0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF134

MRF134

  • 厂商:

    MACOM

  • 封装:

  • 描述:

    MRF134 - N.CHANNEL MOS BROADBAND RF POWER FET - Tyco Electronics

  • 数据手册
  • 价格&库存
MRF134 数据手册
SEMICONDUCTOR TECHNICAL DATA Order this document by MRF134/D The RF MOSFET Line RF Power Field-Effect Transistor N–Channel Enhancement–Mode . . . designed for wideband large–signal amplifier and oscillator applications up to 400 MHz range. • Guaranteed 28 Volt, 150 MHz Performance Output Power = 5.0 Watts Minimum Gain = 11 dB Efficiency — 55% (Typical) • Small–Signal and Large–Signal Characterization • Typical Performance at 400 MHz, 28 Vdc, 5.0 W Output = 10.6 dB Gain • 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR • Low Noise Figure — 2.0 dB (Typ) at 200 mA, 150 MHz • Excellent Thermal Stability, Ideally Suited For Class A Operation D MRF134 5.0 W, to 400 MHz N–CHANNEL MOS BROADBAND RF POWER FET G S CASE 211–07, STYLE 2 MAXIMUM RATINGS Rating Drain–Source Voltage Drain–Gate Voltage (RGS = 1.0 MΩ) Gate–Source Voltage Drain Current — Continuous Total Device Dissipation @ TC = 25°C Derate above 25°C Storage Temperature Range Symbol VDSS VDGR VGS ID PD Tstg Value 65 65 ±40 0.9 17.5 0.1 –65 to +150 Unit Vdc Vdc Vdc Adc Watts W/°C °C THERMAL CHARACTERISTICS Rating Thermal Resistance, Junction to Case Symbol RθJC Value 10 Unit °C/W Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. REV 6 1 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Drain–Source Breakdown Voltage (VGS = 0, ID = 5.0 mA) Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) Gate–Source Leakage Current (VGS = 20 V, VDS = 0) V(BR)DSS IDSS IGSS 65 — — — — — — 1.0 1.0 Vdc mAdc µAdc ON CHARACTERISTICS Gate Threshold Voltage (ID = 10 mA, VDS = 10 V) Forward Transconductance (VDS = 10 V, ID = 100 mA) VGS(th) gfs 1.0 80 3.5 110 6.0 — Vdc mmhos DYNAMIC CHARACTERISTICS Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss Coss Crss — — — 7.0 9.7 2.3 — — — pF pF pF FUNCTIONAL CHARACTERISTICS Noise Figure (VDS = 28 Vdc, ID = 200 mA, f = 150 MHz) Common Source Power Gain (VDD = 28 Vdc, Pout = 5.0 W, IDQ = 50 mA) f = 150 MHz (Fig. 1) f = 400 MHz (Fig. 14) Drain Efficiency (Fig. 1) (VDD = 28 Vdc, Pout = 5.0 W, f = 150 MHz, IDQ = 50 mA) Electrical Ruggedness (Fig. 1) (VDD = 28 Vdc, Pout = 5.0 W, f = 150 MHz, IDQ = 50 mA, VSWR 30:1 at all Phase Angles) η ψ No Degradation in Output Power NF Gps 11 — 50 14 10.6 55 — — — % — 2.0 — dB dB R3* D1 R2 C5 C6 R1 L1 RF INPUT C1 C7 R4 C8 L3 R5 + C10 C9 L4 + C11 C12 VDD = 28 V C4 L2 DUT C3 RF OUTPUT C2 *Bias Adjust C1, C4 — Arco 406, 15–115 pF C2 — Arco 403, 3.0–35 pF C3 — Arco 402, 1.5–20 pF C5, C6, C7, C8, C12 — 0.1 µF Erie Redcap C9 — 10 µF, 50 V C10, C11 — 680 pF Feedthru D1 — 1N5925A Motorola Zener L1 — 3 Turns, 0.310″ ID, #18 AWG Enamel, 0.2″ Long L2 — 3–1/2 Turns, 0.310″ ID, #18 AWG Enamel, 0.25″ Long L3 — 20 Turns, #20 AWG Enamel Wound on R5 L4 — Ferroxcube VK–200 — 19/4B R1 — 68 Ω, 1.0 W Thin Film R2 — 10 kΩ, 1/4 W R3 — 10 Turns, 10 kΩ Beckman Instruments 8108 R4 — 1.8 kΩ, 1/2 W R5 — 1.0 MΩ, 2.0 W Carbon Board — G10, 62 mils Figure 1. 