0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
88X5113-A1-BVW4C000

88X5113-A1-BVW4C000

  • 厂商:

    MARVELL(迈威尔)

  • 封装:

    FCBGA169

  • 描述:

    IC TRANSCEIVER FULL 4/4 169FCBGA

  • 数据手册
  • 价格&库存
88X5113-A1-BVW4C000 数据手册
Marvell® Alaska® 88X5113 Integrated 40 Gbps to 25 Gbps Ethernet Gearbox, Quad 25 Gbps Ethernet PHY with Copper Cable and Backplane Drive Capability Datasheet - Public Doc. No. MV-S110852-U0 Rev. C September 21, 2020 Document Classification: Public CONIFIDENTIAL Cover Marvell 88X5113 Datasheet - Public THIS DOCUMENT AND THE INFORMATION FURNISHED IN THIS DOCUMENT ARE PROVIDED “AS IS” WITHOUT ANY WARRANTY. MARVELL AND ITS AFFILIATES EXPRESSLY DISCLAIM AND MAKE NO WARRANTIES OR GUARANTEES, WHETHER EXPRESS, ORAL, IMPLIED, STATUTORY, ARISING BY OPERATION OF LAW, OR AS A RESULT OF USAGE OF TRADE, COURSE OF DEALING, OR COURSE OF PERFORMANCE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. This document, including any software or firmware referenced in this document, is owned by Marvell or Marvell's licensors, and is protected by intellectual property laws. No license, express or implied, to any Marvell intellectual property rights is granted by this document. The information furnished in this document is provided for reference purposes only for use with Marvell products. It is the user's own responsibility to design or build products with this information. Marvell products are not authorized for use as critical components in medical devices, military systems, life or critical support devices, or related systems. Marvell is not liable, in whole or in part, and the user will indemnify and hold Marvell harmless for any claim, damage, or other liability related to any such use of Marvell products. Marvell assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning the Marvell products disclosed herein. Marvell and the Marvell logo are registered trademarks of Marvell or its affiliates. Please visit www.marvell.com for a complete list of Marvell trademarks and guidelines for use of such trademarks. Other names and brands may be claimed as the property of others. Copyright Copyright © 2020. Marvell and/or its affiliates. All rights reserved. Document Classification: Public September 21, 2020 CONIFIDENTIAL Page 2 Doc. No. MV-S110852-U0 Rev. C Copyright © 2020 Marvell 88X5113 Datasheet - Public Integrated 40 Gbps to 25 Gbps Ethernet Gearbox, Quad 25 Gbps Ethernet PHY with Copper Cable and Backplane Drive Capability PRODUCT OVERVIEW The Marvell® 88X5113 device is a fully integrated single chip Ethernet transceiver that supports 25 GbE full-duplex transmission, over a variety of media including optics, passive copper cables and backplanes. The device operates as a single port 100 Gbps Ethernet PHY/Quad port 25 Gbps Ethernet PHY. In this mode, the 88X5113 100 GbE and 25 GbE transmission over a variety of media including optics, passive copper cables and backplanes. The 88X5113 has long reach SERDES, and includes Auto-Negotiation and coefficient training functionality. In the 100 Gbps and 25 Gbps Ethernet PHY modes, the 88X5113 connects to the MAC/Switch device over a CAUI-4 or 25GAUI interface respectively. On the host interface, the device also supports the IEEE 802.3 Clause 91 100G Reed Solomon Forward Error Correction (RS-FEC) as well as the IEEE 802.3 Clause 108 RS-FEC and IEEE 802.3 Clause 74 KR-FEC for 25 GbE operation. These along with the support for Auto-Negotiation and training protocol enable the device to interface with the MAC over a 100G-KR4/25G-KR backplane link. Features            Single port 100 GbE/Quad 25 GbE PHY functionality Line equalization capability that meets IEEE 802.3bj and 802.3by specifications 100G/40GBASE-KR4/25G-KR compliant Host interface that exceed XLAUI/25GAUI requirements Fully autonomous adaptive equalization on line and host receivers 3 tap transmit FIR with programmable level and pre-emphasis Fully symmetric architecture with 100 GbE and 25 GbE RS-FEC and 10GE/25GE KR-FEC on both line and host interfaces Auto-Negotiation for backplanes and cable assemblies as defined by IEEE 802.3 Clause 73 of IEEE 802.3 Support for transmit coefficient training protocol Clause 45 MDIO register access Ability to initialize the device from an external EEPROM Hardware interrupt pin for hardware interrupt generation capability LED pins with fully programmable event mapping and solid/blink modes Packet and PRBS pattern generation/checking capability Loopback mode for diagnostics Non-destructive eye monitors on all high-speed interfaces IEEE-1149.1 and 1149.6 JTAG support Operating temperature range up to 105rC Junction 14 mm x 14 mm 169-pin FCBGA package with 1 mm ball pitch The PHY mode, the line interface of the 88X5113, is fully compliant to the IEEE 802.3bj and IEEE 802.3bm standards for 100 GbE and IEEE 802.3by specifications for 25 GbE operation over passive copper cables, optics and backplanes. The device supports the IEEE 802.3 Clause 91 and IEEE 802.3 Clause 108 Reed Solomon Forward Error Correction (RS-FEC) features, IEEE 802.3 Clause 74 KR-FEC, and Auto-Negotiation and coefficient training protocol required by the IEEE 802.3bj and IEEE 802.3by standards.  Internal registers can be accessed via an MDIO/MDC serial management interface which is compliant with IEEE 802.3 specification Clause 45. An MDC frequency of up to 25 MHz supported. Applications The 88X5113 is manufactured in a 14 mm x 14 mm 169-pin FCBGA package. Copyright © 2020 Marvell September 21, 2020          25 Gbps Ethernet NICs 100 Gbps/25 Gbps Ethernet line cards 100 Gbps/25 Gbps Ethernet backplanes CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 3 88X5113 Datasheet - Public Figure 1: 88X5113 in a 25 GbE/100 GbE Line Card Application Figure 2: 88X5113 in a 25 GbE/100 GbE Blade Switch/Server Application Doc. No. MV-S110852-U0 Rev. C Page 4 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Table of Contents Table of Contents Product Overview ......................................................................................................................................3 1 General Device Description ........................................................................................................... 13 2 Signal Description .......................................................................................................................... 15 2.1 Pin Map .............................................................................................................................................................. 16 2.2 Pin Description ................................................................................................................................................... 17 2.3 88X5113 Device Pin Assignment List ................................................................................................................ 23 3 Functional Description ................................................................................................................... 26 3.1 Data Path ........................................................................................................................................................... 26 3.1.1 PCS Mode ........................................................................................................................................... 27 3.2 SDReset ............................................................................................................................................................. 28 3.3 Hardware Configuration ..................................................................................................................................... 30 3.4 Register Access ................................................................................................................................................. 3.4.1 IEEE MDC/MDIO Register Access ...................................................................................................... 3.4.2 TWSI Register Access ......................................................................................................................... 3.4.2.1 Bus Operation .................................................................................................................. 3.4.2.2 Clause 45 Encapsulation ................................................................................................. 31 31 32 32 33 3.5 TWSI, GPIO, and LED ....................................................................................................................................... 3.5.1 GPIO[3:0] and LED[3:0] ....................................................................................................................... 3.5.1.1 Controlling and Sensing .................................................................................................. 3.5.1.2 GPIO Interrupts ............................................................................................................... 3.5.1.3 LED .................................................................................................................................. 3.5.2 TWSI, GPIO 4, and GPIO 5 ................................................................................................................. 36 36 36 36 38 42 3.6 Interrupt .............................................................................................................................................................. 45 3.7 Power Management ........................................................................................................................................... 53 3.8 IEEE 1149.1 and 1149.6 Controller ................................................................................................................... 3.8.1 BYPASS Instruction ............................................................................................................................. 3.8.2 SAMPLE/PRELOAD Instruction .......................................................................................................... 3.8.3 EXTEST Instruction ............................................................................................................................. 3.8.4 CLAMP Instruction ............................................................................................................................... 3.8.5 HIGH-Z Instruction ............................................................................................................................... 3.8.6 ID CODE Instruction ............................................................................................................................ 3.8.7 EXTEST_PULSE Instruction ............................................................................................................... 3.8.8 EXTEST_TRAIN Instruction ................................................................................................................ 3.9 Temperature Sensor .......................................................................................................................................... 60 54 54 55 57 57 58 58 58 58 3.10 On-chip Processor ............................................................................................................................................. 60 3.11 Synchronous Ethernet Mode .............................................................................................................................. 61 3.12 Power Supplies .................................................................................................................................................. 64 4 Line Side Description ..................................................................................................................... 65 4.1 Interface Modes of Operation ............................................................................................................................. 66 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 5 88X5113 Datasheet - Public 4.2 Electrical Interface .............................................................................................................................................. 73 4.3 PCS and PMA .................................................................................................................................................... 4.3.1 100GBASE-R4 PCS (Modes P100*) ................................................................................................... 4.3.2 40GBASE-R4, 50GBASE-R4, 50GBASE-R2 PCS (Modes P40*, P50*) ............................................. 4.3.3 5GBASE-R, 10GBASE-R, and 25GBASE-R PCS (Modes P5L, P10*, P25*) ...................................... 4.3.4 SGMII, 1000BASE-X, and 2.5GBASE-X ............................................................................................. 4.3.4.1 PCS ................................................................................................................................. 4.3.4.2 1000BASE-X Auto-Negotiation ........................................................................................ 4.3.4.3 SGMII Auto-Negotiation ................................................................................................... 4.3.4.4 Auto-Negotiation Bypass Mode ....................................................................................... 4.4 Auto-Negotiation ................................................................................................................................................ 81 4.5 Loopback ........................................................................................................................................................... 82 4.5.1 Line-side Loopbacks ............................................................................................................................ 82 4.5.2 Host-side Loopbacks ........................................................................................................................... 83 4.6 Synchronized FIFO ............................................................................................................................................ 85 4.7 Traffic Generation and Checking ....................................................................................................................... 85 4.7.1 Packet Generator ................................................................................................................................. 87 4.7.2 Packet Checker ................................................................................................................................... 91 4.8 PRBS Generation and Checking ........................................................................................................................ 4.8.1 General PRBS Generators and Checkers ........................................................................................... 4.8.2 40GBASE-R4-specific Generators and Checkers ............................................................................... 4.8.3 100GBASE-R4-specific Generators and Checkers ............................................................................. 4.9 Eye Monitor ........................................................................................................................................................ 94 5 Host Side Description .................................................................................................................... 95 6 Chip Bring Up ................................................................................................................................ 100 6.1 Power Sequencing ........................................................................................................................................... 100 6.2 Reset and Configuration .................................................................................................................................. 100 7 Electrical Specifications .............................................................................................................. 101 7.1 Absolute Maximum Ratings ............................................................................................................................. 101 7.2 Recommended Operating Conditions .............................................................................................................. 102 7.3 Package Thermal Information .......................................................................................................................... 103 7.3.1 Thermal Conditions for 169-pin, FCBGA Package ............................................................................ 103 7.4 Current Consumption ....................................................................................................................................... 104 7.4.1 88X5113 Current Consumption (Commercial) ................................................................................... 104 7.4.2 88X5113 Current Consumption (Industrial) ....................................................................................... 106 7.5 Digital I/O Electrical Specifications ................................................................................................................... 7.5.1 DC Operating Conditions ................................................................................................................... 7.5.2 AC Operating Conditions ................................................................................................................... 7.5.3 Reset Timing ...................................................................................................................................... 7.5.4 MDC/MDIO Management Interface Timing ....................................................................................... 7.5.5 JTAG Timing ...................................................................................................................................... 7.6 SERDES Electrical Specifications .................................................................................................................... 112 7.6.1 Chip-to-Module 100 Gbps/25 Gbps Electrical Characteristics ........................................................... 112 7.6.1.1 Chip-to-Module 100 Gbps/25 Gbps Transmitter and Receiver Characteristics ............. 112 7.6.1.2 Chip-to-Module CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and Definitions ...................................................................................................................... 114 Doc. No. MV-S110852-U0 Rev. C Page 6 CONIFIDENTIAL Document Classification: Public 73 74 76 78 79 79 79 80 80 92 92 94 94 108 108 109 109 110 111 Copyright © 2020 Marvell September 21, 2020 Table of Contents 7.6.2 7.6.3 7.6.4 7.6.5 7.6.6 7.6.7 7.6.8 7.6.9 7.6.10 7.6.11 Chip-to-Chip 100 Gbps/25 Gbps (CAUI-4/XXVAUI-1) Electrical Characteristics .............................. 115 7.6.2.1 Chip-to-Chip 100 Gbps/25 Gbps (CAUI-4/XXVAUI-1) Transmitter and Receiver Characteristics ............................................................................................................... 115 7.6.2.2 Chip-to-Chip CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and Definitions ...................................................................................................................... 117 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Electrical Characteristics ...................................... 119 7.6.3.1 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter and Receiver Characteristics ............................................................................................................... 119 7.6.3.2 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter Output Voltage Limits and Definitions .................................................................................................... 122 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Electrical Characteristics ....................................... 123 7.6.4.1 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter and Receiver Characteristics ............................................................................................................... 123 7.6.4.2 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter Output Voltage Limits and Definitions .................................................................................................... 126 40 Gbps Parallel Physical Interface (XLPPI) Electrical Characteristics ............................................. 127 7.6.5.1 40 Gbps Parallel Physical Interface (XLPPI) Interface Transmitter and Receiver Characteristics ............................................................................................................... 127 7.6.5.2 XLPPI Interface Transmitter Output Voltage Limits and Definitions .............................. 129 40 Gbps Attachment Unit Interface (XLAUI) Electrical Characteristics ............................................. 131 7.6.6.1 40 Gbps Attachment Unit Interface (XLAUI) Interface Transmitter and Receiver Characteristics ............................................................................................................... 131 7.6.6.2 XLAUI Interface Transmitter Output Voltage Limits and Definitions .............................. 134 40GBASE-CR4 Electrical Characteristics .......................................................................................... 135 7.6.7.1 40GBASE-CR4 Interface Transmitter and Receiver Characteristics ............................. 135 7.6.7.2 40GBASE-CR4 Interface Transmitter Output Voltage Limits and Definitions ............... 137 40GBASE-KR4 Electrical Characteristics .......................................................................................... 138 7.6.8.1 40GBASE-KR4 Interface Transmitter and Receiver Characteristics ............................. 138 7.6.8.2 40GBASE-KR4 Interface Transmitter Output Voltage Limits and Definitions ................ 140 SFP+ Interface (SFI) Limiting Module Electrical Characteristics ....................................................... 142 7.6.9.1 SFI Transmitter and Receiver Characteristics .............................................................. 142 7.6.9.2 SFP+ Direct Attach Cable (10GSFP+CU Appendix E) Transmitter and Receiver Characteristics ............................................................................................................... 144 10 Gigabit Small Form Factor Pluggable Interface (XFI) Electrical Characteristics .......................... 148 7.6.10.1 XFI Interface Transmitter and Receiver Characteristics ................................................ 148 10GBASE-KR Electrical Characteristics ............................................................................................ 150 7.6.11.1 10GBASE-KR Interface Transmitter and Receiver Characteristics ............................... 150 7.6.11.2 10GBASE-KR Interface Transmitter Output Voltage Limits and Definitions .................. 152 7.7 Reference Clock ............................................................................................................................................... 153 7.8 Output 25 MHz Clock ....................................................................................................................................... 154 7.9 Latency ............................................................................................................................................................ 155 8 Mechanical Drawings ................................................................................................................... 156 8.1 Package Mechanical Drawings ........................................................................................................................ 156 9 Order Information ......................................................................................................................... 