Marvell® Alaska®
88X5113
Integrated 40 Gbps to 25 Gbps Ethernet Gearbox, Quad 25 Gbps Ethernet PHY with
Copper Cable and Backplane Drive Capability
Datasheet - Public
Doc. No. MV-S110852-U0 Rev. C
September 21, 2020
Document Classification: Public
CONIFIDENTIAL
Cover
Marvell 88X5113
Datasheet - Public
THIS DOCUMENT AND THE INFORMATION FURNISHED IN THIS DOCUMENT ARE PROVIDED “AS IS” WITHOUT ANY WARRANTY. MARVELL
AND ITS AFFILIATES EXPRESSLY DISCLAIM AND MAKE NO WARRANTIES OR GUARANTEES, WHETHER EXPRESS, ORAL, IMPLIED,
STATUTORY, ARISING BY OPERATION OF LAW, OR AS A RESULT OF USAGE OF TRADE, COURSE OF DEALING, OR COURSE OF
PERFORMANCE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT.
This document, including any software or firmware referenced in this document, is owned by Marvell or Marvell's licensors, and is protected by
intellectual property laws. No license, express or implied, to any Marvell intellectual property rights is granted by this document. The information
furnished in this document is provided for reference purposes only for use with Marvell products. It is the user's own responsibility to design or build
products with this information. Marvell products are not authorized for use as critical components in medical devices, military systems, life or critical
support devices, or related systems. Marvell is not liable, in whole or in part, and the user will indemnify and hold Marvell harmless for any claim,
damage, or other liability related to any such use of Marvell products.
Marvell assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that
may result from its use. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
the Marvell products disclosed herein. Marvell and the Marvell logo are registered trademarks of Marvell or its affiliates. Please visit www.marvell.com
for a complete list of Marvell trademarks and guidelines for use of such trademarks. Other names and brands may be claimed as the property of
others.
Copyright
Copyright © 2020. Marvell and/or its affiliates. All rights reserved.
Document Classification: Public
September 21, 2020
CONIFIDENTIAL
Page 2
Doc. No. MV-S110852-U0 Rev. C
Copyright © 2020 Marvell
88X5113 Datasheet - Public
Integrated 40 Gbps to 25 Gbps Ethernet Gearbox, Quad 25 Gbps
Ethernet PHY with Copper Cable and Backplane Drive Capability
PRODUCT OVERVIEW
The Marvell® 88X5113 device is a fully integrated single
chip Ethernet transceiver that supports 25 GbE
full-duplex transmission, over a variety of media
including optics, passive copper cables and backplanes.
The device operates as a single port 100 Gbps Ethernet
PHY/Quad port 25 Gbps Ethernet PHY. In this mode, the
88X5113 100 GbE and 25 GbE transmission over a
variety of media including optics, passive copper cables
and backplanes.
The 88X5113 has long reach SERDES, and includes
Auto-Negotiation and coefficient training functionality.
In the 100 Gbps and 25 Gbps Ethernet PHY modes, the
88X5113 connects to the MAC/Switch device over a
CAUI-4 or 25GAUI interface respectively. On the host
interface, the device also supports the IEEE 802.3
Clause 91 100G Reed Solomon Forward Error
Correction (RS-FEC) as well as the IEEE 802.3 Clause
108 RS-FEC and IEEE 802.3 Clause 74 KR-FEC for 25
GbE operation. These along with the support for
Auto-Negotiation and training protocol enable the device
to interface with the MAC over a 100G-KR4/25G-KR
backplane link.
Features
Single port 100 GbE/Quad 25 GbE PHY
functionality
Line equalization capability that meets IEEE 802.3bj
and 802.3by specifications
100G/40GBASE-KR4/25G-KR compliant Host
interface that exceed XLAUI/25GAUI requirements
Fully autonomous adaptive equalization on line and
host receivers
3 tap transmit FIR with programmable level and
pre-emphasis
Fully symmetric architecture with 100 GbE and
25 GbE RS-FEC and 10GE/25GE KR-FEC on both
line and host interfaces
Auto-Negotiation for backplanes and cable
assemblies as defined by IEEE 802.3 Clause 73 of
IEEE 802.3
Support for transmit coefficient training protocol
Clause 45 MDIO register access
Ability to initialize the device from an external
EEPROM
Hardware interrupt pin for hardware interrupt
generation capability
LED pins with fully programmable event mapping
and solid/blink modes
Packet and PRBS pattern generation/checking
capability
Loopback mode for diagnostics
Non-destructive eye monitors on all high-speed
interfaces
IEEE-1149.1 and 1149.6 JTAG support
Operating temperature range up to 105rC Junction
14 mm x 14 mm 169-pin FCBGA package with
1 mm ball pitch
The PHY mode, the line interface of the 88X5113, is fully
compliant to the IEEE 802.3bj and IEEE 802.3bm
standards for 100 GbE and IEEE 802.3by specifications
for 25 GbE operation over passive copper cables, optics
and backplanes. The device supports the IEEE 802.3
Clause 91 and IEEE 802.3 Clause 108 Reed Solomon
Forward Error Correction (RS-FEC) features, IEEE
802.3 Clause 74 KR-FEC, and Auto-Negotiation and
coefficient training protocol required by the IEEE 802.3bj
and IEEE 802.3by standards.
Internal registers can be accessed via an MDIO/MDC
serial management interface which is compliant with
IEEE 802.3 specification Clause 45. An MDC frequency
of up to 25 MHz supported.
Applications
The 88X5113 is manufactured in a 14 mm x 14 mm
169-pin FCBGA package.
Copyright © 2020 Marvell
September 21, 2020
25 Gbps Ethernet NICs
100 Gbps/25 Gbps Ethernet line cards
100 Gbps/25 Gbps Ethernet backplanes
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 3
88X5113
Datasheet - Public
Figure 1: 88X5113 in a 25 GbE/100 GbE Line Card Application
Figure 2: 88X5113 in a 25 GbE/100 GbE Blade Switch/Server Application
Doc. No. MV-S110852-U0 Rev. C
Page 4
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Table of Contents
Table of Contents
Product Overview ......................................................................................................................................3
1
General Device Description ........................................................................................................... 13
2
Signal Description .......................................................................................................................... 15
2.1
Pin Map .............................................................................................................................................................. 16
2.2
Pin Description ................................................................................................................................................... 17
2.3
88X5113 Device Pin Assignment List ................................................................................................................ 23
3
Functional Description ................................................................................................................... 26
3.1
Data Path ........................................................................................................................................................... 26
3.1.1
PCS Mode ........................................................................................................................................... 27
3.2
SDReset ............................................................................................................................................................. 28
3.3
Hardware Configuration ..................................................................................................................................... 30
3.4
Register Access .................................................................................................................................................
3.4.1
IEEE MDC/MDIO Register Access ......................................................................................................
3.4.2
TWSI Register Access .........................................................................................................................
3.4.2.1
Bus Operation ..................................................................................................................
3.4.2.2
Clause 45 Encapsulation .................................................................................................
31
31
32
32
33
3.5
TWSI, GPIO, and LED .......................................................................................................................................
3.5.1
GPIO[3:0] and LED[3:0] .......................................................................................................................
3.5.1.1
Controlling and Sensing ..................................................................................................
3.5.1.2
GPIO Interrupts ...............................................................................................................
3.5.1.3
LED ..................................................................................................................................
3.5.2
TWSI, GPIO 4, and GPIO 5 .................................................................................................................
36
36
36
36
38
42
3.6
Interrupt .............................................................................................................................................................. 45
3.7
Power Management ........................................................................................................................................... 53
3.8
IEEE 1149.1 and 1149.6 Controller ...................................................................................................................
3.8.1
BYPASS Instruction .............................................................................................................................
3.8.2
SAMPLE/PRELOAD Instruction ..........................................................................................................
3.8.3
EXTEST Instruction .............................................................................................................................
3.8.4
CLAMP Instruction ...............................................................................................................................
3.8.5
HIGH-Z Instruction ...............................................................................................................................
3.8.6
ID CODE Instruction ............................................................................................................................
3.8.7
EXTEST_PULSE Instruction ...............................................................................................................
3.8.8
EXTEST_TRAIN Instruction ................................................................................................................
3.9
Temperature Sensor .......................................................................................................................................... 60
54
54
55
57
57
58
58
58
58
3.10 On-chip Processor ............................................................................................................................................. 60
3.11 Synchronous Ethernet Mode .............................................................................................................................. 61
3.12 Power Supplies .................................................................................................................................................. 64
4
Line Side Description ..................................................................................................................... 65
4.1
Interface Modes of Operation ............................................................................................................................. 66
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 5
88X5113
Datasheet - Public
4.2
Electrical Interface .............................................................................................................................................. 73
4.3
PCS and PMA ....................................................................................................................................................
4.3.1
100GBASE-R4 PCS (Modes P100*) ...................................................................................................
4.3.2
40GBASE-R4, 50GBASE-R4, 50GBASE-R2 PCS (Modes P40*, P50*) .............................................
4.3.3
5GBASE-R, 10GBASE-R, and 25GBASE-R PCS (Modes P5L, P10*, P25*) ......................................
4.3.4
SGMII, 1000BASE-X, and 2.5GBASE-X .............................................................................................
4.3.4.1
PCS .................................................................................................................................
4.3.4.2
1000BASE-X Auto-Negotiation ........................................................................................
4.3.4.3
SGMII Auto-Negotiation ...................................................................................................
4.3.4.4
Auto-Negotiation Bypass Mode .......................................................................................
4.4
Auto-Negotiation ................................................................................................................................................ 81
4.5
Loopback ........................................................................................................................................................... 82
4.5.1
Line-side Loopbacks ............................................................................................................................ 82
4.5.2
Host-side Loopbacks ........................................................................................................................... 83
4.6
Synchronized FIFO ............................................................................................................................................ 85
4.7
Traffic Generation and Checking ....................................................................................................................... 85
4.7.1
Packet Generator ................................................................................................................................. 87
4.7.2
Packet Checker ................................................................................................................................... 91
4.8
PRBS Generation and Checking ........................................................................................................................
4.8.1
General PRBS Generators and Checkers ...........................................................................................
4.8.2
40GBASE-R4-specific Generators and Checkers ...............................................................................
4.8.3
100GBASE-R4-specific Generators and Checkers .............................................................................
4.9
Eye Monitor ........................................................................................................................................................ 94
5
Host Side Description .................................................................................................................... 95
6
Chip Bring Up ................................................................................................................................ 100
6.1
Power Sequencing ........................................................................................................................................... 100
6.2
Reset and Configuration .................................................................................................................................. 100
7
Electrical Specifications .............................................................................................................. 101
7.1
Absolute Maximum Ratings ............................................................................................................................. 101
7.2
Recommended Operating Conditions .............................................................................................................. 102
7.3
Package Thermal Information .......................................................................................................................... 103
7.3.1
Thermal Conditions for 169-pin, FCBGA Package ............................................................................ 103
7.4
Current Consumption ....................................................................................................................................... 104
7.4.1
88X5113 Current Consumption (Commercial) ................................................................................... 104
7.4.2
88X5113 Current Consumption (Industrial) ....................................................................................... 106
7.5
Digital I/O Electrical Specifications ...................................................................................................................
7.5.1
DC Operating Conditions ...................................................................................................................
7.5.2
AC Operating Conditions ...................................................................................................................
7.5.3
Reset Timing ......................................................................................................................................
7.5.4
MDC/MDIO Management Interface Timing .......................................................................................
7.5.5
JTAG Timing ......................................................................................................................................
7.6
SERDES Electrical Specifications .................................................................................................................... 112
7.6.1
Chip-to-Module 100 Gbps/25 Gbps Electrical Characteristics ........................................................... 112
7.6.1.1
Chip-to-Module 100 Gbps/25 Gbps Transmitter and Receiver Characteristics ............. 112
7.6.1.2
Chip-to-Module CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and
Definitions ...................................................................................................................... 114
Doc. No. MV-S110852-U0 Rev. C
Page 6
CONIFIDENTIAL
Document Classification: Public
73
74
76
78
79
79
79
80
80
92
92
94
94
108
108
109
109
110
111
Copyright © 2020 Marvell
September 21, 2020
Table of Contents
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.6.7
7.6.8
7.6.9
7.6.10
7.6.11
Chip-to-Chip 100 Gbps/25 Gbps (CAUI-4/XXVAUI-1) Electrical Characteristics .............................. 115
7.6.2.1
Chip-to-Chip 100 Gbps/25 Gbps (CAUI-4/XXVAUI-1) Transmitter and Receiver
Characteristics ............................................................................................................... 115
7.6.2.2
Chip-to-Chip CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and
Definitions ...................................................................................................................... 117
100GBASE-CR4/50GBASE-CR2/25GBASE-CR Electrical Characteristics ...................................... 119
7.6.3.1
100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter and Receiver
Characteristics ............................................................................................................... 119
7.6.3.2
100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter Output Voltage
Limits and Definitions .................................................................................................... 122
100GBASE-KR4/50GBASE-KR2/25GBASE-KR Electrical Characteristics ....................................... 123
7.6.4.1
100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter and Receiver
Characteristics ............................................................................................................... 123
7.6.4.2
100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter Output Voltage
Limits and Definitions .................................................................................................... 126
40 Gbps Parallel Physical Interface (XLPPI) Electrical Characteristics ............................................. 127
7.6.5.1
40 Gbps Parallel Physical Interface (XLPPI) Interface Transmitter and Receiver
Characteristics ............................................................................................................... 127
7.6.5.2
XLPPI Interface Transmitter Output Voltage Limits and Definitions .............................. 129
40 Gbps Attachment Unit Interface (XLAUI) Electrical Characteristics ............................................. 131
7.6.6.1
40 Gbps Attachment Unit Interface (XLAUI) Interface Transmitter and Receiver
Characteristics ............................................................................................................... 131
7.6.6.2
XLAUI Interface Transmitter Output Voltage Limits and Definitions .............................. 134
40GBASE-CR4 Electrical Characteristics .......................................................................................... 135
7.6.7.1
40GBASE-CR4 Interface Transmitter and Receiver Characteristics ............................. 135
7.6.7.2
40GBASE-CR4 Interface Transmitter Output Voltage Limits and Definitions ............... 137
40GBASE-KR4 Electrical Characteristics .......................................................................................... 138
7.6.8.1
40GBASE-KR4 Interface Transmitter and Receiver Characteristics ............................. 138
7.6.8.2
40GBASE-KR4 Interface Transmitter Output Voltage Limits and Definitions ................ 140
SFP+ Interface (SFI) Limiting Module Electrical Characteristics ....................................................... 142
7.6.9.1
SFI Transmitter and Receiver Characteristics .............................................................. 142
7.6.9.2
SFP+ Direct Attach Cable (10GSFP+CU Appendix E) Transmitter and Receiver
Characteristics ............................................................................................................... 144
10 Gigabit Small Form Factor Pluggable Interface (XFI) Electrical Characteristics .......................... 148
7.6.10.1
XFI Interface Transmitter and Receiver Characteristics ................................................ 148
10GBASE-KR Electrical Characteristics ............................................................................................ 150
7.6.11.1
10GBASE-KR Interface Transmitter and Receiver Characteristics ............................... 150
7.6.11.2
10GBASE-KR Interface Transmitter Output Voltage Limits and Definitions .................. 152
7.7
Reference Clock ............................................................................................................................................... 153
7.8
Output 25 MHz Clock ....................................................................................................................................... 154
7.9
Latency ............................................................................................................................................................ 155
8
Mechanical Drawings ................................................................................................................... 156
8.1
Package Mechanical Drawings ........................................................................................................................ 156
9
Order Information ......................................................................................................................... 159
9.1
Ordering Part Numbers and Package Markings .............................................................................................. 159
9.1.1
Marking Example ............................................................................................................................... 160
A
Revision History ........................................................................................................................... 161
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 7
88X5113
Datasheet - Public
List of Figures
Product Overview .......................................................................................................................................3
1
Figure 1:
88X5113 in a 25 GbE/100 GbE Line Card Application ...................................................................... 4
Figure 2:
88X5113 in a 25 GbE/100 GbE Blade Switch/Server Application ..................................................... 4
General Device Description .............................................................................................................13
Figure 3:
2
Signal Description ............................................................................................................................15
Figure 4:
3
4
88X5113 Device Functional Block Diagram..................................................................................... 14
88X5113 Pin Map ............................................................................................................................ 16
Functional Description.....................................................................................................................26
Figure 5:
88X5113 Main Operational Modes .................................................................................................. 26
Figure 6:
Typical MDC/MDIO Read Operation ............................................................................................... 31
Figure 7:
Typical MDC/MDIO Write Operation................................................................................................ 31
Figure 8:
First Two Bytes of All Transactions.................................................................................................. 33
Figure 9:
Write, Full Header, Retain REGAD.................................................................................................. 34
Figure 10:
Write, Full Header, Post-Increment.................................................................................................. 34
Figure 11:
Write, Abbreviated Header, Retain REGAD .................................................................................... 35
Figure 12:
Write, Abbreviated Header, Post-Increment .................................................................................... 35
Figure 13:
Read, Full Header, Retain REGAD.................................................................................................. 35
Figure 14:
Read, Full Header, Post-Increment ................................................................................................. 35
Figure 15:
Read, Abbreviated Header, Retain REGAD .................................................................................... 35
Figure 16:
Read, Abbreviated Header, Post-Increment .................................................................................... 35
Figure 17:
Dummy Write Command to Set REGAD ......................................................................................... 35
Figure 18:
LED Chain........................................................................................................................................ 38
Figure 19:
Various LED Hookup Configurations ............................................................................................... 39
Figure 20:
Interrupt Hierarchy and Aggregation from Different Blocks ............................................................. 46
Figure 21:
Synchronous Ethernet with 88X5113 in a Non-Ethernet Application such as CPRI........................ 61
Figure 22:
Synchronous Ethernet with 88X5113 in an Ethernet Application..................................................... 62
Figure 23:
Multiplexing Scheme for Recovered Clock RCLKA ......................................................................... 63
Line Side Description .......................................................................................................................65
Figure 24:
100GBASE-R4 Data Path................................................................................................................ 75
Figure 25:
40GBASE-R4, 50GBASE-R4, and 50GBASE-R2 Datapath............................................................ 77
Figure 26:
5GBASE-R, 10GBASE-R, and 25GBASE-R Datapath.................................................................... 79
Figure 27:
Line-side Loopback.......................................................................................................................... 82
Figure 28:
Turn On Deep Host Loopback ......................................................................................................... 83
Figure 29:
Packet Format.................................................................................................................................. 87
Figure 30:
Normal CRC Calculation (in XLGMII/40G and CGMII/100G Format) .............................................. 88
Figure 31:
Extended CRC Calculation (in XLGMII/40G and CGMII/100G Format) .......................................... 88
Doc. No. MV-S110852-U0 Rev. C
Page 8
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
List of Figures
Figure 32:
Packet without CRC (in XLGMII/40G and CGMII/100G Format) ..................................................... 89
5
Host Side Description ......................................................................................................................95
6
Chip Bring Up..................................................................................................................................100
7
Electrical Specifications ................................................................................................................101
8
9
A
Figure 33:
Reset Timing.................................................................................................................................. 109
Figure 34:
MDC/MDIO Management Interface ............................................................................................... 110
Figure 35:
JTAG Timing .................................................................................................................................. 111
Figure 36:
Chip-to-Module CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and Definitions.. 114
Figure 37:
Chip-to-Module CAUI-4/XXVAUI-1 Transmitter Output Differential Amplitude and Eye Opening . 114
Figure 38:
Chip-to-Chip CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and Definitions ..... 117
Figure 39:
Chip-to-Chip CAUI-4/XXVAUI-1 Transmitter Output Differential Amplitude and Eye Opening...... 118
Figure 40:
100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter Output Voltage Limits
and Definitions ............................................................................................................................... 122
Figure 41:
100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter Output Voltage Limits and
Definitions ...................................................................................................................................... 126
Figure 42:
XLPPI Interface Transmitter Output Voltage Limits and Definitions .............................................. 129
Figure 43:
XLPPI Transmitter Output Differential Amplitude and Eye Opening.............................................. 130
Figure 44:
XLAUI Interface Transmitter Output Voltage Limits and Definitions .............................................. 134
Figure 45:
XLAUI Transmitter Output Differential Amplitude and Eye Opening.............................................. 134
Figure 46:
40GBASE-CR4Interface Transmitter Output Voltage Limits and Definitions................................. 137
Figure 47:
40GBASE-CR4Transmitter Output Differential Amplitude and Eye Opening ................................ 137
Figure 48:
40GBASE-KR4 Interface Transmitter Output Voltage Limits and Definitions ................................ 140
Figure 49:
40GBASE-KR4 Transmitter Output Differential Amplitude and Eye Opening ............................... 141
Figure 50:
SFI Transmitter Output Voltage Limits and Definitions .................................................................. 146
Figure 51:
SFI Transmitter Output Differential Amplitude and Eye Opening .................................................. 147
Figure 52:
10GBASE-KR Interface Transmitter Output Voltage Limits and Definitions .................................. 152
Figure 53:
10GBASE-KR Transmitter Output Differential Amplitude and Eye Opening ................................. 152
Figure 54:
Reference Clock Input Waveform .................................................................................................. 153
Mechanical Drawings .....................................................................................................................156
Figure 55:
169-pin FCBGA 14 × 14 Package Mechanical Drawings — Top and Side View .......................... 156
Figure 56:
169-pin FCBGA 14 × 14 Package Mechanical Drawings — Bottom View .................................... 157
Order Information ...........................................................................................................................159
Figure 57:
Sample Part Number ..................................................................................................................... 159
Figure 58:
88X5113 169-pin FCBGA Commercial Green Package Marking and Pin 1 Location ................... 160
Figure 59:
88X5113 169-pin FCBGA Industrial Green Package Marking and Pin 1 Location ........................ 160
Revision History .............................................................................................................................161
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 9
88X5113
Datasheet - Public
List of Tables
Product Overview .......................................................................................................................................3
1
General Device Description .............................................................................................................13
2
Signal Description ............................................................................................................................15
3
Table 1:
Pin Type Definitions ......................................................................................................................... 15
Table 2:
Line Side Interface ........................................................................................................................... 17
Table 3:
Host Side Interface .......................................................................................................................... 17
Table 4:
Clocking and Reference................................................................................................................... 18
Table 5:
Configuration and Reset .................................................................................................................. 18
Table 6:
Management Interface ..................................................................................................................... 18
Table 7:
EEPROM/GPIO ............................................................................................................................... 19
Table 8:
JTAG................................................................................................................................................ 19
Table 9:
GPIO/LED ........................................................................................................................................ 19
Table 10:
TEST................................................................................................................................................ 19
Table 11:
Power and Ground........................................................................................................................... 20
Table 12:
88X5113 Pin List — Alphabetical by Signal Name .......................................................................... 23
Functional Description.....................................................................................................................26
Table 13:
Valid PCS Mode Interface Connections........................................................................................... 27
Table 14:
Reset Bits......................................................................................................................................... 28
Table 15:
Hardware Configuration ................................................................................................................... 30
Table 16:
Extensions for Management Frame Format for Indirect Access...................................................... 31
Table 17:
INS[2:0] Definition ............................................................................................................................ 33
Table 18:
GPIO, LED Signal Mapping ............................................................................................................. 36
Table 19:
GPIO/LED Controls.......................................................................................................................... 37
Table 20:
LED[3:0] Control and Status Register Bits....................................................................................... 39
Table 21:
LED Timer Control ........................................................................................................................... 41
Table 22:
TWSI and GPIO Signal Mapping ..................................................................................................... 42
Table 23:
SCL Control ..................................................................................................................................... 42
Table 24:
SDA Control ..................................................................................................................................... 43
Table 25:
I/O Open Drain Control .................................................................................................................... 45
Table 26:
Global Interrupt Control.................................................................................................................... 46
Table 27:
Global Interrupt Status ..................................................................................................................... 47
Table 28:
1G/2.5G Interrupt Enable, Interrupt Status, and Real-Time Status ................................................. 47
Table 29:
10G/25G Interrupt Enable, Interrupt Status, and Real-Time Status ................................................ 48
Table 30:
40G/50G Interrupt Enable, Interrupt Status, and Real-Time Status ................................................ 48
Table 31:
100G Interrupt Enable, Interrupt Status, and Real-Time Status ...................................................... 49
Table 32:
Excessive Link Error Interrupt Enable, Interrupt Status, and Real-Time Status .............................. 49
Table 33:
GPIO1, GPIO2, GPIO3, GPIO4, CLK_OUT_SE1, CLK_OUT_SE2 Pins Interrupt.......................... 51
Doc. No. MV-S110852-U0 Rev. C
Page 10
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
List of Tables
4
5
Table 34:
Temp Sensor and GPIOs, Interrupt Enable, Interrupt Status .......................................................... 52
Table 35:
Power Down Control Bits ................................................................................................................. 53
Table 36:
TAP Controller Opcodes .................................................................................................................. 54
Table 37:
Boundary Scan Chain Order............................................................................................................ 55
Table 38:
ID CODE Instruction ........................................................................................................................ 58
Line Side Description .......................................................................................................................65
Table 39:
Mode Definition Reference .............................................................................................................. 66
Table 40:
Interface Modes of Operation .......................................................................................................... 67
Table 41:
Register Control to Select Mode of Operation ................................................................................. 70
Table 42:
Base Link Register on PCS Modes.................................................................................................. 72
Table 43:
PCS Types....................................................................................................................................... 73
Table 44:
SGMII Auto-Negotiation Modes ....................................................................................................... 80
Table 45:
Shallow Line Loopback Control Bits ................................................................................................ 82
Table 46:
Deep Loopback Control Bits ............................................................................................................ 83
Table 47:
Shallow Line Loopback Control Bits ................................................................................................ 84
Table 48:
Deep Loopback Control Bits ............................................................................................................ 84
Table 49:
Packet Generator and Checker Register Mapping Data.................................................................. 85
Table 50:
Packet Generator and Checker Control and Counters .................................................................... 86
Table 51:
Registers Controlling Packet Generation......................................................................................... 88
Table 52:
IPG Configuration ............................................................................................................................ 89
Table 53:
Packet Data Generation................................................................................................................... 90
Table 54:
Registers Controlling Packet Checker ............................................................................................. 91
Table 55:
PRBS Register Address Offsets ...................................................................................................... 92
Table 56:
Supported Line-side PRBS Patterns................................................................................................ 93
Table 57:
IEEE PCS and PMA PRBS Control Register................................................................................... 94
Host Side Description ......................................................................................................................95
Table 58:
Equivalent Registers Between Line and Host Interface................................................................... 95
Table 59:
Non-Reversible Mode Combinations ............................................................................................... 99
6
Chip Bring Up..................................................................................................................................100
7
Electrical Specifications ................................................................................................................101
Table 60:
Absolute Maximum Ratings ........................................................................................................... 101
Table 61:
Recommended Operating Conditions (Commercial) ..................................................................... 102
Table 62:
Thermal Conditions for 169-pin, FCBGA Package ........................................................................ 103
Table 63:
DVDD Current Consumption.......................................................................................................... 104
Table 64:
AVDDL and AVDDH Current Consumption ................................................................................... 105
Table 65:
AVDDC and AVDDT Current Consumption ................................................................................... 105
Table 66:
DVDD Current Consumption.......................................................................................................... 106
Table 67:
AVDDL and AVDDH Current Consumption ................................................................................... 107
Table 68:
AVDDC and AVDDT Current Consumption ................................................................................... 107
Table 69:
DC Operating Conditions ............................................................................................................... 108
Table 70:
AC Operating Conditions ............................................................................................................... 109
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 11
88X5113
Datasheet - Public
8
Table 71:
Reset Timing.................................................................................................................................. 109
Table 72:
MDC/MDIO Management Interface Timing.................................................................................... 110
Table 73:
JTAG Timing .................................................................................................................................. 111
Table 74:
Chip-to-Module CAUI-4/XXVAUI-1 Transmitter and Receiver Characteristics .............................. 112
Table 75:
Chip-to-Module CAUI-4/XXVAUI-1 Settings and Configuration..................................................... 113
Table 76:
Chip-to-Chip Gbps CAUI-4/XXVAUI-1 Interface Transmitter and Receiver Characteristics.......... 115
Table 77:
Chip-to-Chip CAUI-4/XXVAUI-1 Settings and Configuration ......................................................... 116
Table 78:
100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter and Receiver
Characteristics ............................................................................................................................... 119
Table 79:
100GBASE-CR4/50GBASE-CR2/25GBASE-CR Settings and Configuration ............................... 121
Table 80:
100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter and Receiver
Characteristics ............................................................................................................................... 123
Table 81:
100GBASE-KR4/50GBASE-KR2/25GBASE-KR Settings and Configuration................................ 125
Table 82:
XLPPI Interface Transmitter and Receiver Characteristics............................................................ 127
Table 83:
XLPPI Settings and Configuration ................................................................................................. 129
Table 84:
XLAUI Interface Transmitter and Receiver Characteristics ........................................................... 131
Table 85:
XLAUI Settings and Configuration ................................................................................................. 133
Table 86:
40GBASE-CR4 Interface Transmitter and Receiver Characteristics ............................................. 135
Table 87:
40GBASE-CR4 Settings and Configuration................................................................................... 136
Table 88:
40GBASE-KR4 Interface Transmitter and Receiver Characteristics ............................................. 138
Table 89:
40GBASE-KR4 Settings and Configuration ................................................................................... 139
Table 90:
SFI Transmitter and Receiver Characteristics ............................................................................... 142
Table 91:
SFI Settings and Configuration ...................................................................................................... 143
Table 92:
10GSFP+CU Transmitter and Receiver Characteristics................................................................ 144
Table 93:
10GSFP+CU Settings and Configuration ...................................................................................... 146
Table 94:
XFI Interface Transmitter and Receiver Characteristics ................................................................ 148
Table 95:
10GBASE-KR Interface Transmitter and Receiver Characteristics ............................................... 150
Table 96:
10GBASE-KR Settings and Configuration ..................................................................................... 151
Table 97:
Reference Clock ............................................................................................................................ 153
Table 98:
Output 25 MHz Clock..................................................................................................................... 154
Table 99:
Chip Pin-to-pin Latency (Rx + Tx).................................................................................................. 155
Mechanical Drawings .....................................................................................................................156
Table 100: 169-pin FCBGA (14 mm × 14 mm) Package Dimensions ............................................................. 158
9
Order Information ...........................................................................................................................159
Table 101: 88X5113 Part Order Option ........................................................................................................... 159
A
Revision History .............................................................................................................................161
Table 102: Revision History ............................................................................................................................. 161
Doc. No. MV-S110852-U0 Rev. C
Page 12
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
General Device Description
1
General Device Description
The 88X5113 device is an Ethernet SERDES Transceiver that supports one port of 100GBASE-R4,
consortium 50GBASE-R2, overclocked 40GBASE-R2, 40GBASE-R4, and four ports of
25GBASE-R, consortium 25GBASE-R, 10GBASE-R, 5GBASE-R, 2.5GBASE-X, 1000BASE-X, and
SGMII on both the line and host interfaces. Auto-Negotiation, equalization and KR training are
available to support backplane, twin-ax, and optical options in the various modes. Reed Solomon
FEC and KR-FEC can be enabled as well. The various CAUI-4, XLPPI, XLAUI, SFI, XFI interfaces
are supported.
The device can be used in PCS mode application where data is passed from one PCS to another
PCS.
Device registers can be accessed through standard Clause 45 MDC/MDIO. The device operates
from a 0.9V/0.95V (I-temp operation) digital core voltage and a 1.0V analog voltage. The digital I/O
signals can operate at 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, and 1.05V. The device utilizes a 14 mm x 14 mm
169-ball FCBGA package, and supports an operating junction temperature of up to105°C.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 13
88X5113
Datasheet - Public
Figure 3: 88X5113 Device Functional Block Diagram
Doc. No. MV-S110852-U0 Rev. C
Page 14
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Signal Description
2
Signal Description
Table 1:
Pin Type
Definiti o n
H
Input with hysteresis
I/O
Input and output
I
Input only
O
Output only
PU
Internal pull-up
PD
Internal pull-down
OD
Open drain output
Z
Tri-state output
mA
DC sink capability
AI
Analog input
AO
Analog output
DI
Digital input
DO
Digital output
Copyright © 2020 Marvell
September 21, 2020
Pin Type Definitions
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 15
88X5113
Datasheet - Public
2.1
Pin Map
Figure 4: 88X5113 Pin Map
(Top View)
Doc. No. MV-S110852-U0 Rev. C
Page 16
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Signal Description
Pin Description
2.2
Table 2:
Pin Description
Line Side Interface
Pin #
Pin Name
Pin
Type
D e s c ri pt i on
C13
F13
J13
M13
LIP[3]
LIP[2]
LIP[1]
LIP[0]
AI
Line Input Positive
B13
E13
H13
L13
LIN[3]
LIN[2]
LIN[1]
LIN[0]
AI
Line Input Negative
B11
E11
H11
L11
LOP[3]
LOP[2]
LOP[1]
LOP[0]
AO
Line Output Positive
C11
F11
J11
M11
LON[3]
LON[2]
LON[1]
LON[0]
AO
Line Output Negative
Table 3:
Host Side Interface
Pin #
Pin Name
Pin
Type
D e s c ri pt i on
C1
F1
J1
M1
HIP[3]
HIP[2]
HIP[1]
HIP[0]
AI
Host Input Positive
B1
E1
H1
L1
HIN[3]
HIN[2]
HIN[1]
HIN[0]
AI
Host Input Negative
B3
E3
H3
L3
HOP[3]
HOP[2]
HOP[1]
HOP[0]
AO
Host Output Positive
C3
F3
J3
M3
HON[3]
HON[2]
HON[1]
HON[0]
AO
Host Output Negative
Note
Copyright © 2020 Marvell
September 21, 2020
The SERDES receiver is AC coupled on-chip. There is no off-chip AC-coupling
capacitor required as long as the Rx input common mode is between AGND and AVDD
(1.0V) and Rx amplitude is less than 1200 mVpp differential.
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 17
88X5113
Datasheet - Public
Table 4:
Clocking and Reference
Pin #
Pin Name
Pin
Type
D e s c ri pt i on
N5
CLKP
AI
Reference Clock Positive. Refer to Section 7.7 for further details.
N6
CLKN
AI
Reference Clock Negative. Refer to Section 7.7 for further details.
N8
CLK25P
AO
25 MHz Clock Output Positive. Refer to Section 7.8 for further details.
N9
CLK25N
AO
25 MHz Clock Output Negative. Refer to Section 7.8 for further
details.