150 MHz Test Circuit REV 6 2 10 Pout , OUTPUT POWER (WATTS) 8 6 4 2 0 Pout , OUTPUT POWER (WATTS) f = 100 MHz 150 225 400 5 4 3 2 1 0 f = 100 MHz 150 225 400 VDD = 28 V IDQ = 50 mA 0 200 400 600 Pin, INPUT POWER (MILLWATTS) 800 1000 VDD = 13.5 V IDQ = 50 mA 0 200 400 600 Pin, INPUT POWER (MILLWATTS) 800 1000 Figure 2. Output Power versus Input Power Figure 3. Output Power versus Input Power 8 Pout , OUTPUT POWER (WATTS) Pin = 600 mW 8 Pout , OUTPUT POWER (WATTS) 300 mW Pin = 800 mW 400 mW 6 150 mW 4 6 4 200 mW 2 IDQ = 50 mA f = 100 MHz 2 IDQ = 50 mA f = 150 MHz 0 12 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 0 12 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 Figure 4. Output Power versus Supply Voltage Figure 5. Output Power versus Supply Voltage 8 Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) Pin = 800 mW 6 400 mW 4 200 mW 2 IDQ = 50 mA f = 225 MHz 0 12 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 8 Pin = 800 mW 6 IDQ = 50 mA f = 400 MHz 400 mW 4 200 mW 2 0 12 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 Figure 6. Output Power versus Supply Voltage Figure 7. Output Power versus Supply Voltage REV 6 3 6 Pout , OUTPUT POWER (WATTS) 5 4 3 2 1 0 -2 -1 TYPICAL DEVICE SHOWN, VGS(th) = 3.5 V 1 2 3 0 VGS, GATE-SOURCE VOLTAGE (VOLTS) 4 5 I D, DRAIN CURRENT (MILLAMPS) VDD = 28 V IDQ = 50 mA Pin = CONSTANT 500 400 300 200 100 0 TYPICAL DEVICE SHOWN, VGS(th) = 3.5 V 0 1 2 3 4 5 6 VGS, GATE-SOURCE VOLTAGE (VOLTS) 7 8 VDS = 10 V f = 400 MHz 150 MHz Figure 8. Output Power versus Gate Voltage Figure 9. Drain Current versus Gate Voltage (Transfer Characteristics) 50 VGS, GATE SOURCE VOLTAGE (NORMALIZED) 1.02 1 0.98 0.96 0.94 0.92 0.9 -25 0 IDQ = 200 mA 100 mA G MAX, MAXIMUM AVAILABLE GAIN (dB) VDD = 28 V 40 30 20 10 0 VDS = 28 V ID = 100 mAdc 1 10 100 f, FREQUENCY (MHz) 1000 |S21|2 GMAX = (1 - |S11|2) (1 - |S22|2) 50 mA 25 50 75 100 TC, CASE TEMPERATURE (°C) 125 150 Figure 10. Gate–Source Voltage versus Case Temperature Figure 11. Maximum Available Gain versus Frequency 28 24 C, CAPACITANCE (pF) 20 16 12 8 4 0 0 4 I D, DRAIN CURRENT (AMPS) VGS = 0 V f = 1 MHz 1 0.7 0.5 0.3 0.2 0.1 0.07 0.05 0.03 0.02 0.01 1 2 5 10 20 50 70 VDS, DRAIN-SOURCE VOLTAGE (VOLTS) 100 TC = 25°C Coss Ciss Crss 8 12 16 20 VDS, DRAIN-SOURCE VOLTAGE (VOLTS) 24 28 Figure 12. Capacitance versus Voltage Figure 13. Maximum Rated Forward Biased Safe Operating Area REV 6 4 R3* D1 R2 C7 C8 R4 C9 L1 C10 C11 + - L2 C12 C13 VDD = 28 V C14 Z4 R1 Z5 C6 RF OUTPUT RF INPUT C1 Z1 C2 Z2 Z3 C3 DUT C4 C5 *Bias Adjust C1, C6 — 270 pF, ATC 100 mils C2, C3, C4, C5 — 0–20 pF Johanson C7, C9, C10, C14 — 0.1 µF Erie Redcap, 50 V C8 — 0.001 µF C11 — 10 µF, 50 V C12, C13 — 680 pF Feedthru D1 — 1N5925A Motorola Zener L1 — 6 Turns, 1/4″ ID, #20 AWG Enamel L2 — Ferroxcube VK–200 — 19/4B R1 — 68 Ω, 1.0 W Thin Film R2 — 10 kΩ, 1/4 W R3 — 10 Turns, 10 kΩ Beckman Instruments 8108 R4 — 1.8 kΩ, 1/2 W Z1 — 1.4″ x 0.166″ Microstrip Z2 — 1.1″ x 0.166″ Microstrip Z3 — 0.95″ x 0.166″ Microstrip Z4 — 2.2″ x 0.166″ Microstrip Z5 — 0.85″ x 0.166″ Microstrip Board — Glass Teflon, 62 mils Figure 14. 