0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF150

MRF150

  • 厂商:

    MACOM

  • 封装:

  • 描述:

    MRF150 - N-CHANNEL MOS LINEAR RF POWER FET - Tyco Electronics

  • 数据手册
  • 价格&库存
MRF150 数据手册
SEMICONDUCTOR TECHNICAL DATA Order this document by MRF150/D The RF MOSFET Line RF Power Field-Effect Transistor N–Channel Enhancement–Mode Designed primarily for linear large–signal output stages up to 150 MHz frequency range. • Specified 50 Volts, 30 MHz Characteristics Output Power = 150 Watts Power Gain = 17 dB (Typ) Efficiency = 45% (Typ) • Superior High Order IMD • IMD(d3) (150 W PEP) — – 32 dB (Typ) • IMD(d11) (150 W PEP) — – 60 dB (Typ) • 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR MRF150 150 W, to 150 MHz N–CHANNEL MOS LINEAR RF POWER FET D G CASE 211–11, STYLE 2 S MAXIMUM RATINGS Rating Drain–Source Voltage Drain–Gate Voltage Gate–Source Voltage Drain Current — Continuous Total Device Dissipation @ TC = 25°C Derate above 25°C Storage Temperature Range Operating Junction Temperature Symbol VDSS VDGO VGS ID PD Tstg TJ Value 125 125 ± 40 16 300 1.71 – 65 to +150 200 Unit Vdc Vdc Vdc Adc Watts W/°C °C °C THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Symbol RθJC Max 0.6 Unit °C/W NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. REV 9 1 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Drain–Source Breakdown Voltage (VGS = 0, ID = 100 mA) Zero Gate Voltage Drain Current (VDS = 50 V, VGS = 0) Gate–Body Leakage Current (VGS = 20 V, VDS = 0) V(BR)DSS IDSS IGSS 125 — — — — — — 5.0 1.0 Vdc mAdc µAdc ON CHARACTERISTICS Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) Drain–Source On–Voltage (VGS = 10 V, ID = 10 A) Forward Transconductance (VDS = 10 V, ID = 5.0 A) VGS(th) VDS(on) gfs 1.0 1.0 4.0 3.0 3.0 7.0 5.0 5.0 — Vdc Vdc mhos DYNAMIC CHARACTERISTICS Input Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) Output Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) Reverse Transfer Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) Ciss Coss Crss — — — 400 240 40 — — — pF pF pF FUNCTIONAL TESTS (SSB) Common Source Amplifier Power Gain (VDD = 50 V, Pout = 150 W (PEP), IDQ = 250 mA) f = 30 MHz f = 150 MHz Gps η — — — 17 8.0 45 — — — dB % Drain Efficiency (VDD = 50 V, Pout = 150 W (PEP), f = 30; 30.001 MHz, ID (Max) = 3.75 A) Intermodulation Distortion (1) (VDD = 50 V, Pout = 150 W (PEP), f1 = 30 MHz, f2 = 30.001 MHz, IDQ = 250 mA) Load Mismatch (VDD = 50 V, Pout = 150 W (PEP), f = 30; 30.001 MHz, IDQ = 250 mA, VSWR 30:1 at all Phase Angles) dB IMD(d3) IMD(d11) ψ No Degradation in Output Power — — – 32 – 60 — — CLASS A PERFORMANCE Intermodulation Distortion (1) and Power Gain (VDD = 50 V, Pout = 50 W (PEP), f1 = 30 MHz, f2 = 30.001 MHz, IDQ = 3.0 A) GPS IMD(d3) IMD(d9 – 13) — — — 20 – 50 – 75 — — — dB NOTE: 1. To MIL–STD–1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone. L1 BIAS + 0 – 12 V – C5 R1 DUT T2 RF INPUT T1 R3 C1 R2 C2 C4 C3 RF OUTPUT C6 C7 C8 L2 + C9 + C10 – – 50 V C1 — 470 pF Dipped Mica C2, C5, C6, C7, C8, C9 — 0.1 µF Ceramic Chip or Monolythic with Short Leads C3 — 200 pF Unencapsulated Mica or Dipped Mica with Short Leads C4 — 15 pF Unencapsulated Mica or Dipped Mica with Short Leads C10 — 10 µF/100 V Electrolytic L1 — VK200/4B Ferrite Choke or Equivalent, 3.0 µH L2 — Ferrite Bead(s), 2.0 µH R1, R2 — 51 Ω/1.0 W Carbon R3 — 3.3 Ω/1.0 W Carbon (or 2.0 x 6.8 Ω/1/2 W in Parallel T1 — 9:1 Broadband Transformer T2 — 1:9 Broadband Transformer Figure 1. 