPAGATION DELAY-ns 160 IF=10mA VCC=20V Rg=30Ω, Cg=1nF DUTY CYCLE=50% f=250kHz 150 140 130 120 120 110 110 100 100 TPLH TPHL 90 TPLH TPHL 90 80 80 15 20 25 -40 30 -20 VCC-V TP-PROPAGATION DELAY-ns 160 VCC=20V ℃ TA=25℃ f=250kHz Rg=30Ω, Cg=1nF DUTY CYCLE=50% 150 140 130 120 110 100 TPLH TPHL 90 80 6 8 10 12 14 IF-FORWARD CURRENT-mA 160 TP- PROPAGATION DELAY- ns 80 100 IF=10mA VCC=20V Rg=30Ω DUTY CYCLE=50% f=250kHz 150 140 130 120 110 100 16 Figure 12 : Propagation vs. Forward Current 160 20 40 60 TA-TEMPERATURE-℃ Figure 11 : Propagation vs. Temperature TP- PROPAGATION DELAY- nS Figure 10 : Propagation vs. Supply Voltage 0 TPLH TPHL 90 80 0 10 20 30 40 Cg- SERIES CAPACITANCE- nF 50 Figure 13 : Propagation vs. Load Capacitance IF=10mA VCC=20V Cg=1nF DUTY CYCLE=50% f=250kHz 150 140 130 120 110 100 TPLH TPHL 90 80 10 20 30 40 Rg - SERIES LOAD RESISTANCE- Ω 50 Figure 14 : Propagation vs. Load Resistance Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 Page : 11 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Test Circuit 1 6 1 6 V6-5 0.1uF 5 IF A 5 IOPH 0.1uF V CC 3 3 4 Figure 15:IOPH test circuit 6 0.1uF V CC V 5-4 4 1 IOPL A Figure 16:IOPL test circuit 1 VO V IF VF 6 0.1uF IO 5 VOL 5 VCC VCC V IO 3 3 4 Figure 18:VOL test circuit Figure 17:VOH test circuit 1 6 IF 4 I CCH A 1 6 0.1uF 5 3 0.1uF 5 VCC 4 Figure 19:ICCH test circuit Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 I CCL A 3 VCC 4 Figure 20:ICCL test circuit Page : 12 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Test Circuit 1 6 0.1uF VO IF VOH 90% 50% 10% VOL Cg = 1 nF 5 3 tf tr Rg = 30£[ VCC VO 4 tpHL tpLH Figure 21:tpLH, tpHL, tr, tf, |tpHL-tpLH| test circuit IF 1 6 90% 0.1uF SW A VO VCM B 5 10% V CC tr 3 VCM £[ - tf SW A: I F =10mA 4 + 1000V VO 1V SW B: I F =0mA CM H = 800V tf(us) CM L = 800V tr(us) 16V Figure 22:CMR test circuit with split resistors network and waveforms Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 Page : 13 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Temperature Profile of Soldering Reflow (1) IR Reflow soldering (JEDEC-STD-020C compliant) One time soldering reflow is recommended within the condition of temperature and time profile shown below. Profile item Conditions Preheat - Temperature Min (TSmin) - Temperature Max (TSmax) - Time (min to max) (ts) 150˚C 200˚C 90±30 sec Soldering zone - Temperature (TL) - Time (tL) Peak Temperature (TP) 217˚C 60 sec 260˚C Ramp-up rate Ramp-down rate 3˚C / sec max. 3~6˚C / sec 20 sec TP 260 C Temperature ( C) Ramp-up TL 217 C Tsmax 200 C Ramp-down 60 sec Tsmin 150 C tL (Soldering) 25 C 60 ~ 120 sec ts (Preheat) Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 35~70 sec Time (sec) Page : 14 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Temperature Profile of Soldering Reflow (2) Wave soldering (JEDEC22A111 compliant) One time soldering is recommended within the condition of temperature. Temperature: 260+0/-5˚C Time: 10 sec. Preheat temperature:25 to 140˚C Preheat time: 30 to 80 sec. (3) Hand soldering by soldering iron Allow single lead soldering in every single process. One time soldering is recommended. Temperature: 380+0/-5˚C Time: 3 sec max. Part No. :LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 Page : 15 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Application Information Recommended Application Circuit The recommended application circuit shown in Figure 23 which is a typical gate drive application is using the LTV-155E. The following describes about driving IGBT. However, it is also suitable to MOSFET. Designer will need to tune the VCC supply voltage, depend on the IGBT or MOSFET gate threshold requirements (Recommended VCC = 15V for IGBT and 12V for MOSFET). The supply bypass capacitors (0.1 µF) provide the large transient current necessary during a switching transition. Since the transient nature of the charging currents, a low current power supply (3.0mA) power supply will be enough to power the device. The