400 MHz Test Circuit 400 VDD = 28 V, IDQ = 50 mA, Pout = 5.0 W 225 Zin{ 150 400 225 150 f = 100 MHz ZOL* f = 100 MHz Zo = 50 Ω f MHz 100 150 225 400 Zin{ Ohms 21.2 - j25.4 14.6 - j22.1 9.1 - j18.8 6.4 - j10.8 ZOL* Ohms 20.1 - j46.7 19.2 - j38.2 17.5 - j33.5 16.9 - j26.9 {68 Ω Shunt Resistor Gate-to-Ground ZOL* = Conjugate of the optimum load impedance ZOL* = into which the device output operates at a ZOL* = given output power, voltage and frequency. Figure 15. Large–Signal Series Equivalent Input/Output Impedances, Zin†, ZOL* REV 6 5 f (MHz) 1.0 2.0 5.0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 S11 |S11| 0.989 0.989 0.988 0.985 0.977 0.965 0.950 0.931 0.912 0.892 0.874 0.855 0.833 0.827 0.821 0.814 0.808 0.802 0.788 0.774 0.763 0.751 0.740 0.719 0.704 0.687 0.673 0.668 0.669 0.662 0.654 0.650 0.638 0.614 0.641 0.638 0.633 0.628 0.625 ∠φ –1.0 –2.0 –5.0 –10 –20 –30 –39 –47 –53 –58 –62 –66 –70 –73 –76 –79 –82 –86 –89 –92 –94 –97 –100 –104 –108 –113 –117 –120 –123 –125 –127 –129 –131 –132 –133 –135 –137 –138 –140 |S21| 11.27 11.27 11.26 11.20 10.99 10.66 10.25 9.777 9.359 8.960 8.583 8.190 7.808 7.661 7.515 7.368 7.222 7.075 6.810 6.540 6.220 5.903 5.784 5.334 4.904 4.551 4.219 3.978 3.737 3.519 3.325 3.170 3.048 2.898 2.833 2.709 2.574 2.481 2.408 S21 ∠φ 179 179 176 173 166 159 153 147 142 138 135 131 128 125 122 119 116 114 112 110 108 106 104 100 97 92 89 86 83 80 77 75 72 71 68 66 64 62 60 |S12| 0.0014 0.0028 0.0069 0.014 0.027 0.039 0.051 0.060 0.069 0.077 0.085 0.091 0.096 0.101 0.107 0.113 0.119 0.125 0.127 0.128 0.130 0.132 0.134 0.136 0.139 0.141 0.141 0.142 0.142 0.143 0.142 0.140 0.141 0.136 0.136 0.135 0.133 0.131 0.129 S12 ∠φ 89 89 86 83 76 69 63 57 53 49 46 43 40 38 36 34 32 31 30 28 26 24 23 20 19 16 14 12 10 9.0 8.0 7.0 6.0 6.0 5.0 5.0 4.0 5.0 5.0 |S22| 0.954 0.954 0.954 0.951 0.938 0.918 0.895 0.867 0.846 0.828 0.815 0.801 0.785 0.784 0.784 0.784 0.783 0.783 0.780 0.774 0.762 0.760 0.758 0.757 0.758 0.757 0.750 0.757 0.766 0.768 0.772 0.772 0.783 0.786 0.795 0.801 0.802 0.805 0.814 S22 ∠φ –1.0 –2.0 –4.0 –9.0 –18 –26 –34 –42 –49 –56 –62 –68 –74 –77 –82 –85 –88 –90 –92 –94 –98 –100 –103 –107 –110 –114 –117 –120 –121 –123 –124 –125 –125 –126 –127 –127 –128 –128 –128 (continued) The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were measured on the MRF134 device alone with no external components. Table 1. Common Source Scattering Parameters VDS = 28 V, ID = 100 mA REV 6 6 f (MHz) 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1000 S11 |S11| 0.619 0.617 0.618 0.619 0.618 0.614 0.609 0.562 0.587 0.593 0.597 0.598 0.592 0.588 0.586 0.590 ∠φ –142 –144 –146 –147 –150 –152 –154 –155 –156 –158 –160 –162 –164 –166 –168 –171 |S21| 2.334 2.259 2.192 2.124 2.061 1.983 1.908 1.877 1.869 1.794 1.749 1.700 1.641 1.590 1.572 1.551 S21 ∠φ 58 56 55 53 51 49 48 49 46 44 43 41 40 39 39 37 |S12| 0.128 0.125 0.123 0.122 0.120 0.118 0.119 0.118 0.119 0.118 0.119 0.118 0.115 0.112 0.108 0.107 S12 ∠φ 5.0 6.0 7.0 8.0 9.0 11 13 15 16 18 18 18 18 20 23 28 |S22| 0.818 0.824 0.834 0.851 0.859 0.857 0.865 0.872 0.869 0.875 0.881 0.889 0.888 0.877 0.864 0.863 S22 ∠φ –129 –130 –130 –131 –132 –133 –133 –133 –134 –135 –135 –136 –138 –138 –137 –137 The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were measurd on the MRF134 device alone with no external components. Table 1. Common Source Scattering Parameters (continued) VDS = 28 V, ID = 100 mA REV 6 7 +j50 +j25 +j100 +j150 +j10 +j250 +j500 0 10 