159 9.1 Ordering Part Numbers and Package Markings .............................................................................................. 159 9.1.1 Marking Example ............................................................................................................................... 160 A Revision History ........................................................................................................................... 161 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 7 88X5113 Datasheet - Public List of Figures Product Overview .......................................................................................................................................3 1 Figure 1: 88X5113 in a 25 GbE/100 GbE Line Card Application ...................................................................... 4 Figure 2: 88X5113 in a 25 GbE/100 GbE Blade Switch/Server Application ..................................................... 4 General Device Description .............................................................................................................13 Figure 3: 2 Signal Description ............................................................................................................................15 Figure 4: 3 4 88X5113 Device Functional Block Diagram..................................................................................... 14 88X5113 Pin Map ............................................................................................................................ 16 Functional Description.....................................................................................................................26 Figure 5: 88X5113 Main Operational Modes .................................................................................................. 26 Figure 6: Typical MDC/MDIO Read Operation ............................................................................................... 31 Figure 7: Typical MDC/MDIO Write Operation................................................................................................ 31 Figure 8: First Two Bytes of All Transactions.................................................................................................. 33 Figure 9: Write, Full Header, Retain REGAD.................................................................................................. 34 Figure 10: Write, Full Header, Post-Increment.................................................................................................. 34 Figure 11: Write, Abbreviated Header, Retain REGAD .................................................................................... 35 Figure 12: Write, Abbreviated Header, Post-Increment .................................................................................... 35 Figure 13: Read, Full Header, Retain REGAD.................................................................................................. 35 Figure 14: Read, Full Header, Post-Increment ................................................................................................. 35 Figure 15: Read, Abbreviated Header, Retain REGAD .................................................................................... 35 Figure 16: Read, Abbreviated Header, Post-Increment .................................................................................... 35 Figure 17: Dummy Write Command to Set REGAD ......................................................................................... 35 Figure 18: LED Chain........................................................................................................................................ 38 Figure 19: Various LED Hookup Configurations ............................................................................................... 39 Figure 20: Interrupt Hierarchy and Aggregation from Different Blocks ............................................................. 46 Figure 21: Synchronous Ethernet with 88X5113 in a Non-Ethernet Application such as CPRI........................ 61 Figure 22: Synchronous Ethernet with 88X5113 in an Ethernet Application..................................................... 62 Figure 23: Multiplexing Scheme for Recovered Clock RCLKA ......................................................................... 63 Line Side Description .......................................................................................................................65 Figure 24: 100GBASE-R4 Data Path................................................................................................................ 75 Figure 25: 40GBASE-R4, 50GBASE-R4, and 50GBASE-R2 Datapath............................................................ 77 Figure 26: 5GBASE-R, 10GBASE-R, and 25GBASE-R Datapath.................................................................... 79 Figure 27: Line-side Loopback.......................................................................................................................... 82 Figure 28: Turn On Deep Host Loopback ......................................................................................................... 83 Figure 29: Packet Format.................................................................................................................................. 87 Figure 30: Normal CRC Calculation (in XLGMII/40G and CGMII/100G Format) .............................................. 88 Figure 31: Extended CRC Calculation (in XLGMII/40G and CGMII/100G Format) .......................................... 88 Doc. No. MV-S110852-U0 Rev. C Page 8 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 List of Figures Figure 32: Packet without CRC (in XLGMII/40G and CGMII/100G Format) ..................................................... 89 5 Host Side Description ......................................................................................................................95 6 Chip Bring Up..................................................................................................................................100 7 Electrical Specifications ................................................................................................................101 8 9 A Figure 33: Reset Timing.................................................................................................................................. 109 Figure 34: MDC/MDIO Management Interface ............................................................................................... 110 Figure 35: JTAG Timing .................................................................................................................................. 111 Figure 36: Chip-to-Module CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and Definitions.. 114 Figure 37: Chip-to-Module CAUI-4/XXVAUI-1 Transmitter Output Differential Amplitude and Eye Opening . 114 Figure 38: Chip-to-Chip CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and Definitions ..... 117 Figure 39: Chip-to-Chip CAUI-4/XXVAUI-1 Transmitter Output Differential Amplitude and Eye Opening...... 118 Figure 40: 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter Output Voltage Limits and Definitions ............................................................................................................................... 122 Figure 41: 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter Output Voltage Limits and Definitions ...................................................................................................................................... 126 Figure 42: XLPPI Interface Transmitter Output Voltage Limits and Definitions .............................................. 129 Figure 43: XLPPI Transmitter Output Differential Amplitude and Eye Opening.............................................. 130 Figure 44: XLAUI Interface Transmitter Output Voltage Limits and Definitions .............................................. 134 Figure 45: XLAUI Transmitter Output Differential Amplitude and Eye Opening.............................................. 134 Figure 46: 40GBASE-CR4Interface Transmitter Output Voltage Limits and Definitions................................. 137 Figure 47: 40GBASE-CR4Transmitter Output Differential Amplitude and Eye Opening ................................ 137 Figure 48: 40GBASE-KR4 Interface Transmitter Output Voltage Limits and Definitions ................................ 140 Figure 49: 40GBASE-KR4 Transmitter Output Differential Amplitude and Eye Opening ............................... 141 Figure 50: SFI Transmitter Output Voltage Limits and Definitions .................................................................. 146 Figure 51: SFI Transmitter Output Differential Amplitude and Eye Opening .................................................. 147 Figure 52: 10GBASE-KR Interface Transmitter Output Voltage Limits and Definitions .................................. 152 Figure 53: 10GBASE-KR Transmitter Output Differential Amplitude and Eye Opening ................................. 152 Figure 54: Reference Clock Input Waveform .................................................................................................. 153 Mechanical Drawings .....................................................................................................................156 Figure 55: 169-pin FCBGA 14 × 14 Package Mechanical Drawings — Top and Side View .......................... 156 Figure 56: 169-pin FCBGA 14 × 14 Package Mechanical Drawings — Bottom View .................................... 157 Order Information ...........................................................................................................................159 Figure 57: Sample Part Number ..................................................................................................................... 159 Figure 58: 88X5113 169-pin FCBGA Commercial Green Package Marking and Pin 1 Location ................... 160 Figure 59: 88X5113 169-pin FCBGA Industrial Green Package Marking and Pin 1 Location ........................ 160 Revision History .............................................................................................................................161 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 9 88X5113 Datasheet - Public List of Tables Product Overview .......................................................................................................................................3 1 General Device Description .............................................................................................................13 2 Signal Description ............................................................................................................................15 3 Table 1: Pin Type Definitions ......................................................................................................................... 15 Table 2: Line Side Interface ........................................................................................................................... 17 Table 3: Host Side Interface .......................................................................................................................... 17 Table 4: Clocking and Reference................................................................................................................... 18 Table 5: Configuration and Reset .................................................................................................................. 18 Table 6: Management Interface ..................................................................................................................... 18 Table 7: EEPROM/GPIO ............................................................................................................................... 19 Table 8: JTAG................................................................................................................................................ 19 Table 9: GPIO/LED ........................................................................................................................................ 19 Table 10: TEST................................................................................................................................................ 19 Table 11: Power and Ground........................................................................................................................... 20 Table 12: 88X5113 Pin List — Alphabetical by Signal Name .......................................................................... 23 Functional Description.....................................................................................................................26 Table 13: Valid PCS Mode Interface Connections........................................................................................... 27 Table 14: Reset Bits......................................................................................................................................... 28 Table 15: Hardware Configuration ................................................................................................................... 30 Table 16: Extensions for Management Frame Format for Indirect Access...................................................... 31 Table 17: INS[2:0] Definition ............................................................................................................................ 33 Table 18: GPIO, LED Signal Mapping ............................................................................................................. 36 Table 19: GPIO/LED Controls.......................................................................................................................... 37 Table 20: LED[3:0] Control and Status Register Bits....................................................................................... 39 Table 21: LED Timer Control ........................................................................................................................... 41 Table 22: TWSI and GPIO Signal Mapping ..................................................................................................... 42 Table 23: SCL Control ..................................................................................................................................... 42 Table 24: SDA Control ..................................................................................................................................... 43 Table 25: I/O Open Drain Control .................................................................................................................... 45 Table 26: Global Interrupt Control.................................................................................................................... 46 Table 27: Global Interrupt Status ..................................................................................................................... 47 Table 28: 1G/2.5G Interrupt Enable, Interrupt Status, and Real-Time Status ................................................. 47 Table 29: 10G/25G Interrupt Enable, Interrupt Status, and Real-Time Status ................................................ 48 Table 30: 40G/50G Interrupt Enable, Interrupt Status, and Real-Time Status ................................................ 48 Table 31: 100G Interrupt Enable, Interrupt Status, and Real-Time Status ...................................................... 49 Table 32: Excessive Link Error Interrupt Enable, Interrupt Status, and Real-Time Status .............................. 49 Table 33: GPIO1, GPIO2, GPIO3, GPIO4, CLK_OUT_SE1, CLK_OUT_SE2 Pins Interrupt.......................... 51 Doc. No. MV-S110852-U0 Rev. C Page 10 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 List of Tables 4 5 Table 34: Temp Sensor and GPIOs, Interrupt Enable, Interrupt Status .......................................................... 52 Table 35: Power Down Control Bits ................................................................................................................. 53 Table 36: TAP Controller Opcodes .................................................................................................................. 54 Table 37: Boundary Scan Chain Order............................................................................................................ 55 Table 38: ID CODE Instruction ........................................................................................................................ 58 Line Side Description .......................................................................................................................65 Table 39: Mode Definition Reference .............................................................................................................. 66 Table 40: Interface Modes of Operation .......................................................................................................... 67 Table 41: Register Control to Select Mode of Operation ................................................................................. 70 Table 42: Base Link Register on PCS Modes.................................................................................................. 72 Table 43: PCS Types....................................................................................................................................... 73 Table 44: SGMII Auto-Negotiation Modes ....................................................................................................... 80 Table 45: Shallow Line Loopback Control Bits ................................................................................................ 82 Table 46: Deep Loopback Control Bits ............................................................................................................ 83 Table 47: Shallow Line Loopback Control Bits ................................................................................................ 84 Table 48: Deep Loopback Control Bits ............................................................................................................ 84 Table 49: Packet Generator and Checker Register Mapping Data.................................................................. 85 Table 50: Packet Generator and Checker Control and Counters .................................................................... 86 Table 51: Registers Controlling Packet Generation......................................................................................... 88 Table 52: IPG Configuration ............................................................................................................................ 89 Table 53: Packet Data Generation................................................................................................................... 90 Table 54: Registers Controlling Packet Checker ............................................................................................. 91 Table 55: PRBS Register Address Offsets ...................................................................................................... 92 Table 56: Supported Line-side PRBS Patterns................................................................................................ 93 Table 57: IEEE PCS and PMA PRBS Control Register................................................................................... 94 Host Side Description ......................................................................................................................95 Table 58: Equivalent Registers Between Line and Host Interface................................................................... 95 Table 59: Non-Reversible Mode Combinations ............................................................................................... 99 6 Chip Bring Up..................................................................................................................................100 7 Electrical Specifications ................................................................................................................101 Table 60: Absolute Maximum Ratings ........................................................................................................... 101 Table 61: Recommended Operating Conditions (Commercial) ..................................................................... 102 Table 62: Thermal Conditions for 169-pin, FCBGA Package ........................................................................ 103 Table 63: DVDD Current Consumption.......................................................................................................... 104 Table 64: AVDDL and AVDDH Current Consumption ................................................................................... 105 Table 65: AVDDC and AVDDT Current Consumption ................................................................................... 105 Table 66: DVDD Current Consumption.......................................................................................................... 106 Table 67: AVDDL and AVDDH Current Consumption ................................................................................... 107 Table 68: AVDDC and AVDDT Current Consumption ................................................................................... 107 Table 69: DC Operating Conditions ............................................................................................................... 108 Table 70: AC Operating Conditions ............................................................................................................... 109 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 11 88X5113 Datasheet - Public 8 Table 71: Reset Timing.................................................................................................................................. 109 Table 72: MDC/MDIO Management Interface Timing.................................................................................... 110 Table 73: JTAG Timing .................................................................................................................................. 111 Table 74: Chip-to-Module CAUI-4/XXVAUI-1 Transmitter and Receiver Characteristics .............................. 112 Table 75: Chip-to-Module CAUI-4/XXVAUI-1 Settings and Configuration..................................................... 113 Table 76: Chip-to-Chip Gbps CAUI-4/XXVAUI-1 Interface Transmitter and Receiver Characteristics.......... 115 Table 77: Chip-to-Chip CAUI-4/XXVAUI-1 Settings and Configuration ......................................................... 116 Table 78: 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter and Receiver Characteristics ............................................................................................................................... 119 Table 79: 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Settings and Configuration ............................... 121 Table 80: 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter and Receiver Characteristics ............................................................................................................................... 123 Table 81: 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Settings and Configuration................................ 125 Table 82: XLPPI Interface Transmitter and Receiver Characteristics............................................................ 127 Table 83: XLPPI Settings and Configuration ................................................................................................. 129 Table 84: XLAUI Interface Transmitter and Receiver Characteristics ........................................................... 131 Table 85: XLAUI Settings and Configuration ................................................................................................. 