Table 5:
Configuration and Reset
Pin #
Pin Name
Pin
Type
D e s c ri pt i on
K9
L9
K8
K5
PHYAD[3]
PHYAD[2]
PHYAD[1]
PHYAD[0]
DI/
PD
Address
In MDIO mode, this sets the PHYAD[3:0] setting. PHYAD[4] is set to
0.
In TWSI mode, this sets the A[3:0] setting. A[6:4] is set to 100.
J6
J8
J9
CONFIG[2]
CONFIG[1]
CONFIG[0]
DI/PD
CONFIG[0] - 0 = MDIO
1 = TWSI
CONFIG[1] - 0 = Do not load EEPROM
1 = Load EEPROM
CONFIG[2] - Reserved
A5
RESETn
DI
Hardware Reset,
0 = Reset
1 = Normal operation
Table 6:
Management Interface
Pin #
Pin Name
Pin
Type
D e s c ri pt i on
L8
MDC/SSCL
DI
Management Interface Clock, or SCL for TWSI slave mode
See Section 3.4.1, IEEE MDC/MDIO Register Access for details.
L7
MDIO/SSDA
IO,OD
Management Interface Data, or SDA for TWSI slave mode
See Section 3.4.1, IEEE MDC/MDIO Register Access for details.
This pin can be open drain.
L6
INTn
OD
Interrupt.
Doc. No. MV-S110852-U0 Rev. C
Page 18
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Signal Description
Pin Description
Table 7:
EEPROM/GPIO
Pin #
Pin Name
Pin
Type
D e s c ri pt i on
B8
SCL
IO, OD
Multi-function pin for EEPROM Clock, or GPIO[4]. Primary function is
Two-Wire Serial Interface Clock, EEPROM Clock.
B9
SDA
IO, OD
Multi-function pin for EEPROM Data, or GPIO[5]. Primary function is
Two-Wire Serial Interface Data, EEPROM Data.
Table 8:
JTAG
Pin #
Pin Name
Pin
Type
D e s c ri pt i on
C9
TDI
DI/PU
JTAG Test In
B6
TDO
DO, OD
JTAG Test Out
C5
TMS
DI/PU
JTAG Test Control
C8
TCK
DI/PU
JTAG Test Clock
B5
TRSTn
DI/PU
JTAG Test Reset
For normal operation, TRSTn should be pulled low with a 4.7 kohm
pull-down resistor.
Table 9:
GPIO/LED
Pin #
Pin Name
Pin
Type
D e s c ri pt i on
A6
A7
A8
B7
GPIO[3]
GPIO[2]
GPIO[1]
GPIO[0]
I/O
GPIO
Pin #
Pin Name
Pin
Type
D e s c ri pt i on
J5
L5
TEST[1]
TEST[0]
DI
Test pins. Tie to VSS in normal operation.
M6
ATP
AO
Analog DC test point.
Table 10: TEST
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 19
88X5113
Datasheet - Public
Table 11: Power and Ground
Pin #
Pin Name
Pin
Type
D e s c ri pt i on
A9
D6
D8
E5
E7
E9
F6
F8
G5
G7
G9
H6
H8
DVDD
Digital
Power
0.9V/0.95V (I-temp) Digital Core Power
A10
A12
D10
G10
G12
K10
N10
N12
AVDDL
Analog
Power
1.0V Analog Core Power - Line SERDES Side
A2
A4
D4
G2
G4
K4
N2
N4
AVDDH
Analog
Power
1.0V Analog Core Power - Host SERDES Side
M8
AVDDC
Analog
Power
1.0V Common Analog Power.
M7
AVDDT
Analog
Power
2.5V, or 3.3V Temperature Sensor and 25 MHz PLL power. AVDDT
must be AC coupled to VSS when not used.
C7
VDDON
I/O
Power
1.05V, 1.2V, 1.5V, 1.8V, 2.5V, or 3.3V I/O Power (North side). See
Section 3.12 for more details.
J7
VDDOS
I/O
Power
1.05V, 1.2V, 1.5V, 1.8V, 2.5V, or 3.3V I/O Power (South side). See
Section 3.12 for more details.
C6
VSEL_N
VDDON
Level
Select
Tie to VSS for 2.5V or 3.3V operation,
otherwise tie to VDDON for 1.05V, 1.2V, 1.5V, 1.8V operation
K6
VSEL_S
VDDOS
Level
Select
Tie to VSS for 2.5V or 3.3V operation,
otherwise tie to VDDOS for 1.05V, 1.2V, 1.5V, 1.8V operation
Doc. No. MV-S110852-U0 Rev. C
Page 20
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Signal Description
Pin Description
Table 11: Power and Ground (Continued)
Pin #
Pin Name
Pin
Type
D e s c ri pt i on
A1
A3
A11
A13
B2
B4
B10
B12
C2
C4
C10
C12
D1
D2
D3
D11
D12
D13
E2
E4
E10
E12
F2
F4
F10
F12
G1
G3
G11
G13
H2
H4
H10
H12
J2
J4
J10
J12
K1
K2
K3
K11
K12
K13
L2
L4
L10
L12
M2
AVSS
Ground
Ground
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 21
88X5113
Datasheet - Public
Table 11: Power and Ground (Continued)
Pin #
Pin Name
Pin
Type
D e s c ri pt i on
M4
M5
M9
M10
M12
N1
N3
N7
N11
N13
AVSS (cont.)
Ground
Ground
D5
D7
D9
E6
E8
F5
F7
F9
G6
G8
H5
H7
H9
K7
VSS
Ground
Ground
Doc. No. MV-S110852-U0 Rev. C
Page 22
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Signal Description
88X5113 Device Pin Assignment List
2.3
88X5113 Device Pin Assignment List
Table 12:88X5113 Pin List — Alphabetical by Signal Name
Pin Number
Pin Name
P i n N um b e r
Pin Name
M6
ATP
C2
AVSS
M8
AVDDC
C4
AVSS
A2
AVDDH
C10
AVSS
A4
AVDDH
C12
AVSS
D4
AVDDH
D1
AVSS
G2
AVDDH
D2
AVSS
G4
AVDDH
D3
AVSS
N2
AVDDH
D11
AVSS
N4
AVDDH
D12
AVSS
K4
AVDDH
D13
AVSS
A10
AVDDL
E2
AVSS
A12
AVDDL
E4
AVSS
D10
AVDDL
E10
AVSS
G10
AVDDL
E12
AVSS
G12
AVDDL
F2
AVSS
K10
AVDDL
F4
AVSS
N10
AVDDL
F10
AVSS
N12
AVDDL
F12
AVSS
M7
AVDDT
G1
AVSS
A1
AVSS
G3
AVSS
A3
AVSS
G11
AVSS
A11
AVSS
G13
AVSS
A13
AVSS
H2
AVSS
B2
AVSS
H4
AVSS
B4
AVSS
H10
AVSS
B10
AVSS
H12
AVSS
B12
AVSS
J2
AVSS
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 23
88X5113
Datasheet - Public
Pin Number
Pin Name
P i n N um b e r
Pin Name
J4
AVSS
J8
CONFIG[1]
J10
AVSS
J6
CONFIG[2]
J12
AVSS
A9
DVDD
K1
AVSS
D6
DVDD
K2
AVSS
D8
DVDD
K3
AVSS
E5
DVDD
K11
AVSS
E7
DVDD
K12
AVSS
E9
DVDD
K13
AVSS
F6
DVDD
L2
AVSS
F8
DVDD
L4
AVSS
G5
DVDD
L10
AVSS
G7
DVDD
L12
AVSS
G9
DVDD
M2
AVSS
H6
DVDD
M4
AVSS
H8
DVDD
M5
AVSS
B7
GPIO[0]
M9
AVSS
A8
GPIO[1]
M10
AVSS
A7
GPIO[2]
M12
AVSS
A6
GPIO[3]
N1
AVSS
L1
HIN[0]
N3
AVSS
H1
HIN[1]
N7
AVSS
E1
HIN[2]
N11
AVSS
B1
HIN[3]
N13
AVSS
M1
HIP[0]
N9
CLK25N
J1
HIP[1]
N8
CLK25P
F1
HIP[2]
N6
CLKN
C1
HIP[3]
N5
CLKP
M3
HON[0]
J9
CONFIG[0]
J3
HON[1]
Doc. No. MV-S110852-U0 Rev. C
Page 24
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Signal Description
88X5113 Device Pin Assignment List
Pin Number
Pin Name
P i n N um b e r
Pin Name
F3
HON[2]
A5
RESETn
C3
HON[3]
B8
SCL
L3
HOP[0]
B9
SDA
H3
HOP[1]
C8
TCK
E3
HOP[2]
C9
TDI
B3
HOP[3]
B6
TDO
L6
INTn
L5
TEST[0]
L13
LIN[0]
J5
TEST[1]
H13
LIN[1]
C5
TMS
E13
LIN[2]
B5
TRSTn
B13
LIN[3]
C7
VDDON
M13
LIP[0]
J7
VDDOS
J13
LIP[1]
C6
VSEL_N
F13
LIP[2]
K6
VSEL_S
C13
LIP[3]
D5
VSS
M11
LON[0]
D7
VSS
J11
LON[1]
D9
VSS
F11
LON[2]
E6
VSS
C11
LON[3]
E8
VSS
L11
LOP[0]
F5
VSS
H11
LOP[1]
F7
VSS
E11
LOP[2]
F9
VSS
B11
LOP[3]
G6
VSS
L8
MDC
G8
VSS
L7
MDIO
H5
VSS
K5
PHYAD[0]
H7
VSS
K8
PHYAD[1]
H9
VSS
L9
PHYAD[2]
K7
VSS
K9
PHYAD[3]
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 25
88X5113
Datasheet - Public
3
Functional Description
This section describes the chip-level functionality. Sections 4 and 5 describe the individual units in
detail.
3.1
Data Path
Figure 5 shows the chip data path in the main operational mode – PCS mode. The various interface
configuration are listed in the Interface Modes of Operation table in Section 4. The register settings
to set the various configurations are described in Section 4 and Section 5.
Figure 5: 88X5113 Main Operational Modes
Doc. No. MV-S110852-U0 Rev. C
Page 26
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
Data Path
3.1.1
PCS Mode
In the PCS mode, the receive data is terminated by the PCS. The data is retransmitted by a second
PCS frequency locked to the local reference clock. The FIFO will insert or delete idles during IPG to
compensate for any frequency difference between the received data and the retransmitted data.
While in this mode both the line and host side can enable Auto-Negotiation and perform KR training.
The host and line interfaces can mix and match PCS and FEC as long as both sides are running at
the same nominal speed. The valid combinations between the host and line configurations are
shown in Table 13.
Table 13: Valid PCS Mode Interface Connections
Line
H os t
P1X1
P1X
P1X
P1P
P1P
P1X
P1S
P1P
P2.5X
P2.5X
P5
P5
P10
P10
P25
P25
P25
P40
P40
P40
P50
P50
P100
P100
1. Refer to the Interface Modes of Operation table in Section 4 for details.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 27
88X5113
Datasheet - Public
3.2
Reset
SD
A hardware reset (RESETn) will reset the entire chip and initialize all the registers to their hardware
reset default.
A software reset has a similar effect on the affected units as a hardware reset except all Retain-type
registers will hold their value, and the Update registers will have the previously written values take
effect.
All the reset registers described are self-clear with the exception of on-chip processor and on-chip
Processor Block reset bits.
Table 14 describes various reset bits available in the device.
Table 14: Reset Bits
Re set Description
Unit Affected
R e g i s t e r – Li n e
Global Soft-Reset
Whole Chip
31.F404.15
Global Hard-Reset
Whole Chip
31.F404.14
On-chip Processor Reset
On-chip Processor only
31.F404.13
On-chip Processor Block Reset
On-chip Processor
whole block
31.F404.12
Port Soft-Reset
This bit soft-reset all the lanes of the respective
interface regardless of the interface mode
Port
31.F003.15
31.F003.7
Port Hardware Reset
This bit hard-reset all the lanes of the respective
interface regardless of the interface mode
Port
31.F003.13
31.F003.5
Per Lane/Interface Mode Soft-Reset
In 40G/50G/100G mode, soft-reset to lane 0 will
be applied to all lanes (lane 1, 2, and 3
soft-reset bits are ignored).
Lane 0/Aggregated Port
Lane 1
Lane 2
Lane 3
3.F000.15
3.F001.15
3.F002.15
3.F003.15
4.F000.15
4.F001.15
4.F002.15
4.F003.15
PMA Soft-Reset
In 40G/50G/100G mode, soft-reset to lane 0 will
be applied to all lanes (lane 1, 2, and 3
soft-reset bits are ignored).
Lane 0/Aggregated Port
Lane 1
Lane 2
Lane 3
1.0000.15
1.2000.15
1.4000.15
1.6000.15
1.1000.15
1.3000.15
1.5000.15
1.7000.15
PCS Soft-Reset – 100G
Lane 0/Aggregated Port
3.0000.15
4.0000.15
PCS Soft-Reset – 40G/50G
Lane 0/Aggregated Port
3.1000.15
4.1000.15
PCS Soft-Reset – 5G/10G/25G
Lane 0/Aggregated Port
Lane 1
Lane 2
Lane 3
3.2000.15
3.2200.15
3.2400.15
3.2600.15
4.2000.15
4.2200.15
4.2400.15
4.2600.15
PCS Soft-Reset – 1G/2.5G
Lane 0/Aggregated Port
Lane 1
Lane 2
Lane 3
3.3000.15
3.3200.15
3.3400.15
3.3600.15
4.3000.15
4.3200.15
4.3400.15
4.3600.15
Doc. No. MV-S110852-U0 Rev. C
Page 28
CONIFIDENTIAL
Document Classification: Public
Register – Host
Copyright © 2020 Marvell
September 21, 2020
Functional Description
SDReset
Table 14: Reset Bits (Continued)
Re set Description
Unit Affected
R e g i s t e r – Li n e
Register – Host
802.3AP Auto-negotiation Soft-Reset
In 40G/50G/100G mode, soft-reset to lane 0 will
be applied to all lanes (lane 1, 2, and 3
soft-reset bits are ignored).
Lane 0/Aggregated Port
Lane 1
Lane 2
Lane 3
7.0000.15
7.0200.15
7.0400.15
7.0600.15
7.1000.15
7.1200.15
7.1400.15
7.1600.15
The Reset table does not include various internal only reset bits.
Note
The Global Hardware Reset register has the same function as the pin reset. It should be issued right
after the chip is powered up to make sure the chip starts from a known state. It could be skipped if
the pin reset was asserted.
The Port Hardware Reset register resets the line side or host side accordingly. It can be covered by
global hardware reset, only apply to one side of the chip, and the same is true for port software
reset. This is for debug only.
PMA and PCS software resets are IEEE-compliant registers. They are physically the same but
implemented at different register addresses as specified in the IEEE specification. The register will
be applied to the corresponding sub-port PCS or the coupled PCS (40G, 100G, or 200G).
During the chip power-on, it is recommended to use global software reset bit or mode software reset
bit to apply the configuration (speed, mode) changes. Per lane/interface based mode software reset
is often used when changing the operation modes and speeds. They are specifically assigned to the
same register as modes setting bits so programming one register can bring up the new mode.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 29
88X5113
Datasheet - Public
3.3
Hardware Configuration
PHYAD[3:0] and CONFIG[2:0] are sampled at the de-assertion of RESETn. PHYAD[3:0] and
CONFIG[2:0] must not change after it is sampled. If PHYAD[3:0] and CONFIG[2:0] change when
RESETn is high, then the device will have unpredictable behavior as it enters into an invalid mode.
The configuration pins are tied either high or low. The settings are shown in Table 15.
The device will exit reset in a powered down state. Software configuration is then required to get the
device into an operational state.
Table 15: Hardware Configuration
Configuration
Sett i ng
PHYAD[3:0]
In MDIO mode, this sets the PHYAD[3:0] setting. PHYAD[4] is set to 0.
In TWSI mode, this sets the A[3:0] setting. A[6:4] is set to 100.
CONFIG[0]
Register Access Method
0 = MDIO
1 = TWSI
CONFIG[1]
EEPROM Loading
0 = Do not load EEPROM on startup.
1 = Load EEPORM on startup.
CONFIG[2]
Reserved. Set to 0.
Doc. No. MV-S110852-U0 Rev. C
Page 30
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
Register Access
3.4
Register Access
Registers can be accessed either through MDC/MDIO or the Two-Wire Serial Interface (TWSI). Only
one mode can be enabled at a time and is configured during hardware reset. For either mode, the
MDC pin is used for the clock and MDIO is used for data.
3.4.1
IEEE MDC/MDIO Register Access
The management interface provides access to the internal registers via the MDC and MDIO pins
and is compliant with IEEE 802.3 Clause 45. MDC is the management data clock input and it can run
to a maximum rate of 25 MHz. At high MDIO fanouts, the maximum rate may be decreased
depending on the output loading. MDIO is the management data input/output and is a bidirectional
signal that runs synchronously to MDC.
PHY address is configured during the hardware reset sequence. Refer to Section 3.2, SDReset,
on page 28 for detailed information on how to configure PHY addresses.
Typical read and write operations on the management interface are shown in Figure 6 and Figure 7.
All the required serial management registers are implemented as well as several optional registers.
A description of the registers can be found in the device registers documentation.
Figure 6: Typical MDC/MDIO Read Operation
Figure 7: Typical MDC/MDIO Write Operation
The extensions for Clause 45 MDIO indirect register accesses are specified in Table 16.
Table 16: Extensions for Management Frame Format for Indirect Access
Frame
PRE
ST
OP
PHYAD
D E VA D R
TA
A D D R ESS/ D ATA
Id le
Address
1...1
00
00
PPPPP
DDDDD
10
AAAAAAAAAAAAAAAA
Z
Write
1...1
00
01
PPPPP
DDDDD
10
DDDDDDDDDDDDDDDD
Z
Read
1...1
00
11
PPPPP
DDDDD
Z0
DDDDDDDDDDDDDDDD
Z
Read
Increment
1...1
00
10
PPPPP
DDDDD
Z0
DDDDDDDDDDDDDDDD
Z
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 31
88X5113
Datasheet - Public
The MDIO implements a 16-bit address register that stores the address of the register to be
accessed. For an address cycle, it contains the address of the register to be accessed on the next
cycle. For read, write, post-read-increment-address cycles, the field contains the data for the register. At power up and reset, the contents of the register are undefined.
Write, read, and post-read-increment-address frames access the address register, though only
post-read-increment-address frame modifies the contents of the address register.
3.4.2
TWSI Register Access
Registers can also be accessed over the TWSI. The TWSI is a slave interface and should not be
confused with the master interface that is used to read the EEPROM. In the following discussion,
SSCL represents the clock and SSDA represents the data. This is to avoid confusion with the SCL
and SDA pins used to read the EEPROM. When the TWSI mode is enabled, the MDC and MDIO
pins correspond to SSCL and SSDA functions.
For the TWSI device address, the address [4:2] bits from pin PHYADR[3:1] are latched during
hardware reset and the device address bits ([6:5]) are fixed at 10. The address bits [1:0] is fixed at
00,01,10, and 11 for each 4-lane port.
The TWSI features are as follows:
7-bit device address/8-bit data transfers
100 Kbps mode (Standard mode, SSCL up to 100 kHz)
400 Kbps mode (Fast mode, SSCL up to 400 kHz)
Multiple devices using the TWSI can share and lump up the MDC and MDIO lines and are pulled up
with a resistor ranging from 4.5 kΩ to 10 kΩ.
3.4.2.1
Bus Operation
The Master generates one clock pulse for each data bit transferred. The high or low state of the data
line can only change when the clock signal on the SSCL line is low. A high to low transition on the
SSDA line while SSCL is high defines a Start. A low to high transition on the SSDA line while the
SSCL is high defines a Stop. Start (S), Repeated Start (Sr), and Stop (P) conditions are always
generated by the Master. Acknowledge (A) and Not Acknowledge (A) can be generated by either the
Slave or Master.
The Master continuously monitors for Start and Stop conditions. Whenever a Stop is detected, the
device goes into standby mode, and the current operation is canceled. The Slave recovers from this
error condition, and waits for the next transfer to begin.
Data transfer with Acknowledge is always obligatory. The receiver must pull down the SSDA line
during the Acknowledge clock pulse so that it remains stable low during the high period of this clock
pulse.
If the Slave does not Acknowledge the device address, then the Master must abort the transfer. This
is indicated by the Slave generating the Not Acknowledge on the first byte to follow. The Slave
device then leaves the data line high, and the Master must generate a Stop or a Repeated Start
condition. When the Slave is transmitting data on the bus and the Master responds with a Not
Acknowledge, the Slave must receive a Stop or a Repeated Start condition. If neither is received, it is
an error condition. The Slave recovers from this error condition and waits for the next transfer to
begin.
Doc. No. MV-S110852-U0 Rev. C
Page 32
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
Register Access
3.4.2.2
Clause 45 Encapsulation
All TWSI transactions will encapsulate PHYAD and DEVAD along with the R/W bit and 3-bit
instruction in the first 2 bytes as shown in Figure 8. In all diagrams, the shaded portion is generated
by the master and the unshaded portion by the device. The INS[2:0] definition is summarized in
Table 17.
Figure 8: First Two Bytes of All Transactions
Table 17: INS[2:0] Definition
INS[2:0]
Header
A d d re s s
000
Abbreviated Header - Use stored REGAD
Stored REGAD unchanged
001
Abbreviated Header - Use stored REGAD
Post-increment REGAD
010
Full Header - Use specified REGAD
Stored REGAD unchanged
011
Full Header - Use specified REGAD
Post-increment REGAD
100
Dummy Write
101
Reserved
Reserved
110
Reserved
Reserved
111
Reserved
Reserved
In Clause 45 MDIO access, the REGAD[15:0] is set independently of the data access. There are two
methods to specify the REGAD. The first method is to fully specify the REGAD in the transaction as
shown in Figure 9, Figure 10, Figure 13, and Figure 14. The second method is to use abbreviated
header where the stored REGAD register is used as shown in Figure 11, Figure 12, Figure 15, and
Figure 16.
The stored REGAD register is updated on each TWSI transaction. The stored REGAD register can
be updated by a dummy write command as shown in Figure 17.
The Clause 45 encapsulation does not differentiate between random versus sequential read/write.
All reads and writes can be sustained by the master by not sending a stop bit. So, one or more 16-bit
words can be passed with the same encapsulated header. REGAD may or may not be
post-incremented after each 16-bit word transfer depending on the INS[2:0].
All 16-bit read/write operations operate atomically. If a write transaction terminates with only 8 bits of
the 16-bit word written in, then the 8 bit is discarded and REGAD will not post-increment (if
selected). If a read transaction terminates with only 8 bits of the 16-bit word read, then the other
8-bits will be lost forever (that is, in the case of a clear on read register) and REGAD will not
post-increment (if selected).
All read transactions must read least one byte of data. Write transactions can be dummy writes if no
data is transferred. If no data is transferred, then no post-incrementing will occur.
The slave will acknowledge the first byte only when PHYAD[4:0] matches and the two most
significant bits are 10 (binary).
The slave will acknowledge the second byte only if all the following conditions are met:
Copyright © 2020 Marvell
September 21, 2020
The first byte was acknowledged by the slave.
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 33
88X5113
Datasheet - Public
The DEVAD[4:0] is among the supported device addresses in the PHY.
INS[2] bit is a 0 (that is, it will not respond to reserved instructions).
The slave will acknowledge the third and subsequent bytes if all the following conditions are met:
The first and second bytes was acknowledged by the slave.
The transaction is a write transaction.
A start bit or stop bit is not detected since the second acknowledge.
The slave will acknowledge the third and fourth bytes if all the following conditions are met:
The first and second bytes was acknowledged by the slave.
The instruction indicates a full header is being sent.
A start bit (not counting the one at the beginning of the current transaction) or stop bit is not
detected since the second acknowledge by the slave.
The slave will output 8-bit data if all the following conditions are met:
The first and second bytes was acknowledged by the slave.
The third and fourth bytes was acknowledge by the slave if instruction indicates a full header is
being sent.
The transaction is a read transaction.
A start bit (not counting the one at the beginning of the current transaction), stop bit or
no-acknowledge is not detected.
The slave will abort the current 16-bit transfer and will not post-increment the REGAD if a stop bit or
no-acknowledge is prematurely detected. All further activities on the bus are ignored by the slave
until a start bit is detected.
If the first byte of the REGAD is written and the transaction terminates without the second byte of
REGAD being written, then the internal REGAD register will not update.
If a start bit is prematurely detected, then the slave will abort the current 16-bit transfer and will not
post-increment the REGAD. This premature start bit will immediately trigger the start of the next I2C
transaction.
If post-increment is active and the REGAD is 0xFFFF, then the REGAD will roll over to 0x0000.
Figure 9: Write, Full Header, Retain REGAD
Figure 10: Write, Full Header, Post-Increment
Doc. No. MV-S110852-U0 Rev. C
Page 34
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
Register Access
Figure 11: Write, Abbreviated Header, Retain REGAD
Figure 12: Write, Abbreviated Header, Post-Increment
Figure 13: Read, Full Header, Retain REGAD
Figure 14: Read, Full Header, Post-Increment
Figure 15: Read, Abbreviated Header, Retain REGAD
Figure 16: Read, Abbreviated Header, Post-Increment
Figure 17: Dummy Write Command to Set REGAD
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 35
88X5113
Datasheet - Public
3.5
TWSI, GPIO, and LED
3.5.1
GPIO[3:0] and LED[3:0]
The GPIO pins are shared between the GPIO and LED functional modes. Each pin can be
programmed independently to operate in GPIO or LED modes. The pin mapping is summarized in
Table 18.
Table 18: GPIO, LED Signal Mapping
Pin
Spe c i a l Func t i on
G PI O
LED
GPIO[0]
–
GPIO[0]
LED[0]
GPIO[1]
–
GPIO[1]
LED[1]
GPIO[2]
–
GPIO[2]
LED[2]
GPIO[3]
–
GPIO[3]
LED[3]
GPIO[0] pin is configured to GPIO mode by setting register bits 31.F437.15:14 to 01. This pin can be
configured in LED mode by setting register bits 31.F437.15:14 to 10.
The GPIO[3:1] are similar and are configured in GPIO mode by setting register bits 31.F439.15 (for
GPIO[1]), 31.F43B.15 (GPIO[2]), and 31.F43D.15 (GPIO[3]) to 0 individually. These pins can be
configured in LED mode by setting register bits 31.F439.15 (for GPIO[1]), 31.F43B.15 (GPIO[2]),
and 31.F43D.15 (GPIO[3]) to 1 individually.
In GPIO mode, each pin can operate bidirectionally and can be individually configured. In the input
mode, these pins can be used as interrupts. The GPIO operations are described in the sections
below.
3.5.1.1
Controlling and Sensing
In the GPIO mode, registers 31.F437.13, 31.F439.13, 31.F43B.13, and 31.F43D.13 control whether
the GPIO pins are inputs or outputs. Each pin can be individually controlled. Registers 31.F437.7,
31.F439.7, 31.F43B.7, and 31.F43D.7 allow the pins to be controlled and sensed. When configured
as input, a read to registers 31.F437.7, 31.F439.7, 31.F43B.7 and 31.F43D.7 will return the real-time
sampled state of the pins GPIO[0], GPIO[1], GPIO[2], and GPIO[3], respectively at the time of the
read. A write to these register will write to the output register, but have no immediate effect on the pin
since the pin is configured to be an input. The input is sampled once every 6.4 ns (equivalent to one
reference clock period). When configured as output, a write will write to the output register which will
in turn drive the state of the pin. A read to registers 31.F437.7, 31.F439.7, 31.F43B.7, and
31.F43D.7 will return the value in the output registers.
3.5.1.2
GPIO Interrupts
When the GPIO pins are configured as input, several types of interrupt events can be generated as
described in Table 19. Register bits 31.F437.10:8, 31.F439.10:8, 31.F43B.10:8, and 31.F43D.10:8
allow each pin to be configured to generate interrupt on one of 5 types of events - Low Level, High
Level, High to Low Transition, Low to High Transition, and Transitions on Either Edge. The interrupt
generation can also be disabled. When an interrupt event is generated on pin GPIO[0], it is latched
Doc. No. MV-S110852-U0 Rev. C
Page 36
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
TWSI, GPIO, and LED
high in the sticky register 31.F437.11. Similarly, when interrupt event is generated on GPIO[1],
GPIO[2] or GPIO[3], they are latched in the sticky register 31.F439.11, 31.F43B.11, and 31.F43D.11.
The register bits will remain high until read. The GPIO interrupt can be asserted when an event
occurs through pins GPIO[3:0]. Registers 31.F437.12, 31.F439.12, 31.F43B.12, and 31.F43D.12 set
the interrupt enables.
Registers 31.F437.12 and 31.F437.11 are bitwise AND together to generate a GPIO[0] interrupt.
Registers 31.F439.12 and 31.F439.11 are bitwise AND together to generate a GPIO[1] interrupt.
Similarly, registers 31.F43B.12 and 31.F43B.11 are bitwise AND together to generate a GPIO[2]
interrupt and registers 31.F43D.12 and 31.F43D.11 are bitwise AND together to generate a GPIO[3]
interrupt. If the result is non-zero the GPIO interrupt will assert. For interrupt polarity control, refer to
Table 19.
Table 19: GPIO/LED Controls
Register
Function
Set t i ng
Mode
31.F437.15:14
GPIO 0 Function
00 = GPIO[0] is used for signaling.
01 = GPIO[0] is used for GPIO 0 function.
10 = GPIO[0] is used for LED 0 function.
11 = Reserved.
(LED 0 can only select lane 0 as LED function)
R/W
31.F439.15
31.F43B.15
31.F43D.15
GPIO n Function
where n = 1, 2, 3
0 = GPIO [n] pin is used for GPIO 1 function.
1 = GPIO [n] pin is used for LED 1 function.
(LED n can only select lane n as LED function)
R/W
31.F437.13
31.F439.13
31.F43B.13
31.F43D.13
LED n Output Enable
where n = 0, 1, 2, 3
This bit has no effect unless register 31.F437.15:14 = 01.
0 = Input
1 = Output
R/W
31.F437.12
31.F439.12
31.F43B.12
31.F43D.12
GPIO n Interrupt
Enable
where n = 0, 1, 2, 3
0 = Disable
1 = Enable
R/W
31.F437.11
31.F439.11
31.F43B.11
31.F43D.11
GPIO n Interrupt Status
where n = 0, 1, 2, 3
This bit is not valid unless register 31.F437.15:14 = 01 and
31.F437.13 = 0.
0 = No interrupt has occurred.
1 = An interrupt has occurred.
RO, LH
31.437.10:8
31.F439.10:8
31.F43B.10:8
31.F43D.10:8
GPIO n Interrupt Select
where n = 0, 1, 2, 3
Interrupt is effective only when 31.F437.13 = 0.
000 = No Interrupt
001 = Reserved
010 = Interrupt on Low Level
011 = Interrupt on High Level
100 = Interrupt on High to Low
101 = Interrupt on Low to High
110 = Reserved
111 = Interrupt on Low to High or High to Low
R/W
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 37
88X5113
Datasheet - Public
Table 19: GPIO/LED Controls (Continued)
Register
Function
Set t i ng
Mode
31.F437.7
31.F439.7
31.F43B.7
31.F43D.7
GPIO n Data
where n = 0, 1, 2,3
This bit has no effect unless register 31.F437.15:14 = 01.
When 31.F437.13 = 0, a read to this register will reflect the
state of the GPIO[0], and a write will write the output register
but have no effect on the GPIO[n].
When 31.F437.13 = 1 a read to this register will reflect the
state of the output register, and a write will write the output
register and drive the state of the GPIO[n].
R/W
31.F437.6:0
31.F439.6:0
31.F43B.6:0
31.F43D.6:0
Reserved
Set to 0s.
RO
3.5.1.3
LED
The GPIO[3:0] pins can be used to drive LED pins. Setting register 31.F437.15:14 to 10 and
registers 31.F439.15, 31.F43B.15, and 31.F43D.15 to 1 will configure the GPIO[0], GPIO[1],
GPIO[2], GPIO[3] pin in the LED mode and named as LED[0], LED[1], LED[2] and LED[3]. Registers
31.F438, 31.F43A, 31.F43C, and 31.F43E control the operation of the LED pins. LED[3:0] will
operate per this section unless the pin is used for GPIO purposes. Figure 18 shows the general
chaining of function for the LEDs. The various functions are described in the following sections. All
LED pins are tri-state outputs.
Figure 18: LED Chain
LED Operations
The LED pins relay various statuses of the PHY so that they can be displayed by the LEDs.
The status that the LEDs display is defined by registers 31.F438, 31.F43A, 31.F43C, and 31.F43E
as shown in Table 20. For each LED, if the condition selected by bits 11:8 is true, then the LED will
blink. If the condition selected by bits 7:4 is true, then the LED will be solid on. If both selected
conditions are true, then the blink will take precedence.
LED0 displays the status of lane 0, and LED1 displays the status of lane 1, and so on. Register bit
31.F438.12 is set to 1 to display the status of system (host) side transmit activity, receive activity and
link status register on LED 0. Setting 31.F438.12 to 0 will display the status of line side on LED 0.
Similarly, register bits 31.F43A.12, 31.F43C.12, and 31.F43E.12 are used to select the status of the
host side or the line side for LED1, LED2, and LED3.
Doc. No. MV-S110852-U0 Rev. C
Page 38
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
TWSI, GPIO, and LED
LED Polarity
There are a variety of methods to hook up the LEDs. Some examples are shown in Figure 19.
Registers 31.F438.1:0, 31.F43A.1:0, 31.F43C.1:0, and 31.F43E.1:0 specify the output polarity for
the LED function to accommodate a variety of installation options. The lower bit of each pair
specified the on (active) state of the LED, either high or low. The upper bit of each pair specifies
whether the off state of the LED should be driven to the opposite level of the on state or Hi-Z.
Figure 19: Various LED Hookup Configurations
Table 20:
LED[3:0] Control and Status Register Bits
Register
Function
Se t t i n g
Mode
31.F438.15:13
31.F43A.15:13
31.F43C.15:13
31.F43E.15:13
Reserved
Scratch reserved register
R/W
31.F438.12
31.F43A.12
31.F43C.12
31.F43E.12
LED[n] PHY/System side
select
Where n = 0, 1, 2, 3
0 = PHY side (line side).
1 = System side (host side).
R/W
31.F438.11:8
31.F43A.11:8
31.F43C.11:8
31.F43E.11:8
LED[n] Blink Behavior
Where n = 0, 1, 2, 3
Blink Behavior has higher priority.