split resistors (in the ratio of 1.5:1) across the LED will provide a high CMR response by providing a balanced resistance network across the LED. The gate resistor Rg serves to limit gate charge current and controls the IGBT collector voltage rise and fall times. In PC board design, care should be taken to avoid routing the IGBT collector or emitter traces close to the LTV-155E input as this can result in unwanted coupling of transient signals into LTV-155E and degrade performance. R 1 V CC 6 ANODE 0.1uF + CATHODE 3 SHIELD R VO 5 Rg V EE =5V +V + - GND 4 CC =15V +HVDC +V - CE Q1 3-HVDC AC Q2 +V - CE -HVDC Figure 23 : Recommended application circuit with split LED drive Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 Page : 16 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Application Information Rail-to-Rail Output LTV-155E uses a power PMOS to deliver the large current and pull it to VCC to achieve rail-to-rail output voltage as shown in Figure 24. This ensures that the IGBT’s gate voltage is driven to the optimum intended level with no power loss across IGBT even when an unstable power supply is used. 6 5 4 1. Anode 3. Cathode 4. GND 5. Vo (Output) 6. Vcc SHIELD 1 3 Figure 24 : LTV-155E with PMOS and NMOS output stage for rail-to-rail output voltage LED Drive Considerations for High CMR Performance CMR with the LED On (CMRH) A high CMR LED drive circuit must keep the LED on (short A) during common mod transients. This is achieved by overdriving the LED current beyond the input threshold so that it is not pulled below the threshold during a transient. A minimum LED current of 10mA provides adequate margin over the maximum IFLH of 7.5mA to achieve 20 kV/µs CMR CMR with the LED off (CMRL) A high CMR LED drive circuit must keep the LED off (short B, VF≦ VF(OFF)) during common mode transients. For example during a –dVcm/dt transient in Figure 25, the current flowing through CLEDP, the LED will remain off and no common mode failure will occur. Figure 25 is like the recommended application circuit (Figure 23), dose achieve ultra high CMR performance by shunting the LED in the off state. IF 1 6 I LN CLA 0.1uF SW A B 5 I LN 3 VCC 4 CLC + VO VCM Ω - Figure 25 : Recommended high-CMR drive circuit for the LTV-155E Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 Page : 17 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Application Information Dead time and Propagation Delay Specification The LTV-155E includes a Propagation Delay Difference (PDD) specification intended to help designers minimize “dead time” in their power inverter designs. Dead time is the time period during which both the high and low side power transistors (Q1 and Q2 in Figure 23) are off. Any overlap in Q1 and Q2 conduction will result in large currents fl owing through the power devices between the high and low voltage motor rails. To minimize dead time in a given design, the turn on of LED2 should be delayed (relative to the turn off of LED1) so that under worst-case conditions, transistor Q1 has just turned off when transistor Q2 turns on, as shown in Figure 26. The amount of delay necessary to achieve this condition is equal to the maximum value of the propagation delay difference specification, PDDMAX, which is specified to be 100 ns over the operating temperature range of 40° C to 100° C. Delaying the LED signal by the maximum propagation delay difference ensures that the minimum dead time is zero, but it does not tell a designer what the maximum dead time will be. The maximum dead time is equivalent to the difference between the maximum and minimum propagation delay difference specifications as shown in Figure 27. The maximum dead time for the LTV-155E is 200 ns (= 100 ns (-100 ns)) over an operating temperature range of -40° C to 100C. Note that the propagation delays used to calculate PDD and dead time are taken at equal temperatures and test conditions since the Photocouplers under consideration