133 Table 86: 40GBASE-CR4 Interface Transmitter and Receiver Characteristics ............................................. 135 Table 87: 40GBASE-CR4 Settings and Configuration................................................................................... 136 Table 88: 40GBASE-KR4 Interface Transmitter and Receiver Characteristics ............................................. 138 Table 89: 40GBASE-KR4 Settings and Configuration ................................................................................... 139 Table 90: SFI Transmitter and Receiver Characteristics ............................................................................... 142 Table 91: SFI Settings and Configuration ...................................................................................................... 143 Table 92: 10GSFP+CU Transmitter and Receiver Characteristics................................................................ 144 Table 93: 10GSFP+CU Settings and Configuration ...................................................................................... 146 Table 94: XFI Interface Transmitter and Receiver Characteristics ................................................................ 148 Table 95: 10GBASE-KR Interface Transmitter and Receiver Characteristics ............................................... 150 Table 96: 10GBASE-KR Settings and Configuration ..................................................................................... 151 Table 97: Reference Clock ............................................................................................................................ 153 Table 98: Output 25 MHz Clock..................................................................................................................... 154 Table 99: Chip Pin-to-pin Latency (Rx + Tx).................................................................................................. 155 Mechanical Drawings .....................................................................................................................156 Table 100: 169-pin FCBGA (14 mm × 14 mm) Package Dimensions ............................................................. 158 9 Order Information ...........................................................................................................................159 Table 101: 88X5113 Part Order Option ........................................................................................................... 159 A Revision History .............................................................................................................................161 Table 102: Revision History ............................................................................................................................. 161 Doc. No. MV-S110852-U0 Rev. C Page 12 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 General Device Description 1 General Device Description The 88X5113 device is an Ethernet SERDES Transceiver that supports one port of 100GBASE-R4, consortium 50GBASE-R2, overclocked 40GBASE-R2, 40GBASE-R4, and four ports of 25GBASE-R, consortium 25GBASE-R, 10GBASE-R, 5GBASE-R, 2.5GBASE-X, 1000BASE-X, and SGMII on both the line and host interfaces. Auto-Negotiation, equalization and KR training are available to support backplane, twin-ax, and optical options in the various modes. Reed Solomon FEC and KR-FEC can be enabled as well. The various CAUI-4, XLPPI, XLAUI, SFI, XFI interfaces are supported. The device can be used in PCS mode application where data is passed from one PCS to another PCS. Device registers can be accessed through standard Clause 45 MDC/MDIO. The device operates from a 0.9V/0.95V (I-temp operation) digital core voltage and a 1.0V analog voltage. The digital I/O signals can operate at 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, and 1.05V. The device utilizes a 14 mm x 14 mm 169-ball FCBGA package, and supports an operating junction temperature of up to105°C. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 13 88X5113 Datasheet - Public Figure 3: 88X5113 Device Functional Block Diagram Doc. No. MV-S110852-U0 Rev. C Page 14 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Signal Description 2 Signal Description Table 1: Pin Type Definiti o n H Input with hysteresis I/O Input and output I Input only O Output only PU Internal pull-up PD Internal pull-down OD Open drain output Z Tri-state output mA DC sink capability AI Analog input AO Analog output DI Digital input DO Digital output Copyright © 2020 Marvell September 21, 2020 Pin Type Definitions CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 15 88X5113 Datasheet - Public 2.1 Pin Map Figure 4: 88X5113 Pin Map (Top View) Doc. No. MV-S110852-U0 Rev. C Page 16 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Signal Description Pin Description 2.2 Table 2: Pin Description Line Side Interface Pin # Pin Name Pin Type D e s c ri pt i on C13 F13 J13 M13 LIP[3] LIP[2] LIP[1] LIP[0] AI Line Input Positive B13 E13 H13 L13 LIN[3] LIN[2] LIN[1] LIN[0] AI Line Input Negative B11 E11 H11 L11 LOP[3] LOP[2] LOP[1] LOP[0] AO Line Output Positive C11 F11 J11 M11 LON[3] LON[2] LON[1] LON[0] AO Line Output Negative Table 3: Host Side Interface Pin # Pin Name Pin Type D e s c ri pt i on C1 F1 J1 M1 HIP[3] HIP[2] HIP[1] HIP[0] AI Host Input Positive B1 E1 H1 L1 HIN[3] HIN[2] HIN[1] HIN[0] AI Host Input Negative B3 E3 H3 L3 HOP[3] HOP[2] HOP[1] HOP[0] AO Host Output Positive C3 F3 J3 M3 HON[3] HON[2] HON[1] HON[0] AO Host Output Negative Note Copyright © 2020 Marvell September 21, 2020 The SERDES receiver is AC coupled on-chip. There is no off-chip AC-coupling capacitor required as long as the Rx input common mode is between AGND and AVDD (1.0V) and Rx amplitude is less than 1200 mVpp differential. CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 17 88X5113 Datasheet - Public Table 4: Clocking and Reference Pin # Pin Name Pin Type D e s c ri pt i on N5 CLKP AI Reference Clock Positive. Refer to Section 7.7 for further details. N6 CLKN AI Reference Clock Negative. Refer to Section 7.7 for further details. N8 CLK25P AO 25 MHz Clock Output Positive. Refer to Section 7.8 for further details. N9 CLK25N AO 25 MHz Clock Output Negative. Refer to Section 7.8 for further details. Table 5: Configuration and Reset Pin # Pin Name Pin Type D e s c ri pt i on K9 L9 K8 K5 PHYAD[3] PHYAD[2] PHYAD[1] PHYAD[0] DI/ PD Address In MDIO mode, this sets the PHYAD[3:0] setting. PHYAD[4] is set to 0. In TWSI mode, this sets the A[3:0] setting. A[6:4] is set to 100. J6 J8 J9 CONFIG[2] CONFIG[1] CONFIG[0] DI/PD CONFIG[0] - 0 = MDIO 1 = TWSI CONFIG[1] - 0 = Do not load EEPROM 1 = Load EEPROM CONFIG[2] - Reserved A5 RESETn DI Hardware Reset, 0 = Reset 1 = Normal operation Table 6: Management Interface Pin # Pin Name Pin Type D e s c ri pt i on L8 MDC/SSCL DI Management Interface Clock, or SCL for TWSI slave mode See Section 3.4.1, IEEE MDC/MDIO Register Access for details. L7 MDIO/SSDA IO,OD Management Interface Data, or SDA for TWSI slave mode See Section 3.4.1, IEEE MDC/MDIO Register Access for details. This pin can be open drain. L6 INTn OD Interrupt. Doc. No. MV-S110852-U0 Rev. C Page 18 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Signal Description Pin Description Table 7: EEPROM/GPIO Pin # Pin Name Pin Type D e s c ri pt i on B8 SCL IO, OD Multi-function pin for EEPROM Clock, or GPIO[4]. Primary function is Two-Wire Serial Interface Clock, EEPROM Clock. B9 SDA IO, OD Multi-function pin for EEPROM Data, or GPIO[5]. Primary function is Two-Wire Serial Interface Data, EEPROM Data. Table 8: JTAG Pin # Pin Name Pin Type D e s c ri pt i on C9 TDI DI/PU JTAG Test In B6 TDO DO, OD JTAG Test Out C5 TMS DI/PU JTAG Test Control C8 TCK DI/PU JTAG Test Clock B5 TRSTn DI/PU JTAG Test Reset For normal operation, TRSTn should be pulled low with a 4.7 kohm pull-down resistor. Table 9: GPIO/LED Pin # Pin Name Pin Type D e s c ri pt i on A6 A7 A8 B7 GPIO[3] GPIO[2] GPIO[1] GPIO[0] I/O GPIO Pin # Pin Name Pin Type D e s c ri pt i on J5 L5 TEST[1] TEST[0] DI Test pins. Tie to VSS in normal operation. M6 ATP AO Analog DC test point. Table 10: TEST Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 19 88X5113 Datasheet - Public Table 11: Power and Ground Pin # Pin Name Pin Type D e s c ri pt i on A9 D6 D8 E5 E7 E9 F6 F8 G5 G7 G9 H6 H8 DVDD Digital Power 0.9V/0.95V (I-temp) Digital Core Power A10 A12 D10 G10 G12 K10 N10 N12 AVDDL Analog Power 1.0V Analog Core Power - Line SERDES Side A2 A4 D4 G2 G4 K4 N2 N4 AVDDH Analog Power 1.0V Analog Core Power - Host SERDES Side M8 AVDDC Analog Power 1.0V Common Analog Power. M7 AVDDT Analog Power 2.5V, or 3.3V Temperature Sensor and 25 MHz PLL power. AVDDT must be AC coupled to VSS when not used. C7 VDDON I/O Power 1.05V, 1.2V, 1.5V, 1.8V, 2.5V, or 3.3V I/O Power (North side). See Section 3.12 for more details. J7 VDDOS I/O Power 1.05V, 1.2V, 1.5V, 1.8V, 2.5V, or 3.3V I/O Power (South side). See Section 3.12 for more details. C6 VSEL_N VDDON Level Select Tie to VSS for 2.5V or 3.3V operation, otherwise tie to VDDON for 1.05V, 1.2V, 1.5V, 1.8V operation K6 VSEL_S VDDOS Level Select Tie to VSS for 2.5V or 3.3V operation, otherwise tie to VDDOS for 1.05V, 1.2V, 1.5V, 1.8V operation Doc. No. MV-S110852-U0 Rev. C Page 20 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Signal Description Pin Description Table 11: Power and Ground (Continued) Pin # Pin Name Pin Type D e s c ri pt i on A1 A3 A11 A13 B2 B4 B10 B12 C2 C4 C10 C12 D1 D2 D3 D11 D12 D13 E2 E4 E10 E12 F2 F4 F10 F12 G1 G3 G11 G13 H2 H4 H10 H12 J2 J4 J10 J12 K1 K2 K3 K11 K12 K13 L2 L4 L10 L12 M2 AVSS Ground Ground Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 21 88X5113 Datasheet - Public Table 11: Power and Ground (Continued) Pin # Pin Name Pin Type D e s c ri pt i on M4 M5 M9 M10 M12 N1 N3 N7 N11 N13 AVSS (cont.) Ground Ground D5 D7 D9 E6 E8 F5 F7 F9 G6 G8 H5 H7 H9 K7 VSS Ground Ground Doc. No. MV-S110852-U0 Rev. C Page 22 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Signal Description 88X5113 Device Pin Assignment List 2.3 88X5113 Device Pin Assignment List Table 12:88X5113 Pin List — Alphabetical by Signal Name Pin Number Pin Name P i n N um b e r Pin Name M6 ATP C2 AVSS M8 AVDDC C4 AVSS A2 AVDDH C10 AVSS A4 AVDDH C12 AVSS D4 AVDDH D1 AVSS G2 AVDDH D2 AVSS G4 AVDDH D3 AVSS N2 AVDDH D11 AVSS N4 AVDDH D12 AVSS K4 AVDDH D13 AVSS A10 AVDDL E2 AVSS A12 AVDDL E4 AVSS D10 AVDDL E10 AVSS G10 AVDDL E12 AVSS G12 AVDDL F2 AVSS K10 AVDDL F4 AVSS N10 AVDDL F10 AVSS N12 AVDDL F12 AVSS M7 AVDDT G1 AVSS A1 AVSS G3 AVSS A3 AVSS G11 AVSS A11 AVSS G13 AVSS A13 AVSS H2 AVSS B2 AVSS H4 AVSS B4 AVSS H10 AVSS B10 AVSS H12 AVSS B12 AVSS J2 AVSS Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 23 88X5113 Datasheet - Public Pin Number Pin Name P i n N um b e r Pin Name J4 AVSS J8 CONFIG[1] J10 AVSS J6 CONFIG[2] J12 AVSS A9 DVDD K1 AVSS D6 DVDD K2 AVSS D8 DVDD K3 AVSS E5 DVDD K11 AVSS E7 DVDD K12 AVSS E9 DVDD K13 AVSS F6 DVDD L2 AVSS F8 DVDD L4 AVSS G5 DVDD L10 AVSS G7 DVDD L12 AVSS G9 DVDD M2 AVSS H6 DVDD M4 AVSS H8 DVDD M5 AVSS B7 GPIO[0] M9 AVSS A8 GPIO[1] M10 AVSS A7 GPIO[2] M12 AVSS A6 GPIO[3] N1 AVSS L1 HIN[0] N3 AVSS H1 HIN[1] N7 AVSS E1 HIN[2] N11 AVSS B1 HIN[3] N13 AVSS M1 HIP[0] N9 CLK25N J1 HIP[1] N8 CLK25P F1 HIP[2] N6 CLKN C1 HIP[3] N5 CLKP M3 HON[0] J9 CONFIG[0] J3 HON[1] Doc. No. MV-S110852-U0 Rev. C Page 24 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Signal Description 88X5113 Device Pin Assignment List Pin Number Pin Name P i n N um b e r Pin Name F3 HON[2] A5 RESETn C3 HON[3] B8 SCL L3 HOP[0] B9 SDA H3 HOP[1] C8 TCK E3 HOP[2] C9 TDI B3 HOP[3] B6 TDO L6 INTn L5 TEST[0] L13 LIN[0] J5 TEST[1] H13 LIN[1] C5 TMS E13 LIN[2] B5 TRSTn B13 LIN[3] C7 VDDON M13 LIP[0] J7 VDDOS J13 LIP[1] C6 VSEL_N F13 LIP[2] K6 VSEL_S C13 LIP[3] D5 VSS M11 LON[0] D7 VSS J11 LON[1] D9 VSS F11 LON[2] E6 VSS C11 LON[3] E8 VSS L11 LOP[0] F5 VSS H11 LOP[1] F7 VSS E11 LOP[2] F9 VSS B11 LOP[3] G6 VSS L8 MDC G8 VSS L7 MDIO H5 VSS K5 PHYAD[0] H7 VSS K8 PHYAD[1] H9 VSS L9 PHYAD[2] K7 VSS K9 PHYAD[3] Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 25 88X5113 Datasheet - Public 3 Functional Description This section describes the chip-level functionality. Sections 4 and 5 describe the individual units in detail. 3.1 Data Path Figure 5 shows the chip data path in the main operational mode – PCS mode. The various interface configuration are listed in the Interface Modes of Operation table in Section 4. The register settings to set the various configurations are described in Section 4 and Section 5. Figure 5: 88X5113 Main Operational Modes Doc. No. MV-S110852-U0 Rev. C Page 26 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description Data Path 3.1.1 PCS Mode In the PCS mode, the receive data is terminated by the PCS. The data is retransmitted by a second PCS frequency locked to the local reference clock. The FIFO will insert or delete idles during IPG to compensate for any frequency difference between the received data and the retransmitted data. While in this mode both the line and host side can enable Auto-Negotiation and perform KR training. The host and line interfaces can mix and match PCS and FEC as long as both sides are running at the same nominal speed. The valid combinations between the host and line configurations are shown in Table 13. Table 13: Valid PCS Mode Interface Connections Line H os t P1X1 P1X P1X P1P P1P P1X P1S P1P P2.5X P2.5X P5 P5 P10 P10 P25 P25 P25 P40 P40 P40 P50 P50 P100 P100 1. Refer to the Interface Modes of Operation table in Section 4 for details. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 27 88X5113 Datasheet - Public 3.2 Reset SD A hardware reset (RESETn) will reset the entire chip and initialize all the registers to their hardware reset default. A software reset has a similar effect on the affected units as a hardware reset except all Retain-type registers will hold their value, and the Update registers will have the previously written values take effect. All the reset registers described are self-clear with the exception of on-chip processor and on-chip Processor Block reset bits. Table 14 describes various reset bits available in the device. Table 14: Reset Bits Re set Description Unit Affected R e g i s t e r – Li n e Global Soft-Reset Whole Chip 31.F404.15 Global Hard-Reset Whole Chip 31.F404.14 On-chip Processor Reset On-chip Processor only 31.F404.13 On-chip Processor Block Reset On-chip Processor whole block 31.F404.12 Port Soft-Reset This bit soft-reset all the lanes of the respective interface regardless of the interface mode Port 31.F003.15 31.F003.7 Port Hardware Reset This bit hard-reset all the lanes of the respective interface regardless of the interface mode Port 31.F003.13 31.F003.5 Per Lane/Interface Mode Soft-Reset In 40G/50G/100G mode, soft-reset to lane 0 will be applied to all lanes (lane 1, 2, and 3 soft-reset bits are ignored). Lane 0/Aggregated Port Lane 1 Lane 2 Lane 3 3.F000.15 3.F001.15 3.F002.15 3.F003.15 4.F000.15 4.F001.15 4.F002.15 4.F003.15 PMA Soft-Reset In 40G/50G/100G mode, soft-reset to lane 0 will be applied to all lanes (lane 1, 2, and 3 soft-reset bits are ignored). Lane 0/Aggregated Port Lane 1 Lane 2 Lane 3 1.0000.15 1.2000.15 1.4000.15 1.6000.15 1.1000.15 1.3000.15 1.5000.15 1.7000.15 PCS Soft-Reset – 100G Lane 0/Aggregated Port 3.0000.15 4.0000.15 PCS Soft-Reset – 40G/50G Lane 0/Aggregated Port 3.1000.15 4.1000.15 PCS Soft-Reset – 5G/10G/25G Lane 0/Aggregated Port Lane 1 Lane 2 Lane 3 3.2000.15 3.2200.15 3.2400.15 3.2600.15 4.2000.15 4.2200.15 4.2400.15 4.2600.15 PCS Soft-Reset – 1G/2.5G Lane 0/Aggregated Port Lane 1 Lane 2 Lane 3 3.3000.15 3.3200.15 3.3400.15 3.3600.15 4.3000.15 4.3200.15 4.3400.15 4.3600.15 Doc. No. MV-S110852-U0 Rev. C Page 28 CONIFIDENTIAL Document Classification: Public Register – Host Copyright © 2020 Marvell September 21, 2020 Functional Description SDReset Table 14: Reset Bits (Continued) Re set Description Unit Affected R e g i s t e r – Li n e Register – Host 802.3AP Auto-negotiation Soft-Reset In 40G/50G/100G mode, soft-reset to lane 0 will be applied to all lanes (lane 1, 2, and 3 soft-reset bits are ignored). Lane 0/Aggregated Port Lane 1 Lane 2 Lane 3 7.0000.15 7.0200.15 7.0400.15 7.0600.15 7.1000.15 7.1200.15 7.1400.15 7.1600.15 The Reset table does not include various internal only reset bits. Note The Global Hardware Reset register has the same function as the pin reset. It should be issued right after the chip is powered up to make sure the chip starts from a known state. It could be skipped if the pin reset was asserted. The Port Hardware Reset register resets the line side or host side accordingly. It can be covered by global hardware reset, only apply to one side of the chip, and the same is true for port software reset. This is for debug only. PMA and PCS software resets are IEEE-compliant registers. They are physically the same but implemented at different register addresses as specified in the IEEE specification. The register will be applied to the corresponding sub-port PCS or the coupled PCS (40G, 100G, or 200G). During the chip power-on, it is recommended to use global software reset bit or mode software reset bit to apply the configuration (speed, mode) changes. Per lane/interface based mode software reset is often used when changing the operation modes and speeds. They are specifically assigned to the same register as modes setting bits so programming one register can bring up the new mode. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 29 88X5113 Datasheet - Public 3.3 Hardware Configuration PHYAD[3:0] and CONFIG[2:0] are sampled at the de-assertion of RESETn. PHYAD[3:0] and CONFIG[2:0] must not change after it is sampled. If PHYAD[3:0] and CONFIG[2:0] change when RESETn is high, then the device will have unpredictable behavior as it enters into an invalid mode. The configuration pins are tied either high or low. The settings are shown in Table 15. The device will exit reset in a powered down state. Software configuration is then required to get the device into an operational state. Table 15: Hardware Configuration Configuration Sett i ng PHYAD[3:0] In MDIO mode, this sets the PHYAD[3:0] setting. PHYAD[4] is set to 0. In TWSI mode, this sets the A[3:0] setting. A[6:4] is set to 100. CONFIG[0] Register Access Method 0 = MDIO 1 = TWSI CONFIG[1] EEPROM Loading 0 = Do not load EEPROM on startup. 1 = Load EEPORM on startup. CONFIG[2] Reserved. Set to 0. Doc. No. MV-S110852-U0 Rev. C Page 30 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description Register Access 3.4 Register Access Registers can be accessed either through MDC/MDIO or the Two-Wire Serial Interface (TWSI). Only one mode can be enabled at a time and is configured during hardware reset. For either mode, the MDC pin is used for the clock and MDIO is used for data. 3.4.1 IEEE MDC/MDIO Register Access The management interface provides access to the internal registers via the MDC and MDIO pins and is compliant with IEEE 802.3 Clause 45. MDC is the management data clock input and it can run to a maximum rate of 25 MHz. At high MDIO fanouts, the maximum rate may be decreased depending on the output loading. MDIO is the management data input/output and is a bidirectional signal that runs synchronously to MDC. PHY address is configured during the hardware reset sequence. Refer to Section 3.2, SDReset, on page 28 for detailed information on how to configure PHY addresses. Typical read and write operations on the management interface are shown in Figure 6 and Figure 7. All the required serial management registers are implemented as well as several optional registers. A description of the registers can be found in the device registers documentation. Figure 6: Typical MDC/MDIO Read Operation Figure 7: Typical MDC/MDIO Write Operation The extensions for Clause 45 MDIO indirect register accesses are specified in Table 16. Table 16: Extensions for Management Frame Format for Indirect Access Frame PRE ST OP PHYAD D E VA D R TA A D D R ESS/ D ATA Id le Address 1...1 00 00 PPPPP DDDDD 10 AAAAAAAAAAAAAAAA Z Write 1...1 00 01 PPPPP DDDDD 10 DDDDDDDDDDDDDDDD Z Read 1...1 00 11 PPPPP DDDDD Z0 DDDDDDDDDDDDDDDD Z Read Increment 1...1 00 10 PPPPP DDDDD Z0 DDDDDDDDDDDDDDDD Z Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 31 88X5113 Datasheet - Public The MDIO implements a 16-bit address register that stores the address of the register to be accessed. For an address cycle, it contains the address of the register to be accessed on the next cycle. For read, write, post-read-increment-address cycles, the field contains the data for the register. At power up and reset, the contents of the register are undefined. Write, read, and post-read-increment-address frames access the address register, though only post-read-increment-address frame modifies the contents of the address register. 3.4.2 TWSI Register Access Registers can also be accessed over the TWSI. The TWSI is a slave interface and should not be confused with the master interface that is used to read the EEPROM. In the following discussion, SSCL represents the clock and SSDA represents the data. This is to avoid confusion with the SCL and SDA pins used to read the EEPROM. When the TWSI mode is enabled, the MDC and MDIO pins correspond to SSCL and SSDA functions. For the TWSI device address, the address [4:2] bits from pin PHYADR[3:1] are latched during hardware reset and the device address bits ([6:5]) are fixed at 10. The address bits [1:0] is fixed at 00,01,10, and 11 for each 4-lane port. The TWSI features are as follows:    7-bit device address/8-bit data transfers 100 Kbps mode (Standard mode, SSCL up to 100 kHz) 400 Kbps mode (Fast mode, SSCL up to 400 kHz) Multiple devices using the TWSI can share and lump up the MDC and MDIO lines and are pulled up with a resistor ranging from 4.5 kΩ to 10 kΩ. 3.4.2.1 Bus Operation The Master generates one clock pulse for each data bit transferred. The high or low state of the data line can only change when the clock signal on the SSCL line is low. A high to low transition on the SSDA line while SSCL is high defines a Start. A low to high transition on the SSDA line while the SSCL is high defines a Stop. Start (S), Repeated Start (Sr), and Stop (P) conditions are always generated by the Master. Acknowledge (A) and Not Acknowledge (A) can be generated by either the Slave or Master. The Master continuously monitors for Start and Stop conditions. Whenever a Stop is detected, the device goes into standby mode, and the current operation is canceled. The Slave recovers from this error condition, and waits for the next transfer to begin. Data transfer with Acknowledge is always obligatory. The receiver must pull down the SSDA line during the Acknowledge clock pulse so that it remains stable low during the high period of this clock pulse. If the Slave does not Acknowledge the device address, then the Master must abort the transfer. This is indicated by the Slave generating the Not Acknowledge on the first byte to follow. The Slave device then leaves the data line high, and the Master must generate a Stop or a Repeated Start condition. When the Slave is transmitting data on the bus and the Master responds with a Not Acknowledge, the Slave must receive a Stop or a Repeated Start condition. If neither is received, it is an error condition. The Slave recovers from this error condition and waits for the next transfer to begin. Doc. No. MV-S110852-U0 Rev. C Page 32 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description Register Access 3.4.2.2 Clause 45 Encapsulation All TWSI transactions will encapsulate PHYAD and DEVAD along with the R/W bit and 3-bit instruction in the first 2 bytes as shown in Figure 8. In all diagrams, the shaded portion is generated by the master and the unshaded portion by the device. The INS[2:0] definition is summarized in Table 17. Figure 8: First Two Bytes of All Transactions Table 17: INS[2:0] Definition INS[2:0] Header A d d re s s 000 Abbreviated Header - Use stored REGAD Stored REGAD unchanged 001 Abbreviated Header - Use stored REGAD Post-increment REGAD 010 Full Header - Use specified REGAD Stored REGAD unchanged 011 Full Header - Use specified REGAD Post-increment REGAD 100 Dummy Write 101 Reserved Reserved 110 Reserved Reserved 111 Reserved Reserved In Clause 45 MDIO access, the REGAD[15:0] is set independently of the data access. There are two methods to specify the REGAD. The first method is to fully specify the REGAD in the transaction as shown in Figure 9, Figure 10, Figure 13, and Figure 14. The second method is to use abbreviated header where the stored REGAD register is used as shown in Figure 11, Figure 12, Figure 15, and Figure 16. The stored REGAD register is updated on each TWSI transaction. The stored REGAD register can be updated by a dummy write command as shown in Figure 17. The Clause 45 encapsulation does not differentiate between random versus sequential read/write. All reads and writes can be sustained by the master by not sending a stop bit. So, one or more 16-bit words can be passed with the same encapsulated header. REGAD may or may not be post-incremented after each 16-bit word transfer depending on the INS[2:0]. All 16-bit read/write operations operate atomically. If a write transaction terminates with only 8 bits of the 16-bit word written in, then the 8 bit is discarded and REGAD will not post-increment (if selected). If a read transaction terminates with only 8 bits of the 16-bit word read, then the other 8-bits will be lost forever (that is, in the case of a clear on read register) and REGAD will not post-increment (if selected). All read transactions must read least one byte of data. Write transactions can be dummy writes if no data is transferred. If no data is transferred, then no post-incrementing will occur. The slave will acknowledge the first byte only when PHYAD[4:0] matches and the two most significant bits are 10 (binary). The slave will acknowledge the second byte only if all the following conditions are met:  Copyright © 2020 Marvell September 21, 2020 The first byte was acknowledged by the slave. CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 33 88X5113 Datasheet - Public The DEVAD[4:0] is among the supported device addresses in the PHY. INS[2] bit is a 0 (that is, it will not respond to reserved instructions). The slave will acknowledge the third and subsequent bytes if all the following conditions are met:   The first and second bytes was acknowledged by the slave. The transaction is a write transaction.  