0000 = Solid Off
0001 = System or Line Side Transmit or Receive Activity
0010 = System or Line Side Transmit Activity
0011 = System or Line Side Receive Activity
0100 = Reserved
0101 = Reserved
0110 = System or Line Side Side Link
0111 = Solid On
1000 = Reserved
1001 = Reserved
1010 = Blink Mix
1011 = Solid Mix
11xx = Reserved
R/W
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 39
88X5113
Datasheet - Public
Table 20:
LED[3:0] Control and Status Register Bits (Continued)
Register
Function
Se t t i n g
Mode
31.F438.7:4
31.F43A.7:4
31.F43C.7:4
31.F43E.7:4
LED[n] Solid Behavior
Where n = 0, 1, 2, 3
Blink Behavior has higher priority.
0000 = Solid Off
0001 = System or Line Side Transmit or Receive Activity
0010 = System or Line Side Transmit Activity
0011 = System or Line Side Receive Activity
0100 = Reserved
0101 = Reserved
0110 = System or Line Side Link
0111 = Solid On
1xxx = Reserved
R/W
31.F438.3
31.F43A.3
31.F43C.3
31.F43E.3
Reserved
Set to 0.
R/W
31.F438.2
31.F43A.2
31.F43C.2
31.F43E.2
LED[n] Blink Rate Select
Where n = 0, 1, 2, 3
0 = Select Blink Rate 1
1 = Select Blink Rate 2
R/W
31.F438.1:0
31.F43A.1:0
31.F43C.1:0
31.F43E.1:0
LED[n] Polarity
Where n = 0, 1, 2, 3
00 = On - drive LED[n] low, Off - drive LED[n] high
01 = On - drive LED[n] high, Off - drive LED[n] low
10 = On - drive LED[n] low, Off - tri-state LED[n]
11 = On - drive LED[n] high, Off - tri-state LED[n]
Pulse Stretching and Blinking
Register 31.F435.14:12 specifies the pulse stretching duration for a particular activity. Only the
transmit activity, receive activity, and (transmit or receive) activity are stretched. All other statuses
are not stretched since they are static in nature and no stretching is required.
Some status will require blinking instead of a solid on. Registers 31.F435.10:8 and 31.F435.6:4
specify the two blink rates. The pulse stretching is applied first and the blinking will reflect the
duration of the stretched pulse. Registers 31.F438.2, 31.F43A.2, 31.F43C.2, and 31.F43E.2 select
which of the two blink rates to use for LED0 to LED3, respectively.
0 = Select Blink Rate 1.
1 = Select Blink Rate 2.
Doc. No. MV-S110852-U0 Rev. C
Page 40
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
TWSI, GPIO, and LED
Table 21: LED Timer Control
Register
Function
S e t t i ng
Mode
31.F435.15
Reserved
Set to 0.
R/W
31.F435.14:12
Pulse Stretch Duration
000 = No pulse stretching
001 = 20 to 40 ms
010 = 40 to 81 ms
011 = 81 to 161 ms
100 = 161 to 322 ms
101 = 322 to 644 ms
110 = 644 ms to 1.3s
111 = 1.3 to 2.6s
R/W
31.F435.11
Reserved
Set to 0.
R/W
31.F435.10:8
Blink Rate 2
000 = 40 ms
001 = 81 ms
010 = 161 ms
011 = 322 ms
100 = 644 ms
101 = 1.3s
110 = 2.6s
110 = 5.2s
R/W
31.F435.7
Reserved
Set to 0.
R/W
31.F435.6:4
Blink Rate 1
000 = 40 ms
001 = 81 ms
010 = 161 ms
011 = 322 ms
100 = 644 ms
101 = 1.3s
110 = 2.6s
110 = 5.2s
R/W
31.F435.3:0
Reserved
Set to 0.
R/W
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 41
88X5113
Datasheet - Public
3.5.2
TWSI, GPIO 4, and GPIO 5
The SCL and SDA pins are for TWSI mode and have the option to be used for GPIO functional
mode. In TWSI mode, the SCL and SDA pins are coupled together, where the SCL pin is used as a
clock, and SDA is used as a serial bidirectional data. The pin mapping is summarized in Table 22.
Table 22: TWSI and GPIO Signal Mapping
Pin
GPIO
TWSI
SCL
GPIO[4]
TWSI clock (SCL)
SDA
GPIO[5]
TWSI serial data (SDA)
The SCL and SDA pins are configured to TWSI mode by setting 31.F430.14 to 0. TWSI is the default
mode for these pins. SCL pin is configured in GPIO mode by setting register bits 31.F430.14 to 1.
Similarly, SDA pin is configured in GPIO mode by setting register bits 31.F432.14 to 1.
TWSI is the two-wire serial interface standard. In a special mode, TWSI is used to load the SERDES
and chip management firmware from an external EEPROM immediately after the reset is
de-asserted. EEPROM is attached to the TWSI interface via the SCL and SDA pins. This interface
can also be used to write the external EEPROM from an internal RAM using the embedded
processor.
Table 23: SCL Control
Register
Function
Setting
Mode
31.F430.15
Reserved
Reserved
RO
31.F430.14
SCL Function
TWSI mode for SCL and SDA pins are selected by 31.F430.14 only.
Register 31.F432.14 has no effect on TWSI mode.
GPIO functions are controlled individually for each pin.
R/W
0 = SCL/SDA is used for TWSI Function.
1 = SCL is used for GPIO Function, if 31.F427.7 = 0.
1 = SCL is used for divided recovered clock B, when 31.F427.7 = 1.
31.F430.13
SCL Output
Enable
This bit has no effect unless register 31.F430.14 = 1 and 31.F427.7 = 0.
0 = Input
1 = Output
R/W
31.F430.12
SCL Interrupt
Enable
0 = Disable
1 = Enable
R/W
31.F430.11
SCL Interrupt
Status
This bit is not valid unless register 31.F430.14 = 1 and 31.F430.13 = 0.
0 = No interrupt has occurred.
1 = An interrupt has occurred.
RO, LH
Doc. No. MV-S110852-U0 Rev. C
Page 42
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
TWSI, GPIO, and LED
Table 23: SCL Control (Continued)
Register
Function
Setting
Mode
31.F430.10:8
SCL Interrupt
Select
Interrupt is effective only when 31.F430.13 = 0.
000 = No Interrupt
001 = Reserved
010 = Interrupt on Low Level
011 = Interrupt on High Level
100 = Interrupt on High to Low
101 = Interrupt on Low to High
110 = Reserved
111 = Interrupt on Low to High or High to Low
R/W
31.F430.7
SCL GPIO
Data
This bit has no effect unless register 31.F430.14 = 1.
When 31.F430.13 = 0, a read to this register will reflect the state of the
SCL pin, and a write will write the output register but have no effect on
the SCL pin.
R/W
When 31.F430.13 = 1, a read to this register will reflect the state of the
output register, and a write will write the output register and drive the
state of the SCL pin.
31.F430.6:0
Reserved
Set to 0s.
RO
Table 24: SDA Control
Register
Function
Setti ng
Mode
31.F432.15
Reserved
Reserved.
RO
31.F432.14
SDA Function
TWSI mode for SCL and SDA pins are selected by 31.F430.14 only.
Register 31.F432.14 has no effect on TWSI mode, but can enable
the GPIO or Recovered clock output function on this pin.
0 = Reserved
1 = SDA is used for GPIO 5 Function if 31.F427.11 = 0.
1 = SDA is used for divided recovered clock C if 31.F427.11 = 1.
R/W
31.F432.13
SDA Output Enable
This bit has no effect unless register 31.F432.14 = 1 and register
31.LT27.11 = 0.
0 = Input
1 = Output
R/W
31.F432.12
SDA Interrupt Enable
0 = Disable
1 = Enable
R/W
31.F432.11
SDA Interrupt Status
This bit is not valid unless register 31.F432.14 = 1 and register
31.F432.13 = 0.
0 = No interrupt has occurred.
1 = An interrupt has occurred.
RO, LH
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 43
88X5113
Datasheet - Public
Table 24: SDA Control (Continued)
Register
Function
Setti ng
Mode
31.F432.10:8
SDA Interrupt Select
Interrupt is effective only when 31.F432.13 = 0.
000 = No Interrupt
001 = Reserved
010 = Interrupt on Low Level
011 = Interrupt on High Level
100 = Interrupt on High to Low
101 = Interrupt on Low to High
110 = Reserved
111 = Interrupt on Low to High or High to Low
R/W
31.F432.7
SDA GPIO Data
This bit has no effect unless register 31.F432.14 = 1.
When 31.F432.13 = 0, a read to this register will reflect the state of
the SDA pin, and a write will write the output register but have no
effect on the SDA pin.
When 31.F432.13 = 1, a read to this register will reflect the state of
the output register, and a write will write the output register and
drive the state of the SDA pin.
R/W
31.F432.6:0
Reserved
Set to 0s.
RO
Doc. No. MV-S110852-U0 Rev. C
Page 44
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
Interrupt
Table 25: I/O Open Drain Control
Register
Function
Setti ng
Mode
Port0
31.F436.15:3
Reserved
Set to 0.
R/W
Port0
31.F436.2
GPIO1 pin (port0
GPIO[0]) open
drain control
0 = Pad can drive high.
1 = Pad cannot drive high (Set to high when open drain pad is used).
R/W
Port0
31.F436.1:0
Reserved
Set to 0.
R/W
Port1
31.F436.15:7
Reserved
Set to 0.
R/W
Port1
31.F436.6
GPIO2 pin (port1
GPIO[4]) open
drain control
0 = Pad can drive high.
1 = Pad cannot drive high (Set to high when open drain pad is used).
R/W
Port1
31.F436.5:4
Reserved
Set to 0.
R/W
Port2
31.F436.15:3
Reserved
Set to 0.
R/W
Port2
31.F436.2
GPIO3 pin (port2
GPIO[0]) open
drain control
0 = Pad can drive high.
1 = Pad cannot drive high (Set to high when open drain pad is used).
R/W
Port2
31.F436.1:0
Reserved
Set to 0.
R/W
Port3
31.F436.7
CLK_OUT_SE2 pin
(port3 GPIO[5])
open drain control
0 = Pad can drive high.
1 = Pad cannot drive high (Set to high when open drain pad is used).
R/W
Port3
31.F436.6
CLK_OUT_SE1 pin
(port3 GPIO[4])
open drain control
0 = Pad can drive high.
1 = Pad cannot drive high (Set to high when open drain pad is used).
R/W
Port3
31.F436.5
Reserved
Set to 0.
R/W
Port3
31.F436.4
GPIO4 pin (port3
GPIO[2]) open
drain control
0 = Pad can drive high.
1 = Pad cannot drive high (Set to high when open drain pad is used).
R/W
Port3
31.F436.3:0
Reserved
Set to 0.
R/W
3.6
Interrupt
Various functional units in the device can generate interrupt on the INTn pin. The INTn interrupt pin
will be active if any of the events enabled in the interrupt enable register occurs. If an interrupt event
corresponding to a disabled interrupt enable bit occurs, then the corresponding interrupt status bit
will be set even though the event does not activate the INTn pin.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 45
88X5113
Datasheet - Public
By default, the INTn is driven low when an enabled interrupt is active. The polarity of the INTn pin
can be changed by programming register 31.F421.2:1. The INTn pin can also be forced to be active
by setting the register 31.F421.0 to 1.
Table 26: Global Interrupt Control
Register
Function
Se t t i n g
31.F421.2:1
Interrupt Polarity
00 = Active - drive INT low, Inactive - drive INT high
01 = Active - drive INT high, Inactive - drive INT low
10 = Active - drive INT low, Inactive - tri-state INT
11 = Active - drive INT high, Inactive - tri-state INT
31.F421.0
Force Interrupt Pin
Active
0 = Normal operation
1 = Force interrupt pin active.
The interrupts are cleared after a read to the interrupt status register. F
The Global Interrupt Status register (Table 27) summarizes which unit is requesting the interrupt.
The interrupts are logically ORed along with register 31.F421.0 to form the interrupt output (INTn).
The Global Interrupt Status register bits do not have corresponding Interrupt Enable bits. All the
interrupt enables/masks are located within each unit.
Figure 20 diagram shows the interrupt hierarchy and aggregation from different blocks.
Figure 20: Interrupt Hierarchy and Aggregation from Different Blocks
1G/2.5G
PCS
Interrupt
5G/10G/25G
PCS
Interrupt
40G/50G
PCS
Interrupt
Host Side
Level 2
Interrupt
Aggregation
(OR)
Processor
Interrupt
100G
PCS
Interrupt
40G to 25G
Rate
Matching
FIFO
Interrupt
200G
PCS
Interrupt
GPIO
Interrupt
Doc. No. MV-S110852-U0 Rev. C
Page 46
...
Excess
Link Error
Interrupt
Line Side
Level 2
Interrupt
Aggregation
(OR)
CONIFIDENTIAL
Document Classification: Public
Port Level
Level 1
Interrupt
Interrupt
Aggregation per port
(OR)
Copyright © 2020 Marvell
September 21, 2020
Functional Description
Interrupt
Table 27: Global Interrupt Status
Bit Descriptions
Register
Temp Sensor Interrupt Status
31.F420.11
GPIO Interrupt Status
31.F420.10
RM_FIFO Interrupt Status
31.F420.9
On-chip Processor Interrupt Status
31.F420.8
M0 Interrupt Status
31.F420.4
N0 Interrupt Status
31.F420.0
Table 28, Table 29, Table 30, and Table 31 summarize the Line Side (N Unit) interrupt control and
statuses for various interface modes. Excessive link error can be monitored to generate an interrupt
event (See Table 32).
The Host Side (M Unit) has the same set of interrupt function with the exception that the device
register is 4 (instead of 3).
Each bit of the Interrupt Status register will be masked with the Interrupt Enable register,
respectively, and each enabled output is ORed to form the aggregated unit interrupt. The Port
Interrupt Statuses (register 31.F004.0 – Line Side Interrupt, register 31.F004.2 – System Side
Interrupt) are the result of logical OR of the aggregated unit interrupt.
Table 28: 1G/2.5G Interrupt Enable, Interrupt Status, and Real-Time Status
Bit Descriptions
I n t e rrupt
Ena bl e
I nt e rru p t
Status
R e a l - Ti m e
St a t us
Speed Changed
3.Bn01.14
3.Bn02.14
–
Duplex Changed
3.Bn01.13
3.Bn02.13
–
Page Received
3.Bn01.12
3.Bn02.12
–
Auto-Negotiation Completed
3.Bn01.11
3.Bn02.11
–
Link Up to Link Down
3.Bn01.10
3.Bn02.10
–
Link Down to Link Up
3.Bn01.9
3.Bn02.9
–
Symbol Error
3.Bn01.8
3.Bn02.8
–
False Carrier
3.Bn01.7
3.Bn02.7
–
Where n = 0, 2, 4, 6 for Lane 0, 1, 2, and 3, respectively.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 47
88X5113
Datasheet - Public
.
Table 29: 10G/25G Interrupt Enable, Interrupt Status, and Real-Time Status
Bit Descriptions
I n t e rrupt
Ena bl e
I n t e rrupt
St a t us
R e a l - Ti m e
St a t us
Local Fault Transmitted
3.An00.11
3.An01.11
3.An02.11
Local Fault Received
3.An00.10
3.An01.10
3.An02.10
Rx FIFO Full
3.An00.6
3.An01.6
3.An02.6
Rx FIFO Empty
3.An00.5
3.An01.5
3.An02.5
Link Status Change
3.An00.2
3.An01.2
3.An02.2
High BER Change
3.An00.1
3.An01.1
3.An02.1
Block Lock Change
3.An00.0
3.An01.0
3.An02.0
CRC
3.An4A.2
3.An4B.2
–
FIFO Overflow
3.An4A.1
3.An4B.1
–
FIFO Underflow
3.An4A.0
3.An4B.0
–
Where n = 0, 2, 4, 6 for Lane 0, 1, 2, and 3, respectively.
Table 30: 40G/50G Interrupt Enable, Interrupt Status, and Real-Time Status
Bit Descriptions
I nt e rru p t E n a b l e
I nt e rru p t S t a t u s
R e a l - Ti m e
St a t us
Local Fault Transmitted
3.9001.11
3.9002.11
3.9003.11
Local Fault Received
3.9001.10
3.9002.10
3.9003.10
Lane Alignment
3.9001.9
3.9002.9
3.9003.9
Tx Lane Count err
3.9001.8
3.9002.8
3.9003.8
JIT 0 Lock Change
3.9001.7
3.9002.7
3.9003.7
JIT Local-Fault Lock Change
3.9001.6
3.9002.6
3.9003.6
Link Status Change
3.9001.5
3.9002.5
3.9003.5
High BER Change
3.9001.4
3.9002.4
3.9003.4
Lane 3:0 Block Lock Change
3.9001.3:0
3.9002.3:0
3.9003.3:0
CRC
3.904A.2
3.904B.2
–
FIFO Overflow
3.904A.1
3.904B.1
–
FIFO Underflow
3.904A.0
3.904B.0
–
Where n = 0, 2, 4, 6 for Lane 0, 1, 2, and 3, respectively.
Doc. No. MV-S110852-U0 Rev. C
Page 48
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
Interrupt
Table 31: 100G Interrupt Enable, Interrupt Status, and Real-Time Status
Bit Descriptions
I nt e rru p t
Enable
I n t e rrupt
St a t us
R e a l - Ti me
Status
100G PCS Rx FIFO Empty
3.8001.15
3.8003.15
3.8005.15
100G PCS Rx FIFO Full
3.8001.14
3.8003.14
3.8005.14
100G PCS Tx PPM FIFO Overflow
3.8001.13
3.8003.13
3.8005.13
100G PCS Tx PPM FIFO Underflow
3.8001.12
3.8003.12
3.8005.12
Rising Edge of the Local Fault Condition on Tx Path
3.8001.11
3.8003.11
3.8005.11
Rising Edge of the Local Fault Condition on Rx Path
3.8001.10
3.8003.10
3.8005.10
100G Packet Check CRC Error
3.8001.7
3.8003.7
3.8005.7
Link Change
3.8001.5
3.8003.5
3.8005.5
High BER Change
3.8001.4
3.8003.4
3.8005.4
Lane 3:0 Block Lock Change
3.8001.3:0
3.8003.3:0
3.8005.3:0
Lane 19:4 Block Lock Change
3.8002.15:0
3.8004.15:0
3.8006.15:0
Where n = 0, 2 for Lane 0, 2, respectively.
Table 32: Excessive Link Error Interrupt Enable, Interrupt Status, and Real-Time Status
Bit Descriptions
I nt e rru p t
Enable
I nt e rru p t
Status
R e a l - Ti m e
Status
Excessive Link Error – Lane 0
In 40G/50G/100G mode, only Lane 0 interrupt is used
(Lane 1, 2, and 3 interrupts bits are ignored).
Register 3.F041.6:0 sets the link error threshold setting.
Register 3.F041.7 sets the link down or link up error
setting.
3.F041.8
3.F040.15
3.F040.14
Excessive Link Error – Lane 1
Register 3.F043.6:0 sets the link error threshold setting.
Register 3.F043.7 sets the link down or link up error
setting.
3.F043.8
3.F042.15
3.F042.14
Excessive Link Error – Lane 2
Register 3.F045.6:0 sets the link error threshold setting.
Register 3.F045.7 sets the link down or link up error
setting.
3.F045.8
3.F044.15
3.F044.14
Excessive Link Error – Lane 3
Register 3.F047.6:0 sets the link error threshold setting.
Register 3.F047.7 sets the link down or link up error
setting.
3.F047.8
3.F046.15
3.F046.14
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 49
88X5113
Datasheet - Public
The interrupt from the processor block is for debug or patch program: details are not provided here
(For further details, refer to Section 3.10).
Doc. No. MV-S110852-U0 Rev. C
Page 50
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
Interrupt
All of the GPIO interrupts are only valid when the multi-function pins are configured as GPIO Inputs.
Table 33: GPIO1, GPIO2, GPIO3, GPIO4, CLK_OUT_SE1, CLK_OUT_SE2 Pins Interrupt
Bit Descriptions
I nt e rru p t
Enable
I nt e rru p t
Status
R e a l - Ti m e
Status
GPIO1 Pin (Port0, GPIO[0])
Valid only when register port0.31.F437.15:14 = 01 and
port0.31.F437.13 = 0.
Register port0.31.F437.10:8 is used to select the
interrupt behavior.
port0.
31.F437.12
port0.
31.F437.11
port0.
31.F437.7
GPIO2 Pin (Port1, GPIO[4])
Valid only when register port1.31.F430.15:14 = 01 and
port1.31.F430.13 = 0.
Register port1.31.F430.10:8 is used to select the
interrupt behavior.
port1.
31.F430.12
port1.
31.F430.11
port1.
31.F430.7
GPIO3 Pin (Port2, GPIO[0])
Valid only when register port2.31.F437.15:14 = 01 and
port2.31.F437.13 = 0.
Register port2.31.F437.10:8 is used to select the
interrupt behavior.
port2.
31.F437.12
port2.
31.F437.11
port2.
31.F437.7
GPIO4 Pin (Port3, GPIO[2])
Valid only when register port3.31.F43B.15:14 = 01 and
port3.31.F43B.13 = 0.
Register port3.31.F43B.10:8 is used to select the
interrupt behavior.
port3.
31.F43B.12
port3.
31.F43B.11
port3.
31.F43B.7
CLK_OUT_SE1 Pin (Port3, GPIO[4])
Valid only when register port3.31.F430.15:14 = 01 and
port3.31.F430.13 = 0.
Register port3.31.F430.10:8 is used to select the
interrupt behavior.
port3.
31.F430.12
port3.
31.F430.11
port3.
31.F430.7
CLK_OUT_SE2 Pin (Port3, GPIO[5])
Valid only when register port3.31.F432.15:14 = 01 and
port3.31.F432.13 = 0.
Register port3.31.F432.10:8 is used to select the
interrupt behavior.
port3.
31.F432.12
port3.
31.F432.11
port3.
31.F432.7
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 51
88X5113
Datasheet - Public
Table 34 summarizes the temperature sensor and GPIOs interrupt.
Table 34: Temp Sensor and GPIOs, Interrupt Enable, Interrupt Status
Bit Descriptions
I n t e rrupt
Ena bl e
I nt e rru p t
Status
R e a l - Ti m e
Status
Temperature Sensor
Register 31.F707.15:8 sets the temperature threshold.
31.F41F.15
31.F705.6
See the Temp
Sensor
section.
GPIO 0 (LED 0)
Valid only when register 31.F437.15:14 = 01 and 31.F437.13 = 0.
Register 31.F437.10:8 is used to select the interrupt behavior.
31.F437.12
31.F437.11
31.F437.7
GPIO 1 (LED 1)
Valid only when register 31.F439.15=0 and 31.F439.13 = 0.
Register 31.F439.10:8 is used to select the interrupt behavior.
31.F439.12
31.F439.11
31.F439.7
GPIO 2 (LED 2)
Valid only when register 31.F43B.15=0 and 31.F43B.13 = 0.
Register 31.F43B.10:8 is used to select the interrupt behavior.
31.F43B.12
31.F43B.11
31.F43B.7
GPIO 3 (LED 3)
Valid only when register 31.F43D.15=0 and 31.F43D.13 = 0.
Register 31.F43D.10:8 is used to select the interrupt behavior.
31.F43D.12
31.F43D.11
31.F43D.7
GPIO 4 (SCL)
Valid only when register 31.F430.14 = 1, 31.F427.7 = 0, and
31.F430.13 = 0.
Register 31.F430.10:8 is used to select the interrupt behavior.
31.F430.12
31.F430.11
31.F430.7
GPIO 5 (SDA)
Valid only when register 31.F432.14 = 1, 31.F427.11 = 0, and
31.F432.7 = 0.
Register 31.F432.10:8 is used to select the interrupt behavior.
31.F432.12
31.F432.11
31.F432.7
Doc. No. MV-S110852-U0 Rev. C
Page 52
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
Power Management
3.7
Power Management
The device will exit reset in a powered down state.
In general, it is not necessary to power down an unused interface. The device will automatically
power down any unused circuits. Each of the ports or blocks can be manually powered down by
setting the respective power down control bits as described in Table 35.
To prevent fragmentation, the power down control function is designed to wait until the datapath is
IDLE with the exception of Per Lane/Interface Mode Power Down control bits that are activated
immediately and may cause fragmentation in the datapath.
Table 35: Power Down Control Bits
Power Down Bits Description
Unit Affected
Register –
Li n e
R e gi s t e r –
H os t
Port Power Down
This bit power-down all the lanes of the respective
interface regardless of the interface mode.
Port
31.F003.14
31.F003.6
Per Lane/Interface Mode Power Down
In 40G/50G/100G mode, power-down to lane 0 will
be applied to all lanes (Lane 1, 2, and 3 power-down
bits are ignored).
Lane 0/Aggregated Port
Lane 1
Lane 2
Lane 3
3.F000.13
3.F001.13
3.F002.13
3.F003.13
4.F000.13
4.F001.13
4.F002.13
4.F003.13
PMA Power Down
In 40G/50G/100G mode, power-down to lane 0 will
be applied to all lanes (Lane 1, 2, and 3 power-down
bits are ignored).
Lane 0/Aggregated Port
Lane 1
Lane 2
Lane 3
1.0000.11
1.2000.11
1.4000.11
1.6000.11
1.1000.11
1.3000.11
1.5000.11
1.7000.11
PCS Power-Down – 100G
Lane 0/Aggregated Port
(lane 0-3 coupled)
3.0000.11
4.0000.11
PCS Power-Down – 40G/50G
Lane 0/Aggregated Port
(lane 0-3 coupled)
3.1000.11
4.1000.11
PCS Power-Down – 5G/10G/25G
Lane 0/Aggregated Port
Lane 1
Lane 2
Lane 3
3.2000.11
3.2200.11
3.2400.11
3.2600.11
4.2000.11
4.2200.11
4.2400.11
4.2600.11
PCS Power-Down – 1G/2.5G
Lane 0/Aggregated Port
Lane 1
Lane 2
Lane 3
3.3000.11
3.3200.11
3.3400.11
3.3600.11
4.3000.11
4.3200.11
4.3400.11
4.3600.11
Registers 3.F000 through 3.F003 or 4.F000 through 4.F003 define the operation modes for fixed
mode. The power down bit 13 of them is only to be used for fixed mode. When Aneg is enabled,
these registers are ignored.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 53
88X5113
Datasheet - Public
3.8
IEEE 1149.1 and 1149.6 Controller
The IEEE 1149.1 standard defines a test access port and boundary-scan architecture for digital integrated circuits and for the digital portions of mixed analog/digital integrated circuits. The IEEE 1149.6
standard defines a test access port and boundary-scan architecture for AC-coupled signals.
This standard provides a solution for testing assembled printed circuit boards and other products
based on highly complex digital integrated circuits and high-density surface-mounting assembly
techniques.
The device implements the instructions shown in Table 36. Upon reset, ID_CODE instruction is
selected. The instruction opcodes are shown in Table 36.
Table 36: TAP Controller Opcodes
In s tr u c tio n
OpC ode
EXTEST
00_0x0
SAMPLE/PRELOAD
00_0000_0001
CLAMP
00_0000_0010
HIGH-Z
00_0000_0011
ID_CODE
00_0000_0100
EXTEST_PULSE
00_0000_0101
EXTEST_TRAIN
00_0000_0110
BYPASS
11_1111_1111
The device reserves five pins called the Test Access Port (TAP) to provide test access:
Test Mode Select Input (TMS)
Test Clock Input (TCK)
Test Data Input (TDI)
Test Data Output (TDO)
Test Reset Input (TRSTn)
To ensure race-free operation all input and output data is synchronous with the test clock (TCK).
TAP input signals (TMS and TDI) are clocked into the test logic on the rising edge of TCK, while
output signal (TDO) is clocked on the falling edge. For additional details refer to the IEEE 1149.1
Boundary Scan Architecture document.
3.8.1
BYPASS Instruction
The BYPASS instruction uses the bypass register. This register contains a single shift-register stage
and is used to provide a minimum length serial path between the TDI and TDO pins of the 88X5113
device when test operation is not required. This arrangement allows rapid movement of test data to
and from other testable devices in the system.
Doc. No. MV-S110852-U0 Rev. C
Page 54
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
IEEE 1149.1 and 1149.6 Controller
3.8.2
SAMPLE/PRELOAD Instruction
The SAMPLE/PRELOAD instruction enables scanning of the boundary-scan register without
causing interference to the normal operation of the device. Two functions are performed when this
instruction is selected: sample and preload.
Sample allows a snapshot to be taken of the data flowing from the system pins to the on-chip test
logic or vice versa, without interfering with normal operation. The snapshot is taken on the rising
edge of TCK in the Capture-DR controller state, and the data can be viewed by shifting through the
component's TDO output.
While sampling and shifting data out through TDO for observation, preload enables an initial data
pattern to be shifted in through TDI and to be placed at the latched parallel output of the
boundary-scan register cells that are connected to system output pins. This step ensures that known
data is driven through the system output pins upon entering the extest instruction. Without preload,
indeterminate data would be driven until the first scan sequence is complete. The shifting of data for
the sample and preload phases can occur simultaneously. While data capture is being shifted out,
the preload data can be shifted in.
The boundary scan register for CONFIG[2] is closest to TDO.
Table 37 lists the boundary scan order where:
TDI LIN[0] … CONFIG[2] TDO
Table 37: Boundary Scan Chain Order
Order
Bal l
Ty p e
1
CONFIG[2]
Input
2
CONFIG[1]
Input
3
CONFIG[0]
Input
4
PHYAD[2]
Input
5
PHYAD[3]
Input
6
PHYAD[1]
Input
7
PHYAD[0]
Input
8
INTN
Output
9
INTN
Output Enable
10
MDC
Input
11
MDIO
Input
12
MDIO
Output
13
MDIO
Output Enable
14
HOP[3]
AC Output
15
HON[3]
AC Output
16
HIP[3]
AC Input
17
HIN[3]
AC Input
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 55
88X5113
Datasheet - Public
Table 37: Boundary Scan Chain Order (Continued)
Order
Bal l
Ty p e
18
HOP[2]
AC Output
19
HON[2]
AC Output
20
HIP[2]
AC Input
21
HIN[2]
AC Input
22
HOP[1]
AC Output
23
HON[1]
AC Output
24
HIP[1]
AC Input
25
HIN[1]
AC Input
26
HOP[0]
AC Output
27
HON[0]
AC Output
28
HIP[0]
AC Input
29
HIN[0]
AC Input
30
SCL
Output Enable
31
SCL
Output
32
SCL
Input
33
SDA
Output Enable
34
SDA
Output
35
SDA
Input
36
RESETN
Input
37
GPIO[0]
Output Enable
38
GPIO[0]
Output
39
GPIO[0]
Input
40
GPIO[1]
Output Enable
41
GPIO[1]
Output
42
GPIO[1]
Input
43
GPIO[2]
Output Enable
44
GPIO[2]
Output
45
GPIO[2]
Input
46
GPIO[3]
Output Enable
Doc. No. MV-S110852-U0 Rev. C
Page 56
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
IEEE 1149.1 and 1149.6 Controller
Table 37: Boundary Scan Chain Order (Continued)
3.8.3
Order
Bal l
Ty p e
47
GPIO[3]
Output
48
GPIO[3]
Input
49
LOP[3]
AC Output
50
LON[3]
AC Output
51
LIP[3]
AC Input
52
LIN[3]
AC Input
53
LOP[2]
AC Output
54
LON[2]
AC Output
55
LIP[2]
AC Input
56
LIN[2]
AC Input
57
LOP[1]
AC Output
58
LON[1]
AC Output
59
LIP[1]
AC Input
60
LIN[1]
AC Input
61
LOP[0]
AC Output
62
LON[0]
AC Output
63
LIP[0]
AC Input
64
LIN[0]
AC Input
EXTEST Instruction
The EXTEST instruction enables circuitry external to the 88X5113 device (typically the board interconnections) to be tested. Prior to executing the EXTEST instruction, the first test stimulus to be
applied is shifted into the boundary-scan registers using the sample/preload instruction. So, when
the change to the extest instruction occurs, known data is driven immediately from the 88X5113 to
its external connections. The SERDES output pins will be driven to static levels. The positive and
negative legs of the SERDES output pins are controlled via a single boundary scan cell.The positive
leg outputs the level specified by the boundary scan cell while the negative leg outputs the opposite
level.
3.8.4
CLAMP Instruction
The CLAMP instruction enables the state of the signals driven from component pins to be determined from the boundary-scan register while the bypass register is selected as the serial path
between TDI and TDO. The signals driven from the component pins do not change while the clamp
instruction is selected.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 57
88X5113
Datasheet - Public
3.8.5
HIGH-Z Instruction
The HIGH-Z instruction places all of the digital component system logic outputs in an inactive
high-impedance drive state. In this state, an in-circuit test system may drive signals onto the connections normally driven by a component output without incurring the risk of damage to the component.
The SERDES outputs cannot be tri-stated.
Note
3.8.6
ID CODE Instruction
The ID CODE contains the manufacturer identity, part and version.
Table 38:
ID CODE Instruction
Versi o n
Part Number
Manufactur er Identity
Bit 31 to 28
Bit 27 to 12
Bit 11 to 1
Bit 0
0000
0000000001000110
00111101001
1
3.8.7
EXTEST_PULSE Instruction
When the AC/DC select is set to DC the EXTEST_PULSE instruction has the same behavior as the
EXTEST instruction.
When the AC/DC select is set to AC, the EXTEST_PULSE instruction has the same behavior as the
EXTEST instruction except for the behavior of the SERDES output pins.
As in the EXTEST instruction, the test stimulus must first be shifted into the boundary-scan registers.
Upon the execution of the EXTEST_PULSE instruction the SERDES positive output pins output the
level specified by the test stimulus and SERDES negative output pins output the opposite level.
However, if the TAP controller enters into the Run-Test/Idle state the SERDES positive output pins
output the inverted level specified by the test stimulus and SERDES negative output pins output the
opposite level.
When the TAP controller exits the Run-Test/Idle state, the SERDES positive output pins again output
the level specified by the test stimulus and SERDES negative output pins output the opposite level.
3.8.8
EXTEST_TRAIN Instruction
When the AC/DC select is set to DC, the EXTEST_TRAIN instruction has the same behavior as the
EXTEST instruction.
When the AC/DC select is set to AC, the EXTEST_TRAIN instruction has the same behavior as the
EXTEST instruction except for the behavior of the SERDES output pins.
As in the EXTEST instruction, the test stimulus must first be shifted into the boundary-scan registers.
Upon the execution of the EXTEST_PULSE instruction the SERDES positive output pins output the
level specified by the test stimulus and SERDES negative output pins output the opposite level.