30 MHz Test Circuit (Class AB) REV 9 2 25 Pout , OUTPUT POWER (WATTS) 20 POWER GAIN (dB) VDD = 50 V 40 V 10 20 IDQ = 250 mA 100 50 00 250 200 150 100 50 0 40 V 0 1 2 3 4 Pin, INPUT POWER (WATTS) IDQ = 250 mA 5 6 15 10 VDD = 50 V IDQ = 250 mA Pout = 150 W (PEP) 30 5 VDD = 50 V 0 2 5 10 20 50 100 200 f, FREQUENCY (MHz) Figure 2. Power Gain versus Frequency Figure 3. Output Power versus Input Power IMD, INTERMODULATION DISTORTION (dB) – 30 – 35 – 40 – 45 – 50 150 MHz d3 d5 VDD = 50 V, IDQ = 250 mA, TONE SEPARATION = 1 kHz – 30 – 35 – 40 – 45 – 50 0 20 40 60 80 30 MHz d3 d5 100 120 140 160 Pout, OUTPUT POWER (WATTS PEP) 1000 f T, UNITY GAIN FREQUENCY (MHz) VDS = 30 V 800 600 15 V 400 200 0 0 5 10 ID, DRAIN CURRENT (AMPS) 15 20 Figure 4. IMD versus Pout Figure 5. Common Source Unity Gain Frequency versus Drain Current 10 IDS , DRAIN CURRENT (AMPS) 8 6 4 2 VDS = 10 V gfs = 5 mhos 0 2 4 6 8 10 0 VGS, GATE–SOURCE VOLTAGE (VOLTS) Figure 6. Gate Voltage versus Drain Current REV 9 3 30 MHz 150 MHz 250 200 150 150 90 136 f = 175 MHz 30 Zin 15 30 15 7.5 7.5 4.0 ZOL* 2.0 Zo = 10 Ω VDD = 50 V IDQ = 250 mA Pout = 150 W PEP ZOL* = Conjugate of the optimum load impedance ZOL* = into which the device output operates at a ZOL* = given output power, voltage and frequency. 90 f = 175 MHz 4.0 2.0 NOTE: Gate Shunted by 25 Ohms. Figure 7. Series Equivalent Impedance RFC2 + 50 Vdc R1 C4 C1 RF INPUT C2 C3 R2 + C5 R3 L1 C6 DUT L3 L2 C7 C8 L4 C10 + C11 BIAS 0 – 12 V C9 RF OUTPUT C1, C2, C8 — Arco 463 or equivalent C3 — 25 pF, Unelco C4 — 0.1 µF, Ceramic C5 — 1.0 µF, 15 WV Tantalum C6 — 25 pF, Unelco J101 C7 — 25 pF, Unelco J101 C9 — Arco 262 or equivalent C10 — 0.05 µF, Ceramic C11 — 15 µF, 60 WV Electrolytic L1 — 3/4″, 18 AWG into Hairpin L2 — Printed Line, 0.200″ x 0.500″ L3 — 1″, #16 AWG into Hairpin L4 — 2 Turns #16 AWG, 5/16 ID RFC1 — 5.6 µH, Choke RFC2 — VK200–4B R1 — 150 Ω, 1.0 W Carbon R2 — 10 kΩ, 1/2 W Carbon R3 — 120 Ω, 1/2 W Carbon Figure 8. 150 MHz Test Circuit (Class AB) REV 9 4 ÁÁÁÁÁ Á Á Á Á Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁ Á Á Á Á Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁ Á Á Á Á Á Á Á ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á Á Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁ ÁÁ Á 5 REV 9 f MHz 440 430 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 100 110 90 80 70 60 50 40 30 0.970 0.969 0.970 0.968 0.968 0.969 0.967 0.967 0.968 0.965 0.966 0.965 0.963 0.966 0.965 0.963 0.963 0.960 0.961 0.961 0.959 0.960 0.957 0.955 0.956 0.954 0.953 0.952 0.949 0.949 0.947 0.946 0.945 0.942 0.942 0.941 0.940 0.939 0.937 0.936 0.936 0.936 |S11| S11 Table 1. Common Source S–Parameters (VDS = 50 V, ID = 2 A) –180 –179 –179 169 169 169 170 170 170 171 171 171 172 172 172 173 173 173 174 174 174 175 175 175 175 175 176 176 176 177 177 177 177 178 178 178 179 179 179 179 179 180 φ |S21| 0.19 0.18 0.20 0.21 0.21 0.22 0.24 0.23 0.25 0.26 0.26 0.26 0.28 0.29 0.32 0.32 0.34 0.35 0.36 0.39 0.42 0.43 0.49 0.51 0.52 0.57 0.59 0.65 0.71 0.74 0.83 0.88 0.99 1.21 1.34 1.53 1.81 2.13 2.52 3.16 4.13 1.11 S21 25 25 25 24 23 26 22 24 25 25 27 22 26 27 28 25 29 29 31 32 32 32 35 38 39 41 42 44 46 49 52 53 56 58 60 65 67 68 72 75 79 84 φ 0.082 0.082 0.078 0.076 0.072 0.069 0.068 0.064 0.065 0.062 0.058 0.057 0.054 0.052 0.051 0.048 0.046 0.043 0.040 0.040 0.040 0.039 0.034 0.030 0.028 0.029 0.029 0.026 0.024 0.020 0.019 0.019 0.019 0.018 0.016 0.014 0.013 0.013 0.014 0.013 0.012 0.011 |S12| S12 73 72 71 73 76 74 74 73 74 75 72 74 76 79 78 74 73 74 76 77 74 71 70 71 74 75 72 68 62 63 68 67 61 52 46 46 45 42 36 29 23 22 φ 0.953 0.959 0.977 0.984 0.936 0.942 0.952 0.993 0.979 0.934 0.925 0.914 0.954 0.953 0.925 0.918 0.929 0.947 0.948 0.944 0.941 0.977 0.918 0.934 0.929 0.949 0.921 0.878 0.889 0.910 0.919 0.902 0.893 0.875 0.874 0.855 0.868 0.870 0.854 0.855 0.842 0.844 |S22| S22 –180 –179 –179 –179 –178 –179 –179 –180 –176 169 168 167 168 172 170 172 168 171 171 171 171 172 174 174 172 174 175 177 176 175 175 177 179 178 178 179 179 180 178 180 179 179 φ ÁÁÁÁÁ Á Á Á Á Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁ Á Á Á Á Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁ Á Á Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁ ÁÁ Á f MHz 500 490 480 470 460 450 0.969 0.969 0.969 0.972 0.972 0.971 |S11| 6 REV 9 Table 1. Common Source S–Parameters (VDS = 50 V, ID = 2 A) continued S11 166 167 167 168 168 168 φ |S21| 0.17 0.18 0.18 0.17 0.17 0.19 S21 26 25 26 23 26 24 φ 0.101 0.099 0.093 0.087 0.086 0.085 |S12| S12 71 71 70 70 70 75 φ 0.972 0.966 0.977 0.952 0.960 0.960 |S22| S22 164 166 166 165 164 168 φ RF POWER MOSFET CONSIDERATIONS MOSFET CAPACITANCES The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate–to–drain (Cgd), and gate–to–source (Cgs). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain–to–source (Cds). These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter–terminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways: 1. Drain shorted to source and positive voltage at the gate. 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent. DRAIN CHARACTERISTICS One figure of merit for a FET is its static resistance in the full–on condition. This on–resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device. GATE CHARACTERISTICS The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 109 ohms — resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage slightly in excess of the gate–to–source threshold voltage, VGS(th). Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region. Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open–circuited or floating should be avoided. These conditions can result in turn–on of the devices due to voltage build–up on the input capacitor due to leakage currents or pickup. Gate Protection — These devices do not have an internal monolithic zener diode from gate–to–source. If gate protection is required, an external zener diode is recommended. DRAIN Cgd GATE Cds Cgs Ciss = Cgd + Cgs Coss = Cgd + Cds Crss = Cgd SOURCE LINEARITY AND GAIN CHARACTERISTICS In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors. EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY Collector Emitter Base V(BR)CES VCBO IC ICES IEBO VBE(on) VCE(sat) Cib Cob hfe RCE(sat) = ............................... ............................... ............................... ............................... ............................... ............................... ............................... ............................... ............................... ............................... ............................... ............................... ............................... Drain Source Gate V(BR)DSS VDGO ID IDSS IGSS VGS(th) VDS(on) Ciss Coss gfs VDS(on) ID VCE(sat) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rDS(on) = IC REV 9 7 PACKAGE DIMENSIONS A U M 1 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. Q M 4 R B 2 3 D K J H C E SEATING PLANE DIM A B C D E H J K M Q R U INCHES MIN MAX 0.960 0.990 0.465 0.510 0.229 0.275 0.216 0.235 0.084 0.110 0.144 0.178 0.003 0.007 0.435 ––– 45 _NOM 0.115 0.130 0.246 0.255 0.720 0.730 MILLIMETERS MIN MAX 24.39 25.14 11.82 12.95 5.82 6.98 5.49 5.96 2.14 2.79 3.66 4.52 0.08 0.17 11.05 ––– 45 _NOM 2.93 3.30 6.25 6.47 18.29 18.54 STYLE 2: PIN 1. 2. 3. 4. SOURCE GATE SOURCE DRAIN CASE 211–11 ISSUE N Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020 Visit www.macom.com for additional data sheets and product information. REV 9 8
MRF150 价格&库存

很抱歉,暂时无法提供与“MRF150”相匹配的价格&库存,您可以联系我们找货

免费人工找货