A start bit or stop bit is not detected since the second acknowledge. The slave will acknowledge the third and fourth bytes if all the following conditions are met:   The first and second bytes was acknowledged by the slave. The instruction indicates a full header is being sent.  A start bit (not counting the one at the beginning of the current transaction) or stop bit is not detected since the second acknowledge by the slave. The slave will output 8-bit data if all the following conditions are met:   The first and second bytes was acknowledged by the slave.  The third and fourth bytes was acknowledge by the slave if instruction indicates a full header is being sent.  The transaction is a read transaction.  A start bit (not counting the one at the beginning of the current transaction), stop bit or no-acknowledge is not detected. The slave will abort the current 16-bit transfer and will not post-increment the REGAD if a stop bit or no-acknowledge is prematurely detected. All further activities on the bus are ignored by the slave until a start bit is detected.  If the first byte of the REGAD is written and the transaction terminates without the second byte of REGAD being written, then the internal REGAD register will not update. If a start bit is prematurely detected, then the slave will abort the current 16-bit transfer and will not post-increment the REGAD. This premature start bit will immediately trigger the start of the next I2C transaction. If post-increment is active and the REGAD is 0xFFFF, then the REGAD will roll over to 0x0000. Figure 9: Write, Full Header, Retain REGAD Figure 10: Write, Full Header, Post-Increment Doc. No. MV-S110852-U0 Rev. C Page 34 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description Register Access Figure 11: Write, Abbreviated Header, Retain REGAD Figure 12: Write, Abbreviated Header, Post-Increment Figure 13: Read, Full Header, Retain REGAD Figure 14: Read, Full Header, Post-Increment Figure 15: Read, Abbreviated Header, Retain REGAD Figure 16: Read, Abbreviated Header, Post-Increment Figure 17: Dummy Write Command to Set REGAD Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 35 88X5113 Datasheet - Public 3.5 TWSI, GPIO, and LED 3.5.1 GPIO[3:0] and LED[3:0] The GPIO pins are shared between the GPIO and LED functional modes. Each pin can be programmed independently to operate in GPIO or LED modes. The pin mapping is summarized in Table 18. Table 18: GPIO, LED Signal Mapping Pin Spe c i a l Func t i on G PI O LED GPIO[0] – GPIO[0] LED[0] GPIO[1] – GPIO[1] LED[1] GPIO[2] – GPIO[2] LED[2] GPIO[3] – GPIO[3] LED[3] GPIO[0] pin is configured to GPIO mode by setting register bits 31.F437.15:14 to 01. This pin can be configured in LED mode by setting register bits 31.F437.15:14 to 10. The GPIO[3:1] are similar and are configured in GPIO mode by setting register bits 31.F439.15 (for GPIO[1]), 31.F43B.15 (GPIO[2]), and 31.F43D.15 (GPIO[3]) to 0 individually. These pins can be configured in LED mode by setting register bits 31.F439.15 (for GPIO[1]), 31.F43B.15 (GPIO[2]), and 31.F43D.15 (GPIO[3]) to 1 individually. In GPIO mode, each pin can operate bidirectionally and can be individually configured. In the input mode, these pins can be used as interrupts. The GPIO operations are described in the sections below. 3.5.1.1 Controlling and Sensing In the GPIO mode, registers 31.F437.13, 31.F439.13, 31.F43B.13, and 31.F43D.13 control whether the GPIO pins are inputs or outputs. Each pin can be individually controlled. Registers 31.F437.7, 31.F439.7, 31.F43B.7, and 31.F43D.7 allow the pins to be controlled and sensed. When configured as input, a read to registers 31.F437.7, 31.F439.7, 31.F43B.7 and 31.F43D.7 will return the real-time sampled state of the pins GPIO[0], GPIO[1], GPIO[2], and GPIO[3], respectively at the time of the read. A write to these register will write to the output register, but have no immediate effect on the pin since the pin is configured to be an input. The input is sampled once every 6.4 ns (equivalent to one reference clock period). When configured as output, a write will write to the output register which will in turn drive the state of the pin. A read to registers 31.F437.7, 31.F439.7, 31.F43B.7, and 31.F43D.7 will return the value in the output registers. 3.5.1.2 GPIO Interrupts When the GPIO pins are configured as input, several types of interrupt events can be generated as described in Table 19. Register bits 31.F437.10:8, 31.F439.10:8, 31.F43B.10:8, and 31.F43D.10:8 allow each pin to be configured to generate interrupt on one of 5 types of events - Low Level, High Level, High to Low Transition, Low to High Transition, and Transitions on Either Edge. The interrupt generation can also be disabled. When an interrupt event is generated on pin GPIO[0], it is latched Doc. No. MV-S110852-U0 Rev. C Page 36 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description TWSI, GPIO, and LED high in the sticky register 31.F437.11. Similarly, when interrupt event is generated on GPIO[1], GPIO[2] or GPIO[3], they are latched in the sticky register 31.F439.11, 31.F43B.11, and 31.F43D.11. The register bits will remain high until read. The GPIO interrupt can be asserted when an event occurs through pins GPIO[3:0]. Registers 31.F437.12, 31.F439.12, 31.F43B.12, and 31.F43D.12 set the interrupt enables. Registers 31.F437.12 and 31.F437.11 are bitwise AND together to generate a GPIO[0] interrupt. Registers 31.F439.12 and 31.F439.11 are bitwise AND together to generate a GPIO[1] interrupt. Similarly, registers 31.F43B.12 and 31.F43B.11 are bitwise AND together to generate a GPIO[2] interrupt and registers 31.F43D.12 and 31.F43D.11 are bitwise AND together to generate a GPIO[3] interrupt. If the result is non-zero the GPIO interrupt will assert. For interrupt polarity control, refer to Table 19. Table 19: GPIO/LED Controls Register Function Set t i ng Mode 31.F437.15:14 GPIO 0 Function 00 = GPIO[0] is used for signaling. 01 = GPIO[0] is used for GPIO 0 function. 10 = GPIO[0] is used for LED 0 function. 11 = Reserved. (LED 0 can only select lane 0 as LED function) R/W 31.F439.15 31.F43B.15 31.F43D.15 GPIO n Function where n = 1, 2, 3 0 = GPIO [n] pin is used for GPIO 1 function. 1 = GPIO [n] pin is used for LED 1 function. (LED n can only select lane n as LED function) R/W 31.F437.13 31.F439.13 31.F43B.13 31.F43D.13 LED n Output Enable where n = 0, 1, 2, 3 This bit has no effect unless register 31.F437.15:14 = 01. 0 = Input 1 = Output R/W 31.F437.12 31.F439.12 31.F43B.12 31.F43D.12 GPIO n Interrupt Enable where n = 0, 1, 2, 3 0 = Disable 1 = Enable R/W 31.F437.11 31.F439.11 31.F43B.11 31.F43D.11 GPIO n Interrupt Status where n = 0, 1, 2, 3 This bit is not valid unless register 31.F437.15:14 = 01 and 31.F437.13 = 0. 0 = No interrupt has occurred. 1 = An interrupt has occurred. RO, LH 31.437.10:8 31.F439.10:8 31.F43B.10:8 31.F43D.10:8 GPIO n Interrupt Select where n = 0, 1, 2, 3 Interrupt is effective only when 31.F437.13 = 0. 000 = No Interrupt 001 = Reserved 010 = Interrupt on Low Level 011 = Interrupt on High Level 100 = Interrupt on High to Low 101 = Interrupt on Low to High 110 = Reserved 111 = Interrupt on Low to High or High to Low R/W Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 37 88X5113 Datasheet - Public Table 19: GPIO/LED Controls (Continued) Register Function Set t i ng Mode 31.F437.7 31.F439.7 31.F43B.7 31.F43D.7 GPIO n Data where n = 0, 1, 2,3 This bit has no effect unless register 31.F437.15:14 = 01. When 31.F437.13 = 0, a read to this register will reflect the state of the GPIO[0], and a write will write the output register but have no effect on the GPIO[n]. When 31.F437.13 = 1 a read to this register will reflect the state of the output register, and a write will write the output register and drive the state of the GPIO[n]. R/W 31.F437.6:0 31.F439.6:0 31.F43B.6:0 31.F43D.6:0 Reserved Set to 0s. RO 3.5.1.3 LED The GPIO[3:0] pins can be used to drive LED pins. Setting register 31.F437.15:14 to 10 and registers 31.F439.15, 31.F43B.15, and 31.F43D.15 to 1 will configure the GPIO[0], GPIO[1], GPIO[2], GPIO[3] pin in the LED mode and named as LED[0], LED[1], LED[2] and LED[3]. Registers 31.F438, 31.F43A, 31.F43C, and 31.F43E control the operation of the LED pins. LED[3:0] will operate per this section unless the pin is used for GPIO purposes. Figure 18 shows the general chaining of function for the LEDs. The various functions are described in the following sections. All LED pins are tri-state outputs. Figure 18: LED Chain LED Operations The LED pins relay various statuses of the PHY so that they can be displayed by the LEDs. The status that the LEDs display is defined by registers 31.F438, 31.F43A, 31.F43C, and 31.F43E as shown in Table 20. For each LED, if the condition selected by bits 11:8 is true, then the LED will blink. If the condition selected by bits 7:4 is true, then the LED will be solid on. If both selected conditions are true, then the blink will take precedence. LED0 displays the status of lane 0, and LED1 displays the status of lane 1, and so on. Register bit 31.F438.12 is set to 1 to display the status of system (host) side transmit activity, receive activity and link status register on LED 0. Setting 31.F438.12 to 0 will display the status of line side on LED 0. Similarly, register bits 31.F43A.12, 31.F43C.12, and 31.F43E.12 are used to select the status of the host side or the line side for LED1, LED2, and LED3. Doc. No. MV-S110852-U0 Rev. C Page 38 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description TWSI, GPIO, and LED LED Polarity There are a variety of methods to hook up the LEDs. Some examples are shown in Figure 19. Registers 31.F438.1:0, 31.F43A.1:0, 31.F43C.1:0, and 31.F43E.1:0 specify the output polarity for the LED function to accommodate a variety of installation options. The lower bit of each pair specified the on (active) state of the LED, either high or low. The upper bit of each pair specifies whether the off state of the LED should be driven to the opposite level of the on state or Hi-Z. Figure 19: Various LED Hookup Configurations Table 20: LED[3:0] Control and Status Register Bits Register Function Se t t i n g Mode 31.F438.15:13 31.F43A.15:13 31.F43C.15:13 31.F43E.15:13 Reserved Scratch reserved register R/W 31.F438.12 31.F43A.12 31.F43C.12 31.F43E.12 LED[n] PHY/System side select Where n = 0, 1, 2, 3 0 = PHY side (line side). 1 = System side (host side). R/W 31.F438.11:8 31.F43A.11:8 31.F43C.11:8 31.F43E.11:8 LED[n] Blink Behavior Where n = 0, 1, 2, 3 Blink Behavior has higher priority. 0000 = Solid Off 0001 = System or Line Side Transmit or Receive Activity 0010 = System or Line Side Transmit Activity 0011 = System or Line Side Receive Activity 0100 = Reserved 0101 = Reserved 0110 = System or Line Side Side Link 0111 = Solid On 1000 = Reserved 1001 = Reserved 1010 = Blink Mix 1011 = Solid Mix 11xx = Reserved R/W Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 39 88X5113 Datasheet - Public Table 20: LED[3:0] Control and Status Register Bits (Continued) Register Function Se t t i n g Mode 31.F438.7:4 31.F43A.7:4 31.F43C.7:4 31.F43E.7:4 LED[n] Solid Behavior Where n = 0, 1, 2, 3 Blink Behavior has higher priority. 0000 = Solid Off 0001 = System or Line Side Transmit or Receive Activity 0010 = System or Line Side Transmit Activity 0011 = System or Line Side Receive Activity 0100 = Reserved 0101 = Reserved 0110 = System or Line Side Link 0111 = Solid On 1xxx = Reserved R/W 31.F438.3 31.F43A.3 31.F43C.3 31.F43E.3 Reserved Set to 0. R/W 31.F438.2 31.F43A.2 31.F43C.2 31.F43E.2 LED[n] Blink Rate Select Where n = 0, 1, 2, 3 0 = Select Blink Rate 1 1 = Select Blink Rate 2 R/W 31.F438.1:0 31.F43A.1:0 31.F43C.1:0 31.F43E.1:0 LED[n] Polarity Where n = 0, 1, 2, 3 00 = On - drive LED[n] low, Off - drive LED[n] high 01 = On - drive LED[n] high, Off - drive LED[n] low 10 = On - drive LED[n] low, Off - tri-state LED[n] 11 = On - drive LED[n] high, Off - tri-state LED[n] Pulse Stretching and Blinking Register 31.F435.14:12 specifies the pulse stretching duration for a particular activity. Only the transmit activity, receive activity, and (transmit or receive) activity are stretched. All other statuses are not stretched since they are static in nature and no stretching is required. Some status will require blinking instead of a solid on. Registers 31.F435.10:8 and 31.F435.6:4 specify the two blink rates. The pulse stretching is applied first and the blinking will reflect the duration of the stretched pulse. Registers 31.F438.2, 31.F43A.2, 31.F43C.2, and 31.F43E.2 select which of the two blink rates to use for LED0 to LED3, respectively.   0 = Select Blink Rate 1. 1 = Select Blink Rate 2. Doc. No. MV-S110852-U0 Rev. C Page 40 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description TWSI, GPIO, and LED Table 21: LED Timer Control Register Function S e t t i ng Mode 31.F435.15 Reserved Set to 0. R/W 31.F435.14:12 Pulse Stretch Duration 000 = No pulse stretching 001 = 20 to 40 ms 010 = 40 to 81 ms 011 = 81 to 161 ms 100 = 161 to 322 ms 101 = 322 to 644 ms 110 = 644 ms to 1.3s 111 = 1.3 to 2.6s R/W 31.F435.11 Reserved Set to 0. R/W 31.F435.10:8 Blink Rate 2 000 = 40 ms 001 = 81 ms 010 = 161 ms 011 = 322 ms 100 = 644 ms 101 = 1.3s 110 = 2.6s 110 = 5.2s R/W 31.F435.7 Reserved Set to 0. R/W 31.F435.6:4 Blink Rate 1 000 = 40 ms 001 = 81 ms 010 = 161 ms 011 = 322 ms 100 = 644 ms 101 = 1.3s 110 = 2.6s 110 = 5.2s R/W 31.F435.3:0 Reserved Set to 0. R/W Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 41 88X5113 Datasheet - Public 3.5.2 TWSI, GPIO 4, and GPIO 5 The SCL and SDA pins are for TWSI mode and have the option to be used for GPIO functional mode. In TWSI mode, the SCL and SDA pins are coupled together, where the SCL pin is used as a clock, and SDA is used as a serial bidirectional data. The pin mapping is summarized in Table 22. Table 22: TWSI and GPIO Signal Mapping Pin GPIO TWSI SCL GPIO[4] TWSI clock (SCL) SDA GPIO[5] TWSI serial data (SDA) The SCL and SDA pins are configured to TWSI mode by setting 31.F430.14 to 0. TWSI is the default mode for these pins. SCL pin is configured in GPIO mode by setting register bits 31.F430.14 to 1. Similarly, SDA pin is configured in GPIO mode by setting register bits 31.F432.14 to 1. TWSI is the two-wire serial interface standard. In a special mode, TWSI is used to load the SERDES and chip management firmware from an external EEPROM immediately after the reset is de-asserted. EEPROM is attached to the TWSI interface via the SCL and SDA pins. This interface can also be used to write the external EEPROM from an internal RAM using the embedded processor. Table 23: SCL Control Register Function Setting Mode 31.F430.15 Reserved Reserved RO 31.F430.14 SCL Function TWSI mode for SCL and SDA pins are selected by 31.F430.14 only. Register 31.F432.14 has no effect on TWSI mode. GPIO functions are controlled individually for each pin. R/W 0 = SCL/SDA is used for TWSI Function. 1 = SCL is used for GPIO Function, if 31.F427.7 = 0. 1 = SCL is used for divided recovered clock B, when 31.F427.7 = 1. 31.F430.13 SCL Output Enable This bit has no effect unless register 31.F430.14 = 1 and 31.F427.7 = 0. 0 = Input 1 = Output R/W 31.F430.12 SCL Interrupt Enable 0 = Disable 1 = Enable R/W 31.F430.11 SCL Interrupt Status This bit is not valid unless register 31.F430.14 = 1 and 31.F430.13 = 0. 0 = No interrupt has occurred. 1 = An interrupt has occurred. RO, LH Doc. No. MV-S110852-U0 Rev. C Page 42 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description TWSI, GPIO, and LED Table 23: SCL Control (Continued) Register Function Setting Mode 31.F430.10:8 SCL Interrupt Select Interrupt is effective only when 31.F430.13 = 0. 000 = No Interrupt 001 = Reserved 010 = Interrupt on Low Level 011 = Interrupt on High Level 100 = Interrupt on High to Low 101 = Interrupt on Low to High 110 = Reserved 111 = Interrupt on Low to High or High to Low R/W 31.F430.7 SCL GPIO Data This bit has no effect unless register 31.F430.14 = 1. When 31.F430.13 = 0, a read to this register will reflect the state of the SCL pin, and a write will write the output register but have no effect on the SCL pin. R/W When 31.F430.13 = 1, a read to this register will reflect the state of the output register, and a write will write the output register and drive the state of the SCL pin. 31.F430.6:0 Reserved Set to 0s. RO Table 24: SDA Control Register Function Setti ng Mode 31.F432.15 Reserved Reserved. RO 31.F432.14 SDA Function TWSI mode for SCL and SDA pins are selected by 31.F430.14 only. Register 31.F432.14 has no effect on TWSI mode, but can enable the GPIO or Recovered clock output function on this pin. 0 = Reserved 1 = SDA is used for GPIO 5 Function if 31.F427.11 = 0. 1 = SDA is used for divided recovered clock C if 31.F427.11 = 1. R/W 31.F432.13 SDA Output Enable This bit has no effect unless register 31.F432.14 = 1 and register 31.LT27.11 = 0. 0 = Input 1 = Output R/W 31.F432.12 SDA Interrupt Enable 0 = Disable 1 = Enable R/W 31.F432.11 SDA Interrupt Status This bit is not valid unless register 31.F432.14 = 1 and register 31.F432.13 = 0. 0 = No interrupt has occurred. 1 = An interrupt has occurred. RO, LH Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 43 88X5113 Datasheet - Public Table 24: SDA Control (Continued) Register Function Setti ng Mode 31.F432.10:8 SDA Interrupt Select Interrupt is effective only when 31.F432.13 = 0. 000 = No Interrupt 001 = Reserved 010 = Interrupt on Low Level 011 = Interrupt on High Level 100 = Interrupt on High to Low 101 = Interrupt on Low to High 110 = Reserved 111 = Interrupt on Low to High or High to Low R/W 31.F432.7 SDA GPIO Data This bit has no effect unless register 31.F432.14 = 1. When 31.F432.13 = 0, a read to this register will reflect the state of the SDA pin, and a write will write the output register but have no effect on the SDA pin. When 31.F432.13 = 1, a read to this register will reflect the state of the output register, and a write will write the output register and drive the state of the SDA pin. R/W 31.F432.6:0 Reserved Set to 0s. RO Doc. No. MV-S110852-U0 Rev. C Page 44 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description Interrupt Table 25: I/O Open Drain Control Register Function Setti ng Mode Port0 31.F436.15:3 Reserved Set to 0. R/W Port0 31.F436.2 GPIO1 pin (port0 GPIO[0]) open drain control 0 = Pad can drive high. 1 = Pad cannot drive high (Set to high when open drain pad is used). R/W Port0 31.F436.1:0 Reserved Set to 0. R/W Port1 31.F436.15:7 Reserved Set to 0. R/W Port1 31.F436.6 GPIO2 pin (port1 GPIO[4]) open drain control 0 = Pad can drive high. 1 = Pad cannot drive high (Set to high when open drain pad is used). R/W Port1 31.F436.5:4 Reserved Set to 0. R/W Port2 31.F436.15:3 Reserved Set to 0. R/W Port2 31.F436.2 GPIO3 pin (port2 GPIO[0]) open drain control 0 = Pad can drive high. 1 = Pad cannot drive high (Set to high when open drain pad is used). R/W Port2 31.F436.1:0 Reserved Set to 0. R/W Port3 31.F436.7 CLK_OUT_SE2 pin (port3 GPIO[5]) open drain control 0 = Pad can drive high. 1 = Pad cannot drive high (Set to high when open drain pad is used). R/W Port3 31.F436.6 CLK_OUT_SE1 pin (port3 GPIO[4]) open drain control 0 = Pad can drive high. 1 = Pad cannot drive high (Set to high when open drain pad is used). R/W Port3 31.F436.5 Reserved Set to 0. R/W Port3 31.F436.4 GPIO4 pin (port3 GPIO[2]) open drain control 0 = Pad can drive high. 1 = Pad cannot drive high (Set to high when open drain pad is used). R/W Port3 31.F436.3:0 Reserved Set to 0. R/W 3.6 Interrupt Various functional units in the device can generate interrupt on the INTn pin. The INTn interrupt pin will be active if any of the events enabled in the interrupt enable register occurs. If an interrupt event corresponding to a disabled interrupt enable bit occurs, then the corresponding interrupt status bit will be set even though the event does not activate the INTn pin. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 45 88X5113 Datasheet - Public By default, the INTn is driven low when an enabled interrupt is active. The polarity of the INTn pin can be changed by programming register 31.F421.2:1. The INTn pin can also be forced to be active by setting the register 31.F421.0 to 1. Table 26: Global Interrupt Control Register Function Se t t i n g 31.F421.2:1 Interrupt Polarity 00 = Active - drive INT low, Inactive - drive INT high 01 = Active - drive INT high, Inactive - drive INT low 10 = Active - drive INT low, Inactive - tri-state INT 11 = Active - drive INT high, Inactive - tri-state INT 31.F421.0 Force Interrupt Pin Active 0 = Normal operation 1 = Force interrupt pin active. The interrupts are cleared after a read to the interrupt status register. F The Global Interrupt Status register (Table 27) summarizes which unit is requesting the interrupt. The interrupts are logically ORed along with register 31.F421.0 to form the interrupt output (INTn). The Global Interrupt Status register bits do not have corresponding Interrupt Enable bits. All the interrupt enables/masks are located within each unit. Figure 20 diagram shows the interrupt hierarchy and aggregation from different blocks. Figure 20: Interrupt Hierarchy and Aggregation from Different Blocks 1G/2.5G PCS Interrupt 5G/10G/25G PCS Interrupt 40G/50G PCS Interrupt Host Side Level 2 Interrupt Aggregation (OR) Processor Interrupt 100G PCS Interrupt 40G to 25G Rate Matching FIFO Interrupt 200G PCS Interrupt GPIO Interrupt Doc. No. MV-S110852-U0 Rev. C Page 46 ... Excess Link Error Interrupt Line Side Level 2 Interrupt Aggregation (OR) CONIFIDENTIAL Document Classification: Public Port Level Level 1 Interrupt Interrupt Aggregation per port (OR) Copyright © 2020 Marvell September 21, 2020 Functional Description Interrupt Table 27: Global Interrupt Status Bit Descriptions Register Temp Sensor Interrupt Status 31.F420.11 GPIO Interrupt Status 31.F420.10 RM_FIFO Interrupt Status 31.F420.9 On-chip Processor Interrupt Status 31.F420.8 M0 Interrupt Status 31.F420.4 N0 Interrupt Status 31.F420.0 Table 28, Table 29, Table 30, and Table 31 summarize the Line Side (N Unit) interrupt control and statuses for various interface modes. Excessive link error can be monitored to generate an interrupt event (See Table 32). The Host Side (M Unit) has the same set of interrupt function with the exception that the device register is 4 (instead of 3). Each bit of the Interrupt Status register will be masked with the Interrupt Enable register, respectively, and each enabled output is ORed to form the aggregated unit interrupt. The Port Interrupt Statuses (register 31.F004.0 – Line Side Interrupt, register 31.F004.2 – System Side Interrupt) are the result of logical OR of the aggregated unit interrupt. Table 28: 1G/2.5G Interrupt Enable, Interrupt Status, and Real-Time Status Bit Descriptions I n t e rrupt Ena bl e I nt e rru p t Status R e a l - Ti m e St a t us Speed Changed 3.Bn01.14 3.Bn02.14 – Duplex Changed 3.Bn01.13 3.Bn02.13 – Page Received 3.Bn01.12 3.Bn02.12 – Auto-Negotiation Completed 3.Bn01.11 3.Bn02.11 – Link Up to Link Down 3.Bn01.10 3.Bn02.10 – Link Down to Link Up 3.Bn01.9 3.Bn02.9 – Symbol Error 3.Bn01.8 3.Bn02.8 – False Carrier 3.Bn01.7 3.Bn02.7 – Where n = 0, 2, 4, 6 for Lane 0, 1, 2, and 3, respectively. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 47 88X5113 Datasheet - Public . Table 29: 10G/25G Interrupt Enable, Interrupt Status, and Real-Time Status Bit Descriptions I n t e rrupt Ena bl e I n t e rrupt St a t us R e a l - Ti m e St a t us Local Fault Transmitted 3.An00.11 3.An01.11 3.An02.11 Local Fault Received 3.An00.10 3.An01.10 3.An02.10 Rx FIFO Full 3.An00.6 3.An01.6 3.An02.6 Rx FIFO Empty 3.An00.5 3.An01.5 3.An02.5 Link Status Change 3.An00.2 3.An01.2 3.An02.2 High BER Change 3.An00.1 3.An01.1 3.An02.1 Block Lock Change 3.An00.0 3.An01.0 3.An02.0 CRC 3.An4A.2 3.An4B.2 – FIFO Overflow 3.An4A.1 3.An4B.1 – FIFO Underflow 3.An4A.0 3.An4B.0 – Where n = 0, 2, 4, 6 for Lane 0, 1, 2, and 3, respectively. Table 30: 40G/50G Interrupt Enable, Interrupt Status, and Real-Time Status Bit Descriptions I nt e rru p t E n a b l e I nt e rru p t S t a t u s R e a l - Ti m e St a t us Local Fault Transmitted 3.9001.11 3.9002.11 3.9003.11 Local Fault Received 3.9001.10 3.9002.10 3.9003.10 Lane Alignment 3.9001.9 3.9002.9 3.9003.9 Tx Lane Count err 3.9001.8 3.9002.8 3.9003.8 JIT 0 Lock Change 3.9001.7 3.9002.7 3.9003.7 JIT Local-Fault Lock Change 3.9001.6 3.9002.6 3.9003.6 Link Status Change 3.9001.5 3.9002.5 3.9003.5 High BER Change 3.9001.4 3.9002.4 3.9003.4 Lane 3:0 Block Lock Change 3.9001.3:0 3.9002.3:0 3.9003.3:0 CRC 3.904A.2 3.904B.2 – FIFO Overflow 3.904A.1 3.904B.1 – FIFO Underflow 3.904A.0 3.904B.0 – Where n = 0, 2, 4, 6 for Lane 0, 1, 2, and 3, respectively. Doc. No. MV-S110852-U0 Rev. C Page 48 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description Interrupt Table 31: 100G Interrupt Enable, Interrupt Status, and Real-Time Status Bit Descriptions I nt e rru p t Enable I n t e rrupt St a t us R e a l - Ti me Status 100G PCS Rx FIFO Empty 3.8001.15 3.8003.15 3.8005.15 100G PCS Rx FIFO Full 3.8001.14 3.8003.14 3.8005.14 100G PCS Tx PPM FIFO Overflow 3.8001.13 3.8003.13 3.8005.13 100G PCS Tx PPM FIFO Underflow 3.8001.12 3.8003.12 3.8005.12 Rising Edge of the Local Fault Condition on Tx Path 3.8001.11 3.8003.11 3.8005.11 Rising Edge of the Local Fault Condition on Rx Path 3.8001.10 3.8003.10 3.8005.10 100G Packet Check CRC Error 3.8001.7 3.8003.7 3.8005.7 Link Change 3.8001.5 3.8003.5 3.8005.5 High BER Change 3.8001.4 3.8003.4 3.8005.4 Lane 3:0 Block Lock Change 3.8001.3:0 3.8003.3:0 3.8005.3:0 Lane 19:4 Block Lock Change 3.8002.15:0 3.8004.15:0 3.8006.15:0 Where n = 0, 2 for Lane 0, 2, respectively. Table 32: Excessive Link Error Interrupt Enable, Interrupt Status, and Real-Time Status Bit Descriptions I nt e rru p t Enable I nt e rru p t Status R e a l - Ti m e Status Excessive Link Error – Lane 0 In 40G/50G/100G mode, only Lane 0 interrupt is used (Lane 1, 2, and 3 interrupts bits are ignored). Register 3.F041.6:0 sets the link error threshold setting. Register 3.F041.7 sets the link down or link up error setting. 3.F041.8 3.F040.15 3.F040.14 Excessive Link Error – Lane 1 Register 3.F043.6:0 sets the link error threshold setting. Register 3.F043.7 sets the link down or link up error setting. 3.F043.8 3.F042.15 3.F042.14 Excessive Link Error – Lane 2 Register 3.F045.6:0 sets the link error threshold setting. Register 3.F045.7 sets the link down or link up error setting. 3.F045.8 3.F044.15 3.F044.14 Excessive Link Error – Lane 3 Register 3.F047.6:0 sets the link error threshold setting. Register 3.F047.7 sets the link down or link up error setting. 3.F047.8 3.F046.15 3.F046.14 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 49 88X5113 Datasheet - Public The interrupt from the processor block is for debug or patch program: details are not provided here (For further details, refer to Section 3.10). Doc. No. MV-S110852-U0 Rev. C Page 50 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description Interrupt All of the GPIO interrupts are only valid when the multi-function pins are configured as GPIO Inputs. Table 33: GPIO1, GPIO2, GPIO3, GPIO4, CLK_OUT_SE1, CLK_OUT_SE2 Pins Interrupt Bit Descriptions I nt e rru p t Enable I nt e rru p t Status R e a l - Ti m e Status GPIO1 Pin (Port0, GPIO[0]) Valid only when register port0.31.F437.15:14 = 01 and port0.31.F437.13 = 0. Register port0.31.F437.10:8 is used to select the interrupt behavior. port0. 31.F437.12 port0. 31.F437.11 port0. 31.F437.7 GPIO2 Pin (Port1, GPIO[4]) Valid only when register port1.31.F430.15:14 = 01 and port1.31.F430.13 = 0. Register port1.31.F430.10:8 is used to select the interrupt behavior. port1. 31.F430.12 port1. 31.F430.11 port1. 31.F430.7 GPIO3 Pin (Port2, GPIO[0]) Valid only when register port2.31.F437.15:14 = 01 and port2.31.F437.13 = 0. Register port2.31.F437.10:8 is used to select the interrupt behavior. port2. 31.F437.12 port2. 31.F437.11 port2. 31.F437.7 GPIO4 Pin (Port3, GPIO[2]) Valid only when register port3.31.F43B.15:14 = 01 and port3.31.F43B.13 = 0. Register port3.31.F43B.10:8 is used to select the interrupt behavior. port3. 31.F43B.12 port3. 31.F43B.11 port3. 31.F43B.7 CLK_OUT_SE1 Pin (Port3, GPIO[4]) Valid only when register port3.31.F430.15:14 = 01 and port3.31.F430.13 = 0. Register port3.31.F430.10:8 is used to select the interrupt behavior. port3. 31.F430.12 port3. 31.F430.11 port3. 31.F430.7 CLK_OUT_SE2 Pin (Port3, GPIO[5]) Valid only when register port3.31.F432.15:14 = 01 and port3.31.F432.13 = 0. Register port3.31.F432.10:8 is used to select the interrupt behavior. port3. 31.F432.12 port3. 31.F432.11 port3. 31.F432.7 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 51 88X5113 Datasheet - Public Table 34 summarizes the temperature sensor and GPIOs interrupt. Table 34: Temp Sensor and GPIOs, Interrupt Enable, Interrupt Status Bit Descriptions I n t e rrupt Ena bl e I nt e rru p t Status R e a l - Ti m e Status Temperature Sensor Register 31.F707.15:8 sets the temperature threshold. 31.F41F.15 31.F705.6 See the Temp Sensor section. GPIO 0 (LED 0) Valid only when register 31.F437.15:14 = 01 and 31.F437.13 = 0. Register 31.F437.10:8 is used to select the interrupt behavior. 31.F437.12 31.F437.11 31.F437.7 GPIO 1 (LED 1) Valid only when register 31.F439.15=0 and 31.F439.13 = 0. Register 31.F439.10:8 is used to select the interrupt behavior. 31.F439.12 31.F439.11 31.F439.7 GPIO 2 (LED 2) Valid only when register 31.F43B.15=0 and 31.F43B.13 = 0. Register 31.F43B.10:8 is used to select the interrupt behavior. 31.F43B.12 31.F43B.11 31.F43B.7 GPIO 3 (LED 3) Valid only when register 31.F43D.15=0 and 31.F43D.13 = 0. Register 31.F43D.10:8 is used to select the interrupt behavior. 31.F43D.12 31.F43D.11 31.F43D.7 GPIO 4 (SCL) Valid only when register 31.F430.14 = 1, 31.F427.7 = 0, and 31.F430.13 = 0. Register 31.F430.10:8 is used to select the interrupt behavior. 31.F430.12 31.F430.11 31.F430.7 GPIO 5 (SDA) Valid only when register 31.F432.14 = 1, 31.F427.11 = 0, and 31.F432.7 = 0. Register 31.F432.10:8 is used to select the interrupt behavior. 31.F432.12 31.F432.11 31.F432.7 Doc. No. MV-S110852-U0 Rev. C Page 52 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description Power Management 3.7 Power Management The device will exit reset in a powered down state. In general, it is not necessary to power down an unused interface. The device will automatically power down any unused circuits. Each of the ports or blocks can be manually powered down by setting the respective power down control bits as described in Table 35. To prevent fragmentation, the power down control function is designed to wait until the datapath is IDLE with the exception of Per Lane/Interface Mode Power Down control bits that are activated immediately and may cause fragmentation in the datapath. Table 35: Power Down Control Bits Power Down Bits Description Unit Affected Register – Li n e R e gi s t e r – H os t Port Power Down This bit power-down all the lanes of the respective interface regardless of the interface mode. Port 31.F003.14 31.F003.6 Per Lane/Interface Mode Power Down In 40G/50G/100G mode, power-down to lane 0 will be applied to all lanes (Lane 1, 2, and 3 power-down bits are ignored). Lane 0/Aggregated Port Lane 1 Lane 2 Lane 3 3.F000.13 3.F001.13 3.F002.13 3.F003.13 4.F000.13 4.F001.13 4.F002.13 4.F003.13 PMA Power Down In 40G/50G/100G mode, power-down to lane 0 will be applied to all lanes (Lane 1, 2, and 3 power-down bits are ignored). Lane 0/Aggregated Port Lane 1 Lane 2 Lane 3 1.0000.11 1.2000.11 1.4000.11 1.6000.11 1.1000.11 1.3000.11 1.5000.11 1.7000.11 PCS Power-Down – 100G Lane 0/Aggregated Port (lane 0-3 coupled) 3.0000.11 4.0000.11 PCS Power-Down – 40G/50G Lane 0/Aggregated Port (lane 0-3 coupled) 3.1000.11 4.1000.11 PCS Power-Down – 5G/10G/25G Lane 0/Aggregated Port Lane 1 Lane 2 Lane 3 3.2000.11 3.2200.11 3.2400.11 3.2600.11 4.2000.11 4.2200.11 4.2400.11 4.2600.11 PCS Power-Down – 1G/2.5G Lane 0/Aggregated Port Lane 1 Lane 2 Lane 3 3.3000.11 3.3200.11 3.3400.11 3.3600.11 4.3000.11 4.3200.11 4.3400.11 4.3600.11 Registers 3.F000 through 3.F003 or 4.F000 through 4.F003 define the operation modes for fixed mode. The power down bit 13 of them is only to be used for fixed mode. When Aneg is enabled, these registers are ignored. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 53 88X5113 Datasheet - Public 3.8 IEEE 1149.1 and 1149.6 Controller The IEEE 1149.1 standard defines a test access port and boundary-scan architecture for digital integrated circuits and for the digital portions of mixed analog/digital integrated circuits. The IEEE 1149.6 standard defines a test access port and boundary-scan architecture for AC-coupled signals. This standard provides a solution for testing assembled printed circuit boards and other products based on highly complex digital integrated circuits and high-density surface-mounting assembly techniques. The device implements the instructions shown in Table 36. Upon reset, ID_CODE instruction is selected. The instruction opcodes are shown in Table 36. Table 36: TAP Controller Opcodes In s tr u c tio n OpC ode EXTEST 00_0x0 SAMPLE/PRELOAD 00_0000_0001 CLAMP 00_0000_0010 HIGH-Z 00_0000_0011 ID_CODE 00_0000_0100 EXTEST_PULSE 00_0000_0101 EXTEST_TRAIN 00_0000_0110 BYPASS 11_1111_1111 The device reserves five pins called the Test Access Port (TAP) to provide test access: Test Mode Select Input (TMS) Test Clock Input (TCK)  Test Data Input (TDI)  Test Data Output (TDO)  Test Reset Input (TRSTn) To ensure race-free operation all input and output data is synchronous with the test clock (TCK). TAP input signals (TMS and TDI) are clocked into the test logic on the rising edge of TCK, while output signal (TDO) is clocked on the falling edge. For additional details refer to the IEEE 1149.1 Boundary Scan Architecture document.   3.8.1 BYPASS Instruction The BYPASS instruction uses the bypass register. This register contains a single shift-register stage and is used to provide a minimum length serial path between the TDI and TDO pins of the 88X5113 device when test operation is not required. This arrangement allows rapid movement of test data to and from other testable devices in the system. Doc. No. MV-S110852-U0 Rev. C Page 54 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description IEEE 1149.1 and 1149.6 Controller 3.8.2 SAMPLE/PRELOAD Instruction The SAMPLE/PRELOAD instruction enables scanning of the boundary-scan register without causing interference to the normal operation of the device. Two functions are performed when this instruction is selected: sample and preload. Sample allows a snapshot to be taken of the data flowing from the system pins to the on-chip test logic or vice versa, without interfering with normal operation. The snapshot is taken on the rising edge of TCK in the Capture-DR controller state, and the data can be viewed by shifting through the component's TDO output. While sampling and shifting data out through TDO for observation, preload enables an initial data pattern to be shifted in through TDI and to be placed at the latched parallel output of the boundary-scan register cells that are connected to system output pins. This step ensures that known data is driven through the system output pins upon entering the extest instruction. Without preload, indeterminate data would be driven until the first scan sequence is complete. The shifting of data for the sample and preload phases can occur simultaneously. While data capture is being shifted out, the preload data can be shifted in. The boundary scan register for CONFIG[2] is closest to TDO. Table 37 lists the boundary scan order where: TDI  LIN[0]  …  CONFIG[2] TDO Table 37: Boundary Scan Chain Order Order Bal l Ty p e 1 CONFIG[2] Input 2 CONFIG[1] Input 3 CONFIG[0] Input 4 PHYAD[2] Input 5 PHYAD[3] Input 6 PHYAD[1] Input 7 PHYAD[0] Input 8 INTN Output 9 INTN Output Enable 10 MDC Input 11 MDIO Input 12 MDIO Output 13 MDIO Output Enable 14 HOP[3] AC Output 15 HON[3] AC Output 16 HIP[3] AC Input 17 HIN[3] AC Input Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 55 88X5113 Datasheet - Public Table 37: Boundary Scan Chain Order (Continued) Order Bal l Ty p e 18 HOP[2] AC Output 19 HON[2] AC Output 20 HIP[2] AC Input 21 HIN[2] AC Input 22 HOP[1] AC Output 23 HON[1] AC Output 24 HIP[1] AC Input 25 HIN[1] AC Input 26 HOP[0] AC Output 27 HON[0] AC Output 28 HIP[0] AC Input 29 HIN[0] AC Input 30 SCL Output Enable 31 SCL Output 32 SCL Input 33 SDA Output Enable 34 SDA Output 35 SDA Input 36 RESETN Input 37 GPIO[0] Output Enable 38 GPIO[0] Output 39 GPIO[0] Input 40 GPIO[1] Output Enable 41 GPIO[1] Output 42 GPIO[1] Input 43 GPIO[2] Output Enable 44 GPIO[2] Output 45 GPIO[2] Input 46 GPIO[3] Output Enable Doc. No. MV-S110852-U0 Rev. C Page 56 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description IEEE 1149.1 and 1149.6 Controller Table 37: Boundary Scan Chain Order (Continued) 3.8.3 Order Bal l Ty p e 47 GPIO[3] Output 48 GPIO[3] Input 49 LOP[3] AC Output 50 LON[3] AC Output 51 LIP[3] AC Input 52 LIN[3] AC Input 53 LOP[2] AC Output 54 LON[2] AC Output 55 LIP[2] AC Input 56 LIN[2] AC Input 57 LOP[1] AC Output 58 LON[1] AC Output 59 LIP[1] AC Input 60 LIN[1] AC Input 61 LOP[0] AC Output 62 LON[0] AC Output 63 LIP[0] AC Input 64 LIN[0] AC Input EXTEST Instruction The EXTEST instruction enables circuitry external to the 88X5113 device (typically the board interconnections) to be tested. Prior to executing the EXTEST instruction, the first test stimulus to be applied is shifted into the boundary-scan registers using the sample/preload instruction. So, when the change to the extest instruction occurs, known data is driven immediately from the 88X5113 to its external connections. The SERDES output pins will be driven to static levels. The positive and negative legs of the SERDES output pins are controlled via a single boundary scan cell.The positive leg outputs the level specified by the boundary scan cell while the negative leg outputs the opposite level. 3.8.4 CLAMP Instruction The CLAMP instruction enables the state of the signals driven from component pins to be determined from the boundary-scan register while the bypass register is selected as the serial path between TDI and TDO. The signals driven from the component pins do not change while the clamp instruction is selected. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 57 88X5113 Datasheet - Public 3.8.5 HIGH-Z Instruction The HIGH-Z instruction places all of the digital component system logic outputs in an inactive high-impedance drive state. In this state, an in-circuit test system may drive signals onto the connections normally driven by a component output without incurring the risk of damage to the component. The SERDES outputs cannot be tri-stated. Note 3.8.6 ID CODE Instruction The ID CODE contains the manufacturer identity, part and version. Table 38: ID CODE Instruction Versi o n Part Number Manufactur er Identity Bit 31 to 28 Bit 27 to 12 Bit 11 to 1 Bit 0 0000 0000000001000110 00111101001 1 3.8.7 EXTEST_PULSE Instruction When the AC/DC select is set to DC the EXTEST_PULSE instruction has the same behavior as the EXTEST instruction. When the AC/DC select is set to AC, the EXTEST_PULSE instruction has the same behavior as the EXTEST instruction except for the behavior of the SERDES output pins. As in the EXTEST instruction, the test stimulus must first be shifted into the boundary-scan registers. Upon the execution of the EXTEST_PULSE instruction the SERDES positive output pins output the level specified by the test stimulus and SERDES negative output pins output the opposite level. However, if the TAP controller enters into the Run-Test/Idle state the SERDES positive output pins output the inverted level specified by the test stimulus and SERDES negative output pins output the opposite level. When the TAP controller exits the Run-Test/Idle state, the SERDES positive output pins again output the level specified by the test stimulus and SERDES negative output pins output the opposite level. 3.8.8 EXTEST_TRAIN Instruction When the AC/DC select is set to DC, the EXTEST_TRAIN instruction has the same behavior as the EXTEST instruction. When the AC/DC select is set to AC, the EXTEST_TRAIN instruction has the same behavior as the EXTEST instruction except for the behavior of the SERDES output pins. As in the EXTEST instruction, the test stimulus must first be shifted into the boundary-scan registers. Upon the execution of the EXTEST_PULSE instruction the SERDES positive output pins output the level specified by the test stimulus and SERDES negative output pins output the opposite level. However, if the TAP controller enters into the Run-Test/Idle state the SERDES output pins will toggle between inverted and non-inverted levels on the falling edge of TCK. This toggling will continue for as long as the TAP controller remains in the Run-Test/Idle state. Doc. No. MV-S110852-U0 Rev. C Page 58 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description IEEE 1149.1 and 1149.6 Controller When the TAP controller exits the Run-Test/Idle state, the SERDES positive output pins again output the level specified by the test stimulus and SERDES negative output pins output the opposite level. Reference Clock An external oscillator provides a reference for the on-board transmit Phase Lock Loop (PLL) and clock generation block that provides internal clocks for both the transmit and receive data paths. A 156.25 MHz differential clock should be connected to the CLKP/CLKN pins. AC coupling is required for the pins. The detail requirements for CLKP/CLKN inputs are listed in Section 7.7. The device can generate a 25 MHz differential output clock on the CLK25P/CLK25N pins that is frequency locked to the 156.25 MHz clock on the CLKP/CLKN pins. If AVDDT is connected to 2.5V or 3.3V supply, then the CLK25P/CLK25N will start oscillating when CLKP/CLKN oscillates at start up. The 25 MHz clock can be disabled by coupling AVDDT to VSS. Additional details on the 25 MHz clock can be found in Section 6.1. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 59 88X5113 Datasheet - Public 3.9 Temperature Sensor The device contains an internal temperature sensor. 3.10 On-chip Processor The chip has a small, efficient microcontroller with supporting hardware designed to offload the system’s CPU by automating configuration and workaround tasks. The processor block can access any register with a PHY and Dev address. It monitors the status of the chip, such as PCS mode, temperature reading, link status, and when it detects an irregularity, it initiates software routines to reconfigure or recover the chip. It supports the boot code loading function through the dedicated TWSI interface from external EEPROM to the internal RAM. There is also a provision to program the external EEPROM from the internal RAM through the common TWSI interface. Doc. No. MV-S110852-U0 Rev. C Page 60 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description Synchronous Ethernet Mode 3.11 Synchronous Ethernet Mode The device can output a divide-down version of recovered clock for other chips to synchronize to it. It has two applications as shown in following figures. Figure 21: Synchronous Ethernet with 88X5113 in a Non-Ethernet Application such as CPRI Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 61 88X5113 Datasheet - Public Figure 22: Synchronous Ethernet with 88X5113 in an Ethernet Application The recovered clock can be chosen from line side or host side, and from lane 0 to lane 3. The device has three methods to send out recovered clock (called RCLK A,B,C). RCLK A is sent to Interrupt pin (INTn). The RCLK B is sent to SCL pin. RCLK C is sent to SDA pin. Figure 23 shows the registers to configure final recovered clock RCLK A to INTn pin. Register 31.F422 is controlling Line side clock divider 1. Bit 0 will choose 32T clock when set to 1 and choose 40T clock when set to 0. Bit 2:1 will choose clock from lane 0~3. Bit 4 is set to 1 to enable the clock divider 1. Bit 5 will set whether to enable clock divider after SERDES clock is ready (set 1). Bit 15:8 configures the divider ratio for clock divider 1. The divide ratio is 2 to the power of ([15:8] +1). Doc. No. MV-S110852-U0 Rev. C Page 62 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Functional Description Synchronous Ethernet Mode Figure 23: Multiplexing Scheme for Recovered Clock RCLKA Register 31.F424 controls the host-side clock divider 1. It has same definition as 31.F422. Register 31.F423 and 31.F425 control Recovered Clock divider 2 of Line Side and Host side correspondingly. The Line divider 1 clock and divider 2 clock go through MUX 1 and MUX2 to output two clocks (clock1 and clock2) for top-level. It is controlled by 31.F426.0 and 31.F426.2. The Host divider 1 clock and divider 2 clock go through MUX1 and MUX2 to output two clocks (clock1 and clock2) for top-level. It is controlled by 31.F426.4 and 31.F426.6. Line clock1, clock2 and Host clock1, clock2 will go through top-level two-level multiplexes to generate final RCLK A, B or C. Each of them can be chosen from either Line or Host side, either from clock1 or clock2 individually. As shown in Figure 23, 31.F427.3:0 configures the final 4 to 1 selection for RCLK A (to INTn pin). Bit 0 selects Line clock1 or clock2. Bit 1 selects Host clock1 or clock2. Bit 3 choose the clock from Line or Host. Bit 4 is the final clock enable. The controls for RCLK B (to SCL) is 31.F427.7:4. The controls for RCLK C (to SDA) is 31.F427.11:8. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 63 88X5113 Datasheet - Public 3.12 Power Supplies The device requires the following supplies to power the core and I/O.          AVDDL, AVDDH, and AVDDC should be tied together and sourced from the same power supply on the board. AVDDL: Line SERDES 1.0V supply AVDDH: Host SERDES 1.0V supply AVDDC: Common analog 1.0V supply AVDDT: For 25 MHz PLL and temperature sensor function. 3.3V or 2.5V is required for operation. Couple AVDDT to VSS if the 25 MHz PLL and the temperature sensor functions are not needed. This pin can be tied together with VDDON or VDDOS with filtering to separate it from the digital supply. Core 0.9V(Commercial) digital supply VDDON: Digital I/O supply. For 2.5V or 3.3V operation, the VSEL_N pin should be tied to VSS. For 1.05V, 1.2V, 1.5V, 1.8V operation, the VSEL_N pin should be tied to VDDON. The pins running on the VDDON supply are RESETn, SCL, SDA, TDI, TDO, TCK, TMS, TRSTn, GPIO[3:0]. VDDOS: Digital I/O supply. For 2.5V or 3.3V operation, the VSEL_S pin should be tied to VSS. For 1.05V, 1.2V, 1.5V, and 1.8V operation, the VSEL_S pin should be tied to VDDOS. The pins running on the VDDOS supply are MDC, MDIO, INTn, PHYAD[3:0], CONFIG[2:0], TEST[1:0]. Doc. No. MV-S110852-U0 Rev. C Page 64 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description 4 Line Side Description The line interface comprises four differential input lanes and four differential output lanes. Table 40 lists out what is active for all the modes. The device can be configured to operate in single-port operation or four sub-port operation depending on how many SERDES lanes are used to form the port. Each sub-port’s mode of operation can be configured via Auto-Negotiation or forced mode. Any of the modes shown in Table 40 can be set via forced mode. However, only the modes with the Y in the last column can be configured via Clause 73 Auto-Negotiation. Table 41 shows the register setting required to force a particular mode. Register 3.F000n is used to select the sub-port n. 40 Gbps, 50 Gbps, and 100 Gbps speeds are not supported by sub-ports 1, 2, and 3. For the purpose of the subsequent discussion, only to the registers in sub-port 0 are referenced unless otherwise noted. The registers in ports 1, 2, and 3 are offset as shown in the Equivalent Registers Between Line and Host Interface table in Section 5 and behave in the same way as sub-port 0. Single-port operation (multi-lane port operation) maps into sub-port 0. That is, sub-port 0 supports all speeds, while sub-port 1, 2, and 3 supports neither 40 Gbps, 50 Gbps, nor 100 Gbps speeds. The priority for mode selection is listed in decreasing order of priority: 1. 2. 3. 4. If Auto-Negotiation of sub-port 0 is enabled (7.0000.12 = 1) and any capability that requires multiple lanes is advertised (for example, 40 Gbps, 50 Gbps, or 100 Gbps), then operation on sub-ports 1, 2, and 3 are disabled. Registers 3.F000 to 3.F0003 are ignored. Auto-Negotiation will determine the mode to operate. Even if the Auto-Negotiation result in a single-lane operation, sub-ports 1, 2, and 3 will still be disabled. If Auto-Negotiation of sub-port 0 is disabled (7.0000.12 = 0), then register 3.F000 is used to force the mode of operation on sub-port 0. If a capability that requires multiple lanes is selected, then operation on sub-ports 1, 2, and 3 are disabled and registers 3.F001 to 3.F003 are ignored. If neither #1 nor #2 above are in effect, then each sub-port operates independently. If sub-port n Auto-Negotiation is enabled, then Auto-Negotiation will determine the mode to operate and register 3.F00n is ignored. If none of the above are in effect, then register 3.F00n will determine the mode of operation. If Auto-Negotiation is disabled on sub-port n and register 3.F00n selects a mode that requires Clause 72 training, then it is the user’s responsibility to properly set the Auto-Negotiation registers to advertise only the capability that is consistent with the mode requested in register 3.F00n even though register 7.0000.12 is set to 0. The Auto-Negotiation in this case is used only to synchronize the two link partners in order to start the Clause 72 training. As part of the Clause 72 training procedure, the device will automatically initiate Auto-Negotiation even though register 7.0000.12 is set to 0. When Auto-Negotiation completes the device will commence Clause 72 training for the mode selected in register 3.F00n. The device only checks that Auto-Negotiation completes, and does not check whether the resolved capability matches the mode selected in register 3.F00n. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 65 88X5113 Datasheet - Public 4.1 Interface Modes of Operation Table 39 provides a description of the interface modes of operations detailed in Table 40. Table 39: Mode Definition Reference Symbol Description Type P = PCS R = Retimer Speed 1 = 1 Gbps - single lane 2.5 = 2.5 Gbps - single lane 5 = 5 Gbps - single lane 10 = 10 Gbps - single lane 25 = 25 Gbps - 1 lane x 25 Gbps or 2 lanes x 12.5 Gbps or 4 lanes x 6.25G 40 = 40 Gbps - 4 lanes x 10 Gbps 50 = 50 Gbps - 1 lane x 50 Gbps or 2 lanes x 25 Gbps or 4 lanes x 12.5 Gbps 100 = 100 Gbps - 2 lanes x 50 Gbps or 4 lanes x 25 Gbps 200 = 200 Gbps - 4 lanes x 50 Gbps Training/AN/Co ding X = BASE-X S = SGMII System P = SGMII PHY L = NRZ BASE-R/X, no Auto-Negotiation K = NRZ BASE-R/X, Backplane C = NRZ BASE-R, Twinax J = Same as K except consortium B = Same as C except consortium M = same as L Non-Standard 50GBASE-R2 U = PAM4 BASE-R, no Auto-Negotiation Q = PAM4 BASE-R, Twin ax/Backplane Y = Same as L for Non-Standard 25GBASE-R2, no Auto-Negotiation Z = Same as C for Non-Standard 25GBASE-R2, Auto-Negotiation A = Same as L for Non-Standard 25GBASE-R4, no Auto-Negotiation G = Same as C for Non-Standard 25GBASE-R4, Auto-Negotiation H = Same as K for Non-Standard 25GBASE-R4, Auto-Negotiation FEC N = No FEC F = KR-FEC (Firecode) R = RS-FEC (528, 514) P = RS-FEC (544, 514) Doc. No. MV-S110852-U0 Rev. C Page 66 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description Interface Modes of Operation Table 40: Interface Modes of Operation Mo d e Des cr iption PCS FE C PMA Autoneg Tra i n i n g Line I/O M ult i- s pe e d A P A ut one g R e s olut ion P1X 1000BASE-X 1000BASE-X (CL 36) None Clause 36 Clause 37/73 None N/A Y P1S SGMII (System) 1000BASE-X (SGMII) None Clause 36 SGMII None N/A P1P SGMII (PHY) 1000BASE-X (SGMII) None Clause 36 SGMII None N/A P2.5X 2.5GBASE-X 2.5GBASE-X (* CL 36) None Clause 361 Clause 732 None CU4HDD1 Y P5L 5GBASE-R 5GBASE-R (* CL 49) None Clause 511 Clause 732 None CU4HDD1 Y P10LN 10GBASE-LR/SR 10GBASE-R (CL 49) None Clause 51 None None SFI/SFP+ P10KN 10GBASE-KR (No FEC) 10GBASE-R (CL 49) None Clause 51 Clause 73 CL 72.6.10 KR (CL 72) Y P10KF 10GBASE-KR (FEC) 10GBASE-R (CL 49) KR (CL 74) Clause 51 Clause 73 CL 72.6.10 KR (CL 72) Y P10LF 10G (Non-standard) 10GBASE-R (CL 49) KR (CL 74) Clause 51 None None SFI/SFP+ P25LN 25G (Non-standard) 25GBASE-R (CL 107) None Clause 109 None None (No FEC) 25GAUI (109A, 109B) P25LF 25G (Non-standard) (KR-FEC) 25GBASE-R (CL 107) KR (CL 74) Clause 109 None None 25GAUI (109A, 109B) P25LR 25GBASE-SR 25GBASE-R (CL 107) RS (CL 108) Clause 109 None None 25GAUI (109A, 109B) P25CN 25GBASE-CR (No FEC) 25GBASE-R (CL 107) None Clause 109 Clause 73 CL 72.6.10 CR (CL 110) Y P25CF 25GBASE-CR (KR-FEC) 25GBASE-R (CL 107) KR (CL 74) Clause 109 Clause 73 CL 72.6.10 CR (CL 110) Y P25CR 25GBASE-CR (RS-FEC) 25GBASE-R (CL 107) RS (CL 108) Clause 109 Clause 73 CL 72.6.10 CR (CL 110) Y P25KN 25GBASE-KR (No FEC) 25GBASE-R (CL 107) None Clause 109 Clause 73 CL 72.6.10 KR (CL 111) Y P25KF 25GBASE-KR (KR-FEC) 25GBASE-R (CL 107) KR (CL 74) Clause 109 Clause 73 CL 72.6.10 KR (CL 111) Y P25KR 25GBASE-KR (RS-FEC) 25GBASE-R (CL 107) RS (CL 108) Clause 109 Clause 73 CL 72.6.10 KR (CL 111) Y P25BN 25GBASE-CR (No FEC) (Consortium) 25GBASE-R (CL 107) None Clause 109 Con OUI CL 72.6.10 CR (CL 110) Y P25BF 25GBASE-CR (KR-FEC) (Consortium) 25GBASE-R (CL 107) KR (CL 74) Clause 109 Con OUI CL 72.6.10 CR (CL 110) Y P25BR 25GBASE-CR (RS-FEC) (Consortium) 25GBASE-R (CL 107) RS (CL 108) Clause 109 Con OUI CL 72.6.10 CR (CL 110) Y Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 67 88X5113 Datasheet - Public Table 40: Interface Modes of Operation (Continued) Mo d e Des cr iption PCS FE C PMA Autoneg Tra i n i n g Line I/O M ult i- s pe e d A P A ut one g R e s olut ion P25JN 25GBASE-KR (No FEC) (Consortium) 25GBASE-R (CL 107) None Clause 109 Con OUI CL 72.6.10 KR (CL 111) Y P25JF 25GBASE-KR (KR-FEC) (Consortium) 25GBASE-R (CL 107) KR (CL 74) Clause 109 Con OUI CL 72.6.10 KR (CL 111) Y P25JR 25GBASE-KR (RS-FEC) (Consortium) 25GBASE-R (CL 107) RS (CL 108) Clause 109 Con OUI CL 72.6.10 KR (CL 111) Y P40LN 40GBASE-LR4/SR4 40GBASE-R4 (CL 82) None Clause 83 None None XLAUI (CL 83A, 83B) P40CN 40GBASE-CR4 (No FEC) 40GBASE-R4 (CL 82) None Clause 83 Clause 73 CL 72.6.10 CR4 (CL 85) Y P40CF 40GBASE-CR4 (FEC) 40GBASE-R4 (CL 82) KR (CL 74) Clause 83 Clause 73 CL 72.6.10 CR4 (CL 85) Y P40KN 40GBASE-KR4 (No FEC) 40GBASE-R4 (CL 82) None Clause 83 Clause 73 CL 72.6.10 KR4 (CL 84) Y P40KF 40GBASE-KR4 (FEC) 40GBASE-R4 (CL 82) KR (CL 74) Clause 83 Clause 73 CL 72.6.10 KR4 (CL 84) Y P40LF 40G (Non-standard) 40GBASE-R4 (CL 82) KR (CL 74) Clause 83 None None XLAUI (CL 83A, 83B) P50LN 50GBASE-LR4/SR4 50GBASE-R4 (CL 82) None Clause 83 None None XLAUI (CL 83A, 83B) P50CN 50GBASE-CR4 (No FEC) 50GBASE-R4 (CL 82) None Clause 83 Clause 734 CL 72.6.10 CR4 (CL 85) P50CF 50GBASE-CR4 (FEC) 50GBASE-R4 (CL 82) KR (CL 74) Clause 83 Clause 734 CL 72.6.10 CR4 (CL 85) P50KN 50GBASE-KR4 (No FEC) 50GBASE-R4 (CL 82) None Clause 83 Clause 734 CL 72.6.10 KR4 (CL 84) P50KF 50GBASE-KR4 (FEC) 50GBASE-R4 (CL 82) KR (CL 74) Clause 83 Clause 734 CL 72.6.10 KR4 (CL 84) P50LF 50G (Non-standard) 50GBASE-R4 (CL 82) KR (CL 74) Clause 83 None None XLAUI (CL 83A, 83B) P50MN 50G (Non-standard) 50GBASE-R2 (CL 82) None 4:2 (CL 83) None None 2 lane (CL 83A, 83B) P50MF 50G (Non-standard) (KR-FEC) 50GBASE-R2 (CL 82) KR (CL 74) 4:2 (CL 83) None None 2 lane (CL 83A, 83B) P50MR 50G (Non-standard) (RS-FEC) 50GBASE-R2 (CL 82) RS (Con) 4:2 (CL 83) None None 2 lane (CL 83A, 83B) P50BN 50GBASE-CR2 (No FEC) (Consortium) 50GBASE-R2 (CL 82) None 4:2 (CL 83) Con OUI CL 72.6.10 2 lane CR (CL 85) Y P50BF 50GBASE-CR2 (KR-FEC) (Consortium) 50GBASE-R2 (CL 82) KR (CL 74) 4:2 (CL 83) Con OUI CL 72.6.10 2 lane CR (CL 85) Y (No FEC) Doc. No. MV-S110852-U0 Rev. C Page 68 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description Interface Modes of Operation Table 40: Interface Modes of Operation (Continued) Mo d e Des cr iption PCS FE C PMA Autoneg Tra i n i n g Line I/O M ult i- s pe e d A P A ut one g R e s olut ion P50BR 50GBASE-CR2 (RS-FEC) (Consortium) 50GBASE-R2 (CL 82) RS (Con) 4:2 (CL 83) Con OUI CL 72.6.10 2 lane CR (CL 85) Y P50JN 50GBASE-KR2 (No FEC) (Consortium) 50GBASE-R2 (CL 82) None 4:2 (CL 83) Con OUI CL 72.6.10 2 lane KR (CL 84) Y P50JF 50GBASE-KR2 (KR-FEC) (Consortium) 50GBASE-R2 (CL 82) KR (CL 74) 4:2 (CL 83) Con OUI CL 72.6.10 2 lane KR (CL 84) Y P50JR 50GBASE-KR2 (RS-FEC) (Consortium) 50GBASE-R2 (CL 82) RS (Con) 4:2 (CL 83) Con OUI CL 72.6.10 2 lane KR (CL 84) Y P100LN 100GBASE-LR4 100GBASE-R4 (CL 82) None Clause 83 None None CAUI-4 (CL 83D, 83E) P100LR 100GBASE-SR4 100GBASE-R4 (CL 82) RS (CL 91) Clause 83 None None CAUI-4 (CL 83D, 83E) P100C R 100GBASE-CR4 100GBASE-R4 (CL 82) RS (CL 91) Clause 83 Clause 73 CL 72.6.10 CR4 (CL 92) Y P100K R 100GBASE-KR4 100GBASE-R4 (CL 82) RS (CL 91) Clause 83 Clause 73 CL 72.6.10 KR4 (CL 92) Y P100K N 100G (Non-standard) 100GBASE-R4 (CL 82) None Clause 83 Clause 733 CL 72.6.10 KR4 (CL 92) R1 1G - Transparent 1G - Retimer None None None None N/A R2.5 2.5G - Transparent 2.5G - Retimer None None Clause 732 None CU4HDD1 732 None CU4HDD1 R5 5G - Transparent, (No Training) 5G - Retimer None None Clause R10L 10G - Transparent, (No Training) 10G - Retimer None None None None SFI/SFP+ R10K 10G - Transparent, (KR Training) 10G - Retimer None None Clause 73 CL 72.6.10 KR (CL 72) R25L 25G - Transparent, (No Training) 25G - Retimer None None None None 25GAUI (109A, 109B) R25C 25G - Transparent, (CR Training) 25G - Retimer None None Clause 73 CL 72.6.10 CR4 (CL 110) R25K 25G - Transparent, (KR Training) 25G - Retimer None None Clause 73 CL 72.6.10 KR4 (CL 111) R40L 40G - Transparent, (No Training) 40G - Retimer None None None None XLAUI (CL 83A, 83B) R40C 40G - Transparent, (CR Training) 40G - Retimer None None Clause 73 CL 72.6.10 CR4 (CL 85) R40K 40G - Transparent, (KR Training) 40G - Retimer None None Clause 73 CL 72.6.10 KR4 (CL 84) R100L 100G - Transparent, (No Training) 100G - Retimer None None None None CAUI-4 (CL 83D, 83E) R100C 100G - Transparent, (CR Training) 100G - Retimer None None Clause 73 CL 72.6.10 CR4 (CL 92) R100K 100G - Transparent, (KR Training) 100G - Retimer None None Clause 73 CL 72.6.10 KR4 (CL 92) Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 69 88X5113 Datasheet - Public • • Note • • • 2.5G and 5G mode currently being defined in IEEE 802.3 CU4HDD study group. Clause 73 Auto-Negotiation can be turned on or off. Bits being defined by CU4HDD. The P100KN mode is non-standard but requires Auto-Negotiation to be on to start training. The 100GBASE-CR4 bit will be used. 50GBASE-R4 uses 40GBASE-R4 Auto-Negotiation ability bits to negotiate. This is a custom mode where both link partners know a-priori to negotiate to 50G R400Q uses AN based on Clause 73, with use of allocated next page field for CR-8 and Clause 136 start up protocol for pre-coder/training options. Table 41: Register Control to Select Mode of Operation Mode D escription 3.F0 0 n. 2 : 0 1 3.F00n.4 3.F00n.5 3.F00n.7:6 3 . F0 0n .9 : 8 P1X 1000BASE-X 000 0 1 00 00 P1S SGMII (System) 000 0 1 00 11 P1P SGMII (PHY) 000 0 1 00 10 P2.5X 2.5GBASE-X 001 0 1 00 XX2 P5L 5GBASE-R 010 0 or 1 1 00 XX P10LN 10GBASE-LR/SR 011 0 1 00 XX P10KN 10GBASE-KR (No FEC) 011 1 1 00 XX P10KF 10GBASE-KR (FEC) 011 1 1 01 XX P10LF 10G (Non-standard) 011 0 1 01 XX P25LN 25G (Non-standard) (No FEC) 100 0 1 00 XX P25LF 25G (Non-standard) (KR-FEC) 100 0 1 01 XX P25LR 25GBASE-SR 100 0 1 10 XX P25CN 25GBASE-CR (No FEC) 100 1 1 00 00 P25CF 25GBASE-CR (KR-FEC) 100 1 1 01 00 P25CR 25GBASE-CR (RS-FEC) 100 1 1 10 00 P25KN 25GBASE-KR (No FEC) 100 1 1 00 01 P25KF 25GBASE-KR (KR-FEC) 100 1 1 01 01 Doc. No. MV-S110852-U0 Rev. C Page 70 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description Interface Modes of Operation Table 41: Register Control to Select Mode of Operation (Continued) Mode D escription 3.F0 0 n. 2 : 0 1 3.F00n.4 3.F00n.5 3.F00n.7:6 3 . F0 0n .9 : 8 P25KR 25GBASE-KR (RS-FEC) 100 1 1 10 01 P25BN 25GBASE-CR (No FEC) (Consortium) 100 1 1 00 10 P25BF 25GBASE-CR (KR-FEC) (Consortium) 100 1 1 01 10 P25BR 25GBASE-CR (RS-FEC) (Consortium) 100 1 1 10 10 P25JN 25GBASE-KR (No FEC) (Consortium) 100 1 1 00 11 P25JF 25GBASE-KR (KR-FEC) (Consortium) 100 1 1 01 11 P25JR 25GBASE-KR (RS-FEC) (Consortium) 100 1 1 10 11 P40LN 40GBASE-LR4/SR4 101 0 1 00 0X P40CN 40GBASE-CR4 (No FEC) 101 1 1 00 00 P40CF 40GBASE-CR4 (FEC) 101 1 1 01 00 P40KN 40GBASE-KR4 (No FEC) 101 1 1 00 01 P40KF 40GBASE-KR4 (FEC) 101 1 1 01 01 P40LF 40G (Non-standard) 101 0 1 01 0X P50LN 50GBASE-LR4/SR4 110 0 1 00 0X P50CN 50GBASE-CR4 (No FEC) 110 1 1 00 00 P50CF 50GBASE-CR4 (FEC) 110 1 1 01 00 P50KN 50GBASE-KR4 (No FEC) 110 1 1 00 01 P50KF 50GBASE-KR4 (FEC) 110 1 1 01 01 P50LF 50G (Non-standard) 110 0 1 01 0X P50MN 50G (Non-standard) (No FEC) 110 0 1 00 1X P50MF 50G (Non-standard) KR-FEC 110 0 1 01 1X Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 71 88X5113 Datasheet - Public Table 41: Register Control to Select Mode of Operation (Continued) Mode D escription 3.F0 0 n. 2 : 0 1 3.F00n.4 3.F00n.5 3.F00n.7:6 3 . F0 0n .9 : 8 P50MR 50G (Non-standard) (RS-FEC) 110 0 1 10 1X P50BN 50GBASE-CR2 (No FEC) (Consortium) 110 1 1 00 10 P50BF 50GBASE-CR2 (KR-FEC) (Consortium) 110 1 1 01 10 P50BR 50GBASE-CR2 (RS-FEC) (Consortium) 110 1 1 10 10 P50JN 50GBASE-KR2 (No FEC) (Consortium) 110 1 1 00 11 P50JF 50GBASE-KR2 (KR-FEC) (Consortium) 110 1 1 01 11 P50JR 50GBASE-KR2 (RS-FEC) (Consortium) 110 1 1 10 11 P100LN 100GBASE-LR4 111 0 1 00 XX P100LR 100GBASE-SR4 111 0 1 10 XX P100CR 100GBASE-CR4 111 1 1 10 00 P100KR 100GBASE-KR4 111 1 1 10 01 P100KN 100G (Non-standard) 111 1 1 00 00 1. 3.F00n where n is sub-port n. 2. Where X means don’t care. Table 42: Base Link Register on PCS Modes 88X511 3 Base Li n k R e g i s t e r ( 3 . x f o r Line S i de , 4 . x f o r H os t Si d e ) M ode s 1G 3001 P1* 2.5G 3001 P2p5** 5G 2001 P5* 10G 2001 P10** 25GR1 2001 P25B/C/J/K/L* 25GR2 1001 P25Y/Z* 25GR4 1001 P25A/G/H* 40GR2 1001 P40B/J* 40GR4 1001 P40C/K/L* 50GR1 1001 P50U/Q* 50GR2 1001 P50B/J/M* Doc. No. MV-S110852-U0 Rev. C Page 72 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description Electrical Interface Table 42: Base Link Register on PCS Modes (Continued) 88X511 3 Base Li n k R e g i s t e r ( 3 . x f o r Line S i de , 4 . x f o r H os t Si d e ) M ode s 50GR4 1001 P50C/K/L* 100GR2 1 P100U/Q* 100GR4 1 P100C/K/L* 200GR4 4001 P200** NOTE: **The dsp lock for lane 0, 1, 2, and 3 are at registers 0xF201.5, 0xF221.5, 0xF241.5, and 0xF261. 4.2 Electrical Interface The input of the SERDES (Rx) is AC coupled on die while the output (Tx) is not AC coupled. All SERDES inputs and outputs are internally terminated by 50Ω each (or 100Ω differential). The SERDES transmitter uses has a three-tap (1 pre-tap and 1 post-tap) FIR filter is implemented for the purpose of channel equalization. The FIR tap values are automatically adjusted during Clause 72 training or can be manually adjusted to optimize the transmit eye over a particular channel. Table 40 Line I/O column lists out the supported electrical interfaces. Refer to the appropriate standards for detailed information. 4.3 PCS and PMA The device supports many different modes of operation as shown in Table 40, all the PCS modes reduce down to four PCS types as shown in Table 43. There are four copies of each single-lane PCS types forming four sub-ports and one copy of each multi-lane PCS on sub-port 0. The register location of each PCS type are summarized in the Equivalent Registers Between Line and Host Interface table in Section 5. Table 43: PCS Types PCS Mode P C S Ty p e Sub-Port 0 Sub-Port 1 Sub-Port 2 Sub-Port 3 1000BASE-X X X X X 10GBASE-R X X X X 40GBASE-R4 X 100GBASE-R4 X 1000BASE-X SGMII PHY SGMII System 2.5GBASE-X 5GBASE-R 10GBASE-R 25GBASE-R 40GBASE-R4 50GBASE-R4 50GBASE-R2 100GBASE-R4 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 73 88X5113 Datasheet - Public 4.3.1 100GBASE-R4 PCS (Modes P100*) The various 100GBASE-R4 PCS and PMA operate according to IEEE 802.3ba, 802.3bj, and 802.3bm specifications depending on the type selected. In general, a 64B/66B coding and scrambling is used to improve the transmission characteristics of the serial data and ease clock recovery at the receiver. The data stream is distributed across 20 virtual lanes. The alignment markers allows the lanes to be aligned and lanes to be reordered at the receiver. The Reed Solomon FEC reduces the bit error rate of the recovered data. 100GBASE-LR4 up to the CAUI-4 interface takes the path from the CGMII through the 20:4 bit multiplexer to the serializer on the egress direction. It takes the path from the de-serializer though the 4:20 de-multiplexer to the CGMII in the ingress direction. The Reed Solomon FEC is not used and there is no training of the transmitter FIR coefficients. 100GBASE-SR4 up to the CAUI-4 interface takes the path from the CGMII through the transcoder through the Reed Solomon encoder through the symbol distribution to the serializer on the egress direction. The alignment marker is remapped and sent to the Reed Solomon encoder. The receive path starts from the de-serializer through the alignment/de-skew/reorder though the Reed Solomon to the CGMII in the ingress direction. There is no training of the transmitter FIR coefficients. The Reed Solomon uses the RS (528, 514) code. 100GBASE-CR4 (to the CR4 PMD) path is identical to 100GBASE-SR4 except IEEE 802.3 Clause 72.6.10 training occurs to set the transmitter FIR coefficients and the receiver equalization is tuned for shielded balanced copper cabling. 100GBASE-KR4 path is identical to 100GBASE-CR4 except the transmitter FIR and the receiver equalization is tuned for KR4 electrical backplanes. RS (528, 514). In modes where the Reed Solomon FEC is active, the behavior of the FEC can be modified by setting register 1.00C8.1:0.     00 = Full error detection and correction, set 1.00C8 = 16’h0000. 01 = Error detection without correction. Blocks with errors will be intentionally corrupted to prevent uncorrectable errors from propagating, set 1.00C8 = 16’h0001. 10 = Error detection without correction. Blocks with errors will be passed as received. The detected error will be reported in registers 1.00CC and 1.00CD. Each of the bit settings requires a software reset to take effect. P100KN is a non-standard mode that operates similarly to 100GBASE-LR4 without FEC, but IEEE 802.3 Clause 72.6.10 training occurs. When in this mode, the 100GBASE-CR4 Auto-Negotiation ability is set to initiate the training. Doc. No. MV-S110852-U0 Rev. C Page 74 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description PCS and PMA Figure 24: 100GBASE-R4 Data Path Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 75 88X5113 Datasheet - Public 4.3.2 40GBASE-R4, 50GBASE-R4, 50GBASE-R2 PCS (Modes P40*, P50*) The 40GBASE-R4 PCS operates according to the IEEE 802.3ba specification. The PCS uses a 64B/66B coding and scrambling to improve the transmission characteristics of the serial data and ease clock recovery at the receiver. The data stream is distributed across 4 lanes. The alignment markers allow the lanes to be aligned and lanes to be swapped at the receiver. The synchronization headers for 64B/66B code enable the receiver to achieve block alignment on the receive data. The 40GBASE-R4 datapath is shown in Figure 25. The Reed-Solomon encoder/FEC path and 4:2 Mux/2:4 De-Mux paths are bypassed in the 40GBASE-R4 and 50GBASE-R4. The differences among the various types are described below. 40GBASE-LR4 up to the XLAUI-4 interface has no training of the transmitter FIR coefficients. 40GBASE-CR4 uses IEEE 802.3 Clause 72.6.10 training to set the transmitter FIR coefficients. The receiver equalization is tuned for shielded balanced copper cabling. The optional Clause 74 KR-FEC can be enabled or disabled. 40GBASE-KR4 path is identical to 40GBASE-CR4 except the transmitter FIR and the receiver equalization is tuned for KR4 electrical backplanes. The optional Clause 74 KR-FEC can be enabled or disabled. P40LF is a non-standard mode that operates similarly to 40GBASE-LR4 with the KR-FEC enabled. IEEE 802.3 Clause 72.6.10 training does not takes place. P50L*, P50C*, P50K* modes are identical to each corresponding P40* modes except the line rate is 1.25 times faster. The 50GBASE-R2 datapath is shown in Figure 25. The path either goes through the Reed-Solomon encoder/FEC path or the 4:2 Mux/2:4 De-Mux paths. 50GBASE-CR2 without FEC and with KR-FEC is similar to 40GBASE-CR4 except the data rate is 1.25 time faster and 4 virtual lanes are bit interleaved onto 2 lanes. This mode uses IEEE 802.3 Clause 72.6.10 training to set the transmitter FIR coefficients. The receiver equalization is tuned for shielded balanced copper cabling. 50GBASE-CR2 with RS-FEC is similar to 40GBASE-CR4 except the data rate is 1.25 times faster and 4 virtual lanes are transcoded and put through the Reed-Solomon encoder. The Reed-Solomon symbols are symbol interleaved onto two lanes. This mode uses IEEE 802.3 Clause 72.6.10 training to set the transmitter FIR coefficients. The receiver equalization is tuned for shielded balanced copper cabling. 