However, if the TAP controller enters into the Run-Test/Idle state the SERDES output pins will toggle
between inverted and non-inverted levels on the falling edge of TCK. This toggling will continue for
as long as the TAP controller remains in the Run-Test/Idle state.
Doc. No. MV-S110852-U0 Rev. C
Page 58
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
IEEE 1149.1 and 1149.6 Controller
When the TAP controller exits the Run-Test/Idle state, the SERDES positive output pins again output
the level specified by the test stimulus and SERDES negative output pins output the opposite level.
Reference Clock
An external oscillator provides a reference for the on-board transmit Phase Lock Loop (PLL) and
clock generation block that provides internal clocks for both the transmit and receive data paths. A
156.25 MHz differential clock should be connected to the CLKP/CLKN pins. AC coupling is required
for the pins. The detail requirements for CLKP/CLKN inputs are listed in Section 7.7.
The device can generate a 25 MHz differential output clock on the CLK25P/CLK25N pins that is
frequency locked to the 156.25 MHz clock on the CLKP/CLKN pins. If AVDDT is connected to 2.5V
or 3.3V supply, then the CLK25P/CLK25N will start oscillating when CLKP/CLKN oscillates at start
up. The 25 MHz clock can be disabled by coupling AVDDT to VSS. Additional details on the 25 MHz
clock can be found in Section 6.1.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 59
88X5113
Datasheet - Public
3.9
Temperature Sensor
The device contains an internal temperature sensor.
3.10
On-chip Processor
The chip has a small, efficient microcontroller with supporting hardware designed to offload the
system’s CPU by automating configuration and workaround tasks.
The processor block can access any register with a PHY and Dev address. It monitors the status of
the chip, such as PCS mode, temperature reading, link status, and when it detects an irregularity, it
initiates software routines to reconfigure or recover the chip. It supports the boot code loading
function through the dedicated TWSI interface from external EEPROM to the internal RAM. There is
also a provision to program the external EEPROM from the internal RAM through the common TWSI
interface.
Doc. No. MV-S110852-U0 Rev. C
Page 60
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
Synchronous Ethernet Mode
3.11
Synchronous Ethernet Mode
The device can output a divide-down version of recovered clock for other chips to synchronize to it.
It has two applications as shown in following figures.
Figure 21: Synchronous Ethernet with 88X5113 in a Non-Ethernet Application such as CPRI
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 61
88X5113
Datasheet - Public
Figure 22: Synchronous Ethernet with 88X5113 in an Ethernet Application
The recovered clock can be chosen from line side or host side, and from lane 0 to lane 3. The device
has three methods to send out recovered clock (called RCLK A,B,C). RCLK A is sent to Interrupt pin
(INTn). The RCLK B is sent to SCL pin. RCLK C is sent to SDA pin.
Figure 23 shows the registers to configure final recovered clock RCLK A to INTn pin. Register
31.F422 is controlling Line side clock divider 1. Bit 0 will choose 32T clock when set to 1 and choose
40T clock when set to 0. Bit 2:1 will choose clock from lane 0~3. Bit 4 is set to 1 to enable the clock
divider 1. Bit 5 will set whether to enable clock divider after SERDES clock is ready (set 1). Bit 15:8
configures the divider ratio for clock divider 1. The divide ratio is 2 to the power of ([15:8] +1).
Doc. No. MV-S110852-U0 Rev. C
Page 62
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Functional Description
Synchronous Ethernet Mode
Figure 23: Multiplexing Scheme for Recovered Clock RCLKA
Register 31.F424 controls the host-side clock divider 1. It has same definition as 31.F422.
Register 31.F423 and 31.F425 control Recovered Clock divider 2 of Line Side and Host side
correspondingly.
The Line divider 1 clock and divider 2 clock go through MUX 1 and MUX2 to output two clocks
(clock1 and clock2) for top-level. It is controlled by 31.F426.0 and 31.F426.2.
The Host divider 1 clock and divider 2 clock go through MUX1 and MUX2 to output two clocks
(clock1 and clock2) for top-level. It is controlled by 31.F426.4 and 31.F426.6.
Line clock1, clock2 and Host clock1, clock2 will go through top-level two-level multiplexes to
generate final RCLK A, B or C. Each of them can be chosen from either Line or Host side, either
from clock1 or clock2 individually.
As shown in Figure 23, 31.F427.3:0 configures the final 4 to 1 selection for RCLK A (to INTn pin). Bit
0 selects Line clock1 or clock2. Bit 1 selects Host clock1 or clock2. Bit 3 choose the clock from Line
or Host. Bit 4 is the final clock enable. The controls for RCLK B (to SCL) is 31.F427.7:4. The controls
for RCLK C (to SDA) is 31.F427.11:8.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 63
88X5113
Datasheet - Public
3.12
Power Supplies
The device requires the following supplies to power the core and I/O.
AVDDL, AVDDH, and AVDDC should be tied together and sourced from the same power supply
on the board.
AVDDL: Line SERDES 1.0V supply
AVDDH: Host SERDES 1.0V supply
AVDDC: Common analog 1.0V supply
AVDDT: For 25 MHz PLL and temperature sensor function. 3.3V or 2.5V is required for
operation.
Couple AVDDT to VSS if the 25 MHz PLL and the temperature sensor functions are not needed.
This pin can be tied together with VDDON or VDDOS with filtering to separate it from the digital
supply.
Core 0.9V(Commercial) digital supply
VDDON: Digital I/O supply. For 2.5V or 3.3V operation, the VSEL_N pin should be tied to VSS.
For 1.05V, 1.2V, 1.5V, 1.8V operation, the VSEL_N pin should be tied to VDDON. The pins
running on the VDDON supply are RESETn, SCL, SDA, TDI, TDO, TCK, TMS, TRSTn,
GPIO[3:0].
VDDOS: Digital I/O supply. For 2.5V or 3.3V operation, the VSEL_S pin should be tied to VSS.
For 1.05V, 1.2V, 1.5V, and 1.8V operation, the VSEL_S pin should be tied to VDDOS. The pins
running on the VDDOS supply are MDC, MDIO, INTn, PHYAD[3:0], CONFIG[2:0], TEST[1:0].
Doc. No. MV-S110852-U0 Rev. C
Page 64
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
4
Line Side Description
The line interface comprises four differential input lanes and four differential output lanes. Table 40
lists out what is active for all the modes. The device can be configured to operate in single-port
operation or four sub-port operation depending on how many SERDES lanes are used to form the
port. Each sub-port’s mode of operation can be configured via Auto-Negotiation or forced mode. Any
of the modes shown in Table 40 can be set via forced mode. However, only the modes with the Y in
the last column can be configured via Clause 73 Auto-Negotiation. Table 41 shows the register
setting required to force a particular mode. Register 3.F000n is used to select the sub-port n. 40
Gbps, 50 Gbps, and 100 Gbps speeds are not supported by sub-ports 1, 2, and 3.
For the purpose of the subsequent discussion, only to the registers in sub-port 0 are referenced
unless otherwise noted. The registers in ports 1, 2, and 3 are offset as shown in the Equivalent
Registers Between Line and Host Interface table in Section 5 and behave in the same way as
sub-port 0. Single-port operation (multi-lane port operation) maps into sub-port 0. That is, sub-port 0
supports all speeds, while sub-port 1, 2, and 3 supports neither 40 Gbps, 50 Gbps, nor 100 Gbps
speeds.
The priority for mode selection is listed in decreasing order of priority:
1.
2.
3.
4.
If Auto-Negotiation of sub-port 0 is enabled (7.0000.12 = 1) and any capability that requires
multiple lanes is advertised (for example, 40 Gbps, 50 Gbps, or 100 Gbps), then operation on
sub-ports 1, 2, and 3 are disabled. Registers 3.F000 to 3.F0003 are ignored. Auto-Negotiation
will determine the mode to operate. Even if the Auto-Negotiation result in a single-lane
operation, sub-ports 1, 2, and 3 will still be disabled.
If Auto-Negotiation of sub-port 0 is disabled (7.0000.12 = 0), then register 3.F000 is used to
force the mode of operation on sub-port 0. If a capability that requires multiple lanes is selected,
then operation on sub-ports 1, 2, and 3 are disabled and registers 3.F001 to 3.F003 are
ignored.
If neither #1 nor #2 above are in effect, then each sub-port operates independently. If sub-port n
Auto-Negotiation is enabled, then Auto-Negotiation will determine the mode to operate and
register 3.F00n is ignored.
If none of the above are in effect, then register 3.F00n will determine the mode of operation.
If Auto-Negotiation is disabled on sub-port n and register 3.F00n selects a mode that requires
Clause 72 training, then it is the user’s responsibility to properly set the Auto-Negotiation registers to
advertise only the capability that is consistent with the mode requested in register 3.F00n even
though register 7.0000.12 is set to 0. The Auto-Negotiation in this case is used only to synchronize
the two link partners in order to start the Clause 72 training. As part of the Clause 72 training
procedure, the device will automatically initiate Auto-Negotiation even though register 7.0000.12 is
set to 0. When Auto-Negotiation completes the device will commence Clause 72 training for the
mode selected in register 3.F00n. The device only checks that Auto-Negotiation completes, and
does not check whether the resolved capability matches the mode selected in register 3.F00n.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 65
88X5113
Datasheet - Public
4.1
Interface Modes of Operation
Table 39 provides a description of the interface modes of operations detailed in Table 40.
Table 39: Mode Definition Reference
Symbol
Description
Type
P = PCS
R = Retimer
Speed
1 = 1 Gbps - single lane
2.5 = 2.5 Gbps - single lane
5 = 5 Gbps - single lane
10 = 10 Gbps - single lane
25 = 25 Gbps - 1 lane x 25 Gbps or 2 lanes x 12.5 Gbps or 4 lanes x 6.25G
40 = 40 Gbps - 4 lanes x 10 Gbps
50 = 50 Gbps - 1 lane x 50 Gbps or 2 lanes x 25 Gbps or 4 lanes x 12.5 Gbps
100 = 100 Gbps - 2 lanes x 50 Gbps or 4 lanes x 25 Gbps
200 = 200 Gbps - 4 lanes x 50 Gbps
Training/AN/Co
ding
X = BASE-X
S = SGMII System
P = SGMII PHY
L = NRZ BASE-R/X, no Auto-Negotiation
K = NRZ BASE-R/X, Backplane
C = NRZ BASE-R, Twinax
J = Same as K except consortium
B = Same as C except consortium
M = same as L Non-Standard 50GBASE-R2
U = PAM4 BASE-R, no Auto-Negotiation
Q = PAM4 BASE-R, Twin ax/Backplane
Y = Same as L for Non-Standard 25GBASE-R2, no Auto-Negotiation
Z = Same as C for Non-Standard 25GBASE-R2, Auto-Negotiation
A = Same as L for Non-Standard 25GBASE-R4, no Auto-Negotiation
G = Same as C for Non-Standard 25GBASE-R4, Auto-Negotiation
H = Same as K for Non-Standard 25GBASE-R4, Auto-Negotiation
FEC
N = No FEC
F = KR-FEC (Firecode)
R = RS-FEC (528, 514)
P = RS-FEC (544, 514)
Doc. No. MV-S110852-U0 Rev. C
Page 66
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
Interface Modes of Operation
Table 40: Interface Modes of Operation
Mo d e
Des cr iption
PCS
FE C
PMA
Autoneg
Tra i n i n g
Line I/O
M ult i- s pe e d
A P A ut one g
R e s olut ion
P1X
1000BASE-X
1000BASE-X (CL
36)
None
Clause 36
Clause
37/73
None
N/A
Y
P1S
SGMII (System)
1000BASE-X
(SGMII)
None
Clause 36
SGMII
None
N/A
P1P
SGMII (PHY)
1000BASE-X
(SGMII)
None
Clause 36
SGMII
None
N/A
P2.5X
2.5GBASE-X
2.5GBASE-X (* CL
36)
None
Clause 361
Clause 732
None
CU4HDD1
Y
P5L
5GBASE-R
5GBASE-R (* CL
49)
None
Clause 511
Clause 732
None
CU4HDD1
Y
P10LN
10GBASE-LR/SR
10GBASE-R (CL
49)
None
Clause 51
None
None
SFI/SFP+
P10KN
10GBASE-KR
(No FEC)
10GBASE-R (CL
49)
None
Clause 51
Clause 73
CL 72.6.10
KR (CL 72)
Y
P10KF
10GBASE-KR
(FEC)
10GBASE-R (CL
49)
KR (CL
74)
Clause 51
Clause 73
CL 72.6.10
KR (CL 72)
Y
P10LF
10G
(Non-standard)
10GBASE-R (CL
49)
KR (CL
74)
Clause 51
None
None
SFI/SFP+
P25LN
25G (Non-standard)
25GBASE-R (CL
107)
None
Clause 109
None
None
(No FEC)
25GAUI
(109A, 109B)
P25LF
25G (Non-standard)
(KR-FEC)
25GBASE-R (CL
107)
KR (CL
74)
Clause 109
None
None
25GAUI
(109A, 109B)
P25LR
25GBASE-SR
25GBASE-R (CL
107)
RS (CL
108)
Clause 109
None
None
25GAUI
(109A, 109B)
P25CN
25GBASE-CR
(No FEC)
25GBASE-R (CL
107)
None
Clause 109
Clause 73
CL 72.6.10
CR (CL 110)
Y
P25CF
25GBASE-CR
(KR-FEC)
25GBASE-R (CL
107)
KR (CL
74)
Clause 109
Clause 73
CL 72.6.10
CR (CL 110)
Y
P25CR
25GBASE-CR
(RS-FEC)
25GBASE-R (CL
107)
RS (CL
108)
Clause 109
Clause 73
CL 72.6.10
CR (CL 110)
Y
P25KN
25GBASE-KR
(No FEC)
25GBASE-R (CL
107)
None
Clause 109
Clause 73
CL 72.6.10
KR (CL 111)
Y
P25KF
25GBASE-KR
(KR-FEC)
25GBASE-R (CL
107)
KR (CL
74)
Clause 109
Clause 73
CL 72.6.10
KR (CL 111)
Y
P25KR
25GBASE-KR
(RS-FEC)
25GBASE-R (CL
107)
RS (CL
108)
Clause 109
Clause 73
CL 72.6.10
KR (CL 111)
Y
P25BN
25GBASE-CR
(No FEC)
(Consortium)
25GBASE-R (CL
107)
None
Clause 109
Con OUI
CL 72.6.10
CR (CL 110)
Y
P25BF
25GBASE-CR
(KR-FEC)
(Consortium)
25GBASE-R (CL
107)
KR (CL
74)
Clause 109
Con OUI
CL 72.6.10
CR (CL 110)
Y
P25BR
25GBASE-CR
(RS-FEC)
(Consortium)
25GBASE-R (CL
107)
RS (CL
108)
Clause 109
Con OUI
CL 72.6.10
CR (CL 110)
Y
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 67
88X5113
Datasheet - Public
Table 40: Interface Modes of Operation (Continued)
Mo d e
Des cr iption
PCS
FE C
PMA
Autoneg
Tra i n i n g
Line I/O
M ult i- s pe e d
A P A ut one g
R e s olut ion
P25JN
25GBASE-KR
(No FEC)
(Consortium)
25GBASE-R (CL
107)
None
Clause 109
Con OUI
CL 72.6.10
KR (CL 111)
Y
P25JF
25GBASE-KR
(KR-FEC)
(Consortium)
25GBASE-R (CL
107)
KR (CL
74)
Clause 109
Con OUI
CL 72.6.10
KR (CL 111)
Y
P25JR
25GBASE-KR
(RS-FEC)
(Consortium)
25GBASE-R (CL
107)
RS (CL
108)
Clause 109
Con OUI
CL 72.6.10
KR (CL 111)
Y
P40LN
40GBASE-LR4/SR4
40GBASE-R4 (CL
82)
None
Clause 83
None
None
XLAUI (CL
83A, 83B)
P40CN
40GBASE-CR4
(No FEC)
40GBASE-R4 (CL
82)
None
Clause 83
Clause 73
CL 72.6.10
CR4 (CL 85)
Y
P40CF
40GBASE-CR4
(FEC)
40GBASE-R4 (CL
82)
KR (CL
74)
Clause 83
Clause 73
CL 72.6.10
CR4 (CL 85)
Y
P40KN
40GBASE-KR4
(No FEC)
40GBASE-R4 (CL
82)
None
Clause 83
Clause 73
CL 72.6.10
KR4 (CL 84)
Y
P40KF
40GBASE-KR4
(FEC)
40GBASE-R4 (CL
82)
KR (CL
74)
Clause 83
Clause 73
CL 72.6.10
KR4 (CL 84)
Y
P40LF
40G
(Non-standard)
40GBASE-R4 (CL
82)
KR (CL
74)
Clause 83
None
None
XLAUI (CL
83A, 83B)
P50LN
50GBASE-LR4/SR4
50GBASE-R4 (CL
82)
None
Clause 83
None
None
XLAUI (CL
83A, 83B)
P50CN
50GBASE-CR4
(No FEC)
50GBASE-R4 (CL
82)
None
Clause 83
Clause 734
CL 72.6.10
CR4 (CL 85)
P50CF
50GBASE-CR4
(FEC)
50GBASE-R4 (CL
82)
KR (CL
74)
Clause 83
Clause 734
CL 72.6.10
CR4 (CL 85)
P50KN
50GBASE-KR4
(No FEC)
50GBASE-R4 (CL
82)
None
Clause 83
Clause 734
CL 72.6.10
KR4 (CL 84)
P50KF
50GBASE-KR4
(FEC)
50GBASE-R4 (CL
82)
KR (CL
74)
Clause 83
Clause 734
CL 72.6.10
KR4 (CL 84)
P50LF
50G
(Non-standard)
50GBASE-R4 (CL
82)
KR (CL
74)
Clause 83
None
None
XLAUI (CL
83A, 83B)
P50MN
50G
(Non-standard)
50GBASE-R2 (CL
82)
None
4:2 (CL 83)
None
None
2 lane (CL
83A, 83B)
P50MF
50G
(Non-standard)
(KR-FEC)
50GBASE-R2 (CL
82)
KR (CL
74)
4:2 (CL 83)
None
None
2 lane (CL
83A, 83B)
P50MR
50G
(Non-standard)
(RS-FEC)
50GBASE-R2 (CL
82)
RS (Con)
4:2 (CL 83)
None
None
2 lane (CL
83A, 83B)
P50BN
50GBASE-CR2
(No FEC)
(Consortium)
50GBASE-R2 (CL
82)
None
4:2 (CL 83)
Con OUI
CL 72.6.10
2 lane CR (CL
85)
Y
P50BF
50GBASE-CR2
(KR-FEC)
(Consortium)
50GBASE-R2 (CL
82)
KR (CL
74)
4:2 (CL 83)
Con OUI
CL 72.6.10
2 lane CR (CL
85)
Y
(No FEC)
Doc. No. MV-S110852-U0 Rev. C
Page 68
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
Interface Modes of Operation
Table 40: Interface Modes of Operation (Continued)
Mo d e
Des cr iption
PCS
FE C
PMA
Autoneg
Tra i n i n g
Line I/O
M ult i- s pe e d
A P A ut one g
R e s olut ion
P50BR
50GBASE-CR2
(RS-FEC)
(Consortium)
50GBASE-R2 (CL
82)
RS (Con)
4:2 (CL 83)
Con OUI
CL 72.6.10
2 lane CR (CL
85)
Y
P50JN
50GBASE-KR2
(No FEC)
(Consortium)
50GBASE-R2 (CL
82)
None
4:2 (CL 83)
Con OUI
CL 72.6.10
2 lane KR (CL
84)
Y
P50JF
50GBASE-KR2
(KR-FEC)
(Consortium)
50GBASE-R2 (CL
82)
KR (CL
74)
4:2 (CL 83)
Con OUI
CL 72.6.10
2 lane KR (CL
84)
Y
P50JR
50GBASE-KR2
(RS-FEC)
(Consortium)
50GBASE-R2 (CL
82)
RS (Con)
4:2 (CL 83)
Con OUI
CL 72.6.10
2 lane KR (CL
84)
Y
P100LN
100GBASE-LR4
100GBASE-R4 (CL
82)
None
Clause 83
None
None
CAUI-4 (CL
83D, 83E)
P100LR
100GBASE-SR4
100GBASE-R4 (CL
82)
RS (CL
91)
Clause 83
None
None
CAUI-4 (CL
83D, 83E)
P100C
R
100GBASE-CR4
100GBASE-R4 (CL
82)
RS (CL
91)
Clause 83
Clause 73
CL 72.6.10
CR4 (CL 92)
Y
P100K
R
100GBASE-KR4
100GBASE-R4 (CL
82)
RS (CL
91)
Clause 83
Clause 73
CL 72.6.10
KR4 (CL 92)
Y
P100K
N
100G
(Non-standard)
100GBASE-R4 (CL
82)
None
Clause 83
Clause 733
CL 72.6.10
KR4 (CL 92)
R1
1G - Transparent
1G - Retimer
None
None
None
None
N/A
R2.5
2.5G - Transparent
2.5G - Retimer
None
None
Clause 732
None
CU4HDD1
732
None
CU4HDD1
R5
5G - Transparent,
(No Training)
5G - Retimer
None
None
Clause
R10L
10G - Transparent,
(No Training)
10G - Retimer
None
None
None
None
SFI/SFP+
R10K
10G - Transparent,
(KR Training)
10G - Retimer
None
None
Clause 73
CL 72.6.10
KR (CL 72)
R25L
25G - Transparent,
(No Training)
25G - Retimer
None
None
None
None
25GAUI
(109A, 109B)
R25C
25G - Transparent,
(CR Training)
25G - Retimer
None
None
Clause 73
CL 72.6.10
CR4 (CL 110)
R25K
25G - Transparent,
(KR Training)
25G - Retimer
None
None
Clause 73
CL 72.6.10
KR4 (CL 111)
R40L
40G - Transparent,
(No Training)
40G - Retimer
None
None
None
None
XLAUI (CL
83A, 83B)
R40C
40G - Transparent,
(CR Training)
40G - Retimer
None
None
Clause 73
CL 72.6.10
CR4 (CL 85)
R40K
40G - Transparent,
(KR Training)
40G - Retimer
None
None
Clause 73
CL 72.6.10
KR4 (CL 84)
R100L
100G - Transparent,
(No Training)
100G - Retimer
None
None
None
None
CAUI-4 (CL
83D, 83E)
R100C
100G - Transparent,
(CR Training)
100G - Retimer
None
None
Clause 73
CL 72.6.10
CR4 (CL 92)
R100K
100G - Transparent,
(KR Training)
100G - Retimer
None
None
Clause 73
CL 72.6.10
KR4 (CL 92)
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 69
88X5113
Datasheet - Public
•
•
Note
•
•
•
2.5G and 5G mode currently being defined in IEEE 802.3 CU4HDD study group.
Clause 73 Auto-Negotiation can be turned on or off. Bits being defined by
CU4HDD.
The P100KN mode is non-standard but requires Auto-Negotiation to be on to start
training. The 100GBASE-CR4 bit will be used.
50GBASE-R4 uses 40GBASE-R4 Auto-Negotiation ability bits to negotiate. This is
a custom mode where both link partners know a-priori to negotiate to 50G
R400Q uses AN based on Clause 73, with use of allocated next page field for
CR-8 and Clause 136 start up protocol for pre-coder/training options.
Table 41: Register Control to Select Mode of Operation
Mode
D escription
3.F0 0 n. 2 : 0 1
3.F00n.4
3.F00n.5
3.F00n.7:6
3 . F0 0n .9 : 8
P1X
1000BASE-X
000
0
1
00
00
P1S
SGMII (System)
000
0
1
00
11
P1P
SGMII (PHY)
000
0
1
00
10
P2.5X
2.5GBASE-X
001
0
1
00
XX2
P5L
5GBASE-R
010
0 or 1
1
00
XX
P10LN
10GBASE-LR/SR
011
0
1
00
XX
P10KN
10GBASE-KR
(No FEC)
011
1
1
00
XX
P10KF
10GBASE-KR
(FEC)
011
1
1
01
XX
P10LF
10G
(Non-standard)
011
0
1
01
XX
P25LN
25G
(Non-standard) (No FEC)
100
0
1
00
XX
P25LF
25G
(Non-standard) (KR-FEC)
100
0
1
01
XX
P25LR
25GBASE-SR
100
0
1
10
XX
P25CN
25GBASE-CR
(No FEC)
100
1
1
00
00
P25CF
25GBASE-CR
(KR-FEC)
100
1
1
01
00
P25CR
25GBASE-CR
(RS-FEC)
100
1
1
10
00
P25KN
25GBASE-KR
(No FEC)
100
1
1
00
01
P25KF
25GBASE-KR
(KR-FEC)
100
1
1
01
01
Doc. No. MV-S110852-U0 Rev. C
Page 70
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
Interface Modes of Operation
Table 41: Register Control to Select Mode of Operation (Continued)
Mode
D escription
3.F0 0 n. 2 : 0 1
3.F00n.4
3.F00n.5
3.F00n.7:6
3 . F0 0n .9 : 8
P25KR
25GBASE-KR
(RS-FEC)
100
1
1
10
01
P25BN
25GBASE-CR
(No FEC) (Consortium)
100
1
1
00
10
P25BF
25GBASE-CR
(KR-FEC) (Consortium)
100
1
1
01
10
P25BR
25GBASE-CR
(RS-FEC) (Consortium)
100
1
1
10
10
P25JN
25GBASE-KR
(No FEC) (Consortium)
100
1
1
00
11
P25JF
25GBASE-KR
(KR-FEC) (Consortium)
100
1
1
01
11
P25JR
25GBASE-KR
(RS-FEC) (Consortium)
100
1
1
10
11
P40LN
40GBASE-LR4/SR4
101
0
1
00
0X
P40CN
40GBASE-CR4
(No FEC)
101
1
1
00
00
P40CF
40GBASE-CR4
(FEC)
101
1
1
01
00
P40KN
40GBASE-KR4
(No FEC)
101
1
1
00
01
P40KF
40GBASE-KR4
(FEC)
101
1
1
01
01
P40LF
40G
(Non-standard)
101
0
1
01
0X
P50LN
50GBASE-LR4/SR4
110
0
1
00
0X
P50CN
50GBASE-CR4
(No FEC)
110
1
1
00
00
P50CF
50GBASE-CR4
(FEC)
110
1
1
01
00
P50KN
50GBASE-KR4
(No FEC)
110
1
1
00
01
P50KF
50GBASE-KR4
(FEC)
110
1
1
01
01
P50LF
50G
(Non-standard)
110
0
1
01
0X
P50MN
50G
(Non-standard) (No FEC)
110
0
1
00
1X
P50MF
50G
(Non-standard) KR-FEC
110
0
1
01
1X
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 71
88X5113
Datasheet - Public
Table 41: Register Control to Select Mode of Operation (Continued)
Mode
D escription
3.F0 0 n. 2 : 0 1
3.F00n.4
3.F00n.5
3.F00n.7:6
3 . F0 0n .9 : 8
P50MR
50G
(Non-standard) (RS-FEC)
110
0
1
10
1X
P50BN
50GBASE-CR2
(No FEC) (Consortium)
110
1
1
00
10
P50BF
50GBASE-CR2
(KR-FEC) (Consortium)
110
1
1
01
10
P50BR
50GBASE-CR2
(RS-FEC) (Consortium)
110
1
1
10
10
P50JN
50GBASE-KR2
(No FEC) (Consortium)
110
1
1
00
11
P50JF
50GBASE-KR2
(KR-FEC) (Consortium)
110
1
1
01
11
P50JR
50GBASE-KR2
(RS-FEC) (Consortium)
110
1
1
10
11
P100LN
100GBASE-LR4
111
0
1
00
XX
P100LR
100GBASE-SR4
111
0
1
10
XX
P100CR
100GBASE-CR4
111
1
1
10
00
P100KR
100GBASE-KR4
111
1
1
10
01
P100KN
100G
(Non-standard)
111
1
1
00
00
1. 3.F00n where n is sub-port n.
2. Where X means don’t care.
Table 42: Base Link Register on PCS Modes
88X511 3
Base Li n k R e g i s t e r ( 3 . x f o r
Line S i de , 4 . x f o r H os t Si d e )
M ode s
1G
3001
P1*
2.5G
3001
P2p5**
5G
2001
P5*
10G
2001
P10**
25GR1
2001
P25B/C/J/K/L*
25GR2
1001
P25Y/Z*
25GR4
1001
P25A/G/H*
40GR2
1001
P40B/J*
40GR4
1001
P40C/K/L*
50GR1
1001
P50U/Q*
50GR2
1001
P50B/J/M*
Doc. No. MV-S110852-U0 Rev. C
Page 72
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
Electrical Interface
Table 42: Base Link Register on PCS Modes (Continued)
88X511 3
Base Li n k R e g i s t e r ( 3 . x f o r
Line S i de , 4 . x f o r H os t Si d e )
M ode s
50GR4
1001
P50C/K/L*
100GR2
1
P100U/Q*
100GR4
1
P100C/K/L*
200GR4
4001
P200**
NOTE: **The dsp lock for lane 0, 1, 2, and 3 are at registers 0xF201.5, 0xF221.5, 0xF241.5, and 0xF261.
4.2
Electrical Interface
The input of the SERDES (Rx) is AC coupled on die while the output (Tx) is not AC coupled. All
SERDES inputs and outputs are internally terminated by 50Ω each (or 100Ω differential).
The SERDES transmitter uses has a three-tap (1 pre-tap and 1 post-tap) FIR filter is implemented
for the purpose of channel equalization. The FIR tap values are automatically adjusted during
Clause 72 training or can be manually adjusted to optimize the transmit eye over a particular
channel.
Table 40 Line I/O column lists out the supported electrical interfaces. Refer to the appropriate
standards for detailed information.
4.3
PCS and PMA
The device supports many different modes of operation as shown in Table 40, all the PCS modes
reduce down to four PCS types as shown in Table 43. There are four copies of each single-lane PCS
types forming four sub-ports and one copy of each multi-lane PCS on sub-port 0. The register
location of each PCS type are summarized in the Equivalent Registers Between Line and Host
Interface table in Section 5.
Table 43: PCS Types
PCS Mode
P C S Ty p e
Sub-Port 0
Sub-Port 1
Sub-Port 2
Sub-Port 3
1000BASE-X
X
X
X
X
10GBASE-R
X
X
X
X
40GBASE-R4
X
100GBASE-R4
X
1000BASE-X
SGMII PHY
SGMII System
2.5GBASE-X
5GBASE-R
10GBASE-R
25GBASE-R
40GBASE-R4
50GBASE-R4
50GBASE-R2
100GBASE-R4
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 73
88X5113
Datasheet - Public
4.3.1
100GBASE-R4 PCS (Modes P100*)
The various 100GBASE-R4 PCS and PMA operate according to IEEE 802.3ba, 802.3bj, and
802.3bm specifications depending on the type selected. In general, a 64B/66B coding and
scrambling is used to improve the transmission characteristics of the serial data and ease clock
recovery at the receiver. The data stream is distributed across 20 virtual lanes. The alignment
markers allows the lanes to be aligned and lanes to be reordered at the receiver. The Reed Solomon
FEC reduces the bit error rate of the recovered data.
100GBASE-LR4 up to the CAUI-4 interface takes the path from the CGMII through the 20:4 bit
multiplexer to the serializer on the egress direction. It takes the path from the de-serializer though
the 4:20 de-multiplexer to the CGMII in the ingress direction. The Reed Solomon FEC is not used
and there is no training of the transmitter FIR coefficients.
100GBASE-SR4 up to the CAUI-4 interface takes the path from the CGMII through the transcoder
through the Reed Solomon encoder through the symbol distribution to the serializer on the egress
direction. The alignment marker is remapped and sent to the Reed Solomon encoder. The receive
path starts from the de-serializer through the alignment/de-skew/reorder though the Reed Solomon
to the CGMII in the ingress direction. There is no training of the transmitter FIR coefficients. The
Reed Solomon uses the RS (528, 514) code.
100GBASE-CR4 (to the CR4 PMD) path is identical to 100GBASE-SR4 except IEEE 802.3 Clause
72.6.10 training occurs to set the transmitter FIR coefficients and the receiver equalization is tuned
for shielded balanced copper cabling.
100GBASE-KR4 path is identical to 100GBASE-CR4 except the transmitter FIR and the receiver
equalization is tuned for KR4 electrical backplanes.
RS (528, 514). In modes where the Reed Solomon FEC is active, the behavior of the FEC can be
modified by setting register 1.00C8.1:0.
00 = Full error detection and correction, set 1.00C8 = 16’h0000.
01 = Error detection without correction. Blocks with errors will be intentionally corrupted to
prevent uncorrectable errors from propagating, set 1.00C8 = 16’h0001.
10 = Error detection without correction. Blocks with errors will be passed as received.
The detected error will be reported in registers 1.00CC and 1.00CD.
Each of the bit settings requires a software reset to take effect.
P100KN is a non-standard mode that operates similarly to 100GBASE-LR4 without FEC, but
IEEE 802.3 Clause 72.6.10 training occurs. When in this mode, the 100GBASE-CR4
Auto-Negotiation ability is set to initiate the training.
Doc. No. MV-S110852-U0 Rev. C
Page 74
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
PCS and PMA
Figure 24: 100GBASE-R4 Data Path
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 75
88X5113
Datasheet - Public
4.3.2
40GBASE-R4, 50GBASE-R4, 50GBASE-R2 PCS (Modes
P40*, P50*)
The 40GBASE-R4 PCS operates according to the IEEE 802.3ba specification. The PCS uses a
64B/66B coding and scrambling to improve the transmission characteristics of the serial data and
ease clock recovery at the receiver. The data stream is distributed across 4 lanes. The alignment
markers allow the lanes to be aligned and lanes to be swapped at the receiver. The synchronization
headers for 64B/66B code enable the receiver to achieve block alignment on the receive data.
The 40GBASE-R4 datapath is shown in Figure 25. The Reed-Solomon encoder/FEC path and 4:2
Mux/2:4 De-Mux paths are bypassed in the 40GBASE-R4 and 50GBASE-R4. The differences
among the various types are described below.
40GBASE-LR4 up to the XLAUI-4 interface has no training of the transmitter FIR coefficients.
40GBASE-CR4 uses IEEE 802.3 Clause 72.6.10 training to set the transmitter FIR coefficients. The
receiver equalization is tuned for shielded balanced copper cabling. The optional Clause 74 KR-FEC
can be enabled or disabled.
40GBASE-KR4 path is identical to 40GBASE-CR4 except the transmitter FIR and the receiver
equalization is tuned for KR4 electrical backplanes. The optional Clause 74 KR-FEC can be enabled
or disabled.