25 50 100 150 250 500 +90° +120° +60° S12 100 150 f = 1000 MHz 200 300 500 +150° 50 180° .20 .18 .16 .14 .12 .10 .08 .06 .04 .02 +30° f = 1000 MHz 0° -j500 -j250 -30° -j10 500 400 300 -j25 200 150 100 50 -j100 -j150 -150° -60° -90° -120° -j50 Figure 16. S11, Input Reflection Coefficient versus Frequency VDS = 28 V ID = 100 mA Figure 17. S12, Reverse Transmission Coefficient versus Frequency VDS = 28 V ID = 100 mA +90° +120° 100 150 +150° f = 50 MHz S21 180° .10 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 +j50 +60° +j25 +30° +j100 +j150 +j10 +j250 +j500 0° 0 10 25 50 100 150 250 500 200 300 400 500 1000 -j500 -150° -60° -90° -30° -j10 -j250 f = 1000 MHz 500 -120° -j25 S22 80 50 -j100 -j150 300 200 150 100 -j50 Figure 18. S21, Forward Transmission Coefficient versus Frequency VDS = 28 V ID = 100 mA Figure 19. S22, Output Reflection Coefficient versus Frequency VDS = 28 V ID = 100 mA REV 6 8 DESIGN CONSIDERATIONS The MRF134 is a RF power N–Channel enhancement mode field–effect transistor (FET) designed especially for VHF power amplifier and oscillator applications. M/A-COM RF MOS FETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V–groove vertical power FETs. M/A-COM Application Note AN–211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation. DC BIAS The MRF134 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 9 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF134 was characterized at IDQ = 50 mA, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system. GAIN CONTROL Power output of the MRF134 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 8.) AMPLIFIER DESIGN Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF134. See M/A-COM Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s–parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs. RF power FETs are triode devices and, therefore, not unilateral. This, coupled with the very high gain of the MRF134, yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. The MRF134 was characterized with a 68–ohm input shunt loading resistor. Two port parameter stability analysis with the MRF134 s–parameters provides a useful–tool for selection of loading or feedback circuitry to assure stable operation. See MA-COM Application Note AN215A for a discussion of two port network theory and stability. Input resistive loading is not feasible in low noise applications. The MRF134 noise figure data was generated in a circuit with drain loading and a low loss input network. REV 6 9 PACKAGE DIMENSIONS A U M Q 1 4 M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D E H J K M Q R S U STYLE 2: PIN 1. 2. 3. 4. SOURCE GATE SOURCE DRAIN INCHES MIN MAX 0.960 0.990 0.370 0.390 0.229 0.281 0.215 0.235 0.085 0.105 0.150 0.108 0.004 0.006 0.395 0.405 40 _ 50 _ 0.113 0.130 0.245 0.255 0.790 0.810 0.720 0.730 MILLIMETERS MIN MAX 24.39 25.14 9.40 9.90 5.82 7.13 5.47 5.96 2.16 2.66 3.81 4.57 0.11 0.15 10.04 10.28 40 _ 50 _ 2.88 3.30 6.23 6.47 20.07 20.57 18.29 18.54 R 2 3 B S D K J H C E SEATING PLANE CASE 211–07 ISSUE N Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020 Visit www.macom.com for additional data sheets and product information. REV 6 10
MRF134 价格&库存

很抱歉,暂时无法提供与“MRF134”相匹配的价格&库存,您可以联系我们找货

免费人工找货