50GBASE-KR2 path is identical to 50GBASE-CR2 except the transmitter FIR and the receiver equalization is tuned for KR electrical backplanes. P50M* modes are identical to each corresponding P50B* modes except IEEE 802.3 Clause 72.6.10 training is not used. Doc. No. MV-S110852-U0 Rev. C Page 76 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description PCS and PMA Figure 25: 40GBASE-R4, 50GBASE-R4, and 50GBASE-R2 Datapath Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 77 88X5113 Datasheet - Public 4.3.3 5GBASE-R, 10GBASE-R, and 25GBASE-R PCS (Modes P5L, P10*, P25*) The 10GBASE-R PCS operates according to the IEEE 802.3 Clause 49 specification. The 25GBASE-R PCS operates according to the IEEE 802.3by specification. The PCS uses a 64B/66B coding and scrambling to improve the transmission characteristics of the serial data and ease clock recovery at the receiver. The 5GBASE-R, 10GBASE-R, and 25GBASE-R datapath is shown in Figure 26. 10GBASE-SR/LR has no training of the transmitter FIR coefficients. 10GBASE-KR uses IEEE 802.3 Clause 72.6.10 training to set the transmitter FIR coefficients. The receiver equalization is tuned for either shielded balanced copper cabling or KR electrical backplanes. The optional Clause 74 KR-FEC can be enabled or disabled. P10LF is a non-standard mode that operates similarly to 10GBASE-LR with the KR-FEC enabled. IEEE 802.3 Clause 72.6.10 training does not occur. 5GBASE-R is identical to 10GBASE-SR/LR running at half speed. 25GBASE-SR uses the Clause 108 RS-FEC but has no training of the transmitter FIR coefficients. 25GBASE-CR is similar to 25GBASE-SR except it uses IEEE 802.3 Clause 72.6.10 training to set the transmitter FIR coefficients. The receiver equalization is tuned for shielded balanced copper cabling. The optional Clause 74 KR-FEC can be enabled or disabled. The optional Clause 108 RS-FEC can be enabled or disabled. 25GBASE-KR path is identical to 25GBASE-CR except the transmitter FIR and the receiver equalization is tuned for KR electrical backplanes. The optional Clause 74 KR-FEC can be enabled or disabled. The optional Clause 108 RS-FEC can be enabled or disabled. P25B* modes are identical to each corresponding P25C* modes except the Auto-Negotiation used is per the Consortium specification. P25J* modes are identical to each corresponding P25K* modes except the Auto-Negotiation used is per the Consortium specification. P25LN is identical to 10GBASE-SR/LR except running 2.5 times faster. P25LF is identical to P10LF except running 2.5 times faster. Doc. No. MV-S110852-U0 Rev. C Page 78 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description PCS and PMA Figure 26: 5GBASE-R, 10GBASE-R, and 25GBASE-R Datapath 4.3.4 SGMII, 1000BASE-X, and 2.5GBASE-X 4.3.4.1 PCS The 1000BASE-X PCS operates according to Clause 36 of the IEEE 802.3 specification. The PCS uses a 8/10 bit coding for DC line balancing. For further details, refer to the IEEE 802.3 specification. The SGMII protocol is also supported over 1000BASE-X. The SGMII allows 10 Mbps, 100 Mbps, and 1000 Mbps throughput over 1000BASE-X line coding. When SGMII Auto-Negotiation is turned off (3.3n00.12 = 0), the speed setting is programmed via register 3.3n00 bits 13 and 6. (n = 0, 2, 4, 6 for sub-ports 0, 1, 2, and 3, respectively). Link is established when the underlying 1000BASE-X establishes link. When SGMII Auto-Negotiation is turned on (3.3n00.12 = 1), the SGMII is set to the speed setting is determined by the Auto-Negotiation speed advertised by the link partner if the device is in SGMII (System) mode. Auto-Negotiations have to complete prior to link being established. 2.500BASE-X is identical to 1000GBASE-X operation as described except it runs 2.5 times faster. Clause 37 Auto-Negotiation is not supported in 2.500BASE-X. 4.3.4.2 1000BASE-X Auto-Negotiation 1000BASE-X Auto-Negotiation is defined in Clause 37 of the IEEE 802.3 specification. It is used to auto-negotiate duplex and flow control over fiber cable. Registers 3.3n00, 3.3n04, 3.3n05, 3.3n06, 3.3n07, 3.3n08, and 3.3n0F are used to enable AN, advertise capabilities, determine the link partner’s capabilities, show AN status, and show the duplex mode of operation, respectively. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 79 88X5113 Datasheet - Public The device supports Next Page option for 1000BASE-X Auto-Negotiation. Register 3.3n07 of the fiber pages is used to transmit Next Pages, and register 3.3n08 of the fiber pages is used to store the received Next Pages. The Next Page exchange occurs with software intervention. The user must set register 3.3n04.15 to enable fiber Next Page exchange. Each Next Page received in the registers should be read before a new Next Page to be transmitted is loaded in register 3.3n07. If the PHY enables 1000BASE-X Auto-Negotiation and the link partner does not, then the link cannot be established. The device implements an Auto-Negotiation bypass mode. See Section 4.3.4.4 for details. 4.3.4.3 SGMII Auto-Negotiation SGMII is a de-facto standard designed by Cisco. SGMII uses 1000BASE-X coding to send data as well as Auto-Negotiation information between the PHY and the MAC. However, the contents of the SGMII Auto-Negotiation are different than the 1000BASE-X Auto-Negotiation. See the Cisco SGMII Specification and the MAC Interfaces and Auto-Negotiation Application Note for further details. The device supports SGMII interface with and without Auto-Negotiation. Auto-Negotiation can be enabled or disabled by writing to Register 3.3n00.12 followed by a soft reset. If SGMII Auto-Negotiation is disabled, then the MAC interface link, speed, and duplex status (determined by the media side) cannot be conveyed to the MAC from the PHY. The user must program the MAC with this information in some other manner (for example, by reading PHY registers for link, speed, and duplex status). 4.3.4.4 Auto-Negotiation Bypass Mode If the MAC or the PHY implements the Auto-Negotiation function and the other does not implement the function, then two-way communication is not possible unless Auto-Negotiation is manually disabled and both sides are configured to work in the same operational modes. To solve this problem, the device implements the SGMII Interface Auto-Negotiation Bypass Mode. When entering the state Ability_Detect, a bypass timer begins to count down from an initial value of approximately 200 ms. If the device receives idles during the 200 ms, then the device will interpret that the other side is live, but cannot send configuration codes to perform Auto-Negotiation. After 200 ms, the state machine will move to a new state called Bypass_Link_Up in which the device assumes a link-up status and the operational mode is set to the value listed under the Comments column of Table 44. Table 44: SGMII Auto-Negotiation Modes Register 3.3n00.12 Register 3.Bn000.13 C om me nt s 0 X No Auto-Negotiation. The user is responsible for determining the speed, link, and duplex status by reading PHY registers. 1 0 Normal SGMII Auto-Negotiation. Speed, link, and duplex status are automatically communicated to the MAC during Auto-Negotiation. 1 1 Media Auto-Negotiation is enabled. Normal operation. Media Auto-Negotiation is disabled. After 200 ms, the PHY will disable Auto-Negotiation and the link based on idles. Doc. No. MV-S110852-U0 Rev. C Page 80 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description Auto-Negotiation 4.4 Auto-Negotiation The device supports 802.3ap Clause 73 Auto-Negotiation as well as the next pages required for the 25/50G consortium specifications. When the Auto-Negotiation configuration bits are set correctly and Auto-Negotiation is enabled, no further user intervention is required for Auto-Negotiation to complete. There are four copies of the Auto-Negotiation circuit on the line interface. Sub-port 0 supports all abilities shown in Table 40 with a Y in the last column. Sub-ports 1, 2, and 3 is similar to sub-port 0 except 40G, 50G, and 100G modes are not supported. The enabling and disabling of the Auto-Negotiation circuit for each sub-port is discussed in Section 4. If Auto-Negotiation is disabled and the device is manually set to a mode that KR training is required, then Auto-Negotiation will still run automatically. It is the user’s responsibility to properly set the Auto-Negotiation registers to advertise only the capability that is consistent with the manually set mode. The registers to control the 802.3ap Auto-Negotiation for sub-port 0 can be found starting at register 7.0000. The registers to control sub-port 0 consortium Auto-Negotiation can be found starting at register 7.8010. The registers for sub-port 1, 2, and 3 can be found in their corresponding offset addresses as mapped in the 88X5113 Registers documentation. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 81 88X5113 Datasheet - Public 4.5 Loopback 4.5.1 Line-side Loopbacks Figure 27 shows shallow line loopback (path A), deep loopbacks for line side. The deep loopback can be enabled at PCS to PMA boundary which is called PCS deep loopback (path B). The deep loopback can be at PMA to SERDES boundary so called PMA deep loopback (path C). Table 45 shows how to turn on shallow line loopback. Table 46 shows how to turn on deep loopbacks for line side. Figure 27: Line-side Loopback Table 45: Shallow Line Loopback Control Bits Line Loopback Bits Description U ni t A f f e c t e d R e g i s t e r – Li n e 1G/2.5G, 5G/10G/25G lane 0, 40G/50G, 100G Lane 0 Set 3.F010.12 = 1 (Loopback A in Figure 27) 1G/2.5G, 5G/10G/25G lane 1 Lane 1 Set 3.F010.13 = 1 (Loopback A in Figure 27) 1G/2.5G, 5G/10G/25G lane 2 Lane 2 Set 3.F010.14 = 1 (Loopback A in Figure 27) 1G/2.5G, 5G/10G/25G lane 3 Lane 3 Set 3.F010.15 = 1 (Loopback A in Figure 27) Doc. No. MV-S110852-U0 Rev. C Page 82 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description Loopback The couple modes such as 40G/50G-R4, 50G-R2, and 100G-R4 always use lane 0. Table 46: Deep Loopback Control Bits Deep Loopback Bits Description Unit Affected Regi s t e r – L i ne (PC S D e e p L o o p b a c k ) R e g i s t e r – Li n e ( P M A D e e p Loopba c k ) Deep loopback – 100G Lane 0 3.0000.14 (Loopback E in Figure 28) 1.0000.0 (Loopback F in Figure 28) Deep loopback – 40G/50G Lane 0 3.1000.14 (Loopback E in Figure 28) 1.2000.0 (Loopback F in Figure 28) Deep loopback – 5G/10G/25G Lane 0 Lane 1 Lane 2 Lane 3 3.2000.14 (Loopback E in Figure 28) 3.2200.14 3.2400.14 3.2600.11 1.4000.0 (Loopback F in Figure 28) Deep loopback – 1G/2.5G Lane 0 Lane 1 Lane 2 Lane 3 3.3000.14 3.3200.14 3.3400.14 (Loopback F in Figure 28) 3.3600.14 1.6000.0 (Loopback F in Figure 28) 4.5.2 Host-side Loopbacks Figure 28 shows the paths for shallow host loopback (D), PCS deep loopback (E), and PMA deep loopback (F) for the host side. Table 47 shows how to turn on a shallow host loopback. Table 48 shows how to turn on deep loopbacks for the host side. Figure 28: Turn On Deep Host Loopback Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 83 88X5113 Datasheet - Public Table 47: Shallow Line Loopback Control Bits Line Loopback Bits Description U ni t Affected R e g i s t e r – Li n e 1G/2.5G, 5G/10G/25G lane 0, 40G/50G, 100G Lane 0 Set 4.F010.12 = 1 (Loopback D in Figure 28). 1G/2.5G, 5G/10G/25G lane 1 Lane 1 Set 4.F010.13 = 1 (Loopback D in Figure 28). 1G/2.5G, 5G/10G/25G lane 2 Lane 2 Set 4.F010.14 = 1 (Loopback D in Figure 28). 1G/2.5G, 5G/10G/25G lane 3 Lane 3 Set 4.F010.15 = 1 (Loopback D in Figure 28). The couple modes such as 40G/50G-R4, 50G-R2, and 100G-R4 always use lane 0. Table 48: Deep Loopback Control Bits Deep Loopback Bits Description Unit Affected Re g i s t e r – Li n e (P C S D e e p Loopba c k ) R e g i s t e r – Li n e ( P M A D e e p Loopba c k ) Deep loopback – 100G Lane 0 4.0000.14 (Loopback B in Figure 27) 1.1000.0 (Loopback C in Figure 27) Deep loopback – 40G/50G Lane 0 4.1000.14 (Loopback B in Figure 27) 1.3000.0 (Loopback C in Figure 27) Deep loopback – 5G/10G/25G Lane 0 Lane 1 Lane 2 Lane 3 4.2000.14 4.2200.14 4.2400.14 (Loopback B in Figure 27) 4.2600.11 1.5000.0 (Loopback C in Figure 27) Deep loopback – 1G/2.5G Lane 0 Lane 1 Lane 2 Lane 3 4.3000.14 4.3200.14 4.3400.14 4.3600.14 (Loopback B in Figure 27) 1.7000.0 (Loopback C in Figure 27) Doc. No. MV-S110852-U0 Rev. C Page 84 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description Synchronized FIFO 4.6 Synchronized FIFO There is a transmit synchronizing FIFO in all PCS including 1G, 10G, 25G, 40G/50G, and 100G PCS. Each of the FIFOs reconciles the frequency differences between the internal bus clock and the clock used to transmit data onto the media interface. It also buffers the data when inserting Alignment Maker. Each of the FIFOs can support a maximum frame size of 10 KB with up to ±100 PPM clock jitter. 4.7 Traffic Generation and Checking There are several packet generator and checkers in the device. There are 22 16-bit registers associated with each generator and checker. This section will refer to these registers as R00 to R21. The register mapping is shown in Table 49. Table 49: Packet Generator and Checker Register Mapping1 Data Re gister Description P1 0 0 * P4 0 *, P5 0 * P5 *, P1 0 *, P2 5 * P 1 *, P 2 . 5* R00 Packet Generation Control 1 3.8100 3.9010 3.An10 3.Bn10 R01 Packet Generation Control 2 3.8101 3.9011 3.An11 3.Bn11 R02 Initial Payload 0-1/Packet Generation 3.8102 3.9012 3.An12 3.Bn12 R03 Initial Payload 2-3/Packet Generation 3.8103 3.9013 3.An13 3.Bn13 R04 Packet Generation Length 3.8106 3.9016 3.An16 3.Bn16 R05 Packet Generation Burst Sequence 3.8107 3.9017 3.An17 3.Bn17 R06 Packet Generation IPG 3.8108 3.9018 3.An18 3.Bn18 R07 Transmit Packet Counter [15:0] 3.810B 3.901B 3.An1B 3.Bn1B R08 Transmit Packet Counter [31:16] 3.810C 3.901C 3.An1C 3.Bn1C R09 Transmit Packet Counter [47:32] 3.810D 3.901D 3.An1D 3.Bn1D R10 Transmit Byte Counter [15:0] 3.810E 3.901E 3.An1E 3.Bn1E R11 Transmit Byte Counter [31:16] 3.810F 3.901F 3.An1F 3.Bn1F R12 Transmit Byte Counter [47:32] 3.8110 3.9020 3.An20 3.Bn20 R13 Receive Packet Counter [15:0] 3.8111 3.9021 3.An21 3.Bn21 R14 Receive Packet Counter [31:16] 3.8112 3.9022 3.An22 3.Bn22 R15 Receive Packet Counter [47:32] 3.8113 3.9023 3.An23 3.Bn23 R16 Receive Byte Count [15:0] 3.8114 3.9024 3.An24 3.Bn24 R17 Receive Byte Count [31:16] 3.8115 3.9025 3.An25 3.Bn25 R18 Receive Byte Count [47:32] 3.8116 3.9026 3.An26 3.Bn26 R19 Receive Packet Error Count [15:0] 3.8117 3.9027 3.An27 3.Bn27 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 85 88X5113 Datasheet - Public Table 49: Packet Generator and Checker Register Mapping1 Data (Continued) Re gister Description P1 0 0 * P4 0 *, P5 0 * P5 *, P1 0 *, P2 5 * P 1 *, P 2 . 5* R20 Receive Packet Error Count [31:16] 3.8118 3.9028 3.An28 3.Bn28 R21 Receive Packet Error Count [47:32] 3.8119 3.9029 3.An29 3.Bn29 1. N = 0, 2, 4, 6 for sub-ports 0, 1, 2, and 3, respectively. The packet generator and packet checker are enabled by separate control bits – R00.0 controls the packet checker and R00.1 controls the packet generator. (Table 50). When the packet Generator is enabled, packet stream is generated and a pair of 48-bit counters tracks the packet stream. Transmit Packet Counter (R07, R08, and R09) counts number of packets sent. Transmit Byte Counter (R10, R11, and R12) counts number of bytes sent. Similarly, when the packet checker is enabled, received packets are examined and a set of three 48-bit counters are updated. Received Packet Counter (R13, R14, and R15) counts number of packets received. Received Byte Counter (R16, R17, and R18) counts number of bytes received, and Received Error Counter (R19, R20, and R21) counts number of received packets with CRC error. Table 50: Packet Generator and Checker Control and Counters Re gister Function D e s c ri p t i o n R00.0 Enable Packet Checker 1: Packet Checker is enabled. 0: Packet Checker is disabled. R00.1 Enable Packet Generator 1: Packet Generator is enabled. 0: Packet Generator is disabled. R00.6 Counter reset 1: Clear counters. 0: Normal operation This bit clears itself after counter reset. R00.15 Counter reset on read 1: Clear the counter as it is read. 0: The counter value is not cleared when it is read. R07 R08 R09 Transmit Packet Counter These are the 48-bit Tx packet counters, they are incremented as each packet is sent. A reset of these counters is controlled by the Counter reset bit (R00.6) and the Counter reset on read bit (R00.15) above. R10 R11 R12 Transmit Byte Counter These are the 48-bit Tx byte counters, they are incremented as each data byte is sent, including CRC bytes. A reset of these counters is controlled by the Counter reset bit (R00.6) and the Counter reset on read bit (R00.15) above. R13 R14 R15 Received Packet Counter These are the 48-bit Rx packet counters, they are incremented as each packet is received. A reset of these counters is controlled by the Counter reset bit (R00.6) and the Counter reset on read bit (R00.15) above. Doc. No. MV-S110852-U0 Rev. C Page 86 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description Traffic Generation and Checking Table 50: Packet Generator and Checker Control and Counters (Continued) Re gister Function D e s c ri p t i o n R16 R17 R18 Received Byte Counter These are the 48-bit Rx byte counters, they are incremented as each data byte is received, including CRC bytes. A reset of these counters is controlled by the Counter reset bit (R00.6) and the Counter reset on read bit (R00.15) above. R19 R20 R21 Received Error Counter These are the 48-bit Rx error counters, they are incremented as each packet is received with a CRC error. A reset of these counters is controlled by the Counter reset bit (R00.6) and the Counter reset on read bit (R00.15) above. 4.7.1 Packet Generator A packet generator enables the device to generate traffic onto the media without a requirement to receive data from the host. As a reference, the following depicts the basic structure of Packet Generator output in XLGMII (40G) and CGMII (100G) format. Figure 29: Packet Format TXC[7:0] TXD[63:0] 01 55 55 55 55 55 55 [S] 00 (data 7) – (data 0) 00 ●●●●●●●● 00 (data n-2) ● ● ● ● ● ● ● E0 [I] [I] [T] (crc[31:0]) (data n-1) Copyright © 2020 Marvell September 21, 2020 Bit 0 is first bit shifted out. Packet starts at CGMII boundary of 64 bit. Lane0 [S] = 0xFB. Lane7 = 0xD5 n bytes of data specified by Packet Length register [T] = 0xFD [I] = 0x07 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 87 88X5113 Datasheet - Public Table 51: Registers Controlling Packet Generation Re gister Function Descriptio n R00.1 Enable Packet Generator 1: The packet generator is enabled. 0: The packet generator is disabled. R01.3 CRC Disable R00.2 SFD Enable {CRC,SFD}=00: CRC calculation is enabled and CGMII word 0 lane 7 = 0xD5. CRC calculation starts after byte in packet {CRC,SFD}=01: CRC calculation is enabled and CGMII word 0 lane 7 = 0x55. CRC calculation start after 8th byte in packet {CRC,SFD}=11: Extended CRC calculation is enabled and CGMII word 0 lane 7 = 0x55. Extended CRC calculation starts after [S] byte. NOTE: Extended CRC function is only available in 40G and 100G modes. {CRC,SFD}=10: CRC calculation is disabled and CGMII word 0 lane 7 = 0xD5. R04 Packet Length 0x0000: Random length between 64 bytes to 1518 bytes 0x0001: Random length between 64 bytes to 0x0FFF bytes 0x0002: Random length between 64 bytes to 0x1FFF bytes 0x0003: Random length between 64 bytes to 0x3FFF bytes 0x0004: Random length between 64 bytes to 0x7FFF bytes 0x0005: Random length between 64 bytes to 0xFFFF bytes 0x0006 – 0x0007: undefined 0x0008 – 0xFFFF = length in number of bytes. R05 Number of Packets to Generate 0x0000: Stop generation 0x0001 – 0xFFFE: number of packets to send 0xFFFF = Continuous Figure 30: Normal CRC Calculation (in XLGMII/40G and CGMII/100G Format) FB 55 [S] 55 55 55 55 55 D5 Data ● ● ● ● Data n-1 CRC 0 1 FD 2 3 07 [T] 07 IPG Figure 31: Extended CRC Calculation (in XLGMII/40G and CGMII/100G Format) (only in 40G and 100G mode) FB 55 55 55 55 [S] 0 Doc. No. MV-S110852-U0 Rev. C Page 88 55 55 55 Data 0 ● ● ● ● Data n-1 CONIFIDENTIAL Document Classification: Public CRC 1 2 FD 3 07 [T] Copyright © 2020 Marvell September 21, 2020 07 IPG Line Side Description Traffic Generation and Checking Figure 32: Packet without CRC (in XLGMII/40G and CGMII/100G Format) FB 55 55 55 55 55 55 D5 Data 0 ● ● ● ● Data n-1 [S] End at CGMII word boundary ==> FD 07 07 07 [T] 07 07 IPG Table 52: IPG Configuration Register # Function Descriptio n R06 Inter Packet Gap (IPG) IPG.15:14 = 00: Fixed number of idle bytes is specified by IPG.13:0 For P100*, P50* and P40* modes, IPG is in 8-byte resolution (1 CGMII word). For example: IPG.13:0 = 0x0000 – 0x0007: Next packet starts at the following CGMII word (next 8byte boundary) IPG.13:0 = 0x0008 – 0x000F: After the end of current packet 8-byte boundary, insert 1 CGMII (8 byte) idle before start of next packet. IPG.13:0 = 0x0010 – 0x00017: After the end of current packet 8-byte boundary, insert 2 CGMII (16 byte) idle before start of next packet. For 10G, the resolution is 4 bytes. IPG.15:14 = 10: Random number of IPG up to the value specified by IPG.13:0 IPG.15:14 = 01: Deficit Idle Count specified by IPG.13:0. Valid IPG.13:0 value is limited to minimum of 8 and maximum of 20. NOTE: Idle Deficit function only available in 40G/50G and 100G modes. IPG.15:14 = 11: Zero IPG. 1 CGMII word (8 byte) of idle is inserted after n bytes of data, n is specified by IPG.13:0 as following: IPG.13:0 = 0x0080: n = 128 bytes IPG.13:0 = 0x0100: n = 256 bytes IPG.13:0 = 0x0200: n = 512 bytes IPG.13:0 = 0x0400: n = 1024 bytes IPG.13:0 = 0x0800: n = 2048 bytes IPG.13:0 = 0x1000: n = 4096 bytes IPG.13:0 = 0x2000: n = 8196 bytes NOTE: Zero IPG function only available in 40G/50G and 100G modes. R07 R08 R09 Transmit Packet Counter These are the 48-bit Tx packet counters, they are incremented as each packet is sent. R10 R11 R12 Transmit Byte Counter These are the 48-bit Tx byte counters, they are incremented as each data byte is sent, including 4 CRC bytes. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 89 07 88X5113 Datasheet - Public Table 53: Packet Data Generation Re gister # Function Description R02 R03 Initial Generation Initial Payload register specifies the initial value of the payload or the fixed value of the payload. The four bytes in this register corresponds to the first 4 bytes of the frame data. R01 Data Generation 0x0 or 0x1: No mask Value of Initial Payload registers are used as payload repeatedly. 0x2: Invert every other word Value of Initial Payload registers are used as payload repeatedly but every other CGMII word should be inverted. For example: A payload of 034EA675 will result in a sequence of 034EA675, FCB1598A, 034EA675, FCB1598A, and so on. 0x3: Invert every second word Value of Initial Payload registers are used as payload repeatedly but inverted every second CGMII word should be inverted. For example: A payload of 034EA675 will result in a sequence of 034EA675, 034EA675, FCB1598A, FCB1598A, 034EA675, 034EA675, and so on. 0x4: Left shift byte Value of Initial Payload registers are used as the initial value and each byte subsequently bitwise left shifted. For example: A payload of 034EA675 will result in a sequence of 034EA675, 069C4DEA, 0C399AD5, 187235AB, and so on. 0x5: Right shift byte Value of Initial Payload registers are used as the initial value and each byte subsequently bitwise right shifted. 0x6: Left shift word Value of Initial Payload registers are used as the initial value and each 32-bit word subsequently bitwise left shifted. For example: A payload of C34EA675 will result in a sequence of C34EA675, 869D4CEB, 0D3A99D7, 1A7533AE, and so on. 0x7: Right shift word Value of Initial Payload registers are used as the initial value and each 32-bit word subsequently bitwise right shifted. 0x8: Increment byte Value of Initial Payload registers are used as the initial value and subsequently bytewise incremented. For example: A payload of FFFE0055 will result in a sequence of FFFE0055, 00FF0156, 01000257, 02010358, and so on. 0x9: Decrement byte Value of Initial Payload registers are used as the initial value and subsequently bytewise decremented. 