P40LF is a non-standard mode that operates similarly to 40GBASE-LR4 with the KR-FEC enabled.
IEEE 802.3 Clause 72.6.10 training does not takes place.
P50L*, P50C*, P50K* modes are identical to each corresponding P40* modes except the line rate is
1.25 times faster.
The 50GBASE-R2 datapath is shown in Figure 25. The path either goes through the Reed-Solomon
encoder/FEC path or the 4:2 Mux/2:4 De-Mux paths.
50GBASE-CR2 without FEC and with KR-FEC is similar to 40GBASE-CR4 except the data rate is
1.25 time faster and 4 virtual lanes are bit interleaved onto 2 lanes. This mode uses IEEE 802.3
Clause 72.6.10 training to set the transmitter FIR coefficients. The receiver equalization is tuned for
shielded balanced copper cabling.
50GBASE-CR2 with RS-FEC is similar to 40GBASE-CR4 except the data rate is 1.25 times faster
and 4 virtual lanes are transcoded and put through the Reed-Solomon encoder. The Reed-Solomon
symbols are symbol interleaved onto two lanes. This mode uses IEEE 802.3 Clause 72.6.10 training
to set the transmitter FIR coefficients. The receiver equalization is tuned for shielded balanced
copper cabling.
50GBASE-KR2 path is identical to 50GBASE-CR2 except the transmitter FIR and the receiver
equalization is tuned for KR electrical backplanes.
P50M* modes are identical to each corresponding P50B* modes except IEEE 802.3 Clause 72.6.10
training is not used.
Doc. No. MV-S110852-U0 Rev. C
Page 76
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
PCS and PMA
Figure 25: 40GBASE-R4, 50GBASE-R4, and 50GBASE-R2 Datapath
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 77
88X5113
Datasheet - Public
4.3.3
5GBASE-R, 10GBASE-R, and 25GBASE-R PCS (Modes P5L,
P10*, P25*)
The 10GBASE-R PCS operates according to the IEEE 802.3 Clause 49 specification. The
25GBASE-R PCS operates according to the IEEE 802.3by specification. The PCS uses a 64B/66B
coding and scrambling to improve the transmission characteristics of the serial data and ease clock
recovery at the receiver.
The 5GBASE-R, 10GBASE-R, and 25GBASE-R datapath is shown in Figure 26.
10GBASE-SR/LR has no training of the transmitter FIR coefficients.
10GBASE-KR uses IEEE 802.3 Clause 72.6.10 training to set the transmitter FIR coefficients. The
receiver equalization is tuned for either shielded balanced copper cabling or KR electrical
backplanes. The optional Clause 74 KR-FEC can be enabled or disabled.
P10LF is a non-standard mode that operates similarly to 10GBASE-LR with the KR-FEC enabled.
IEEE 802.3 Clause 72.6.10 training does not occur.
5GBASE-R is identical to 10GBASE-SR/LR running at half speed.
25GBASE-SR uses the Clause 108 RS-FEC but has no training of the transmitter FIR coefficients.
25GBASE-CR is similar to 25GBASE-SR except it uses IEEE 802.3 Clause 72.6.10 training to set
the transmitter FIR coefficients. The receiver equalization is tuned for shielded balanced copper
cabling. The optional Clause 74 KR-FEC can be enabled or disabled. The optional Clause 108
RS-FEC can be enabled or disabled.
25GBASE-KR path is identical to 25GBASE-CR except the transmitter FIR and the receiver
equalization is tuned for KR electrical backplanes. The optional Clause 74 KR-FEC can be enabled
or disabled. The optional Clause 108 RS-FEC can be enabled or disabled.
P25B* modes are identical to each corresponding P25C* modes except the Auto-Negotiation used
is per the Consortium specification.
P25J* modes are identical to each corresponding P25K* modes except the Auto-Negotiation used is
per the Consortium specification.
P25LN is identical to 10GBASE-SR/LR except running 2.5 times faster.
P25LF is identical to P10LF except running 2.5 times faster.
Doc. No. MV-S110852-U0 Rev. C
Page 78
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
PCS and PMA
Figure 26: 5GBASE-R, 10GBASE-R, and 25GBASE-R Datapath
4.3.4
SGMII, 1000BASE-X, and 2.5GBASE-X
4.3.4.1
PCS
The 1000BASE-X PCS operates according to Clause 36 of the IEEE 802.3 specification. The PCS
uses a 8/10 bit coding for DC line balancing. For further details, refer to the IEEE 802.3 specification.
The SGMII protocol is also supported over 1000BASE-X. The SGMII allows 10 Mbps, 100 Mbps,
and 1000 Mbps throughput over 1000BASE-X line coding.
When SGMII Auto-Negotiation is turned off (3.3n00.12 = 0), the speed setting is programmed via
register 3.3n00 bits 13 and 6. (n = 0, 2, 4, 6 for sub-ports 0, 1, 2, and 3, respectively). Link is
established when the underlying 1000BASE-X establishes link.
When SGMII Auto-Negotiation is turned on (3.3n00.12 = 1), the SGMII is set to the speed setting is
determined by the Auto-Negotiation speed advertised by the link partner if the device is in SGMII
(System) mode. Auto-Negotiations have to complete prior to link being established.
2.500BASE-X is identical to 1000GBASE-X operation as described except it runs 2.5 times faster.
Clause 37 Auto-Negotiation is not supported in 2.500BASE-X.
4.3.4.2
1000BASE-X Auto-Negotiation
1000BASE-X Auto-Negotiation is defined in Clause 37 of the IEEE 802.3 specification. It is used to
auto-negotiate duplex and flow control over fiber cable. Registers 3.3n00, 3.3n04, 3.3n05, 3.3n06,
3.3n07, 3.3n08, and 3.3n0F are used to enable AN, advertise capabilities, determine the link partner’s capabilities, show AN status, and show the duplex mode of operation, respectively.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 79
88X5113
Datasheet - Public
The device supports Next Page option for 1000BASE-X Auto-Negotiation. Register 3.3n07 of the
fiber pages is used to transmit Next Pages, and register 3.3n08 of the fiber pages is used to store
the received Next Pages. The Next Page exchange occurs with software intervention. The user must
set register 3.3n04.15 to enable fiber Next Page exchange. Each Next Page received in the registers should be read before a new Next Page to be transmitted is loaded in register 3.3n07.
If the PHY enables 1000BASE-X Auto-Negotiation and the link partner does not, then the link cannot
be established. The device implements an Auto-Negotiation bypass mode. See Section 4.3.4.4 for
details.
4.3.4.3
SGMII Auto-Negotiation
SGMII is a de-facto standard designed by Cisco. SGMII uses 1000BASE-X coding to send data as
well as Auto-Negotiation information between the PHY and the MAC. However, the contents of the
SGMII Auto-Negotiation are different than the 1000BASE-X Auto-Negotiation. See the Cisco SGMII
Specification and the MAC Interfaces and Auto-Negotiation Application Note for further details.
The device supports SGMII interface with and without Auto-Negotiation. Auto-Negotiation can be
enabled or disabled by writing to Register 3.3n00.12 followed by a soft reset. If SGMII
Auto-Negotiation is disabled, then the MAC interface link, speed, and duplex status (determined by
the media side) cannot be conveyed to the MAC from the PHY. The user must program the MAC
with this information in some other manner (for example, by reading PHY registers for link, speed,
and duplex status).
4.3.4.4
Auto-Negotiation Bypass Mode
If the MAC or the PHY implements the Auto-Negotiation function and the other does not implement
the function, then two-way communication is not possible unless Auto-Negotiation is manually
disabled and both sides are configured to work in the same operational modes. To solve this
problem, the device implements the SGMII Interface Auto-Negotiation Bypass Mode. When entering
the state Ability_Detect, a bypass timer begins to count down from an initial value of approximately
200 ms. If the device receives idles during the 200 ms, then the device will interpret that the other
side is live, but cannot send configuration codes to perform Auto-Negotiation. After 200 ms, the state
machine will move to a new state called Bypass_Link_Up in which the device assumes a link-up
status and the operational mode is set to the value listed under the Comments column of Table 44.
Table 44: SGMII Auto-Negotiation Modes
Register
3.3n00.12
Register
3.Bn000.13
C om me nt s
0
X
No Auto-Negotiation. The user is responsible for determining the speed,
link, and duplex status by reading PHY registers.
1
0
Normal SGMII Auto-Negotiation. Speed, link, and duplex status are
automatically communicated to the MAC during Auto-Negotiation.
1
1
Media Auto-Negotiation is enabled.
Normal operation.
Media Auto-Negotiation is disabled.
After 200 ms, the PHY will disable Auto-Negotiation and the link based
on idles.
Doc. No. MV-S110852-U0 Rev. C
Page 80
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
Auto-Negotiation
4.4
Auto-Negotiation
The device supports 802.3ap Clause 73 Auto-Negotiation as well as the next pages required for the
25/50G consortium specifications. When the Auto-Negotiation configuration bits are set correctly
and Auto-Negotiation is enabled, no further user intervention is required for Auto-Negotiation to
complete.
There are four copies of the Auto-Negotiation circuit on the line interface. Sub-port 0 supports all
abilities shown in Table 40 with a Y in the last column. Sub-ports 1, 2, and 3 is similar to sub-port 0
except 40G, 50G, and 100G modes are not supported.
The enabling and disabling of the Auto-Negotiation circuit for each sub-port is discussed in
Section 4. If Auto-Negotiation is disabled and the device is manually set to a mode that KR training
is required, then Auto-Negotiation will still run automatically. It is the user’s responsibility to properly
set the Auto-Negotiation registers to advertise only the capability that is consistent with the manually
set mode.
The registers to control the 802.3ap Auto-Negotiation for sub-port 0 can be found starting at register
7.0000. The registers to control sub-port 0 consortium Auto-Negotiation can be found starting at
register 7.8010. The registers for sub-port 1, 2, and 3 can be found in their corresponding offset
addresses as mapped in the 88X5113 Registers documentation.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 81
88X5113
Datasheet - Public
4.5
Loopback
4.5.1
Line-side Loopbacks
Figure 27 shows shallow line loopback (path A), deep loopbacks for line side. The deep loopback
can be enabled at PCS to PMA boundary which is called PCS deep loopback (path B). The deep
loopback can be at PMA to SERDES boundary so called PMA deep loopback (path C).
Table 45 shows how to turn on shallow line loopback. Table 46 shows how to turn on deep
loopbacks for line side.
Figure 27: Line-side Loopback
Table 45: Shallow Line Loopback Control Bits
Line Loopback Bits Description
U ni t A f f e c t e d
R e g i s t e r – Li n e
1G/2.5G, 5G/10G/25G lane 0, 40G/50G, 100G
Lane 0
Set 3.F010.12 = 1 (Loopback A in Figure 27)
1G/2.5G, 5G/10G/25G lane 1
Lane 1
Set 3.F010.13 = 1 (Loopback A in Figure 27)
1G/2.5G, 5G/10G/25G lane 2
Lane 2
Set 3.F010.14 = 1 (Loopback A in Figure 27)
1G/2.5G, 5G/10G/25G lane 3
Lane 3
Set 3.F010.15 = 1 (Loopback A in Figure 27)
Doc. No. MV-S110852-U0 Rev. C
Page 82
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
Loopback
The couple modes such as 40G/50G-R4, 50G-R2, and 100G-R4 always use lane 0.
Table 46: Deep Loopback Control Bits
Deep Loopback
Bits Description
Unit
Affected
Regi s t e r – L i ne
(PC S D e e p L o o p b a c k )
R e g i s t e r – Li n e
( P M A D e e p Loopba c k )
Deep loopback – 100G
Lane 0
3.0000.14 (Loopback E in Figure 28)
1.0000.0 (Loopback F in Figure 28)
Deep loopback –
40G/50G
Lane 0
3.1000.14 (Loopback E in Figure 28)
1.2000.0 (Loopback F in Figure 28)
Deep loopback –
5G/10G/25G
Lane 0
Lane 1
Lane 2
Lane 3
3.2000.14 (Loopback E in Figure 28)
3.2200.14
3.2400.14
3.2600.11
1.4000.0 (Loopback F in Figure 28)
Deep loopback –
1G/2.5G
Lane 0
Lane 1
Lane 2
Lane 3
3.3000.14
3.3200.14
3.3400.14 (Loopback F in Figure 28)
3.3600.14
1.6000.0 (Loopback F in Figure 28)
4.5.2
Host-side Loopbacks
Figure 28 shows the paths for shallow host loopback (D), PCS deep loopback (E), and PMA deep
loopback (F) for the host side.
Table 47 shows how to turn on a shallow host loopback. Table 48 shows how to turn on deep
loopbacks for the host side.
Figure 28: Turn On Deep Host Loopback
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 83
88X5113
Datasheet - Public
Table 47: Shallow Line Loopback Control Bits
Line Loopback Bits Description
U ni t
Affected
R e g i s t e r – Li n e
1G/2.5G, 5G/10G/25G lane 0, 40G/50G, 100G
Lane 0
Set 4.F010.12 = 1 (Loopback D in Figure 28).
1G/2.5G, 5G/10G/25G lane 1
Lane 1
Set 4.F010.13 = 1 (Loopback D in Figure 28).
1G/2.5G, 5G/10G/25G lane 2
Lane 2
Set 4.F010.14 = 1 (Loopback D in Figure 28).
1G/2.5G, 5G/10G/25G lane 3
Lane 3
Set 4.F010.15 = 1 (Loopback D in Figure 28).
The couple modes such as 40G/50G-R4, 50G-R2, and 100G-R4 always use lane 0.
Table 48: Deep Loopback Control Bits
Deep Loopback Bits
Description
Unit
Affected
Re g i s t e r – Li n e
(P C S D e e p Loopba c k )
R e g i s t e r – Li n e
( P M A D e e p Loopba c k )
Deep loopback – 100G
Lane 0
4.0000.14 (Loopback B in Figure 27)
1.1000.0 (Loopback C in Figure 27)
Deep loopback – 40G/50G
Lane 0
4.1000.14 (Loopback B in Figure 27)
1.3000.0 (Loopback C in Figure 27)
Deep loopback –
5G/10G/25G
Lane 0
Lane 1
Lane 2
Lane 3
4.2000.14
4.2200.14
4.2400.14 (Loopback B in Figure 27)
4.2600.11
1.5000.0 (Loopback C in Figure 27)
Deep loopback – 1G/2.5G
Lane 0
Lane 1
Lane 2
Lane 3
4.3000.14
4.3200.14
4.3400.14
4.3600.14 (Loopback B in Figure 27)
1.7000.0 (Loopback C in Figure 27)
Doc. No. MV-S110852-U0 Rev. C
Page 84
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
Synchronized FIFO
4.6
Synchronized FIFO
There is a transmit synchronizing FIFO in all PCS including 1G, 10G, 25G, 40G/50G, and 100G PCS.
Each of the FIFOs reconciles the frequency differences between the internal bus clock and the clock
used to transmit data onto the media interface. It also buffers the data when inserting Alignment
Maker. Each of the FIFOs can support a maximum frame size of 10 KB with up to ±100 PPM clock
jitter.
4.7
Traffic Generation and Checking
There are several packet generator and checkers in the device. There are 22 16-bit registers
associated with each generator and checker. This section will refer to these registers as R00 to R21.
The register mapping is shown in Table 49.
Table 49: Packet Generator and Checker Register Mapping1 Data
Re gister
Description
P1 0 0 *
P4 0 *,
P5 0 *
P5 *,
P1 0 *,
P2 5 *
P 1 *,
P 2 . 5*
R00
Packet Generation Control 1
3.8100
3.9010
3.An10
3.Bn10
R01
Packet Generation Control 2
3.8101
3.9011
3.An11
3.Bn11
R02
Initial Payload 0-1/Packet Generation
3.8102
3.9012
3.An12
3.Bn12
R03
Initial Payload 2-3/Packet Generation
3.8103
3.9013
3.An13
3.Bn13
R04
Packet Generation Length
3.8106
3.9016
3.An16
3.Bn16
R05
Packet Generation Burst Sequence
3.8107
3.9017
3.An17
3.Bn17
R06
Packet Generation IPG
3.8108
3.9018
3.An18
3.Bn18
R07
Transmit Packet Counter [15:0]
3.810B
3.901B
3.An1B
3.Bn1B
R08
Transmit Packet Counter [31:16]
3.810C
3.901C
3.An1C
3.Bn1C
R09
Transmit Packet Counter [47:32]
3.810D
3.901D
3.An1D
3.Bn1D
R10
Transmit Byte Counter [15:0]
3.810E
3.901E
3.An1E
3.Bn1E
R11
Transmit Byte Counter [31:16]
3.810F
3.901F
3.An1F
3.Bn1F
R12
Transmit Byte Counter [47:32]
3.8110
3.9020
3.An20
3.Bn20
R13
Receive Packet Counter [15:0]
3.8111
3.9021
3.An21
3.Bn21
R14
Receive Packet Counter [31:16]
3.8112
3.9022
3.An22
3.Bn22
R15
Receive Packet Counter [47:32]
3.8113
3.9023
3.An23
3.Bn23
R16
Receive Byte Count [15:0]
3.8114
3.9024
3.An24
3.Bn24
R17
Receive Byte Count [31:16]
3.8115
3.9025
3.An25
3.Bn25
R18
Receive Byte Count [47:32]
3.8116
3.9026
3.An26
3.Bn26
R19
Receive Packet Error Count [15:0]
3.8117
3.9027
3.An27
3.Bn27
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 85
88X5113
Datasheet - Public
Table 49: Packet Generator and Checker Register Mapping1 Data (Continued)
Re gister
Description
P1 0 0 *
P4 0 *,
P5 0 *
P5 *,
P1 0 *,
P2 5 *
P 1 *,
P 2 . 5*
R20
Receive Packet Error Count [31:16]
3.8118
3.9028
3.An28
3.Bn28
R21
Receive Packet Error Count [47:32]
3.8119
3.9029
3.An29
3.Bn29
1. N = 0, 2, 4, 6 for sub-ports 0, 1, 2, and 3, respectively.
The packet generator and packet checker are enabled by separate control bits – R00.0 controls the
packet checker and R00.1 controls the packet generator. (Table 50).
When the packet Generator is enabled, packet stream is generated and a pair of 48-bit counters
tracks the packet stream. Transmit Packet Counter (R07, R08, and R09) counts number of packets
sent. Transmit Byte Counter (R10, R11, and R12) counts number of bytes sent.
Similarly, when the packet checker is enabled, received packets are examined and a set of three
48-bit counters are updated. Received Packet Counter (R13, R14, and R15) counts number of
packets received. Received Byte Counter (R16, R17, and R18) counts number of bytes received,
and Received Error Counter (R19, R20, and R21) counts number of received packets with CRC
error.
Table 50: Packet Generator and Checker Control and Counters
Re gister
Function
D e s c ri p t i o n
R00.0
Enable Packet Checker
1: Packet Checker is enabled.
0: Packet Checker is disabled.
R00.1
Enable Packet Generator
1: Packet Generator is enabled.
0: Packet Generator is disabled.
R00.6
Counter reset
1: Clear counters.
0: Normal operation
This bit clears itself after counter reset.
R00.15
Counter reset on read
1: Clear the counter as it is read.
0: The counter value is not cleared when it is read.
R07
R08
R09
Transmit Packet Counter
These are the 48-bit Tx packet counters, they are incremented as each
packet is sent.
A reset of these counters is controlled by the Counter reset bit (R00.6)
and the Counter reset on read bit (R00.15) above.
R10
R11
R12
Transmit Byte Counter
These are the 48-bit Tx byte counters, they are incremented as each data
byte is sent, including CRC bytes.
A reset of these counters is controlled by the Counter reset bit (R00.6)
and the Counter reset on read bit (R00.15) above.
R13
R14
R15
Received Packet Counter
These are the 48-bit Rx packet counters, they are incremented as each
packet is received.
A reset of these counters is controlled by the Counter reset bit (R00.6)
and the Counter reset on read bit (R00.15) above.
Doc. No. MV-S110852-U0 Rev. C
Page 86
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
Traffic Generation and Checking
Table 50: Packet Generator and Checker Control and Counters (Continued)
Re gister
Function
D e s c ri p t i o n
R16
R17
R18
Received Byte Counter
These are the 48-bit Rx byte counters, they are incremented as each data
byte is received, including CRC bytes.
A reset of these counters is controlled by the Counter reset bit (R00.6)
and the Counter reset on read bit (R00.15) above.
R19
R20
R21
Received Error Counter
These are the 48-bit Rx error counters, they are incremented as each
packet is received with a CRC error.
A reset of these counters is controlled by the Counter reset bit (R00.6)
and the Counter reset on read bit (R00.15) above.
4.7.1
Packet Generator
A packet generator enables the device to generate traffic onto the media without a requirement to
receive data from the host.
As a reference, the following depicts the basic structure of Packet Generator output in XLGMII (40G)
and CGMII (100G) format.
Figure 29: Packet Format
TXC[7:0]
TXD[63:0]
01
55 55 55 55 55 55 [S]
00
(data 7) – (data 0)
00
●●●●●●●●
00
(data n-2) ● ● ● ● ● ● ●
E0
[I] [I] [T] (crc[31:0]) (data n-1)
Copyright © 2020 Marvell
September 21, 2020
Bit 0 is first bit shifted out. Packet starts at CGMII boundary of 64 bit.
Lane0 [S] = 0xFB. Lane7 = 0xD5
n bytes of data specified by Packet Length register
[T] = 0xFD [I] = 0x07
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 87
88X5113
Datasheet - Public
Table 51: Registers Controlling Packet Generation
Re gister
Function
Descriptio n
R00.1
Enable Packet
Generator
1: The packet generator is enabled.
0: The packet generator is disabled.
R01.3
CRC Disable
R00.2
SFD Enable
{CRC,SFD}=00:
CRC calculation is enabled and CGMII word 0 lane 7 = 0xD5.
CRC calculation starts after byte in packet
{CRC,SFD}=01:
CRC calculation is enabled and CGMII word 0 lane 7 = 0x55.
CRC calculation start after 8th byte in packet
{CRC,SFD}=11:
Extended CRC calculation is enabled and CGMII word 0 lane 7 = 0x55.
Extended CRC calculation starts after [S] byte.
NOTE: Extended CRC function is only available in 40G and 100G modes.
{CRC,SFD}=10:
CRC calculation is disabled and CGMII word 0 lane 7 = 0xD5.
R04
Packet Length
0x0000: Random length between 64 bytes to 1518 bytes
0x0001: Random length between 64 bytes to 0x0FFF bytes
0x0002: Random length between 64 bytes to 0x1FFF bytes
0x0003: Random length between 64 bytes to 0x3FFF bytes
0x0004: Random length between 64 bytes to 0x7FFF bytes
0x0005: Random length between 64 bytes to 0xFFFF bytes
0x0006 – 0x0007: undefined
0x0008 – 0xFFFF = length in number of bytes.
R05
Number of
Packets to
Generate
0x0000: Stop generation
0x0001 – 0xFFFE: number of packets to send
0xFFFF = Continuous
Figure 30: Normal CRC Calculation (in XLGMII/40G and CGMII/100G Format)
FB
55
[S]
55
55
55
55
55
D5
Data ● ● ● ● Data n-1
CRC
0
1
FD
2
3
07
[T]
07
IPG
Figure 31: Extended CRC Calculation (in XLGMII/40G and CGMII/100G Format)
(only in 40G and 100G mode)
FB
55
55
55
55
[S]
0
Doc. No. MV-S110852-U0 Rev. C
Page 88
55
55
55
Data 0 ● ● ● ● Data n-1
CONIFIDENTIAL
Document Classification: Public
CRC
1
2
FD
3
07
[T]
Copyright © 2020 Marvell
September 21, 2020
07
IPG
Line Side Description
Traffic Generation and Checking
Figure 32: Packet without CRC (in XLGMII/40G and CGMII/100G Format)
FB
55
55
55
55
55
55
D5
Data 0 ● ● ● ● Data n-1
[S]
End at CGMII word boundary ==>
FD
07
07
07
[T]
07
07
IPG
Table 52: IPG Configuration
Register #
Function
Descriptio n
R06
Inter Packet
Gap (IPG)
IPG.15:14 = 00: Fixed number of idle bytes is specified by IPG.13:0
For P100*, P50* and P40* modes, IPG is in 8-byte resolution (1 CGMII word).
For example:
IPG.13:0 = 0x0000 – 0x0007: Next packet starts at the following CGMII word (next
8byte boundary)
IPG.13:0 = 0x0008 – 0x000F: After the end of current packet 8-byte boundary, insert 1
CGMII (8 byte) idle before start of next packet.
IPG.13:0 = 0x0010 – 0x00017: After the end of current packet 8-byte boundary, insert 2
CGMII (16 byte) idle before start of next packet. For 10G, the resolution is 4 bytes.
IPG.15:14 = 10: Random number of IPG up to the value specified by IPG.13:0
IPG.15:14 = 01: Deficit Idle Count specified by IPG.13:0.
Valid IPG.13:0 value is limited to minimum of 8 and maximum of 20.
NOTE: Idle Deficit function only available in 40G/50G and 100G modes.
IPG.15:14 = 11: Zero IPG.
1 CGMII word (8 byte) of idle is inserted after n bytes of data, n is specified by IPG.13:0
as following:
IPG.13:0 = 0x0080: n = 128 bytes
IPG.13:0 = 0x0100: n = 256 bytes
IPG.13:0 = 0x0200: n = 512 bytes
IPG.13:0 = 0x0400: n = 1024 bytes
IPG.13:0 = 0x0800: n = 2048 bytes
IPG.13:0 = 0x1000: n = 4096 bytes
IPG.13:0 = 0x2000: n = 8196 bytes
NOTE: Zero IPG function only available in 40G/50G and 100G modes.
R07
R08
R09
Transmit
Packet
Counter
These are the 48-bit Tx packet counters, they are incremented as each packet is sent.
R10
R11
R12
Transmit Byte
Counter
These are the 48-bit Tx byte counters, they are incremented as each data byte is sent,
including 4 CRC bytes.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 89
07
88X5113
Datasheet - Public
Table 53: Packet Data Generation
Re gister #
Function
Description
R02
R03
Initial
Generation
Initial Payload register specifies the initial value of the payload or the fixed value of the
payload. The four bytes in this register corresponds to the first 4 bytes of the frame data.
R01
Data
Generation
0x0 or 0x1: No mask
Value of Initial Payload registers are used as payload repeatedly.
0x2: Invert every other word
Value of Initial Payload registers are used as payload repeatedly but every other CGMII
word should be inverted. For example: A payload of 034EA675 will result in a sequence
of 034EA675, FCB1598A, 034EA675, FCB1598A, and so on.
0x3: Invert every second word
Value of Initial Payload registers are used as payload repeatedly but inverted every
second CGMII word should be inverted.
For example: A payload of 034EA675 will result in a sequence of 034EA675, 034EA675,
FCB1598A, FCB1598A, 034EA675, 034EA675, and so on.
0x4: Left shift byte
Value of Initial Payload registers are used as the initial value and each byte
subsequently bitwise left shifted.
For example: A payload of 034EA675 will result in a sequence of 034EA675,
069C4DEA, 0C399AD5, 187235AB, and so on.
0x5: Right shift byte
Value of Initial Payload registers are used as the initial value and each byte
subsequently bitwise right shifted.
0x6: Left shift word
Value of Initial Payload registers are used as the initial value and each 32-bit word
subsequently bitwise left shifted. For example: A payload of C34EA675 will result in a
sequence of C34EA675, 869D4CEB, 0D3A99D7, 1A7533AE, and so on.
0x7: Right shift word
Value of Initial Payload registers are used as the initial value and each 32-bit word
subsequently bitwise right shifted.
0x8: Increment byte
Value of Initial Payload registers are used as the initial value and subsequently bytewise
incremented. For example: A payload of FFFE0055 will result in a sequence of
FFFE0055, 00FF0156, 01000257, 02010358, and so on.
0x9: Decrement byte
Value of Initial Payload registers are used as the initial value and subsequently bytewise
decremented.
0xA: Pseudo-random byte
Initial Payload registers are ignored and a pseudo-random payload is generated. All 4
bytes are the same value for each cycle.
0xB: Pseudo-random word
Initial Payload registers are ignored and a pseudo-random payload is generated. All 4
bytes are randomly generated for each cycle.
0xC – 0xF: Reserved
Doc. No. MV-S110852-U0 Rev. C
Page 90
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
Traffic Generation and Checking
4.7.2
Packet Checker
Table 54: Registers Controlling Packet Checker
Re gister #
Function
Descrip t i on
R00.0
Enable Packet
Checker
1: Packet Checker is enabled.
0: Packet Checker is disabled.
R01.3
CRC disable
{CRC,SFD}=00:
CRC calculation is enabled and started after detection of frame delimiter
R00.2
SFD enable
{CRC,SFD}=01:
CRC calculation is enabled and started after eight byte of the packet.
The checker assumes the first 8 bytes of packet is the preamble.
{CRC,SFD}=11:
Extended CRC calculation is enabled and started after second byte of the packet.
NOTE: Extended CRC function only available in 40G and 100G modes.
{CRC,SFD}=10:
CRC calculation is disabled and data field starts after detection of frame delimited
R13
R14
R15
Received Packet
Counter
These are 48-bit Rx packet counters, they are incremented as each packet is
received.
R16
R17
R18
Received Byte
Counter
These are 48-bit Rx byte counters, they are incremented as each data byte is
received, including 4 CRC bytes.
R19
R20
R21
Received Error
Counter
These are 48-bit Rx error counters, they are incremented as each packet is
received with a CRC error.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 91
88X5113
Datasheet - Public
4.8
PRBS Generation and Checking
The device supports various IEEE defined and proprietary PRBS generators and checkers, and
transmit waveform pattern generators. Only one generator and checker may be enabled at a time
per lane. Unpredictable results may occur if multiple generators are enabled simultaneously.
4.8.1
General PRBS Generators and Checkers
Each lane has its own general PRBS generator and checker. The register definitions for all PRBSs
are same except for register offsets. Table 55 shows all PRBS register address offsets. Lane 0
PRBS register address will be used to describe the functionality of PRBS generator and checkers.
To maintain consistency, the address offsets for the host side are listed here.
Table 55: PRBS Register Address Offsets
Re gister
Description
Li n e Si d e
H o s t S i de
L0
L1
L2
L3
L0
L1
L2
L3
R0
PRBS control
3.F100
3.F110
3.F120
3.F130
4.F100
4.F110
4.F120
4.F130
R1
R2
R3
Transmit bit
counter
3.F101
3.F102
3.F103
3.F111
3.F112
3.F113
3.F121
3.F122
3.F123
3.F131
3.F132
3.F133
4.F101
4.F102
4.F103
4.F111
4.F112
4.F113
4.F121
4.F122
4.F123
4.F131
4.F132
4.F133
R4
R5
R6
Receive bit
counter
3.F104
3.F105
3.F106
3.F114
3.F115
3.F116
3.F124
3.F125
3.F126
3.F134
3.F135
3.F136
4.F104
4.F105
4.F106
4.F114
4.F115
4.F116
4.F124
4.F125
4.F126
4.F134
4.F135
4.F136
R7
R8
R9
Receive error
counter
3.F107
3.F108
3.F109
3.F117
3.F118
3.F119
3.F127
3.F128
3.F129
3.F137
3.F138
3.F139
4.F107
4.F108
4.F109
4.F117
4.F118
4.F119
4.F127
4.F128
4.F129
4.F137
4.F138
4.F139
Register 3.F100 controls the generator and checker. Setting register 3.F100.5 to 1 enables the
generator, and setting register 3.F100.4 to 1 enables the checker. If either of these bits is set to 1,
then the general PRBS generator and checker overrides the PCS-specific generators and checkers.
The port should be set to the selected PCS mode before enabling the PRBS mode to achieve the
desired line rate for PRBS testing. When PRBS is enabled, this has higher priority over PCS
datapath. Register 3.F100.3:0 controls the pattern that is generated and checked. There is no
checker for the high-frequency, low-frequency, mixed-frequency, and square-wave patterns as there
are waveforms to check the transmitter performance.
Doc. No. MV-S110852-U0 Rev. C
Page 92
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Line Side Description
PRBS Generation and Checking
Table 56: Supported Line-side PRBS Patterns
3.F100.3:0
PR B S P a t t e rn F o rm a t
0000
IEEE 49.2.8 - PRBS 31
0001
PRBS 7
0010
PRBS 9 IEEE 83.7
0011
PRBS 23
0100
PRBS 31 Inverted
0101
PRBS 7 Inverted
1000
PRBS 15
1001
PRBS 15 Inverted
0110
PRBS 9 Inverted
0111
PRBS 23 Inverted
1010
PRBS 58
1011
PRBS 58 Inverted
1100
PRBS 13
1101
PRBS 13 Inverted
1110
JB03 register address
Lane 0 pattern A 3.F10A pattern B 3.F10B
Lane 1 pattern A 3.F11A pattern B 3.F11B
Lane 2 pattern A 3.F12A pattern B 3.F12B
Lane 3 pattern A 3.F13A pattern B 3.F13B
1111
Line-side PRBS square-wave pattern consists of 10 1's followed by 10
0's.
All counters are 48 bits long. If register 3.F100.13 is set to 1, then the counters will clear on read. If
register 3.F100.13 is set to 0, then the counters continue counting until register 3.F100.6 is set to 1
to clear the contents. If register 3.F100.7 is set to 0, then the PRBS counters will not start to count
until the checker first locks onto the incoming PRBS data. If register 3.F100.7 is set to 1, then the
PRBS checker will start counting errors without first locking to the incoming PRBS data. Register
3.F100.8 indicates whether the PRBS checker has locked. All 48-bit counters are formed by three
16-bit registers. The lowest addressed register is the least significant 16 bits and the highest
addressed register is the most significant 16 bits of the counter. When the least significant register is
read, the two upper registers are updated and frozen so that the three register read is atomic. It is
not necessary to read the upper registers. However, on subsequent reads of the least significant
register, the values of the upper registers from the previous reads are lost. To get the correct upper
register value the least significant register must be read first. Register 3.F101, 3.F102, and 3.F103 is
the transmit bit counter. Registers 3.F104, 3.F105, and 3.F106 is the receive bit counter. Registers
3.F107, 3.F108, and 3.F109 is the receive bit error counter.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 93
88X5113
Datasheet - Public
4.8.2
40GBASE-R4-specific Generators and Checkers
Register 1.05DD.7 when set to 1 selects PRBS31 pattern. Registers 1.05DD.3 when set to 1
enables Tx generator. Register 1.05DD.0 when set to 1 enables Rx checker. The error counters for
individual lanes are in register 1.06A4, 1.06A5, 1.06A6, and 1.06A7, which will be cleared on read.