are typically mounted in close proximity to each other and are switching identical IGBTs. I LED1 VOUT1 I LED1 VOUT1 Q1 ON Q1 ON Q1 OFF Q1 OFF Q2 ON Q2 ON VOUT2 VOUT2 Q2 OFF Q2 OFF I LED2 I LED2 tpHL MIN tpLH MIN tpHL MAX *PDD MAX tpLH MIN PDD MAX tpHL MAX tpLH MAX MAXIMUM DEAD TIME =PDD MAX - PDD MIN *MAXIMUM DEAD TIME = (tPHL MAX - tPHL) + (tPHL MAX - tPHL MIN) = (tPHL MAX - tPHL) - (tPHL MIN - tPHL MAX) Figure 26 : Minimum LED skew for zero dead time Figure 27 : Waveforms for dead time *PDD = PROPAGATION DELAY DIFFERENCE NOTE : FOR PDD CALCULATIONS THE PROPAGATION DELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITION. Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 Page : 18 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Notice 1) Maximum pulse width = 10us, maximum duty cycle = 0.2%. 2) Device is considered a two terminal device: pins 1, 3 are shorted together and pins 4, 5, 6 are shorted together. 3) According to UL1577, each optocoupler is tested by applying an insulation test voltage ≥ 3750 Vrms for 1 second (leakage detection current limit, II-O ≤ 10 uA). 4) Common mode transient immunity in high stage is the maximum tolerable negative dVcm/dt on the trailing edge of the common mode impulse signal, Vcm, to assure that the output will remain high. 5) Common mode transient immunity in low stage is the maximum tolerable positive dVcm/dt on the leading edge of the common mode impulse signal, Vcm, to assure that the output will remain low. Part No. : LTV-155E (TP/TP1)(Rev.-D, Jan 24, 2013) BNS-OD-C131/A4 Page : 19 of 19 LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only 5.0 Package Assembly Specifications 5 3 1 1. 2. 3. 4. 5. 6. 7. 2 6 4 7 Black epoxy resin Semitransparent epoxy resin Transparent silicone resin Gold wire Emitter Detector Lead frame LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only 6.0 Package inspection 6.1 X-ray LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only 6.2 Top view & Bottom view & Side view Top view Side view Bottom view *. Lead Co-planarity: 0.10 mm Max. (Reference JEDEC-MO-155) LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only 6.3 Chip dimensions (Top view by real measured) Emitter Detector LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only 7.0 Product Qualification Report (Reliability Report, ESD) LI TE-O N TEC H N O LO G Y C O RP O R ATI O N Property of LITE-ON Only Reliability Test Report Qualification Lite-on electronics (Thailand) Co., Ltd Package: Part Number: Products Type: Test Purpose: Test Period: Page: MFP / Potocouplers LTV-155E High Speed IGBT/MOSFET Gate Driver. New design IGBT of MFP qualification. 23-April ~ 25-June-2012 1/3 Test Item as require: Test title Sample size Test Condition Result Pre-conditioning test 315 125°C=24Hrs, 85°C 85%RH=168Hrs and IR Reflow 260°C Peak=3Cycles 315 Temp Cycling Test 45 Ta= -40~125°C, Dwell time = 15 min per Zone, 1000Cycles 45 High temp High Humidity Bias test 45 High Temp Operation Life 45 High Temp Reverse Bias Test Autoclave High temp storage Low temp storage 45 45 45 45 Ta=85°C, 85%RH, IF=16mA, Vin= 5V, IO=20mA, Vcc= 30V, 1000Hrs. Ta=110°C, If=16mA, Vin= 5V, IO=20mA, Vcc= 30V, 1000Hrs. Ta=110°C, VCE = 30V, 1000Hrs. Temp=121°C, 100%RH and 15Psi, 96Hrs. Temp= 150°C, 1000Hrs. Temp= -55°C, 1000Hrs. 20 Temp=121°C, 100%RH and 15Psi, 96Hrs. Remark 45 45 45 45 45 45 Non-Preconditioning test Autoclave 20 Spec limit of product. Parameter Measurement condition Symbol Input Forward Voltage Reverse Leakage Current High Level Output Current Low Level Output Current High Level Output Voltage Low Level Output Voltage High Level Supply Current Low Level Supply Current Threshold Input Current Low to High Threshold Input Voltage High to Low IF= 10 mA VR= 5V Vo=(VCC-4V) Vo=(VEE+2V) Io= -100mA, IF= 10mA Io=100mA IF=10 to 16 mA IF=-3 to 0.8 V IO=0mA, Vo>5V IO=0mA, Vo100mA VCC 3 PASS VOLTAGE TEST -IT:
LTV-155E 价格&库存

很抱歉,暂时无法提供与“LTV-155E”相匹配的价格&库存,您可以联系我们找货

免费人工找货