Register 1.05DD.6 when set to 1 selects PRBS9 pattern. Registers 1.05DD.3 when set to 1 enables
Tx generator.
Register 1.05E6.3:0 when set to 1 selects SW (square wave) pattern for individual lanes.
The Line Side Lane 0 to Lane 3 Registers are 3.F100, 3.F110, 3.F120, and 3.F130, respectively.
4.8.3
100GBASE-R4-specific Generators and Checkers
Register 1.05DD.7 when set to 1 selects PRBS31 pattern. Registers 1.05DD.3 when set to 1
enables Tx generator. Register 1.05DD.0 when set to 1 enables Rx checker. The error counters for
individual lanes are in registers 1.06A4, 1.06A5, 1.06A6, and 1.06A7, which will be cleared on read.
Register 1.05DD.6 when set to 1 selects PRBS9 pattern. Registers 1.05DD.3 when set to 1 enables
Tx generator.
Register 1.05E6.3:0 when set to 1 selects SW (square wave) pattern for individual lanes.
Table 57 lists IEEE registers to control PRBS.
Table 57: IEEE PCS and PMA PRBS Control Register
Line Sid e
H o s t S i de
PCS 10G/25G lane 0
3.202A, 3.202B
4.202A, 4.202B
PCS 10G/25G lane 1
3.222A, 3.222B
4.222A, 4.222B
PCS 10G/25G lane 2
3.242A, 3.242B
4.242A, 4.242B
PCS 10G/25G lane 3
3.262A, 3.262B
4.262A, 4.262B
PMA lane 0
1.05DD, 1.05E6, 1.06A4-7
1.15DD, 1.15E6, 1.16A4-7
PMA lane 1
1.25DD, 1.25E6, 1.26A4-7
1.35DD, 1.35E6, 1.36A4-7
PMA lane 2
1.45DD, 1.45E6, 1.46A4-7
1.55DD, 1.55E6, 1.56A4-7
PMA lane 3
1.65DD, 1.65E6, 1.66A4-7
1.75DD, 1.75E6, 1.76A4-7
4.9
Eye Monitor
Each lane has its own non-destructive eye monitor to determine the quality of the received signal in
traffic mode.
Doc. No. MV-S110852-U0 Rev. C
Page 94
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Host Side Description
5
Host Side Description
The host interface functionality is identical to the line interface in Section 4 with the following
exceptions.
The host interface comprises four differential input lanes and four differential output lanes.
All line side registers have equivalent registers in the host side as shown in Table 58. The address
either has a different DEVAD or an offset in the REGAD. All the description of the line interface
functionality in Section 4 applies to the host interface except for the register address location.
Table 58: Equivalent Registers Between Line and Host Interface
Line Interface
Host Interfac e
D e s c ri pt i on
Start
End
Start
End
--
1.0000
1.00FF
1.1000
1.10FF
PMA (IEEE) Sub-Port 0
1.2000
1.20FF
1.3000
1.30FF
PMA (IEEE) Sub-Port 1
1.4000
1.40FF
1.5000
1.50FF
PMA (IEEE) Sub-Port 2
1.6000
1.60FF
1.7000
1.70FF
PMA (IEEE) Sub-Port 3
1.8000
1.80FF
1.9000
1.90FF
PMA FEC (IEEE) Sub-Port 0
1.0100
1.01FF
1.1100
1.11FF
PMA (IEEE) Sub-Port 0
1.2100
1.21FF
1.3100
1.31FF
PMA (IEEE) Sub-Port 1
1.4100
1.41FF
1.5100
1.51FF
PMA (IEEE) Sub-Port 2
1.6100
1.61FF
1.7100
1.71FF
PMA (IEEE) Sub-Port 3
1.8100
1.80FF
1.9100
1.90FF
PMA FEC (IEEE) Sub-Port 0
1.0200
1.02FF
1.1200
1.12FF
PMA (IEEE) Sub-Port 0
1.2200
1.22FF
1.3200
1.32FF
PMA (IEEE) Sub-Port 1
1.4200
1.42FF
1.5200
1.52FF
PMA (IEEE) Sub-Port 2
1.6200
1.62FF
1.7200
1.72FF
PMA (IEEE) Sub-Port 3
1.0300
1.03FF
1.1300
1.13FF
PMA (IEEE) Sub-Port 0
1.2300
1.23FF
1.3300
1.33FF
PMA (IEEE) Sub-Port 1
1.4300
1.43FF
1.5300
1.53FF
PMA (IEEE) Sub-Port 2
1.6300
1.63FF
1.7300
1.73FF
PMA (IEEE) Sub-Port 3
1.0400
1.04FF
1.1400
1.14FF
PMA (IEEE) Sub-Port 0
1.2400
1.24FF
1.3400
1.34FF
PMA (IEEE) Sub-Port 1
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 95
88X5113
Datasheet - Public
Table 58: Equivalent Registers Between Line and Host Interface (Continued)
Line Interface
Host Interfac e
D e s c ri pt i on
Start
End
Start
End
--
1.4400
1.44FF
1.5400
1.54FF
PMA (IEEE) Sub-Port 2
1.6400
1.64FF
1.7400
1.74FF
PMA (IEEE) Sub-Port 3
1.0500
1.05FF
1.1500
1.15FF
PMA (IEEE) Sub-Port 0
1.2500
1.25FF
1.3500
1.35FF
PMA (IEEE) Sub-Port 1
1.4500
1.45FF
1.5500
1.55FF
PMA (IEEE) Sub-Port 2
1.6500
1.65FF
1.7500
1.75FF
PMA (IEEE) Sub-Port 3
1.0600
1.06FF
1.1600
1.16FF
PMA (IEEE) Sub-Port 0
1.2600
1.26FF
1.3600
1.36FF
PMA (IEEE) Sub-Port 1
1.4600
1.46FF
1.5600
1.56FF
PMA (IEEE) Sub-Port 2
1.6600
1.66FF
1.7600
1.76FF
PMA (IEEE) Sub-Port 3
1.C000
1.C0FF
1.D000
1.D0FF
PMA (Marvell) Sub-Port 0
1.C200
1.C2FF
1.D200
1.D2FF
PMA (Marvell) Sub-Port 1
1.C400
1.C4FF
1.D400
1.D4FF
PMA (Marvell) Sub-Port 2
1.C600
1.C6FF
1.D600
1.D6FF
PMA (Marvell) Sub-Port 3
1.C800
1.C8FF
1.D800
1.D8FF
PMA (Marvell) All ports
1.C100
1.C1FF
1.D100
1.D1FF
PMA (Marvell) Sub-Port 0
1.C300
1.C3FF
1.D300
1.D3FF
PMA (Marvell) Sub-Port 1
1.C500
1.C5FF
1.D500
1.D5FF
PMA (Marvell) Sub-Port 2
1.C700
1.C7FF
1.D700
1.D7FF
PMA (Marvell) Sub-Port 3
1.C900
1.C9FF
1.D900
1.D9FF
PMA (Marvell) All ports
1.CB00
1.CBFF
1.DB00
1.DBFF
PMA (Marvell) All ports
1.CD00
1.CDFF
1.DD00
1.DDFF
PMA (Marvell) All ports
1.CF00
1.CFFF
1.DF00
1.DFFF
PMA (Marvell) All ports
3.4000
3.40FF
4.4000
4.40FF
200GBASE-R4 (IEEE)
3.4100
3.41FF
4.4100
4.41FF
200GBASE-R4 (IEEE)
3.3000
3.30FF
4.3000
4.30FF
1/2.5GBASE-R (IEEE) Sub-Port 0
3.3200
3.32FF
4.3200
4.32FF
1/2.5GBASE-R (IEEE) Sub-Port 1
3.3400
3.34FF
4.3400
4.34FF
1/2.5GBASE-R (IEEE) Sub-Port 2
Doc. No. MV-S110852-U0 Rev. C
Page 96
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Host Side Description
Table 58: Equivalent Registers Between Line and Host Interface (Continued)
Line Interface
Host Interfac e
D e s c ri pt i on
Start
End
Start
End
--
3.3600
3.36FF
4.3600
4.36FF
1/2.5GBASE-R (IEEE) Sub-Port 3
3.3100
3.31FF
4.3100
4.31FF
1/2.5GBASE-R (IEEE) Sub-Port 0
3.3300
3.33FF
4.3300
4.33FF
1/2.5GBASE-R (IEEE) Sub-Port 1
3.3500
3.35FF
4.3500
4.35FF
1/2.5GBASE-R (IEEE) Sub-Port 2
3.3700
3.37FF
4.3700
4.37FF
1/2.5GBASE-R (IEEE) Sub-Port 3
3.2000
3.20FF
4.2000
4.20FF
5/10/25GBASE-R (IEEE) Sub-Port 0
3.2200
3.22FF
4.2200
4.22FF
5/10/25GBASE-R (IEEE) Sub-Port 1
3.2400
3.24FF
4.2400
4.24FF
5/10/25GBASE-R (IEEE) Sub-Port 2
3.2600
3.26FF
4.2600
4.26FF
5/10/25GBASE-R (IEEE) Sub-Port 3
3.2100
3.21FF
4.2100
4.21FF
5/10/25GBASE-R (IEEE) Sub-Port 0
3.2310
3.23FF
4.2310
4.23FF
5/10/25GBASE-R (IEEE) Sub-Port 1
3.2500
3.25FF
4.2500
4.25FF
5/10/25GBASE-R (IEEE) Sub-Port 2
3.2700
3.27FF
4.2700
4.27FF
5/10/25GBASE-R (IEEE) Sub-Port 3
3.1000
3.10FF
4.1000
4.10FF
40GBASE-R4 (IEEE) Sub-Port 0
3.1200
3.12FF
4.1200
4.12FF
40GBASE-R4 (IEEE) Sub-Port 1
3.1400
3.14FF
4.1400
4.14FF
40GBASE-R4 (IEEE) Sub-Port 2
3.1600
3.16FF
4.1600
4.16FF
40GBASE-R4 (IEEE) Sub-Port 3
3.1100
3.11FF
4.1100
4.11FF
40GBASE-R4 (IEEE) Sub-Port 0
3.1300
3.13FF
4.1300
4.13FF
40GBASE-R4 (IEEE) Sub-Port 1
3.1500
3.15FF
4.1500
4.15FF
40GBASE-R4 (IEEE) Sub-Port 2
3.1700
3.17FF
4.1700
4.17FF
40GBASE-R4 (IEEE) Sub-Port 3
3.0000
3.00FF
4.0000
4.00FF
100GBASE-R4 (IEEE) sub-port 0
3.0400
3.04FF
4.0400
4.04FF
100GBASE-R4 (IEEE) sub-port 1
3.0500
3.05FF
4.0100
4.01FF
100GBASE-R4 (IEEE) sub-port 0
3.0100
3.05FF
4.0500
4.05FF
100GBASE-R4 (IEEE) sub-port 1
3.0700
3.07FF
4.0700
4.07FF
100GBASE-R4 (IEEE) sub-port 0
3.0B00
3.0BFF
4.0B00
4.0BFF
100GBASE-R4 (IEEE) sub-port 1
3.C000
3.C0FF
4.C000
4.C0FF
200GBASE-R4 (Marvell)
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 97
88X5113
Datasheet - Public
Table 58: Equivalent Registers Between Line and Host Interface (Continued)
Line Interface
Host Interfac e
D e s c ri pt i on
Start
End
Start
End
--
3.C100
3.C1FF
4.C100
4.C1FF
200GBASE-R4 (Marvell)
3.B000
3.B0FF
4.B000
4.B0FF
1/2.5GBASE-R (Marvell) Sub-Port 0
3.B200
3.B2FF
4.B200
4.B2FF
1/2.5GBASE-R (Marvell) Sub-Port 1
3.B400
3.B4FF
4.B400
4.B4FF
1/2.5GBASE-R (Marvell) Sub-Port 2
3.B600
3.B6FF
4.B600
4.B6FF
1/2.5GBASE-R (Marvell) Sub-Port 3
3.B100
3.B1FF
4.B100
4.B1FF
1/2.5GBASE-R (Marvell) Sub-Port 0
3.B300
3.B3FF
4.B300
4.B3FF
1/2.5GBASE-R (Marvell) Sub-Port 1
3.B500
3.B5FF
4.B500
4.B5FF
1/2.5GBASE-R (Marvell) Sub-Port 2
3.B700
3.B7FF
4.B700
4.B7FF
1/2.5GBASE-R (Marvell) Sub-Port 3
3.A000
3.A0FF
4.A000
4.A0FF
5/10/25GBASE-R (Marvell) Sub-Port 0
3.A200
3.A2FF
4.A200
4.A2FF
5/10/25GBASE-R (Marvell) Sub-Port 1
3.A400
3.A4FF
4.A400
4.A4FF
5/10/25GBASE-R (Marvell) Sub-Port 2
3.A600
3.A6FF
4.A600
4.A6FF
5/10/25GBASE-R (Marvell) Sub-Port 3
3.A100
3.A1FF
4.A100
4.A1FF
5/10/25GBASE-R (Marvell) Sub-Port 0
3.A300
3.A3FF
4.A300
4.A3FF
5/10/25GBASE-R (Marvell) Sub-Port 1
3.A500
3.A5FF
4.A500
4.A5FF
5/10/25GBASE-R (Marvell) Sub-Port 2
3.A700
3.A7FF
4.A700
4.A7FF
5/10/25GBASE-R (Marvell) Sub-Port 3
3.9000
3.90FF
4.9000
4.90FF
40GBASE-R4 (Marvell) Sub-Port 0
3.9200
3.92FF
4.9200
4.92FF
40GBASE-R4 (Marvell) Sub-Port 1
3.9400
3.94FF
4.9400
4.94FF
40GBASE-R4 (Marvell) Sub-Port 2
3.9600
3.96FF
4.9600
4.96FF
40GBASE-R4 (Marvell) Sub-Port 3
3.9100
3.91FF
4.9100
4.91FF
40GBASE-R4 (Marvell)
3.8000
3.80FF
4.8000
4.80FF
100GBASE-R4 (Marvell)
3.8100
3.81FF
4.8000
4.80FF
100GBASE-R4 (Marvell)
3.F000
3.F0FF
4.F000
4.F0FF
Line or Host Common
3.F100
3.F1FF
4.F100
4.F1FF
Line or Host Common
7.0000
7.00FF
7.1000
7.10FF
AP Auto-Negotiation (IEEE) Sub-Port 0
7.0200
7.02FF
7.1200
7.12FF
AP Auto-Negotiation (IEEE) Sub-Port 1
Doc. No. MV-S110852-U0 Rev. C
Page 98
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Host Side Description
Table 58: Equivalent Registers Between Line and Host Interface (Continued)
Line Interface
Host Interfac e
D e s c ri pt i on
Start
End
Start
End
--
7.0400
7.04FF
7.1400
7.14FF
AP Auto-Negotiation (IEEE) Sub-Port 2
7.0600
7.06FF
7.1600
7.16FF
AP Auto-Negotiation (IEEE) Sub-Port 3
7.0100
7.01FF
7.1100
7.11FF
AP Auto-Negotiation (IEEE) Sub-Port 0
7.0300
7.03FF
7.1300
7.13FF
AP Auto-Negotiation (IEEE) Sub-Port 1
7.0500
7.05FF
7.1500
7.15FF
AP Auto-Negotiation (IEEE) Sub-Port 2
7.0700
7.07FF
7.1700
7.17FF
AP Auto-Negotiation (IEEE) Sub-Port 3
7.8000
7.80FF
7.9000
7.90FF
AP Auto-Negotiation (Marvell) Sub-Port 0
7.8200
7.82FF
7.9200
7.92FF
AP Auto-Negotiation (Marvell) Sub-Port 1
7.8400
7.84FF
7.9400
7.94FF
AP Auto-Negotiation (Marvell) Sub-Port 2
7.8600
7.86FF
7.9600
7.96FF
AP Auto-Negotiation (Marvell) Sub-Port 3
7.8100
7.81FF
7.9100
7.91FF
AP Auto-Negotiation (Marvell) Sub-Port 0
7.8300
7.83FF
7.9300
7.93FF
AP Auto-Negotiation (Marvell) Sub-Port 1
7.8500
7.85FF
7.9500
7.95FF
AP Auto-Negotiation (Marvell) Sub-Port 2
7.8700
7.87FF
7.9700
7.97FF
AP Auto-Negotiation (Marvell) Sub-Port 3
30.0000
30.7FFF
30.8000
30.FFFF
SERDES Access
In most cases, the data flow between the line and host are symmetrical and the mode settings for
line and host are interchangeable. The configurations shown in Table 59 are not reversible.
The SGMII (PHY) mode is used on the host interface instead of the SGMII (System) mode. When
SGMII Auto-Negotiation is turned on (4.3n00.12 = 1, n = 0, 2, 4, 6 for sub-ports 0, 1, 2, 3
respectively), the speed advertised is set by the operational speed of the corresponding sub-port on
the line interface.
Table 59: Non-Reversible Mode Combinations
Line
H os t
P1S
P1P
P25*
P40*
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 99
88X5113
Datasheet - Public
6
Chip Bring Up
The chip bring up process involves applying power and supplying a clock to the device, hardware
resetting and configuring the device, load the firmware either through the EEPROM, or through the
MDIO/TWSI slave, and finally configuring the registers and engaging the data path. The firmware
will be reset by hardware reset. Firmware requires a reload if a hardware reset is issued.
6.1
Power Sequencing
VDDON, VDDOS, AVDDL, AVDDH, AVDDC, and DVDD is applied to the device and the
156.25 MHz differential clock is applied to the CLKP/CLKN pins. This device requires no power up
sequencing. However, the recommendation is to power up VDDO and AVDDT first, followed by
AVDDH/L/C, followed by DVDD.
If the 25 MHz output clock is to be used on the CLK25P/CLK25N pins, then the AVDDT supply
should be tied to 3.3V or 2.5V. Otherwise, it should be AC coupled to ground. AVDDT can be
combined with VDDON and VDDOS but with a filtering scheme.
After all the power supplies stabilize, the 25 MHz clock will be stable 7 to 10 ms after the
156.25 MHz clock is stable. The 25 MHz clock is not dependent on the state of the RESETn pin.
6.2
Reset and Configuration
RESETn should be asserted as shown in Section 7.5.3. At the de-assertion of RESETn, hardware
configuration values are latched into the device as described in Section 3.3.
Doc. No. MV-S110852-U0 Rev. C
Page 100
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
Absolute Maximum Ratings
7
Electrical Specifications
7.1
Absolute Maximum Ratings
Table 60: Absolute Maximum Ratings
Stresses above those listed in Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied.
Exposure to absolute maximum ratings for extended periods may affect device reliability.
Sy mbol
Parameter
Min
Max
Units
VDDAL
Power Supply Voltage on AVDDL with respect to VSS
-0.5
1.5
V
VDDAH
Power Supply Voltage on AVDDH with respect to VSS
-0.5
1.5
V
VDDAC
Power Supply Voltage on AVDDC with respect to VSS
-0.5
1.5
V
VDDAT
Power Supply Voltage on AVDDT with respect to VSS
-0.5
3.6
V
VDDON
Power Supply Voltage on VDDON with respect to VSS
-0.5
3.6
V
VDDOS
Power Supply Voltage on VDDOS with respect to VSS
-0.5
3.6
V
VDD
Power Supply Voltage on DVDD with respect to VSS
-0.5
1.5
V
TSTORAGE
Storage temperature
-40
+1251
C
1. 125C is only used as bake temperature for not more than 24 hours. Long-term storage (for example, weeks or longer) should be kept at
85C or lower.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 101
88X5113
Datasheet - Public
7.2
Recommended Operating Conditions
Table 61: Recommended Operating Conditions (Commercial)
Symbol
Parameter
Co n d i t i on
Min
Ty p
Max
U n it s
VDDAL1
AVDDL Supply
For AVDDL
0.95
1.0
1.05
V
VDDAH
AVDDH Supply
For AVDDH
0.95
1.0
1.05
V
VDDAC
AVDDC Supply
For AVDDC
0.95
1.0
1.05
V
VDDAT
AVDDT Supply
3.3V
3.135
3.3
3.465
V
2.5V
2.375
2.5
2.625
VVDDO
VDDON or VDDOS Supply
3.3V
3.135
3.3
3.465
2.5V
2.375
2.5
2.625
1.8V
1.71
1.8
1.89
1.2V
1.14
1.2
1.26
1.05V
0.998
1.05
1.103
V
VDD
DVDD Supply (C Temp)
–
0.855
0.9
0.945
V
VDD
DVDD Supply (I Temp)
–
0.902
0.95
0.997
V
–
1052
C
TJ
Maximum junction
temperature
–
–
1. Maximum noise allowed on supplies is 5 mVppd.
2. Refer to the white paper on TJ Thermal Calculations for detailed information.
Doc. No. MV-S110852-U0 Rev. C
Page 102
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
Package Thermal Information
7.3
Package Thermal Information
7.3.1
Thermal Conditions for 169-pin, FCBGA Package
Table 62: Thermal Conditions for 169-pin, FCBGA Package
Symbol
JA
Parameter
1
Thermal resistance junction to ambient for the
169-pin FCBGA package
JA = (TJ - TA)/P
P = Total power dissipation
JT
Thermal characteristic
parametera - junction to top
center of the 169-pin FCBGA
package
JT = (TJ - Ttop)/P
P = Total power dissipation,
Ttop: Temperature on the top
center of the package
JC
Thermal resistancea junction to case for the
169-pin FCBGA package
C o n d i t i on
Min
Ty p
Max
Un it s
JEDEC 3 in. x 4.5 in. 12-layer
PCB with no air flow
–
16.28
–
C/W
JEDEC 3 in. x 4.5 in. 12-layer
PCB with 1 meter/sec air flow
–
14.00
–
C/W
JEDEC 3 in. x 4.5 in. 12-layer
PCB with 2 meter/sec air flow
–
12.98
–
C/W
JEDEC 3 in. x 4.5 in. 12-layer
PCB with 3 meter/sec air flow
–
12.36
–
C/W
JEDEC 3 in. x 4.5 in. 12-layer
PCB with no air flow
–
1.30
–
C/W
JEDEC 3 in. x 4.5 in. 12-layer
PCB with 1 meter/sec air flow
–
1.31
–
C/W
JEDEC 3 in. x 4.5 in. 12-layer
PCB with 2 meter/sec air flow
–
1.32
–
C/W
JEDEC 3 in. x 4.5 in. 12-layer
PCB with 3 meter/sec air flow
–
1.33
–
C/W
JEDEC with no air flow
–
1.70
–
C/W
JEDEC with no air flow
–
5.81
–
C/W
JC = (TJ - TC)/Ptop
Ptop = Power dissipation
from the top of the package
JB
Thermal resistancea junction to board for the
169-pin FCBGA package
JB = (TJ - TB)/Pbottom
Pbottom = Power dissipation
from the bottom of the
package to the PCB surface
1. Refer to the white paper on TJ Thermal Calculations for detailed information.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 103
88X5113
Datasheet - Public
7.4
Current Consumption
7.4.1
88X5113 Current Consumption (Commercial)
Table 63: DVDD Current Consumption
Pins
Parameter
C o n d i t i on
Min
Ty p
Max
U n it s
DVDD
Base
Chip Base Power including
leakage
–
84
941
mA
1G PCS (1 lane power)
P1X, P1S, P1P
–
6
8
mA
2.5G PCS (1 lane power)
P2.5X
–
13
16
mA
5G PCS (1 lane power)
P5L, P5K
–
13
13
mA
10G PCS - No FEC (1 lane power)
P10LN, P10KN
–
26
29
mA
10G PCS - KR FEC (1 lane power)
P10KF, P10LF
–
31
37
mA
25G PCS - No FEC (1 lane power)
P25LN, P25LR, P25CN, P25KN,
P25BN, P25JN
–
54
60
mA
25G PCS - KR FEC (1 lane power)
P25LF, P25CF, P25KF, P25BF,
P25JF
–
67
76
mA
25G PCS - RS FEC (1 lane power)
P25LR, P25CR, P25KR, P25BR,
P25JR
–
99
111
mA
40G PCS - No FEC (4 lane power)
P40LN, P40CN, P40KN
–
97
109
mA
40G PCS - KR FEC (4 lane power)
P40CF, P40KL, P40LF
–
119
135
mA
50G PCS - No FEC (4 lane power)
P50LN, P50CN, P50KN
–
110
124
mA
50G PCS - KR FEC (4 lane power)
P50CF, P50KF, P50LF
–
139
160
mA
50G PCS - No FEC (2 lane power)
P50MN, P50BN, P50JN
–
107
122
mA
50G PCS - KR FEC (2 lane power)
P50MF, P50BF, P50JF
–
120
135
mA
50G PCS - RS FEC (2 lane power)
P50MR, P50BR, P50JR
–
221
231
mA
100G PCS - No FEC (4 lane power)
P100LN, P100KN
–
228
263
mA
100G PCS - RS FEC (4 lane power)
P100LR, P100CR, P100KR
–
430
481
mA
Example: P100LN to P100CR operation
Doc. No. MV-S110852-U0 Rev. C
Page 104
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
Current Consumption
Current consumption on DVDD = DVDD Base + P100LN + P100CR
Table 64: AVDDL and AVDDH Current Consumption
Pins
Parameter
Co n d i t i on
Min
Ty p
Max
U n it s
AVDDL
or
AVDDH
Base
Chip Base Power including leakage
–
54
350
mA
1G Speed (1 lane power)
P1*, R1
–
74
90
mA
2.5G Spkvban641eed (1
lane power)
P2.5X, R2.5
–
89
111
mA
5G Speed (1 lane power)
P5*, R5*
–
106
125
mA
10G Speed (1 lane power)
P10*, R10*
–
144
164
mA
25G Speed (1 lane power)
P25*, R25*
–
256
292
mA
40G Speed (4 lane power)
P40*, R40*
–
567
653
mA
50G Speed (4 lane power)
P50L*, P50C*, P50K*
–
641
739
mA
50G Speed (2 lane power)
P50M*, P50B*, P50J*
–
509
583
mA
100G Speed (4 lane power)
P100*, R100*
–
1003
1156
mA
Example: P100LN to P100CR operation
Current consumption on AVDD = AVDDL Base + AVDDH Base + P100* + P100* + AVDDC
Table 65: AVDDC and AVDDT Current Consumption
Pins
Parameter
Condition
Min
Ty p
Max
U n it s
AVDDC
Base
Chip Base Power including leakage
–
–
10
mA
AVDDT
Base
Chip Base Power including leakage
–
–
34
mA
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 105
88X5113
Datasheet - Public
7.4.2
88X5113 Current Consumption (Industrial)
Table 66: DVDD Current Consumption
Pins
Parameter
C ondi t i o n
Min
Ty p
Max
U n it s
DVDD
Base
Chip Base Power including
leakage
–
84
941
mA
1G PCS (1 lane power)
P1X, P1S, P1P
–
6
8
mA
2.5G PCS (1 lane power)
P2.5X
–
13
16
mA
5G PCS (1 lane power)
P5L, P5K
–
13
13
mA
10G PCS - No FEC (1 lane power)
P10LN, P10KN
–
26
29
mA
10G PCS - KR FEC (1 lane power)
P10KF, P10LF
–
31
37
mA
25G PCS - No FEC (1 lane power)
P25LN, P25LR, P25CN, P25KN,
P25BN, P25JN
–
54
60
mA
25G PCS - KR FEC (1 lane power)
P25LF, P25CF, P25KF, P25BF,
P25JF
–
67
76
mA
25G PCS - RS FEC (1 lane power)
P25LR, P25CR, P25KR, P25BR,
P25JR
–
99
111
mA
40G PCS - No FEC (4 lane power)
P40LN, P40CN, P40KN
–
97
109
mA
40G PCS - KR FEC (4 lane power)
P40CF, P40KL, P40LF
–
119
135
mA
50G PCS - No FEC (4 lane power)
P50LN, P50CN, P50KN
–
110
124
mA
50G PCS - KR FEC (4 lane power)
P50CF, P50KF, P50LF
–
139
160
mA
50G PCS - No FEC (2 lane power)
P50MN, P50BN, P50JN
–
107
122
mA
50G PCS - KR FEC (2 lane power)
P50MF, P50BF, P50JF
–
120
135
mA
50G PCS - RS FEC (2 lane power)
P50MR, P50BR, P50JR
–
221
231
mA
100G PCS - No FEC (4 lane power)
P100LN, P100KN
–
228
263
mA
100G PCS - RS FEC (4 lane power)
P100LR, P100CR, P100KR
–
430
481
mA
Example: P100LN to P100CR operation
Current consumption on DVDD = DVDD Base + P100LN + P100CR
Doc. No. MV-S110852-U0 Rev. C
Page 106
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
Current Consumption
Table 67: AVDDL and AVDDH Current Consumption
Pins
Parameter
Co n d i t i on
Min
Ty p
Max
U n it s
AVDDL
or
AVDDH
Base
Chip Base Power including leakage
–
54
350
mA
1G Speed (1 lane power)
P1*, R1
–
74
90
mA
2.5G Spkvban641eed (1
lane power)
P2.5X, R2.5
–
89
111
mA
5G Speed (1 lane power)
P5*, R5*
–
106
125
mA
10G Speed (1 lane power)
P10*, R10*
–
144
164
mA
25G Speed (1 lane power)
P25*, R25*
–
256
292
mA
40G Speed (4 lane power)
P40*, R40*
–
567
653
mA
50G Speed (4 lane power)
P50L*, P50C*, P50K*
–
641
739
mA
50G Speed (2 lane power)
P50M*, P50B*, P50J*
–
509
583
mA
100G Speed (4 lane power)
P100*, R100*
–
1003
1156
mA
Example: P100LN to P100CR operation
Current consumption on AVDD = AVDDL Base + AVDDH Base + P100* + P100* + AVDDC
Table 68: AVDDC and AVDDT Current Consumption
Pins
Parameter
Condition
Min
Ty p
Max
U n it s
AVDDC
Base
Chip Base Power including leakage
–
–
10
mA
AVDDT
Base
Chip Base Power including leakage
–
–
34
mA
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 107
88X5113
Datasheet - Public
7.5
Digital I/O Electrical Specifications
7.5.1
DC Operating Conditions
Table 69: DC Operating Conditions
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)
Sy mbol
Parameter
Pins
C ondi t i o n
Min
Ty p
Max
U n it s
VIH
Input High
Voltage
All digital inputs
VDDO* = 3.3V
2.0
–
VDDO +
0.3V
V
VDDO* = 2.5V
1.75
–
VDDO +
0.3V
V
VDDO* = 1.8V
1.26
–
VDDO +
0.3V
V
VDDO* = 1.5V
1.05
–
VDDO +
0.3V
V
VDDO* = 1.2V
0.84
–
VDDO +
0.3V
V
VDDO* = 1.05V
0.74
–
VDDO +
0.3V
V
VDDO* = 3.3V
-0.3
–
0.8
V
VDDO* = 2.5V
-0.3
–
0.75
V
VDDO* = 1.8V
-0.3
–
0.54
V
VDDO* = 1.5V
-0.3
–
0.45
V
VDDO* = 1.2V
-0.3
–
0.36
V
VDDO* = 1.05V
-0.3
–
0.31
V
VIL
Input Low
Voltage
All digital inputs
VOH
High-level
Output
Voltage
All digital outputs
IOH = -4 mA
VDDO
- 0.4V
–
–
V
VOL
Low-level
Output
Voltage
All digital outputs
IOL = 4 mA
–
–
0.4
V
IILK
Input
Leakage
Current
With internal
pull-up/pull-down
resistor
–
10
–
70
A
All others
without resistor
–
–
–
10
A
All pins
–
–
–
5
pF
CIN
Input
Capacitance
Doc. No. MV-S110852-U0 Rev. C
Page 108
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
Digital I/O Electrical Specifications
7.5.2
AC Operating Conditions
Table 70: AC Operating Conditions
(Over Full range of values listed in the Recommended Operating Conditions unless otherwise specified)
Sy mbol
P arameter
Pins
C o n d i t i on
Min
Ty p
Max
U n it s
TR
Rise Time
GPIO[0]
20 to 80% of Vppd
–
0.87
–
ns
TF
Fall Time
GPIO[0]
20 to 80% of Vppd
–
0.68
–
ns
7.5.3
Reset Timing
Table 71: Reset Timing
(Over Full range of values listed in the Recommended Operating Conditions unless otherwise specified)
Symbol
Parameter
C o n d i t i on
Min
Ty p
Max
U n it s
TPU_RESET
Valid Power to RESET
De-asserted
–
10
–
–
ms
TSU_CLK
Number of Valid CLK Cycles
Prior to RESET
De-asserted
–
50
–
–
clks
TRESET
Minimum Reset Pulse Width
During Normal Operation
–
10
–
–
ms
Figure 33: Reset Timing
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 109
88X5113
Datasheet - Public
7.5.4
MDC/MDIO Management Interface Timing
Table 72: MDC/MDIO Management Interface Timing
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)
S ymb o l
Pa r a m e te r
C ondition
Min
Typ
Max
U ni t s
TDLY_MDIO
MDC to MDIO
(Output) Delay Time
25 pf load on MDIO
3.5
–
19
ns
TSU_ MDIO
MDIO (Input) to MDC Setup
Time
–
6.5
–
–
ns
THD_ MDIO
MDIO (Input) to MDC Hold
Time
–
0.5
–
–
ns
TP_ MDC
MDC Period
Subject to TREAD_DLY
401, 2
–
–
ns
TH_ MDC
MDC High
–
12
–
–
ns
TL_ MDC
MDC Low
–
12
–
–
ns
TREAD_DLY
Two MDC Period During
Read Turnaround
–
80
–
–
ns
1. TP_MDC is minimum of 25 ns for 40 MHz MDC clock support with stretched TA, but 40 ns (25 MHz) with standard TA as per IEEE
specification. MDC of 40 MHz is supported only with VDDO supply of 1.8V and above. For lower VDDO, MDC frequency of up to 25 MHz
is supported.
2. The maximum MDC frequency is dependent on the Reference Clock used (CLK1P/N). The TP_MDC listed is based on 156.25 MHz
reference clock.
Figure 34: MDC/MDIO Management Interface
Doc. No. MV-S110852-U0 Rev. C
Page 110
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
Digital I/O Electrical Specifications
7.5.5
JTAG Timing
Table 73: JTAG Timing
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)
Symbol
Parameter
C o n d i t i on
Min
Ty p
Max
Units
TP_TCK
TCK Period
–
60
–
–
ns
TH_TCK
TCK High
–
12
–
–
ns
TL_TCK
TCK Low
–
12
–
–
ns
TSU_TDI
TDI, TMS-to-TCK Setup
Time
–
10
–
–
ns
THD_TDI
TDI, TMS-to-TCK Hold Time
–
10
–
–
ns
TDLY_TDO
TCK-to-TDO Delay
–
0
–
15
ns
Figure 35: JTAG Timing
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 111
88X5113
Datasheet - Public
7.6
SERDES Electrical Specifications
7.6.1
Chip-to-Module 100 Gbps/25 Gbps Electrical
Characteristics
7.6.1.1
Chip-to-Module 100 Gbps/25 Gbps Transmitter and Receiver
Characteristics
Table 74: Chip-to-Module CAUI-4/XXVAUI-1 Transmitter and Receiver Characteristics
Sy mbol
Description
Min
BR
Baud rate
25.78125
Bppm
Baud rate tolerance
-100
UI
Unit interval
38.787879
Vodis
Transmitter disabled output differential noise level
–
Vodpp
Output differential maximum peak-to-peak
Tr
Max
Units
Notes
Gbps
–
ppm
1
ps
–
35
mV
–
–
900
mV
–
Output transition time
10
–
ps
8
Vosdc
DC Common-mode voltage limits
-0.3
2.8
V
–
Vosac
AC Common-mode voltage limits (RMS)
–
17.5
mV
–
RLOD
Return loss differential output
–
–
dB
2, 4
RLOCD
Common to differential mode output return loss
See note #3.
dB
3, 4
Ehatx
Differential output eye height A
95
–
mV
10
Ehbtx
Differential output eye height B
80
–
mV
10
Ew tx
Differential output eye width
0.46
–
UI
5, 10
–
900
mV
7, 11
100
Transmitter Parameters
Receiver Parameters
Vidpp
Input differential voltage
RLID
Return loss differential input
See note #2.
dB
2, 4
RLIDC
Differential to common mode input return loss
See note #3.
dB
3, 4
Ehrx
Receiver stress tolerance -eye height
228
–
mV
5, 6, 11
Ew rx
Receiver stress tolerance -eye width
0.57
–
UI
5, 6, 11
Doc. No. MV-S110852-U0 Rev. C
Page 112
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
Note
The load is 100Ω differential for these parameters, unless otherwise specified. The Tx table
is defined on TP1a and Rx table is defined on TP4a refer to 83E.2 CAUI-4 chip-to-module
compliance point definitions in the IEEE 802.3 standard.
• Defines the allowable reference clock difference and Rx baud rate tolerance relative to
nominal. Tx baud rate is derived from multiplication of the reference clock(0ppmdelta).
• RLOD and RLID are defined accordingly: For 10 MHz -8 GHz RLOD/RLID>9.5-0.37*f
[dB] (Frequency defined in GHz). For 8 GHz -19 GHz RLOD/RLID>4.75-7.4Log(f/14)
[dB] (Frequency defined in GHz).
• RLOCD and RLID Care defined accordingly: For 10 MHz -12.89 GHz
RLOCD/RLIDC>22-(20/25.78)*f [dB] (Frequency defined in GHz). For 12.89 GHz -19
GHz RLOCD/RLIDC>15-(6/25.78)*f [dB] (Frequency defined in GHz).
• Relative to 100Ω differential and 25Ω common mode.
• Defined with a Bit Error Rate (BER) of 10^-15.
• Defined according to IEEE 802.3 section 83E.3.3.2 Host stressed input test.
• Vidpp refers to the peak-to-peak.
• Defined 20 to 80% of the signal. Refer to section 83E.3.1.5 Transition time in the
IEEE 802.3 standard.
• Refer to section 83E.3.1.4 Differential termination mismatch in IEEE 802.3 standard.
• Refer to section 83E.3.1.6 Host output eye width and eye height in IEEE 802.3 standard.
Defined on TP4 as defined in 83E.2 CAUI-4 chip-to-module compliance point definitions in
IEEE 802.3 standard.
Table 75: Chip-to-Module CAUI-4/XXVAUI-1 Settings and Configuration
Parameter
Setting / C o n f i g u ra t i on
Vods
The Vods is the output differential amplitude configurable range.
When driving a test load, the minimum value is achieved with AMP=TBD and
PRE=TBD, and the maximum value is achieved with AMP=TBD and PRE=TBD.
Output amplitude and pre-emphasis are configurable.
Viddp
The Viddp is the input differential voltage.
The maximum single-ended voltage (common mode voltage and swing voltage)
must not exceed 1.8V.
Vodpp
To achieve the specifications at Tp1a, the use of emphasis may be needed.
Output
Equalization
For emphasis control information, refer to the Functional Specifications.
NOTE: For further information, refer to the Functional Specifications.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 113
88X5113
Datasheet - Public
7.6.1.2
Chip-to-Module CAUI-4/XXVAUI-1 Interface Transmitter Output
Voltage Limits and Definitions
Figure 36: Chip-to-Module CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and
Definitions
Figure 37: Chip-to-Module CAUI-4/XXVAUI-1 Transmitter Output Differential Amplitude and Eye
Opening
Doc. No. MV-S110852-U0 Rev. C
Page 114
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
7.6.2
Chip-to-Chip 100 Gbps/25 Gbps (CAUI-4/XXVAUI-1)
Electrical Characteristics
7.6.2.1
Chip-to-Chip 100 Gbps/25 Gbps (CAUI-4/XXVAUI-1) Transmitter and
Receiver Characteristics
Table 76: Chip-to-Chip Gbps CAUI-4/XXVAUI-1 Interface Transmitter and Receiver Characteristics
Symbol
Description
Min
BR
Baud rate
25.78125
Bppm
Baud rate tolerance
-100
UI
Unit interval
38.787879
Max
100
U ni t s
Notes
Gbps
–
ppm
1
ps
–
Transmitter Parameters
Vodis
Transmitter disabled output differential noise level
–
30
mV
–
Vodpp
Output differential maximum peak-to-peak
–
1200
mV
–
Vf
Output waveform -Steady-state voltage
0.4
0.6
V
12
Vlfpp
Output waveform -Linear fit pulse peak
0.71*Vf
–
V
12
Prec
Output waveform -Pre-cursor full-scale range
See note #13.
–
13
Pstc
Output waveform - Post-cursor full-scale range
See note #13.
–
13
Vsnr
Transmitter signal-to-noise-and-distortion ratio
27
–
dB
14
Vosdc
DC Common-mode voltage limits
0.0
1.9
V
–
Vosac
AC Common-mode voltage limits (RMS)
–
12
mV
–
RLOD
Return loss differential output
See note #2.
dB
2, 5
RLOC
Return loss Common-Mode output
See note #3.
dB
3, 5
Juctx
Output jitter -Effective bounded uncorrelated, peak-to-peak
–
0.1
UI
10
Jeotx
Output Even-Odd jitter
–
0.035
UI
11
Jtpptx
Output jitter -Effective total uncorrelated, peak-to-peak
–
0.26
UI
6, 9, 10
1200
mV
8
Receiver Parameters
Vidpp
Input differential voltage
–
RLID
Return loss differential input
See note #2.
dB
2, 5
RLIDC
Differential to common mode input return loss
See note #4.
dB
4, 5
Rit
Receiver interference tolerance
See note #7.
UI
7
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 115
88X5113
Datasheet - Public
Note
The load is 100Ω differential for these parameters, unless otherwise specified. General
Comment: The Tx table is defined on TP0a as defined in 93.8.1.1 Transmitter test fixture in
IEEE 802.3 standard. General Comment: The Rx table is defined on TP5a as defined in
93.8.2.1 Receiver test fixture in 802.3 IEEE standard.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Defines the allowable reference clock difference and Rx baud rate tolerance relative
to nominal. Tx baud rate is derived from multiplication of the reference clock (0 ppm
delta).
RLOD and RLID are defined accordingly: For 50 MHz - 6 GHz RLOD/RLID>12.05-f
[dB] (Frequency defined in GHz). For 6 GHz -19 GHz RLOD/RLID>6.5-0.075*f [dB]
(Frequency defined in GHz).
RLOC is defined accordingly: For 50 MHz -6 GHz RLOC>9.05-f [dB] (Frequency
defined in GHz). For 6 GHz -19 GHz RLOC>3.5-0.075*f [dB] (Frequency defined in
GHz).
RLIDC is defined accordingly: For 50 MHz -6.95 GHz RLIDC>25-1.44*f [dB] (Frequency defined in GHz). For 6.95 GHz -19 GHz RLIDC>15 [dB].
Relative to 100Ω differential and 25Ω common mode.
Defined with a Bit Error Rate (BER) of 10^-15.
Defined according to IEEE 802.3 section 83D.3.3.1 Receiver interference tolerance.
Vidpp refers to the peak-to-peak.
The output Tx jitter is defined when applying the effect of a single-pole high-pass filter on the jitter. The high-pass filter 3 dB point is located at 10 MHz.
The transmitter output waveform follows IEEE requirements as specified in section
92.8.3.8.2 Effective bounded uncorrelated jitter and effective random jitter, (except
that the range for fitting CDFLi and CDFRi will be from10^-6 to 10^-4).
Defined for a PRBS9 pattern according to section 92.8.3.8.1 Even-odd jitter in 802.3
IEEE standard.
The transmitter output waveform follows IEEE requirements as specified in section
93.8.1.5.2 Steady-state voltage and linear fit pulse peak, (except that the values of
Np and Nw are 5).
The transmitter output waveform follows IEEE requirements as specified in section
83D.3.1.1 Transmitter equalization settings.
The transmitter output waveform follows IEEE requirements as specified in section
93.8.1.6 Transmitter output noise and distortion (except that the values of Np and
Nw are 5).
Table 77: Chip-to-Chip CAUI-4/XXVAUI-1 Settings and Configuration
Pa rameter
Setting/Configuration
Vods
The Vods is the output differential amplitude configurable range.
When driving a test load, the minimum value is achieved with AMP=TBD and PRE=TBD, and the
maximum value is achieved with AMP=TBD and PRE=TBD. Output amplitude and pre-emphasis are
configurable.
Viddp
The Viddp is the input differential voltage.
The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed
1.8V.
Vodpp
To achieve the specifications at Tp1a, the use of emphasis may be required.
Doc. No. MV-S110852-U0 Rev. C
Page 116
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
Table 77: Chip-to-Chip CAUI-4/XXVAUI-1 Settings and Configuration (Continued)
Pa rameter
Setting/Configuration
Output
Equalization
For emphasis control information, refer to the Functional Specifications.
NOTE: For further information, refer to the Functional Specifications.
7.6.2.2
Chip-to-Chip CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage
Limits and Definitions
Figure 38: Chip-to-Chip CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and
Definitions
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 117
88X5113
Datasheet - Public
Figure 39: Chip-to-Chip CAUI-4/XXVAUI-1 Transmitter Output Differential Amplitude and Eye
Opening
Doc. No. MV-S110852-U0 Rev. C
Page 118
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
7.6.3
100GBASE-CR4/50GBASE-CR2/25GBASE-CR Electrical
Characteristics
7.6.3.1
100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter
and Receiver Characteristics
Table 78: 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter and Receiver
Characteristics
Sy mbol
Parameter
Min
BR
Baud rate
25.78125
Bppm
Baud rate tolerance
-100
UI
Unit interval
38.787879
Max
100
U ni t s
Notes
Gbps
–
ppm
1
ps
–
Transmitter Parameters
Vodis
Transmitter disabled output differential noise level
–
35
mV
–
Vodpp
Output differential maximum peak-to-peak
–
1200
mV
–
Vf
Output waveform - Steady-state voltage
0.34
0.6
V
12
Vlfpp
Output waveform -Linear fit pulse peak
0.45*Vf
–
V
12
Ncs
Output waveform - Normalized coefficient step size
0.0083
0.05
–
13
Prec
Output waveform - Pre-cursor full-scale range
1.54
–
–
14
Pstc
Output waveform - Post-cursor full-scale range
4
–
–
14
Vsnr
Transmitter signal-to-noise-and-distortion ratio
26
–
dB
15
Vosdc
DC Common-mode voltage limits
0.0
1.9
V
–
Vosac
AC Common-mode voltage limits (RMS)
–
30
mV
–
RLOD
Return loss differential output
See note #2.
dB
2, 5
RLOCD
Return loss Common-Mode to Differential output
See note #3.
dB
3, 5
RLOC
Return loss Common-Mode output
2
–
dB
5, 16
Juctx
Output jitter -Effective bounded uncorrelated,
peak-to-peak
–
0.1
UI
17
Jeotx
Output Even-Odd jitter
–
0.035
UI
11
Jtpptx
Output jitter - Effective total uncorrelated, peak-to-peak
–
0.18
UI
6, 9, 17
1200
mV
8
Receiver Parameters
Vidpp
Input differential voltage
–
RLID
Return loss differential input
See note #2.
dB
2, 5
RLIDC
Differential to common mode input return loss
See note #4.
dB
4, 5
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 119
88X5113
Datasheet - Public
Table 78: 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter and Receiver
Characteristics (Continued)
Sy mbol
Parameter
Min
Rit
Receiver interference tolerance
Rjt
Receiver jitter tolerance
Note
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Page 120
U ni t s
Notes
See note #7.
UI
7
See note #10.
UI
6, 10
The load is 100Ω differential for these parameters, unless otherwise specified. General
Comment: The Tx table is defined on TP2 as defined in 92.11 Test fixtures in 802.3 IEEE
standard. General Comment: The Rx table is defined onTP3 as defined in 92.11 Test fixtures
in 802.3 IEEE standard.
•
Doc. No. MV-S110852-U0 Rev. C
Max
Defines the allowable reference clock difference and Rx baud rate tolerance relative
to nominal. Tx baud rate is derived from multiplication of the reference clock (0 ppm
delta).
RLOD and RLID are defined accordingly: For 10 MHz -8 GHz
RLOD/RLID>9.5-0.37*f [dB] (Frequency defined in GHz). For 8 GHz -19 GHz
RLOD/RLID>4.75-7.4*Log(f/14) [dB] (Frequency defined in GHz).
RLOCD and RLID Care defined accordingly: For 10 MHz -12.89 GHz
RLOCD/RLIDC>22-(20/25.78)*f [dB] (Frequency defined in GHz). For 12.89 GHz
-19 GHz RLOCD/RLIDC>15-(6/25.78)*f [dB] (Frequency defined in GHz).
Relative to 100Ω differential and 25Ω common mode.
Defined with a Bit Error Rate (BER) of 10^-5.
Defined according to IEEE 802.3 section 92.8.4.4 Receiver interference tolerance
test.
Vidpp refers to the peak-to-peak. Defined according to IEEE 802.3 section 92.8.4.1
Receiver input amplitude tolerance.
The output Tx jitter is defined when applying the effect of a single-pole high-pass filter on the jitter. The high-pass filter 3 dB point is located at 10 MHz.
Defined according to IEEE802.3 section 92.8.4.5 Receiver jitter tolerance.
Defined for a PRBS9 pattern according to section 92.8.3.8.1 Even-odd jitter in 802.3
IEEE standard.
The transmitter output waveform follows IEEE requirements as specified in section
92.8.3.5.2 Steady-state voltage and linear fit pulse peak.
The transmitter output waveform follows IEEE requirements as specified in section
92.8.3.5.4 Coefficient step size.
The transmitter output waveform follows IEEE requirements as specified in section
92.8.3.5.5 Coefficient range.
The transmitter output waveform follows IEEE requirements as specified in section
92.8.3.7 Transmitter output noise and distortion.
Defined from 200 MHz to 19 GHz.
The transmitter jitter follows IEEE requirements as specified in section 92.8.3.8.2
Effective bounded uncorrelated jitter and effective random jitter.
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
Table 79: 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Settings and Configuration
Pa rameter
Setting/Configuration
Vods
The Vods is the output differential amplitude configurable range.
When driving a test load, the minimum value is achieved with AMP=TBD and PRE=TBD, and the
maximum value is achieved with AMP=TBD and PRE=TBD. Output amplitude and pre-emphasis are
configurable.
Viddp
The Viddp is the input differential voltage.
The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed
1.8V.
Vodpp
To achieve the specifications at Tp1a, the use of emphasis may be needed.
Output
Equalization
For emphasis control information, refer to the Functional Specifications.
NOTE: For further information, refer to the Functional Specifications.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 121
88X5113
Datasheet - Public
7.6.3.2
100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter
Output Voltage Limits and Definitions
Figure 40: 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter Output Voltage
Limits and Definitions
Doc. No. MV-S110852-U0 Rev. C
Page 122
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
7.6.4
100GBASE-KR4/50GBASE-KR2/25GBASE-KR Electrical
Characteristics
7.6.4.1
100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter
and Receiver Characteristics
Table 80: 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter and Receiver
Characteristics
Symbol
Parameter
Min
Max
BR
Baud rate
Bppm
Baud rate tolerance
-100
UI
Unit interval
38.787879
25.78125
100
Units
Notes
Gbps
–
ppm
1
ps
–
Transmitter Parameters
Vodis
Transmitter disabled output differential noise level
–
30
mV
–
Vodpp
Output differential maximum peak-to-peak
–
1200
mV
–
Vf
Output waveform - Steady-state voltage
0.4
0.6
V
12
Vlfpp
Output waveform -Linear fit pulse peak
0.71*Vf
–
V
12
Ncs
Output waveform - Normalized coefficient step size
0.0083
0.05
–
13
Prec
Output waveform - Pre-cursor full-scale range
1.54
–
–
14
Pstc
Output waveform - Post-cursor full-scale range
4
–
–
14
Vsnr
Transmitter signal-to-noise-and-distortion ratio
27
–
dB
15
Vosdc
DC Common-mode voltage limits
0.0
1.9
V
–
Vosac
AC Common-mode voltage limits (RMS)
–
12
mV
–
RLOD
Return loss differential output
See note #2.
dB
2, 5
RLOC
Return loss Common-Mode output
See note #3.
dB
5, 16
Juctx
Output jitter - Effective bounded uncorrelated, peak-to-peak
–
0.1
UI
17
Jeotx
Output Even-Odd jitter
–
0.035
UI
11
Jtpptx
Output jitter - Effective total uncorrelated, peak-to-peak
–
0.18
UI
6, 9, 17
1200
mV
8
Receiver Parameters
Vidpp
Input differential voltage
–
RLID
Return loss differential input
See note #2.
dB
2, 5
RLIDC
Differential to common mode input return loss
See note #4.
dB
4, 5
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 123
88X5113
Datasheet - Public
Table 80: 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter and Receiver
Characteristics (Continued)
Symbol
Parameter
Min
Rit
Receiver interference tolerance
Rjt
Receiver jitter tolerance
Note
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Page 124
Units
Notes
See note #7.
UI
7
See note #10.
UI
6, 10
The load is 100Ω differential for these parameters, unless otherwise specified. General
Comment: The Tx table is defined on TP0a as defined in 93.8.1.1 Transmitter test fixture in
the IEEE 802.3 standard. General Comment: The Rx table is defined on TP5a as defined in
93.8.2.1 Receiver test Micmac in the IEEE 802.3 standard.
•
Doc. No. MV-S110852-U0 Rev. C
Max
Defines the allowable reference clock difference and Rx baud rate tolerance relative
to nominal. Tx baud rate is derived from multiplication of the reference clock (0 ppm
delta).
RLOD and RLID are defined accordingly: For 50 MHz -6 GHz RLOD/RLID>12.05-f
[Frequency] (Frequency defined in GHz). For 6 GHz -19 GHz
RLOD/RLID>6.5-0.075*f [dB] (Frequency defined in GHz).
RLOC is defined accordingly: For 50 MHz -6 GHz RLOC>9.05-f [dB] (Frequency
defined in GHz). For 6 GHz -19 GHz RLOC>3.5-0.075*f [dB] (Frequency defined in
GHz).
RLIDC is defined accordingly: For 50 MHz -6.95 GHz RLIDC>25-1.44*f [dB] (Frequency defined in GHz). For 6.95 GHz -19 GHz RLIDC>15 [dB].
Relative to 100Ω differential and 25Ω common mode.
Defined with a Bit Error Rate (BER) of 10^-5.
Defined according to IEEE 802.3 section 93.8.2.3 Receiver interference tolerance.
Vidpp refers to the peak-to-peak.
The output Tx jitter is defined when applying the effect of a single-pole high-pass filter on the jitter. The high-pass filter 3 dB point is located at 10 MHz.
Defined according to IEEE 802.3 section 93.8.2.4 Receiver jitter tolerance
Defined for a PRBS9 pattern according to section 92.8.3.8.1 Even-odd jitter in the
IEEE 802.3 standard.
The transmitter output waveform follows IEEE requirements as specified in section
93.8.1.5.2 Steady-state voltage and linear fit pulse peak.
The transmitter output waveform follows IEEE requirements as specified in section
93.8.1.5.4 Coefficient step size.
The transmitter output waveform follows IEEE requirements as specified in section
93.8.1.5.5 Coefficient range.
The transmitter output waveform follows IEEE requirements as specified in section
93.8.1.6 Transmitter output noise and distortion.
The transmitter output jitter follows IEEE requirements as specified.
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
Table 81: 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Settings and Configuration
Parameter
Setting/Configuration
Vods
The Vods is the output differential amplitude configurable range.
When driving a test load, the minimum value is achieved with AMP=TBD and PRE=TBD, and the
maximum value is achieved with AMP=TBD and PRE=TBD. Output amplitude and pre-emphasis are
configurable.
Viddp
The Viddp is the input differential voltage.
The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed
1.8V.
Vodpp
To achieve the specifications at Tp1a, the use of emphasis may be needed.
Output
Equalization
For emphasis control information, refer to the Functional Specifications.
NOTE: For further information, refer to the Functional Specifications.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 125
88X5113
Datasheet - Public
7.6.4.2
100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter
Output Voltage Limits and Definitions
Figure 41: 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter Output Voltage
Limits and Definitions
Doc. No. MV-S110852-U0 Rev. C
Page 126
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
7.6.5
40 Gbps Parallel Physical Interface (XLPPI) Electrical
Characteristics
7.6.5.1
40 Gbps Parallel Physical Interface (XLPPI) Interface Transmitter and
Receiver Characteristics
Table 82: XLPPI Interface Transmitter and Receiver Characteristics
Symbol
Parameter
Min
BR
Baud rate
10.3125
Bppm
Baud rate tolerance
-100
UI
Unit interval
96.969697
Max
100
Units
Notes
Gbps
–
ppm
1
ps
–
Transmitter Parameters
Vodpp
Output differential maximum peak-to-peak
190
700
mV
–
Vos
Single-ended output voltage
-0.3
1.9
V
11
QSQ
Signal-to-noise-ratio
45
–
V/V
14
Tr/Tf
Output differential transition time
28
–
ps
2, 11
RLOD
Return loss differential output
See note #3.
3, 4,11
RLOC
Return loss common mode output
See note #3.
3, 4, 11
Tlskew
Output lane-to-lane skew
–
29
ns
–
Tlskew v
Output lane-to-lane skew variation
–
200
ps
–
dZM
Termination mismatch
–
5
%
9, 11
Vocmac
Output AC common mode voltage, RMS
–
15
mV
11, 12
Jddpw st
Output jitter - Data dependent pulse width shrinkage
–
0.07
UI
11
J2tx
Output 99% jitter - J2, peak-to-peak
–
0.17
UI
8, 11
J9tx
Output jitter - J9, peak-to-peak
–
0.29
UI
8, 11
Jtpptx
Output jitter - Total, peak-to-peak
–
0.22
UI
5, 8, 11
Receiver Parameters
Vidpps
Input differential sensitivity
300
–
mV
5,7,11
Vidpp
Input differential voltage - 850 mV 5, 7. 11
–
850
mV
5,7,11
RLID
Return loss differential input
See note # 3.
dB
3, 4, 11
RLICD
Reflected input common mode to differential conversion
10
–
dB
10, 11
Rlskew
Input lane-to-lane skew
–
160
ns
–
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 127
88X5113
Datasheet - Public
Table 82: XLPPI Interface Transmitter and Receiver Characteristics (Continued)
Symbol
Parameter
Min
Max
Units
Notes
Rlskew v
Input lane-to-lane skew variation
–
4
ns
–
J2rx
Input 99% jitter - J2, peak-to-peak
–
0.42
UI
6, 11
J9rx
Input jitter - J9, peak-to-peak
–
0.65
UI
11
Jddpw sr
Input jitter - Data dependent pulse width shrinkage
–
0.34
UI
11, 13
Vicmac
Input AC common mode voltage, RMS
–
7.5
mV
11, 12
The load is 100Ω differential for these parameters, unless otherwise specified. The reference
points are according to Figure 86-2 in the IEEE Std 802.3-2010.
Note
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Doc. No. MV-S110852-U0 Rev. C
Page 128
Defines the allowable reference clock difference and Rx baud rate tolerance relative
to nominal. Tx baud rate is derived from multiplication of the reference clock (zero
ppm delta).
Defined from 20 to 80% of the signal's voltage levels when driving a pattern consisting of eight consecutive ones followed by an equal run of zeros with no equalization.
Maximum transition time is limited by mask as defined in IEEE 802.3 section
86A.5.3.6 Eye mask for TP1a and TP4.
RLOD/RLID are defined from:
10.0 MHz to 4.11 GHz RLOD/RLID>12-2(Frequency)^0.5 [dB] (Frequency defined
in GHz). For 4.11 GHz to 11.1 GHz RLOD/RLID>6.3-13log(Frequency/5.5)[dB] (Frequency defined in GHz). RLOC is defined from:
10.0 MHz to 2.5 GHz RLOC>7-1.6*(Frequency) [dB] (Frequency defined in GHz).
For 2.5 GHz to 11.1 GHz RLOC>3dB.
Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components
related to the transmitter/receiver breakout.
Defined with a Hit Ratio of 5*10^-5.
Defined with all but 1 percent of occurrences.
Vidpps refers to the internal eye opening while Vidp prefers to the peak-to-peak.
The output Tx jitter is defined when applying the effect of a single-pole high-pass filter on the-jitter. The high-pass filter 3 dB point is located at 4 MHz.
Defined at 1 MHz frequency. Defined according to section 86A.5.3.2 Termination
mismatch in the IEEE Std 802.3-2010.
Defined from 10 MHz to 11.1 GHz.
Defined at reference points TP1A or TP4A. For maximal allowed interconnect characteristics between points TP0 and TP1A or pointsTP4A and TP5, refer to Section
86A.5.1.1.1 Reference insertion losses of HC Band MCB in IEEE Std 803.2-2010.
The parameter at any time is the average of signal(+) and signal(-) at that time. This
parameter is calculated by applying the histogram function over 1 UI to the common
mode signal.
Defined in coherence with Section 86A.5.3.4 Data Dependent Pulse Width Shrinkage in IEEE Std 803.2-2010.
The Qdq ratio is defined under the restrictions of the eye mask as defined in IEEE
802.3 section 86A.5.3.6 Eye mask for TP1a and TP4.
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
Table 83: XLPPI Settings and Configuration
Parameter
Setting/Configuration
Vods
The Vods is the output differential amplitude configurable range.
When driving a test load, the minimum value is achieved with AMP=TBD and PRE=TBD, and the
maximum value is achieved with AMP=TBD and PRE=TBD. Output amplitude and pre-emphasis are
configurable.
Viddp
The Viddp is the input differential voltage.
The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed
1.8V.
Vodpp
To achieve the specifications at P1a, the use of emphasis may be needed.
Output
Equalization
Tx emphasis may be configured to achieve the required deterministic jitter at the module connector.
For emphasis control information, refer to the Functional Specifications.
NOTE: For further information, refer to the Functional Specifications.
7.6.5.2
XLPPI Interface Transmitter Output Voltage Limits and Definitions
Figure 42: XLPPI Interface Transmitter Output Voltage Limits and Definitions
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 129
88X5113
Datasheet - Public
Figure 43: XLPPI Transmitter Output Differential Amplitude and Eye Opening
Doc. No. MV-S110852-U0 Rev. C
Page 130
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
7.6.6
40 Gbps Attachment Unit Interface (XLAUI) Electrical
Characteristics
7.6.6.1
40 Gbps Attachment Unit Interface (XLAUI) Interface Transmitter and
Receiver Characteristics
Table 84: XLAUI Interface Transmitter and Receiver Characteristics
Sy mbol
Parameter
BR
Baud rate
Bppm
Baud rate tolerance
UI
Unit interval
Min
Max
10.3125
-100
100
96.969697
U ni t s
Notes
Gbps
–
ppm
1
ps
–
Transmitter parameters
Vodpp
Output differential peak-to-peak
400
760
mV
9
Vos
Single-ended output voltage
-0.4
1.9
V
–
DEtx
Output de-emphasis
4.4
7
dB
–
Tr/Tf
Output differential transition time
24
–
ps
2
RLOD
Return loss differential output
12
–
dB
3,4
RLOC
Return loss common mode output
9
–
dB
3,4
Tlskew
Output lane-to-lane skew
–
28
ns
–
Tlskew v
Output lane-to-lane skew variation
–
200
ps
–
dZM
Termination mismatch
–
5
%
10
Vocmac
Output AC common mode voltage
–
15
mVRMS
-
Jdtx
Output jitter - Deterministic, peak-to-peak
–
0.17
UI
-
Jtpptx
Output jitter - Total, peak-to-peak
–
0.32
UI
5, 8
Evodpp
Output eye width at Vodpp (min)
0.24
–
UI
–
Receiver parameters
Vidpps
Input differential sensitivity
85
–
mV
7
Vidpp
Input differential voltage
–
850
mV
7
RLID
Return loss differential input
12
–
dB
3, 4
RLICD
Return loss common to differential input
15
–
dB
11
Rlskew
Input lane-to-lane skew
–
161
ns
–
Rlskew v
Input lane-to-lane skew variation
–
3.8
ns
–
Jtrlsx
Input jitter - Sinusoidal, low frequency
–
5
UI
12
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 131
88X5113
Datasheet - Public
Table 84: XLAUI Interface Transmitter and Receiver Characteristics (Continued)
Sy mbol
Parameter
Min
Max
U ni t s
Notes
Jtrsx
Input jitter - Sinusoidal, high frequency
–
0.05
UI
13
Jdrx
Input jitter - Deterministic, peak-to-peak
–
0.42
UI
–
Jtpprx
Input jitter - Total, peak-to-peak
–
0.62
UI
5, 6
Vicmac
Input AC common mode voltage
–
20
mVRMS
–
The load is 100Ω differential for these parameters, unless otherwise specified.
•
Note
•
•
•
•
•
•
•
•
•
•
•
•
Doc. No. MV-S110852-U0 Rev. C
Page 132
Defines the allowable reference clock difference and Rx baud rate tolerance relative
to nominal. Tx baud rate is derived from multiplication of the reference clock (0 ppm
delta).
Defined from 20 to 80% of the signal's voltage levels when driving a pattern consisting of eight consecutive ones followed by an equal run of zeros with no equalization.
Max transition time is limited by mask as defined in IEEE 802.3 section 83A.3.3.5
Transmitter eye mask and transmitter jitter definition.
Defined from 10 MHz to 2.125 GHz. For 2.125 GHz -11.1 GHz
RLOD/RLID>6.5-13.33log(Frequency/5.5)[dB] (Frequency defined in GHz). For
2.125 GHz -7.1 GHz RLOC>3.5-13.33log(Frequency/5.5)[dB] (Frequency defined in
GHz). For 7.1 GHz -11.1 GHz RLOC>2[dB].
Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components
related to the transmitter/receiver breakout.
Defined with a Bit Error Rate (BER) of 10^-12.
This parameter does not include sinusoidal components.
Vidpps refers to the internal eye opening while Vidpp refers to the peak-to-peak.
The output Tx jitter is defined when applying the effect of a single-pole high-pass filter on the jitter. The high-pass filter 3 dB point is located at 4 MHz.
Defined with emphasis disabled.
Defined at 1 MHz frequency. Defined according to section 86A.5.3.2 Termination
mismatch in IEEE Std 802.3ba.
Defined from 10 MHz to 11.1 GHz.
Defined below 40 kHz.
Defined from 4 MHz to 20 MHz.
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
Table 85: XLAUI Settings and Configuration
Parameter
Setting/Configuration
Vods
The Vods is the output differential amplitude configurable range.
When driving a test load, the minimum value is achieved with AMP=TBD and PRE=TBD, and the
maximum value is achieved with AMP=TBD and PRE=TBD. Output amplitude and pre-emphasis are
configurable.
Viddp
The Viddp is the input differential voltage.
The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed
1.8V.
Output
Equalization
Tx emphasis may be configured to achieve the required deterministic jitter at the module connector.
For emphasis control information, refer to the Functional Specifications.
NOTE: For further information, refer to the Functional Specifications.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 133
88X5113
Datasheet - Public
7.6.6.2
XLAUI Interface Transmitter Output Voltage Limits and Definitions
Figure 44: XLAUI Interface Transmitter Output Voltage Limits and Definitions
Figure 45: XLAUI Transmitter Output Differential Amplitude and Eye Opening
Doc. No. MV-S110852-U0 Rev. C
Page 134
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
7.6.7
40GBASE-CR4 Electrical Characteristics
7.6.7.1
40GBASE-CR4 Interface Transmitter and Receiver Characteristics
Table 86: 40GBASE-CR4 Interface Transmitter and Receiver Characteristics
Sy mbol
Parameter
BR
Baud rate
Bppm
Baud rate tolerance
UI
Unit interval
Min
Max
10.3125
-100
100
96.969697
U ni t s
Notes
Gbps
–
ppm
1
ps
–
Transmitter Parameters
Vodis
Transmitter disabled output differential noise level
–
30
mV
–
Vodpp
Output differential maximum peak-to-peak
–
1200
mV
–
DEtx
Output de-emphasis
–
12
Vos
Common-mode voltage limits
0.0
1.9
V
–
RLOD
Return loss differential output
10
–
dB
2, 3
Tlskew
Output lane-to-lane skew
–
54
ns
–
Tlskew v
Output lane-to-lane skew variation
–
600
ps
–
Jdtx
Output jitter - Deterministic, peak-to-peak
–
0.15
UI
–
Jdcdtx
Output duty cycle distortion
–
0.035
UI
9, 10
Jrndtx
Output jitter - Random
–
0.15
UI
4
Jtpptx
Output jitter - Total, peak-to-peak
–
0.28
UI
4, 7, 11
See note 12.
Receiver Parameters
Vidpp
Input differential voltage
–
1200
mV
6
RLID
Return loss differential input
10
–
dB
2, 3
RLIDC
Differential to common mode input return loss
10
–
dB
13
Rlskew
Input lane-to-lane skew
–
134
ns
–
Rlskew v
Input lane-to-lane skew variation
–
3.4
ns
–
Js
Input sinusoidal jitter
–
0.115
UI
5
Jrndrx
Input random jitter
–
0.13
UI
4, 5
Jdcd
Input duty cycle distortion
–
0.035
UI
5
Vinamp
Calibrated far-end crosstalk
–
6.3
mVRMS
5, 8
ICN
Calibrated integrated crosstalk noise
–
3.7
mVRMS
5
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 135
88X5113
Datasheet - Public
The load is 100Ω differential for these parameters, unless otherwise specified.
Note
Defines the allow able reference clock difference and Rx baud rate tolerance
relative to nominal. Tx baud rate is derived from multiplication of the reference
clock (zero ppm delta).
Defined from 50 MHz to 2.5 GHz.
For 2.5 GHz -7.5 GHz RLOD>9-12log(Frequency/2.5)[dB] (Frequency defined in
GHz).
For 2.5 GHz -7.5 GHz RLID>9-12log(Frequency/2.5)[dB] (Frequency defined in
GHz).
Relative to 100Ω differential and 25Ω common mode. Return loss includes
contributions from on-chip circuitry, chip packaging, and off-chip optimized
components related to the transmitter/receiver breakout.
Defined with a Bit Error Rate (BER) of 10^-12.
Defined for interference tests according IEEE 802.3 section 85.8.4.2 Receiver
interference tolerance test.
Vidpp refers to the peak-to-peak.
The output Tx jitter is defined w hen applying the effect of a single-pole high-pass
filter on the jitter. The high-pass filter 3 dB point is located at 4 MHz.
The receiver tolerates noise at an amplitude specified under receiver interference
tolerance test1.
The value for test2 is 2.2 mV.
Jdcdtx is included as a part of Jdtx.
Defined for a 1010 pattern and includes the entire range of emphasis.
The jitter is defined with emphasis off.
The transmitter output waveform follow s IEEE requirements as specified in section
85.8.3.3 Transmitter output waveform.
Defined from 10 MHz to 10 GHz.
Table 87: 40GBASE-CR4 Settings and Configuration
Pa rameter
Setting/Configuration
Viddp
The Viddp is the input differential voltage.
The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed
1.8V.
Output
Equalization
The default as determined by the IEEE is 3 TAP FIR optimized per interconnect.
NOTE: For further information, refer to the Functional Specifications.
Doc. No. MV-S110852-U0 Rev. C
Page 136
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
7.6.7.2
40GBASE-CR4 Interface Transmitter Output Voltage Limits and
Definitions
Figure 46: 40GBASE-CR4Interface Transmitter Output Voltage Limits and Definitions
Figure 47: 40GBASE-CR4Transmitter Output Differential Amplitude and Eye Opening
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 137
88X5113
Datasheet - Public
7.6.8
40GBASE-KR4 Electrical Characteristics
7.6.8.1
40GBASE-KR4 Interface Transmitter and Receiver Characteristics
Table 88: 40GBASE-KR4 Interface Transmitter and Receiver Characteristics
Sy mbol
Parameter
BR
Baud rate
Bppm
Baud rate tolerance
UI
Unit interval
Min
Max
10.3125
-100
100
96.969697
Units
Notes
Gbps
–
ppm
1
ps
–
Transmitter Parameters
Vodis
Transmitter disabled output differential noise level
–
30
mV
–
Vodpp
Output differential maximum peak-to-peak
–
1200
mV
–
Vos
Common-mode voltage limits
0
1.9
V
–
Tr/Tf
Output differential transition time
24
47
ps
10
RLOD
Return loss differential output
9
–
dB
2, 3
RLOC
Return loss common mode output
6
–
dB
2, 3
Tlskew
Output lane-to-lane skew
–
557
UI
–
Tlskew v
Output lane-to-lane skew variation
–
6
UI
–
Jdtx
Output jitter - Deterministic, peak-to-peak
–
0.15
UI
–
Jdcdtx
Output duty cycle distortion
–
0.035
UI
10, 11
Jrndtx
Output jitter - Random
–
0.15
UI
4
Jtpptx
Output jitter - Total, peak-to-peak
–
0.28
UI
4, 7
Receiver Parameters
Vidpp
Input differential voltage
–
1200
mV
6
RLID
Return loss differential input
9
–
dB
2, 3
Rlskew
Input lane-to-lane skew
–
1382
UI
–
Rlskew v
Input lane-to-lane skew variation
–
35
UI
–
Js
Input sinusoidal jitter
–
0.115
UI
5
Jrndrx
Input random jitter
–
0.13
UI
4, 5
Jdcd
Input duty cycle distortion
–
0.035
UI
5
Vinamp
Input broadband noise amplitude
–
5.2
mVRMS
5, 9
Doc. No. MV-S110852-U0 Rev. C
Page 138
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
Table 88: 40GBASE-KR4 Interface Transmitter and Receiver Characteristics (Continued)
Sy mbol
Parameter
Min
mTC
Test Channel Magnitude factor
Max
1
Units
Notes
–
5, 8
The load is 100Ω differential for these parameters, unless otherwise specified.
Defines the allow able reference clock difference and Rx baud rate tolerance
relative to nominal.
Tx baud rate is derived from multiplication of the reference clock (0 ppm delta).
Defined from 50 MHz to 2.5 GHz.
For 2.5 GHz -7.5 GHz RLOD>9-12log(Frequency/2.5)[dB] (Frequency defined in
GHz).
Note
For 2.5 GHz -7.5 GHz RLOC>6-12log(Frequency/2.5)[dB] (Frequency defined in
GHz).
For 2.5 GHz -7.5 GHz RLID>9-12log(Frequency/2.5)[dB] (Frequency defined in
GHz).
Relative to 100Ω differential and 25Ω common mode. Return loss includes
contributions from on-chip circuitry, chip packaging, and off-chip optimized
components related to the transmitter/receiver breakout.
Defined with a Bit Error Rate (BER) of 10^-12.
Defined for interference tests according IEEE 802.3 Annex 69A.
For informative interconnect characteristics, refer to IEEE 802.3 Annex 69B.
Vidpp refers to the peak-to-peak.
The output Tx jitter is defined w hen applying the effect of a single-pole high-pass
filter on the jitter.
The high-pass filter 3 dB point is located at 4 MHz.
mTC describes the insertion loss transmission magnitude relative to the maximal
allowed fitted attenuation mask Amax over a predefined frequency range.
Defined for test1. The value for test2 is 0.5.
The receiver tolerates noise at an amplitude specified under receiver interference
tolerance test1. The value for test2 is 12 mV.
Jdcdtx is included as a part of Jdtx.
Defined for a 1010 pattern and includes the entire range of emphasis.
The transmitter output waveform follow s IEEE requirements as specified in section
72.7.1.10 Transmitter output waveform requirements.
Table 89: 40GBASE-KR4 Settings and Configuration
Parameter
Setting / C o n f i g u ra t i on
Viddp
The Viddp is the input differential voltage.
The maximum single-ended voltage (common mode voltage and swing voltage)
must not exceed 1.8V.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 139
88X5113
Datasheet - Public
Table 89: 40GBASE-KR4 Settings and Configuration (Continued)
Parameter
Setting / C o n f i g u ra t i on
Output
Equalization
The default as determined by the IEEE is 3 TAP FIR optimized per interconnect.
NOTE: For further information, refer to the Functional Specifications.
7.6.8.2
40GBASE-KR4 Interface Transmitter Output Voltage Limits and
Definitions
Figure 48: 40GBASE-KR4 Interface Transmitter Output Voltage Limits and Definitions
Doc. No. MV-S110852-U0 Rev. C
Page 140
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
Figure 49: 40GBASE-KR4 Transmitter Output Differential Amplitude and Eye Opening
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 141
88X5113
Datasheet - Public
7.6.9
SFP+ Interface (SFI) Limiting Module Electrical
Characteristics
7.6.9.1
SFI Transmitter and Receiver Characteristics
Table 90: SFI Transmitter and Receiver Characteristics
Sy mbol
Parameter
BR
Baud rate
Bppm
Baud rate tolerance
UI
Unit interval
Min
Max
10.3125
-100
100
96.969697
U ni t s
N o t es
Gbps
–
ppm
1
ps
–
Transmitter parameters
Vodpp
Output differential peak-to-peak
190
700
mV
9,14,7
Vos
Single-ended output voltage
-0.3
1.9
V
13
DEtx
Output de-emphasis
4.4
7
dB
13
Tr/Tf
Output differential transition time
24
–
ps
2, 13
RLOD
Return loss differential output
12
–
dB
3,4,13
RLOC
Return loss common mode output
9
–
dB
3,4,13
dZM
Termination mismatch
–
5
%
10,13
Vocmac
Output AC common mode voltage
–
12
mVRMS
13,15
Jutx
Output jitter - Uncorrelated, RMS
–
0.023
UI
5,14,12
Jddpw st
Output jitter - Data dependent pulse width shrinkage
–
0.055
UI
14
Jddtx
Output jitter - Data dependent, peak-to-peak
–
0.1
UI
14
Jtpptx
Output jitter - Total, peak-to-peak
–
0.28
UI
8,14,17
Receiver parameters
Vidpps
Input differential sensitivity
300
–
mV
7,14
Vidpp
Input differential voltage
–
850
mV
7,14
RLID
Return loss differential input
12
–
dB
3,4,13
RLICD
Reflected input common mode to differential
conversion
15
–
-dB
11,13
J2
Input 99% jitter - peak-to-peak
–
0.42
UI
6,14,16
Jddpw sr
Input jitter - Data dependent pulse width shrinkage
–
0.3
UI
14, 16
Jtpprx
Input jitter - Total, peak-to-peak
–
0.7
UI
5,14,16
Vicmac
Input AC common mode voltage, RMS
–
7.5
mVRMS
14,15,16
Doc. No. MV-S110852-U0 Rev. C
Page 142
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
The load is 100Ω differential for these parameters, unless otherwise specified.
The reference points are according to Table 10 SFI Reference Points in SFF 8431 Rev. 4.1 standard.
Note
Defines the allow able reference clock difference and Rx baud rate tolerance relative to nominal. Tx
baud rate is derived from multiplication of the reference clock (zero ppm delta).
Defined from 20 to 80% of the signal's voltage levels w hen driving a pattern consisting of 8
consecutive ones follow ed by an equal run of zeros with no equalization. Max transition time is
limited by mask as defined in SFF 8431 Rev. 4.1 standard. Figure 19 Transmitter Differential Output
Compliance Mask at B and B.
RLOD/RLID are defined from 10 MHz to 2.8 GHz.
Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from
on-chip circuitry, chip packaging, and off-chip optimized components related to the
transmitter/receiver breakout.
Defined with a Bit Error Rate (BER) of 10^-12.
Defines with all but 1 percent of occurrences.
Vidpps refers to the internal eye opening while Vidpp refers to the peak-to-peak.
The output Tx jitter is defined w hen applying the effect of a single-pole, high-pass filter on the jitter.
The high-pass filter 3 dB point is located at 4 MHz.
Defined with emphasis disabled.
Defined at 1 MHz frequency. Defined according to section D.16 Termination Mismatch in SFF 8431
Rev. 4.1 standard.
Defined from 10 MHz to 11.1 GHz.
Jutx includes random jitter.
Defined at reference points A or D.
Defined at reference points B or C. For maximal allow ed interconnect characteristics between
points A and B or points C and D, refer to Appendix A SFI Channel Recommendation in SFF 8431
Rev. 4.1 standard.
The parameter at any time is the average of signal(+) and signal(-) at that time. This parameter is
calculated by applying the histogram function over one UI to the common mode signal.
Defined in coherence with Table 14 Host receiver supporting limiting module input in SFF-8431
Rev4.1 standard.
Defined with a Hit Ratio of 5*10^-5.
Table 91: SFI Settings and Configuration
Pa rameter
Setting/Configuration
Viddp
The Viddp is the input differential voltage.
The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed
1.8V.
Output
Equalization
De-emphasis to be set to minimize data dependent jitter at compliance point B. For compliance point
definition refer to chapter 3.3 SFI Test Points Definition and Measurements in the SFF-8431 standard.
NOTE: For further information, refer to the Functional Specifications.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 143
88X5113
Datasheet - Public
7.6.9.2
SFP+ Direct Attach Cable (10GSFP+CU Appendix E) Transmitter and
Receiver Characteristics
Table 92: 10GSFP+CU Transmitter and Receiver Characteristics
Sy mbol
Parameter
BR
Baud rate
Bppm
Baud rate tolerance
UI
Unit interval
Min
Max
10.3125
-100
100
96.969697
U ni t s
N ot e s
Gbps
–
ppm
1
ps
–
Transmitter Parameters
Vodpp
Output differential peak-to-peak
190
700
mV
9, 14, 17
VMAT
Output voltage modulation amplitude peak-to-peak
300
–
mV
6, 14
Vos
Single-ended output voltage
-0.3
1.9
V
13
Qsq
Signal to noise ratio quality
63
–
–
14, 18
DEtx
Output de-emphasis
4.4
7
dB
13
Tr/Tf
Output differential transition time
24
–
ps
2, 13
RLOD
Return loss differential output
12
–
dB
3, 4, 13
RLOC
Return loss common mode output
9
–
dB
3, 4,13
dZM
Termination mismatch
–
5
%
10, 13
Vocmac
Output AC common mode voltage
–
12
mVRMS
13, 15
TWDPc
Copper cable stressor transmitter penalty
–
10.7
dBe
14, 19
Jutx
Output jitter - Uncorrelated, RMS
–
0.023
UI
5, 14, 12
Jddpw st
Output jitter - Data dependent pulse width shrinkage
–
0.055
UI
14
Jddtx
Output jitter - Data dependent, peak-to-peak
–
0.1
UI
14
Jtpptx
Output jitter - Total, peak-to-peak
–
0.28
UI
8, 4, 17
Receiver Parameters
Vidpp
Input differential voltage
-
850
mV
7, 14
VMAR
Input voltage modulation amplitude peak-to-peak
180
–
mV
6, 14
RLID
Return loss differential input
12
–
dB
3, 4, 13
RLICD
Reflected input common mode to differential
conversion
15
–
dB
11, 13
WDPc
Waveform distortion penalty of the ISI generator
–
9.3
dBe
14, 19
Vinamp
Input broadband noise amplitude
–
mVRMS
14, 20
Doc. No. MV-S110852-U0 Rev. C
Page 144
CONIFIDENTIAL
Document Classification: Public
2.14
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
Table 92: 10GSFP+CU Transmitter and Receiver Characteristics (Continued)
Sy mbol
Parameter
Min
Vicmac
Input AC common mode voltage, RMS
–
Max
13.5
U ni t s
N ot e s
mVRMS
14, 15, 16
The load is 100Ω differential for these parameters, unless otherwise specified.
Note
The reference points are according to Table 10 SFI Reference Points in SFF 8431 Rev. 4.1
standard.
Defines the allow able reference clock difference and Rx baud rate tolerance relative to nominal.
Tx baud rate is derived from multiplication of the reference clock (zero ppm delta).
Defined from 20 to 80% of the signal's voltage levels w hen driving a pattern consisting of 8
consecutive ones follow ed by an equal run of zeros with no equalization. Max transition time is
limited by mask as defined in SFF 8431 Rev. 4.1 standard. Figure 19 Transmitter Differential
Output Compliance Mask at B and B.
RLOD/RLID are defined from 10 MHz to 2.8 GHz.
For 2.8 GHz -11.1 GHz RLOD/RLID>8.15-13.33log(Frequency/5.5)[dB] (Frequency defined in
GHz). RLOC is defined from 10.0 MHz to 4.74 GHz. For 4.74 GHz -7.1 GHz
RLOC>8.1-13.33log(Frequency/5.5)[dB] (Frequency defined in GHz).
Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from
on-chip circuitry, chip packaging, and off-chip optimized components related to the
transmitter/receiver breakout.
Defined with a Bit Error Rate (BER) of 10^-12.
For test definition refer to section D.7 Voltage Modulation Amplitude (VMA) in SFF 8431 Rev. 4.1
standard.
Vidpps refers to the internal eye opening while Vidpp refers to the peak-to-peak.
The output Tx jitter is defined w hen applying the effect of a single-pole, high-pass filter on the jitter.
The high-pass filter 3 dB point is located at 4 MHz.
Defined with emphasis disabled.
Defined at 1 MHz frequency. Defined according to section D.16 Termination Mismatch in SFF 8431
Rev. 4.1 standard.
Defined from 10 MHz to 11.1 GHz.
Jutx includes random jitter.
Defined at reference points A or D.
Defined at reference points B or C. For maximal allowed interconnect characteristics between
points A and B or points C and D, refer to Appendix A SFI Channel Recommendation in SFF 8431
Rev. 4.1 standard.
The parameter at any time is the average of signal(+) and signal(-) at that time. This parameter is
calculated by applying the histogram function over one UI to the common mode signal.
Defined in coherence with Table 14 Host receiver supporting limiting module input in SFF-8431
Rev4.1 standard.
Defined with a Hit Ratio of 5*10^-5.
Qsq = 1/RN. For test definition of RN refer to section D.8 Relative noise (RN) in SFF 8431 Rev. 4.1
standard.
For calculation, refer to Appendix G Mat-lab code for TWDP in SFF 8431 Rev. 4.1 standard.
Defined for interference tests according to D. 11 Test Method For A Host Receiver For A Limiting
Module in SFF 8431 Rev. 4.1 standard.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 145
88X5113
Datasheet - Public
Table 93: 10GSFP+CU Settings and Configuration
Pa rameter
Setting/Configuration
Viddp
The Viddp is the input differential voltage.
The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed
1.8V.
Output
Equalization
The default as determined by the IEEE is 3 TAP FIR optimized per interconnect.
NOTE: For further information, refer to the Functional Specifications.
Figure 50: SFI Transmitter Output Voltage Limits and Definitions
Doc. No. MV-S110852-U0 Rev. C
Page 146
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
Figure 51: SFI Transmitter Output Differential Amplitude and Eye Opening
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 147
88X5113
Datasheet - Public
7.6.10
10 Gigabit Small Form Factor Pluggable Interface (XFI)
Electrical Characteristics
7.6.10.1
XFI Interface Transmitter and Receiver Characteristics
Table 94: XFI Interface Transmitter and Receiver Characteristics
Sy mbol
Parameter
BR
Baud rate
Bppm
Baud rate tolerance
UI
Unit interval
Min
Max
U ni t s
Notes
Gbps
–
ppm
1
96.969697
ps
–
100
Ω
1
10.3125
-100
100
Transmitter Parameters
Zod
Reference output differential impedance
dRom
Termination output mismatch
–
5
%
1
Vcm
DC Common Mode Voltage
0
1.9
V
–
tRH/tFH
Output rise and fall time
24
–
ps
2
Vocm
Output AC common mode voltage - 15 mV(RMS) 1, 7
–
15
mVRMS
1, 7
20
–
dB
3
10
–
dB
4
See note #5.
dB
5, 12
dB
6, 12
–
1, 7
Ω
1
SDD22
Differential output return loss
SCC22
Common mode output return loss
6
–
Txjit
Transmitter output jitter specifications
See note # 7.
Receiver Parameters
Zid
Reference input differential impedance
100
dRim
Termination input mismatch
–
5
%
1
Vicm
Input AC common mode voltage
–
25
mVRMS
1
20
–
dB
3
10
–
dB
4
dB
5, 12
SDD22
Differential output return loss
See note #5.
SCC11
Common mode input return loss
6
–
dB
9, 10, 12
SCD11
Differential to common mode input conversion
12
–
dB
9
Rxjit
Receiver input jitter specifications
See note # 11.
–
1, 11
Doc. No. MV-S110852-U0 Rev. C
Page 148
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
The load is 100Ω differential for these parameters, unless otherwise specified.
Note
Defines the allow able reference clock difference and Rx baud rate tolerance relative to nominal.
Tx baud rate is derived from multiplication of the reference clock (0 ppm delta).
Defined from 50.0 MHz to 2.5 GHz.
For 2.5 GHz -7.5 GHz RLOD>9-12log(Frequency/2.5)[dB] (Frequency defined in GHz).
For 2.5 GHz -7.5 GHz RLID>9-12log(Frequency/2.5)[dB] (Frequency defined in GHz).
Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from
on-chip circuitry, chip packaging, and off-chip optimized components related to the
transmitter/receiver breakout.
Defined with a Bit Error Rate (BER) of 10^-12.
Defined for compliant transmitter and interference tests according to IEEE 802.3 section 85.8.4.2
Receiver interference tolerance test.
Defined with a cable interconnect 4.6 < WDPC < 4.8 that complies with interconnect parameters
definition.
Vidpp refers to the peak-to-peak.
The output Tx jitter is defined w hen applying the effect of a single-pole, high-pass filter on the jitter.
The high-pass filter 3 dB point is located at 4 MHz.
As calculated using code in Appendix G Matlab Code For TWDP in SFF-8431 version 4.1 standard.
The parameter value includes the module compliance boards.
Jdcdtx is included as a part of Jdtx.
Defined for a 1010 pattern and includes the entire range of emphasis.
The jitter is defined with emphasis off.
Transmitter output waveform follow s IEEE requirements as specified in IEEE Std 802.3-2008
section 72.7.1.11 Transmitter output waveform requirements.
Defined from 10 MHz to 10 GHz.
As defined in D.7 Voltage Modulation Amplitude in SFF-8431 version 4.1 standard.
Defined between host device pins (with host device removed) and Host Compliance Board (HCB)
SMAs.
Defined from 10.0 MHz to 5 GHz.
For 5 GHz -11.1 GHz HBRL>23.25-8.75log(Frequency/5)[dB] (Frequency defined in GHz).
Defined for a 1010 pattern according to IEEE Std 802.3-2008 section 72.6.10.4.2 Training.
The interconnect parameters are defined with compliant transmitter as defined in Transmitter
Parameters section.
This value is applied for Vamp (min).
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 149
88X5113
Datasheet - Public
7.6.11
10GBASE-KR Electrical Characteristics
7.6.11.1
10GBASE-KR Interface Transmitter and Receiver Characteristics
Table 95: 10GBASE-KR Interface Transmitter and Receiver Characteristics
Sy mbol
Parameter
BR
Baud rate
Bppm
Baud rate tolerance
UI
Unit interval
Min
Max
10.3125
-100
100
96.969697
Units
Notes
Gbps
–
ppm
1
ps
–
Transmitter Parameters
Vodis
Transmitter disabled output differential noise level
–
30
mV
–
Vodpp
Output differential maximum peak-to-peak
–
1200
mV
–
Vos
Common-mode voltage limits
0
1.9
V
–
Tr/Tf
Output differential transition time
24
47
ps
10
RLOD
Return loss differential output
9
–
dB
2, 3
RLOC
Return loss common mode output
6
–
dB
2, 3
Jdtx
Output jitter - Deterministic, peak-to-peak
–
0.15
UI
–
Jdcdtx
Output duty cycle distortion
–
0.035
UI
10, 11
Jrndtx
Output jitter - Random
–
0.15
UI
4
Jtpptx
Output jitter - Total, peak-to-peak
–
0.28
UI
4, 7
Receiver Parameters
Vidpp
Input differential voltage
–
1200
mV
6
RLID
Return loss differential input
9
–
dB
2, 3
Js
Input sinusoidal jitter
–
0.15
UI
5
Jrndrx
Input random jitter
–
0.13
UI
4, 5
Jdcd
Input duty cycle distortion
–
0.035
UI
5
Vinamp
Input broadband noise amplitude
–
5.2
mVRMS
5, 9
mTC
Test channel magnitude factor
1
–
–
5, 8
Doc. No. MV-S110852-U0 Rev. C
Page 150
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
SERDES Electrical Specifications
The load is 100Ω differential for these parameters, unless otherwise specified.
Note
Defines the allow able reference clock difference and Rx baud rate tolerance relative to nominal. Tx
baud rate is derived from multiplication of the reference clock (0 ppm delta).
Defined from 50 MHz to 2.5 GHz.
For 2.5 GHz -7.5 GHz RLOD>9-12log(Frequency/2.5)[dB] (Frequency defined in GHz).
For 2.5 GHz -7.5 GHz RLOC>6-12log(Frequency/2.5)[dB] (Frequency defined in GHz).
For 2.5 GHz -7.5 GHz RLID>9-12log(Frequency/2.5)[dB] (Frequency defined in GHz).
Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from
on-chip circuitry, chip packaging, and off-chip optimized components related to the
transmitter/receiver breakout.
Defined with a Bit Error Rate (BER) of 10^-12.
Defined for interference tests according IEEE 802.3 Annex 69A. For informative interconnect
characteristics, refer to IEEE 802.3 Annex 69B.
Vidpp refers to the peak-to-peak.
The output Tx jitter is defined w hen applying the effect of a single-pole high-pass filter on the jitter.
The high-pass filter 3 dB point is located at 4 MHz.
mTC describes the insertion loss transmission magnitude relative to the maximal allowed fitted
attenuation mask Amax over a predefined frequency range. Defined for test1. The value for test2 is
0.5.
The receiver tolerates noise at an amplitude specified under receiver interference tolerance
test1.The value for test2 is 12 mV.
Jdcdtx is included as a part of Jdtx.
Defined for a 1010 pattern and includes the entire range of emphasis.
The transmitter output waveform follows IEEE requirements as specified in section 72.7.1.10
Transmitter output waveform requirements.
Table 96: 10GBASE-KR Settings and Configuration
Parameter
Setting / C o n f i g u ra t i on
Viddp
The Viddp is the input differential voltage.
The maximum single-ended voltage (common mode voltage and swing voltage)
must not exceed 1.8V.
Output
Equalization
The default as determined by the IEEE is 3 TAP FIR optimized per interconnect.
3 TAP FIR capabilities comply with the IEEE 802.3 standard section 72.7.1.10
Transmitter Output Waveform.
For FIR control information, refer to the Functional Specifications.
NOTE: For further information, refer to the Functional Specifications.
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 151
88X5113
Datasheet - Public
7.6.11.2
10GBASE-KR Interface Transmitter Output Voltage Limits and
Definitions
Figure 52: 10GBASE-KR Interface Transmitter Output Voltage Limits and Definitions
Figure 53: 10GBASE-KR Transmitter Output Differential Amplitude and Eye Opening
Doc. No. MV-S110852-U0 Rev. C
Page 152
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
Reference Clock
7.7
Reference Clock
Table 97: Reference Clock
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)
Sy mbol
Parameter
Co ndi t i o n
1
Min
Ty p
Max
U ni t s
-100 ppm
156.25
+100 ppm
MHz
–
0.5
0.8
ns
0.4
0.8
1.2
V
FCLK
Clock Frequency
TR, TF
Rise and Fall Times
VPPD
Peak-to-Peak Differential
Voltage
ZIND
Input Impedance
Differential
80
100
120
Ω
ZINC
Input Impedance
Common Mode
–
100K
–
Ω
TDUTY
Duty Cycle
45
50
55
%
JRMS
RMS Jitter
–
0.17
0.5
ps
20 to 80% of VPPD
Integrated from
12 KHz to 20 MHz2
1. CLKP/N must have an external AC-coupling capacitor.
2. Specification assumes that there are no spurs in the phase noise plot.
Figure 54: Reference Clock Input Waveform
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 153
88X5113
Datasheet - Public
7.8
Output 25 MHz Clock
Table 98: Output 25 MHz Clock
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)
Symbol
Parameter
C ondi t i o n
Min
Ty p
Max
Units
FCLK
Clock Frequency
–
–
25
–
MHz
JRMS
RMS Jitter
–
–
500
–
ps, rms
VDIFF
Differential Amplitude
Peak-to-Peak
–
760
780
800
TR/TF
Rise/Fall Time
2 pF, 50Ω
termination/load
100
115
130
Doc. No. MV-S110852-U0 Rev. C
Page 154
CONIFIDENTIAL
Document Classification: Public
mV
ps
Copyright © 2020 Marvell
September 21, 2020
Electrical Specifications
Latency
7.9
Latency
The transmit latency is measured from the input of the PPM FIFO to the SERDES transmit pin.
The receive latency is measured from the SERDES receive pin to the input of the PPM FIFO.
The total latency in each direction is the sum of receive and transmit latency in the path.
Table 99: Chip Pin-to-pin Latency (Rx + Tx)
Pa rameter
Lat e n c y
Var i a t i on
( D y na m i c )
La t e n c y J i t t e r
Min
Ty p
Max
1G PCS (1 lane)
–
–
–
194.96
–
2.5G PCS (1 lane)
–
–
–
74.95
–
5G PCS (1 lane)
–
–
–
313.36
–
10G PCS - No FEC (1 lane)
–
–
–
144.52
–
10G PCS - KR FEC (1 lane)
–
–
–
434.07
–
25G PCS - No FEC (1 lane)
22
3.8
57
70
79
25G PCS - KR FEC (1 lane)
22
3.8
172
186
194
25G PCS - RS FEC (1 lane)
46
24.3
456
484.6
502
40G PCS - No FEC (4 lane)
33
17.6
167
180
200
40G PCS - KR FEC (4 lane)
32
17.6
455
468
487
50G PCS - No FEC (4 lane)
0
14.08
–
143.6
–
50G PCS - KR FEC (4 lane)
0
14.08
–
374.5
–
50G PCS - No FEC (2 lane)
0
14.08
–
139.89
–
50G PCS - KR FEC (2 lane)
0
14.08
–
372.02
–
50G PCS - RS FEC (2 lane)
0
14.08
–
360.85
–
100G PCS - No FEC (4 lane)
39
4.5
134
151
173
100G PCS - RS FEC (4 lane)
44
4.5
215
246
259
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 155
88X5113
Datasheet - Public
8
Mechanical Drawings
8.1
Package Mechanical Drawings
Figure 55: 169-pin FCBGA 14 × 14 Package Mechanical Drawings — Top and Side View
Doc. No. MV-S110852-U0 Rev. C
Page 156
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Mechanical Drawings
Package Mechanical Drawings
Figure 56: 169-pin FCBGA 14 × 14 Package Mechanical Drawings — Bottom View
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 157
88X5113
Datasheet - Public
Table 100: 169-pin FCBGA (14 mm × 14 mm) Package Dimensions
D i me ns i o n i n m m
Sy m b o l
Min
N om
Max
Total Thickness
A
2.770
2.890
3.010
Stand Off
A1
0.400
--
0.600
Substrate Thickness
A2
Thickness from Substrate
Surface to Die Backside
A3
Body Size
D
14.000 BSC
E
14.000 BSC
0.940 REF
--- REF
Ball Diameter
0.600
Ball Width
b
Ball Pitch
e
1.000 BSC
Ball Count
n
169
Edge Ball Center to Center
D1
12.000 BSC
E1
12.000 BSC
D2
---
E2
---
Package Edge Tolerance
aaa
0.100
Substrate Parallelism
bbb
---
Top Parallelism
ccc
0.200
Coplanarity
ddd
0.150
Ball Offset
eee
0.250
Ball Offset
fff
0.100
Expose Die Size
Doc. No. MV-S110852-U0 Rev. C
Page 158
CONIFIDENTIAL
Document Classification: Public
0.500
---
0.700
Copyright © 2020 Marvell
September 21, 2020
Order Information
Ordering Part Numbers and Package Markings
9
Order Information
9.1
Ordering Part Numbers and Package Markings
Figure 57 shows the ordering part numbering scheme for the 88X5113 device.
Figure 57: Sample Part Number
88X5113 – xx – xxx 4 x000 - T123
Custom (optional)
Part Number
88X5113
C us t o m C ode
Custom Code
Temperature Range
C = Commercial
I = Industrial
Package Code
BVW = 169-pin FCBGA
Environmental
4 = Green+ Lead-free bumps
Table 101: 88X5113 Part Order Option
Pa ckage Type
P a rt O rde r N u mbe r
88X5113 169-pin FCBGA 14 × 14 - Commercial
88X5113-XX-BVW4C000
88X5113 169-pin FCBGA 14 × 14 - Industrial
88X5113-XX-BVW4I000
Copyright © 2020 Marvell
September 21, 2020
CONIFIDENTIAL
Document Classification: Public
Doc. No. MV-S110852-U0 Rev. C
Page 159
88X5113
Datasheet - Public
9.1.1
Marking Example
Figure 58 and Figure 59 are examples of the package marking and pin 1 locations for the 88X5113
169-pin FCBGA 14 × 14 commercial and industrial Green package.
Figure 58: 88X5113 169-pin FCBGA Commercial Green Package Marking and Pin 1 Location
Logo
88X5113-xxx4
Country of origin
Part number, package code, environmental code
Environmental Code - 4 = Green + Lead-free bumps
Lot Number
YYWW xx@
Country
Date code, custom code, assembly plant code
YYWW
(Contained in the mold ID or
marked as the last line on
the package.)
xx
= Date code
= Custom code
@ = Assembly location code
Pin 1 location
Note: The above example is not drawn to scale. Location of markings is approximate.
Figure 59: 88X5113 169-pin FCBGA Industrial Green Package Marking and Pin 1 Location
Logo
88X5113-xxx4
Country of origin
(Contained in the mold ID or
marked as the last line on
the package.)
Lot Number
YYWW xx@
Country
Part number, package code, environmental code
Environmental Code - 4 = Green + Lead-free bumps
Date code, custom code, assembly plant code
I
YYWW
xx
= Date code
= Custom code
@ = Assembly location code
Industrial
Pin 1 location
Note: The above example is not drawn to scale. Location of markings is approximate.
Doc. No. MV-S110852-U0 Rev. C
Page 160
CONIFIDENTIAL
Document Classification: Public
Copyright © 2020 Marvell
September 21, 2020
Revision History
A
Table 102:
Revision History
Revision History
Revision
Date
Section
Detail
Rev. C
September 21, 2020
All applicable
• Corporate rebranding and template update
• New Marvell logos added to all figures with Marvell logo marking
Rev. B
July 30, 2018
All applicable
Initial release
Copyright © 2020 Marvell
September 21, 2020
Doc. No. MV-S110852-U0 Rev. C
Document Classification: Public
Page 161
88X5113
Datasheet - Public
Doc. No. MV-S110852-U0 Rev. C
Page 162
Copyright © 2020 Marvell
Document Classification: Public
September 21, 2020
Marvell first revolutionized the digital storage industry by moving information at speeds never thought possible. Today, that same breakthrough
innovation remains at the heart of the company's storage, networking and connectivity solutions. With leading intellectual property and deep
system-level knowledge, Marvell semiconductor solutions continue to transform the enterprise, cloud, automotive, industrial, and consumer
markets. For more information, visit www.marvell.com.
© 2020 Marvell. All rights reserved. The MARVELL mark and M logo are registered and/or common law trademarks of Marvell and/or its Affiliates
in the US and/or other countries. This document may also contain other registered or common law trademarks of Marvell and/or its Affiliates.
Doc. No. MV-S110852-U0 Rev. C Revised: September 21, 2020