0xA: Pseudo-random byte Initial Payload registers are ignored and a pseudo-random payload is generated. All 4 bytes are the same value for each cycle. 0xB: Pseudo-random word Initial Payload registers are ignored and a pseudo-random payload is generated. All 4 bytes are randomly generated for each cycle. 0xC – 0xF: Reserved Doc. No. MV-S110852-U0 Rev. C Page 90 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description Traffic Generation and Checking 4.7.2 Packet Checker Table 54: Registers Controlling Packet Checker Re gister # Function Descrip t i on R00.0 Enable Packet Checker 1: Packet Checker is enabled. 0: Packet Checker is disabled. R01.3 CRC disable {CRC,SFD}=00: CRC calculation is enabled and started after detection of frame delimiter R00.2 SFD enable {CRC,SFD}=01: CRC calculation is enabled and started after eight byte of the packet. The checker assumes the first 8 bytes of packet is the preamble. {CRC,SFD}=11: Extended CRC calculation is enabled and started after second byte of the packet. NOTE: Extended CRC function only available in 40G and 100G modes. {CRC,SFD}=10: CRC calculation is disabled and data field starts after detection of frame delimited R13 R14 R15 Received Packet Counter These are 48-bit Rx packet counters, they are incremented as each packet is received. R16 R17 R18 Received Byte Counter These are 48-bit Rx byte counters, they are incremented as each data byte is received, including 4 CRC bytes. R19 R20 R21 Received Error Counter These are 48-bit Rx error counters, they are incremented as each packet is received with a CRC error. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 91 88X5113 Datasheet - Public 4.8 PRBS Generation and Checking The device supports various IEEE defined and proprietary PRBS generators and checkers, and transmit waveform pattern generators. Only one generator and checker may be enabled at a time per lane. Unpredictable results may occur if multiple generators are enabled simultaneously. 4.8.1 General PRBS Generators and Checkers Each lane has its own general PRBS generator and checker. The register definitions for all PRBSs are same except for register offsets. Table 55 shows all PRBS register address offsets. Lane 0 PRBS register address will be used to describe the functionality of PRBS generator and checkers. To maintain consistency, the address offsets for the host side are listed here. Table 55: PRBS Register Address Offsets Re gister Description Li n e Si d e H o s t S i de L0 L1 L2 L3 L0 L1 L2 L3 R0 PRBS control 3.F100 3.F110 3.F120 3.F130 4.F100 4.F110 4.F120 4.F130 R1 R2 R3 Transmit bit counter 3.F101 3.F102 3.F103 3.F111 3.F112 3.F113 3.F121 3.F122 3.F123 3.F131 3.F132 3.F133 4.F101 4.F102 4.F103 4.F111 4.F112 4.F113 4.F121 4.F122 4.F123 4.F131 4.F132 4.F133 R4 R5 R6 Receive bit counter 3.F104 3.F105 3.F106 3.F114 3.F115 3.F116 3.F124 3.F125 3.F126 3.F134 3.F135 3.F136 4.F104 4.F105 4.F106 4.F114 4.F115 4.F116 4.F124 4.F125 4.F126 4.F134 4.F135 4.F136 R7 R8 R9 Receive error counter 3.F107 3.F108 3.F109 3.F117 3.F118 3.F119 3.F127 3.F128 3.F129 3.F137 3.F138 3.F139 4.F107 4.F108 4.F109 4.F117 4.F118 4.F119 4.F127 4.F128 4.F129 4.F137 4.F138 4.F139 Register 3.F100 controls the generator and checker. Setting register 3.F100.5 to 1 enables the generator, and setting register 3.F100.4 to 1 enables the checker. If either of these bits is set to 1, then the general PRBS generator and checker overrides the PCS-specific generators and checkers. The port should be set to the selected PCS mode before enabling the PRBS mode to achieve the desired line rate for PRBS testing. When PRBS is enabled, this has higher priority over PCS datapath. Register 3.F100.3:0 controls the pattern that is generated and checked. There is no checker for the high-frequency, low-frequency, mixed-frequency, and square-wave patterns as there are waveforms to check the transmitter performance. Doc. No. MV-S110852-U0 Rev. C Page 92 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Line Side Description PRBS Generation and Checking Table 56: Supported Line-side PRBS Patterns 3.F100.3:0 PR B S P a t t e rn F o rm a t 0000 IEEE 49.2.8 - PRBS 31 0001 PRBS 7 0010 PRBS 9 IEEE 83.7 0011 PRBS 23 0100 PRBS 31 Inverted 0101 PRBS 7 Inverted 1000 PRBS 15 1001 PRBS 15 Inverted 0110 PRBS 9 Inverted 0111 PRBS 23 Inverted 1010 PRBS 58 1011 PRBS 58 Inverted 1100 PRBS 13 1101 PRBS 13 Inverted 1110 JB03 register address Lane 0 pattern A 3.F10A pattern B 3.F10B Lane 1 pattern A 3.F11A pattern B 3.F11B Lane 2 pattern A 3.F12A pattern B 3.F12B Lane 3 pattern A 3.F13A pattern B 3.F13B 1111 Line-side PRBS square-wave pattern consists of 10 1's followed by 10 0's. All counters are 48 bits long. If register 3.F100.13 is set to 1, then the counters will clear on read. If register 3.F100.13 is set to 0, then the counters continue counting until register 3.F100.6 is set to 1 to clear the contents. If register 3.F100.7 is set to 0, then the PRBS counters will not start to count until the checker first locks onto the incoming PRBS data. If register 3.F100.7 is set to 1, then the PRBS checker will start counting errors without first locking to the incoming PRBS data. Register 3.F100.8 indicates whether the PRBS checker has locked. All 48-bit counters are formed by three 16-bit registers. The lowest addressed register is the least significant 16 bits and the highest addressed register is the most significant 16 bits of the counter. When the least significant register is read, the two upper registers are updated and frozen so that the three register read is atomic. It is not necessary to read the upper registers. However, on subsequent reads of the least significant register, the values of the upper registers from the previous reads are lost. To get the correct upper register value the least significant register must be read first. Register 3.F101, 3.F102, and 3.F103 is the transmit bit counter. Registers 3.F104, 3.F105, and 3.F106 is the receive bit counter. Registers 3.F107, 3.F108, and 3.F109 is the receive bit error counter. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 93 88X5113 Datasheet - Public 4.8.2 40GBASE-R4-specific Generators and Checkers Register 1.05DD.7 when set to 1 selects PRBS31 pattern. Registers 1.05DD.3 when set to 1 enables Tx generator. Register 1.05DD.0 when set to 1 enables Rx checker. The error counters for individual lanes are in register 1.06A4, 1.06A5, 1.06A6, and 1.06A7, which will be cleared on read. Register 1.05DD.6 when set to 1 selects PRBS9 pattern. Registers 1.05DD.3 when set to 1 enables Tx generator. Register 1.05E6.3:0 when set to 1 selects SW (square wave) pattern for individual lanes. The Line Side Lane 0 to Lane 3 Registers are 3.F100, 3.F110, 3.F120, and 3.F130, respectively. 4.8.3 100GBASE-R4-specific Generators and Checkers Register 1.05DD.7 when set to 1 selects PRBS31 pattern. Registers 1.05DD.3 when set to 1 enables Tx generator. Register 1.05DD.0 when set to 1 enables Rx checker. The error counters for individual lanes are in registers 1.06A4, 1.06A5, 1.06A6, and 1.06A7, which will be cleared on read. Register 1.05DD.6 when set to 1 selects PRBS9 pattern. Registers 1.05DD.3 when set to 1 enables Tx generator. Register 1.05E6.3:0 when set to 1 selects SW (square wave) pattern for individual lanes. Table 57 lists IEEE registers to control PRBS. Table 57: IEEE PCS and PMA PRBS Control Register Line Sid e H o s t S i de PCS 10G/25G lane 0 3.202A, 3.202B 4.202A, 4.202B PCS 10G/25G lane 1 3.222A, 3.222B 4.222A, 4.222B PCS 10G/25G lane 2 3.242A, 3.242B 4.242A, 4.242B PCS 10G/25G lane 3 3.262A, 3.262B 4.262A, 4.262B PMA lane 0 1.05DD, 1.05E6, 1.06A4-7 1.15DD, 1.15E6, 1.16A4-7 PMA lane 1 1.25DD, 1.25E6, 1.26A4-7 1.35DD, 1.35E6, 1.36A4-7 PMA lane 2 1.45DD, 1.45E6, 1.46A4-7 1.55DD, 1.55E6, 1.56A4-7 PMA lane 3 1.65DD, 1.65E6, 1.66A4-7 1.75DD, 1.75E6, 1.76A4-7 4.9 Eye Monitor Each lane has its own non-destructive eye monitor to determine the quality of the received signal in traffic mode. Doc. No. MV-S110852-U0 Rev. C Page 94 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Host Side Description 5 Host Side Description The host interface functionality is identical to the line interface in Section 4 with the following exceptions. The host interface comprises four differential input lanes and four differential output lanes. All line side registers have equivalent registers in the host side as shown in Table 58. The address either has a different DEVAD or an offset in the REGAD. All the description of the line interface functionality in Section 4 applies to the host interface except for the register address location. Table 58: Equivalent Registers Between Line and Host Interface Line Interface Host Interfac e D e s c ri pt i on Start End Start End -- 1.0000 1.00FF 1.1000 1.10FF PMA (IEEE) Sub-Port 0 1.2000 1.20FF 1.3000 1.30FF PMA (IEEE) Sub-Port 1 1.4000 1.40FF 1.5000 1.50FF PMA (IEEE) Sub-Port 2 1.6000 1.60FF 1.7000 1.70FF PMA (IEEE) Sub-Port 3 1.8000 1.80FF 1.9000 1.90FF PMA FEC (IEEE) Sub-Port 0 1.0100 1.01FF 1.1100 1.11FF PMA (IEEE) Sub-Port 0 1.2100 1.21FF 1.3100 1.31FF PMA (IEEE) Sub-Port 1 1.4100 1.41FF 1.5100 1.51FF PMA (IEEE) Sub-Port 2 1.6100 1.61FF 1.7100 1.71FF PMA (IEEE) Sub-Port 3 1.8100 1.80FF 1.9100 1.90FF PMA FEC (IEEE) Sub-Port 0 1.0200 1.02FF 1.1200 1.12FF PMA (IEEE) Sub-Port 0 1.2200 1.22FF 1.3200 1.32FF PMA (IEEE) Sub-Port 1 1.4200 1.42FF 1.5200 1.52FF PMA (IEEE) Sub-Port 2 1.6200 1.62FF 1.7200 1.72FF PMA (IEEE) Sub-Port 3 1.0300 1.03FF 1.1300 1.13FF PMA (IEEE) Sub-Port 0 1.2300 1.23FF 1.3300 1.33FF PMA (IEEE) Sub-Port 1 1.4300 1.43FF 1.5300 1.53FF PMA (IEEE) Sub-Port 2 1.6300 1.63FF 1.7300 1.73FF PMA (IEEE) Sub-Port 3 1.0400 1.04FF 1.1400 1.14FF PMA (IEEE) Sub-Port 0 1.2400 1.24FF 1.3400 1.34FF PMA (IEEE) Sub-Port 1 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 95 88X5113 Datasheet - Public Table 58: Equivalent Registers Between Line and Host Interface (Continued) Line Interface Host Interfac e D e s c ri pt i on Start End Start End -- 1.4400 1.44FF 1.5400 1.54FF PMA (IEEE) Sub-Port 2 1.6400 1.64FF 1.7400 1.74FF PMA (IEEE) Sub-Port 3 1.0500 1.05FF 1.1500 1.15FF PMA (IEEE) Sub-Port 0 1.2500 1.25FF 1.3500 1.35FF PMA (IEEE) Sub-Port 1 1.4500 1.45FF 1.5500 1.55FF PMA (IEEE) Sub-Port 2 1.6500 1.65FF 1.7500 1.75FF PMA (IEEE) Sub-Port 3 1.0600 1.06FF 1.1600 1.16FF PMA (IEEE) Sub-Port 0 1.2600 1.26FF 1.3600 1.36FF PMA (IEEE) Sub-Port 1 1.4600 1.46FF 1.5600 1.56FF PMA (IEEE) Sub-Port 2 1.6600 1.66FF 1.7600 1.76FF PMA (IEEE) Sub-Port 3 1.C000 1.C0FF 1.D000 1.D0FF PMA (Marvell) Sub-Port 0 1.C200 1.C2FF 1.D200 1.D2FF PMA (Marvell) Sub-Port 1 1.C400 1.C4FF 1.D400 1.D4FF PMA (Marvell) Sub-Port 2 1.C600 1.C6FF 1.D600 1.D6FF PMA (Marvell) Sub-Port 3 1.C800 1.C8FF 1.D800 1.D8FF PMA (Marvell) All ports 1.C100 1.C1FF 1.D100 1.D1FF PMA (Marvell) Sub-Port 0 1.C300 1.C3FF 1.D300 1.D3FF PMA (Marvell) Sub-Port 1 1.C500 1.C5FF 1.D500 1.D5FF PMA (Marvell) Sub-Port 2 1.C700 1.C7FF 1.D700 1.D7FF PMA (Marvell) Sub-Port 3 1.C900 1.C9FF 1.D900 1.D9FF PMA (Marvell) All ports 1.CB00 1.CBFF 1.DB00 1.DBFF PMA (Marvell) All ports 1.CD00 1.CDFF 1.DD00 1.DDFF PMA (Marvell) All ports 1.CF00 1.CFFF 1.DF00 1.DFFF PMA (Marvell) All ports 3.4000 3.40FF 4.4000 4.40FF 200GBASE-R4 (IEEE) 3.4100 3.41FF 4.4100 4.41FF 200GBASE-R4 (IEEE) 3.3000 3.30FF 4.3000 4.30FF 1/2.5GBASE-R (IEEE) Sub-Port 0 3.3200 3.32FF 4.3200 4.32FF 1/2.5GBASE-R (IEEE) Sub-Port 1 3.3400 3.34FF 4.3400 4.34FF 1/2.5GBASE-R (IEEE) Sub-Port 2 Doc. No. MV-S110852-U0 Rev. C Page 96 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Host Side Description Table 58: Equivalent Registers Between Line and Host Interface (Continued) Line Interface Host Interfac e D e s c ri pt i on Start End Start End -- 3.3600 3.36FF 4.3600 4.36FF 1/2.5GBASE-R (IEEE) Sub-Port 3 3.3100 3.31FF 4.3100 4.31FF 1/2.5GBASE-R (IEEE) Sub-Port 0 3.3300 3.33FF 4.3300 4.33FF 1/2.5GBASE-R (IEEE) Sub-Port 1 3.3500 3.35FF 4.3500 4.35FF 1/2.5GBASE-R (IEEE) Sub-Port 2 3.3700 3.37FF 4.3700 4.37FF 1/2.5GBASE-R (IEEE) Sub-Port 3 3.2000 3.20FF 4.2000 4.20FF 5/10/25GBASE-R (IEEE) Sub-Port 0 3.2200 3.22FF 4.2200 4.22FF 5/10/25GBASE-R (IEEE) Sub-Port 1 3.2400 3.24FF 4.2400 4.24FF 5/10/25GBASE-R (IEEE) Sub-Port 2 3.2600 3.26FF 4.2600 4.26FF 5/10/25GBASE-R (IEEE) Sub-Port 3 3.2100 3.21FF 4.2100 4.21FF 5/10/25GBASE-R (IEEE) Sub-Port 0 3.2310 3.23FF 4.2310 4.23FF 5/10/25GBASE-R (IEEE) Sub-Port 1 3.2500 3.25FF 4.2500 4.25FF 5/10/25GBASE-R (IEEE) Sub-Port 2 3.2700 3.27FF 4.2700 4.27FF 5/10/25GBASE-R (IEEE) Sub-Port 3 3.1000 3.10FF 4.1000 4.10FF 40GBASE-R4 (IEEE) Sub-Port 0 3.1200 3.12FF 4.1200 4.12FF 40GBASE-R4 (IEEE) Sub-Port 1 3.1400 3.14FF 4.1400 4.14FF 40GBASE-R4 (IEEE) Sub-Port 2 3.1600 3.16FF 4.1600 4.16FF 40GBASE-R4 (IEEE) Sub-Port 3 3.1100 3.11FF 4.1100 4.11FF 40GBASE-R4 (IEEE) Sub-Port 0 3.1300 3.13FF 4.1300 4.13FF 40GBASE-R4 (IEEE) Sub-Port 1 3.1500 3.15FF 4.1500 4.15FF 40GBASE-R4 (IEEE) Sub-Port 2 3.1700 3.17FF 4.1700 4.17FF 40GBASE-R4 (IEEE) Sub-Port 3 3.0000 3.00FF 4.0000 4.00FF 100GBASE-R4 (IEEE) sub-port 0 3.0400 3.04FF 4.0400 4.04FF 100GBASE-R4 (IEEE) sub-port 1 3.0500 3.05FF 4.0100 4.01FF 100GBASE-R4 (IEEE) sub-port 0 3.0100 3.05FF 4.0500 4.05FF 100GBASE-R4 (IEEE) sub-port 1 3.0700 3.07FF 4.0700 4.07FF 100GBASE-R4 (IEEE) sub-port 0 3.0B00 3.0BFF 4.0B00 4.0BFF 100GBASE-R4 (IEEE) sub-port 1 3.C000 3.C0FF 4.C000 4.C0FF 200GBASE-R4 (Marvell) Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 97 88X5113 Datasheet - Public Table 58: Equivalent Registers Between Line and Host Interface (Continued) Line Interface Host Interfac e D e s c ri pt i on Start End Start End -- 3.C100 3.C1FF 4.C100 4.C1FF 200GBASE-R4 (Marvell) 3.B000 3.B0FF 4.B000 4.B0FF 1/2.5GBASE-R (Marvell) Sub-Port 0 3.B200 3.B2FF 4.B200 4.B2FF 1/2.5GBASE-R (Marvell) Sub-Port 1 3.B400 3.B4FF 4.B400 4.B4FF 1/2.5GBASE-R (Marvell) Sub-Port 2 3.B600 3.B6FF 4.B600 4.B6FF 1/2.5GBASE-R (Marvell) Sub-Port 3 3.B100 3.B1FF 4.B100 4.B1FF 1/2.5GBASE-R (Marvell) Sub-Port 0 3.B300 3.B3FF 4.B300 4.B3FF 1/2.5GBASE-R (Marvell) Sub-Port 1 3.B500 3.B5FF 4.B500 4.B5FF 1/2.5GBASE-R (Marvell) Sub-Port 2 3.B700 3.B7FF 4.B700 4.B7FF 1/2.5GBASE-R (Marvell) Sub-Port 3 3.A000 3.A0FF 4.A000 4.A0FF 5/10/25GBASE-R (Marvell) Sub-Port 0 3.A200 3.A2FF 4.A200 4.A2FF 5/10/25GBASE-R (Marvell) Sub-Port 1 3.A400 3.A4FF 4.A400 4.A4FF 5/10/25GBASE-R (Marvell) Sub-Port 2 3.A600 3.A6FF 4.A600 4.A6FF 5/10/25GBASE-R (Marvell) Sub-Port 3 3.A100 3.A1FF 4.A100 4.A1FF 5/10/25GBASE-R (Marvell) Sub-Port 0 3.A300 3.A3FF 4.A300 4.A3FF 5/10/25GBASE-R (Marvell) Sub-Port 1 3.A500 3.A5FF 4.A500 4.A5FF 5/10/25GBASE-R (Marvell) Sub-Port 2 3.A700 3.A7FF 4.A700 4.A7FF 5/10/25GBASE-R (Marvell) Sub-Port 3 3.9000 3.90FF 4.9000 4.90FF 40GBASE-R4 (Marvell) Sub-Port 0 3.9200 3.92FF 4.9200 4.92FF 40GBASE-R4 (Marvell) Sub-Port 1 3.9400 3.94FF 4.9400 4.94FF 40GBASE-R4 (Marvell) Sub-Port 2 3.9600 3.96FF 4.9600 4.96FF 40GBASE-R4 (Marvell) Sub-Port 3 3.9100 3.91FF 4.9100 4.91FF 40GBASE-R4 (Marvell) 3.8000 3.80FF 4.8000 4.80FF 100GBASE-R4 (Marvell) 3.8100 3.81FF 4.8000 4.80FF 100GBASE-R4 (Marvell) 3.F000 3.F0FF 4.F000 4.F0FF Line or Host Common 3.F100 3.F1FF 4.F100 4.F1FF Line or Host Common 7.0000 7.00FF 7.1000 7.10FF AP Auto-Negotiation (IEEE) Sub-Port 0 7.0200 7.02FF 7.1200 7.12FF AP Auto-Negotiation (IEEE) Sub-Port 1 Doc. No. MV-S110852-U0 Rev. C Page 98 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Host Side Description Table 58: Equivalent Registers Between Line and Host Interface (Continued) Line Interface Host Interfac e D e s c ri pt i on Start End Start End -- 7.0400 7.04FF 7.1400 7.14FF AP Auto-Negotiation (IEEE) Sub-Port 2 7.0600 7.06FF 7.1600 7.16FF AP Auto-Negotiation (IEEE) Sub-Port 3 7.0100 7.01FF 7.1100 7.11FF AP Auto-Negotiation (IEEE) Sub-Port 0 7.0300 7.03FF 7.1300 7.13FF AP Auto-Negotiation (IEEE) Sub-Port 1 7.0500 7.05FF 7.1500 7.15FF AP Auto-Negotiation (IEEE) Sub-Port 2 7.0700 7.07FF 7.1700 7.17FF AP Auto-Negotiation (IEEE) Sub-Port 3 7.8000 7.80FF 7.9000 7.90FF AP Auto-Negotiation (Marvell) Sub-Port 0 7.8200 7.82FF 7.9200 7.92FF AP Auto-Negotiation (Marvell) Sub-Port 1 7.8400 7.84FF 7.9400 7.94FF AP Auto-Negotiation (Marvell) Sub-Port 2 7.8600 7.86FF 7.9600 7.96FF AP Auto-Negotiation (Marvell) Sub-Port 3 7.8100 7.81FF 7.9100 7.91FF AP Auto-Negotiation (Marvell) Sub-Port 0 7.8300 7.83FF 7.9300 7.93FF AP Auto-Negotiation (Marvell) Sub-Port 1 7.8500 7.85FF 7.9500 7.95FF AP Auto-Negotiation (Marvell) Sub-Port 2 7.8700 7.87FF 7.9700 7.97FF AP Auto-Negotiation (Marvell) Sub-Port 3 30.0000 30.7FFF 30.8000 30.FFFF SERDES Access In most cases, the data flow between the line and host are symmetrical and the mode settings for line and host are interchangeable. The configurations shown in Table 59 are not reversible. The SGMII (PHY) mode is used on the host interface instead of the SGMII (System) mode. When SGMII Auto-Negotiation is turned on (4.3n00.12 = 1, n = 0, 2, 4, 6 for sub-ports 0, 1, 2, 3 respectively), the speed advertised is set by the operational speed of the corresponding sub-port on the line interface. Table 59: Non-Reversible Mode Combinations Line H os t P1S P1P P25* P40* Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 99 88X5113 Datasheet - Public 6 Chip Bring Up The chip bring up process involves applying power and supplying a clock to the device, hardware resetting and configuring the device, load the firmware either through the EEPROM, or through the MDIO/TWSI slave, and finally configuring the registers and engaging the data path. The firmware will be reset by hardware reset. Firmware requires a reload if a hardware reset is issued. 6.1 Power Sequencing VDDON, VDDOS, AVDDL, AVDDH, AVDDC, and DVDD is applied to the device and the 156.25 MHz differential clock is applied to the CLKP/CLKN pins. This device requires no power up sequencing. However, the recommendation is to power up VDDO and AVDDT first, followed by AVDDH/L/C, followed by DVDD. If the 25 MHz output clock is to be used on the CLK25P/CLK25N pins, then the AVDDT supply should be tied to 3.3V or 2.5V. Otherwise, it should be AC coupled to ground. AVDDT can be combined with VDDON and VDDOS but with a filtering scheme. After all the power supplies stabilize, the 25 MHz clock will be stable 7 to 10 ms after the 156.25 MHz clock is stable. The 25 MHz clock is not dependent on the state of the RESETn pin. 6.2 Reset and Configuration RESETn should be asserted as shown in Section 7.5.3. At the de-assertion of RESETn, hardware configuration values are latched into the device as described in Section 3.3. Doc. No. MV-S110852-U0 Rev. C Page 100 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications Absolute Maximum Ratings 7 Electrical Specifications 7.1 Absolute Maximum Ratings Table 60: Absolute Maximum Ratings Stresses above those listed in Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. Sy mbol Parameter Min Max Units VDDAL Power Supply Voltage on AVDDL with respect to VSS -0.5 1.5 V VDDAH Power Supply Voltage on AVDDH with respect to VSS -0.5 1.5 V VDDAC Power Supply Voltage on AVDDC with respect to VSS -0.5 1.5 V VDDAT Power Supply Voltage on AVDDT with respect to VSS -0.5 3.6 V VDDON Power Supply Voltage on VDDON with respect to VSS -0.5 3.6 V VDDOS Power Supply Voltage on VDDOS with respect to VSS -0.5 3.6 V VDD Power Supply Voltage on DVDD with respect to VSS -0.5 1.5 V TSTORAGE Storage temperature -40 +1251 C 1. 125C is only used as bake temperature for not more than 24 hours. Long-term storage (for example, weeks or longer) should be kept at 85C or lower. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 101 88X5113 Datasheet - Public 7.2 Recommended Operating Conditions Table 61: Recommended Operating Conditions (Commercial) Symbol Parameter Co n d i t i on Min Ty p Max U n it s VDDAL1 AVDDL Supply For AVDDL 0.95 1.0 1.05 V VDDAH AVDDH Supply For AVDDH 0.95 1.0 1.05 V VDDAC AVDDC Supply For AVDDC 0.95 1.0 1.05 V VDDAT AVDDT Supply 3.3V 3.135 3.3 3.465 V 2.5V 2.375 2.5 2.625 VVDDO VDDON or VDDOS Supply 3.3V 3.135 3.3 3.465 2.5V 2.375 2.5 2.625 1.8V 1.71 1.8 1.89 1.2V 1.14 1.2 1.26 1.05V 0.998 1.05 1.103 V VDD DVDD Supply (C Temp) – 0.855 0.9 0.945 V VDD DVDD Supply (I Temp) – 0.902 0.95 0.997 V – 1052 C TJ Maximum junction temperature – – 1. Maximum noise allowed on supplies is 5 mVppd. 2. Refer to the white paper on TJ Thermal Calculations for detailed information. Doc. No. MV-S110852-U0 Rev. C Page 102 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications Package Thermal Information 7.3 Package Thermal Information 7.3.1 Thermal Conditions for 169-pin, FCBGA Package Table 62: Thermal Conditions for 169-pin, FCBGA Package Symbol JA Parameter 1 Thermal resistance junction to ambient for the 169-pin FCBGA package JA = (TJ - TA)/P P = Total power dissipation JT Thermal characteristic parametera - junction to top center of the 169-pin FCBGA package JT = (TJ - Ttop)/P P = Total power dissipation, Ttop: Temperature on the top center of the package JC Thermal resistancea junction to case for the 169-pin FCBGA package C o n d i t i on Min Ty p Max Un it s JEDEC 3 in. x 4.5 in. 12-layer PCB with no air flow – 16.28 – C/W JEDEC 3 in. x 4.5 in. 12-layer PCB with 1 meter/sec air flow – 14.00 – C/W JEDEC 3 in. x 4.5 in. 12-layer PCB with 2 meter/sec air flow – 12.98 – C/W JEDEC 3 in. x 4.5 in. 12-layer PCB with 3 meter/sec air flow – 12.36 – C/W JEDEC 3 in. x 4.5 in. 12-layer PCB with no air flow – 1.30 – C/W JEDEC 3 in. x 4.5 in. 12-layer PCB with 1 meter/sec air flow – 1.31 – C/W JEDEC 3 in. x 4.5 in. 12-layer PCB with 2 meter/sec air flow – 1.32 – C/W JEDEC 3 in. x 4.5 in. 12-layer PCB with 3 meter/sec air flow – 1.33 – C/W JEDEC with no air flow – 1.70 – C/W JEDEC with no air flow – 5.81 – C/W JC = (TJ - TC)/Ptop Ptop = Power dissipation from the top of the package JB Thermal resistancea junction to board for the 169-pin FCBGA package JB = (TJ - TB)/Pbottom Pbottom = Power dissipation from the bottom of the package to the PCB surface 1. Refer to the white paper on TJ Thermal Calculations for detailed information. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 103 88X5113 Datasheet - Public 7.4 Current Consumption 7.4.1 88X5113 Current Consumption (Commercial) Table 63: DVDD Current Consumption Pins Parameter C o n d i t i on Min Ty p Max U n it s DVDD Base Chip Base Power including leakage – 84 941 mA 1G PCS (1 lane power) P1X, P1S, P1P – 6 8 mA 2.5G PCS (1 lane power) P2.5X – 13 16 mA 5G PCS (1 lane power) P5L, P5K – 13 13 mA 10G PCS - No FEC (1 lane power) P10LN, P10KN – 26 29 mA 10G PCS - KR FEC (1 lane power) P10KF, P10LF – 31 37 mA 25G PCS - No FEC (1 lane power) P25LN, P25LR, P25CN, P25KN, P25BN, P25JN – 54 60 mA 25G PCS - KR FEC (1 lane power) P25LF, P25CF, P25KF, P25BF, P25JF – 67 76 mA 25G PCS - RS FEC (1 lane power) P25LR, P25CR, P25KR, P25BR, P25JR – 99 111 mA 40G PCS - No FEC (4 lane power) P40LN, P40CN, P40KN – 97 109 mA 40G PCS - KR FEC (4 lane power) P40CF, P40KL, P40LF – 119 135 mA 50G PCS - No FEC (4 lane power) P50LN, P50CN, P50KN – 110 124 mA 50G PCS - KR FEC (4 lane power) P50CF, P50KF, P50LF – 139 160 mA 50G PCS - No FEC (2 lane power) P50MN, P50BN, P50JN – 107 122 mA 50G PCS - KR FEC (2 lane power) P50MF, P50BF, P50JF – 120 135 mA 50G PCS - RS FEC (2 lane power) P50MR, P50BR, P50JR – 221 231 mA 100G PCS - No FEC (4 lane power) P100LN, P100KN – 228 263 mA 100G PCS - RS FEC (4 lane power) P100LR, P100CR, P100KR – 430 481 mA Example: P100LN to P100CR operation Doc. No. MV-S110852-U0 Rev. C Page 104 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications Current Consumption Current consumption on DVDD = DVDD Base + P100LN + P100CR Table 64: AVDDL and AVDDH Current Consumption Pins Parameter Co n d i t i on Min Ty p Max U n it s AVDDL or AVDDH Base Chip Base Power including leakage – 54 350 mA 1G Speed (1 lane power) P1*, R1 – 74 90 mA 2.5G Spkvban641eed (1 lane power) P2.5X, R2.5 – 89 111 mA 5G Speed (1 lane power) P5*, R5* – 106 125 mA 10G Speed (1 lane power) P10*, R10* – 144 164 mA 25G Speed (1 lane power) P25*, R25* – 256 292 mA 40G Speed (4 lane power) P40*, R40* – 567 653 mA 50G Speed (4 lane power) P50L*, P50C*, P50K* – 641 739 mA 50G Speed (2 lane power) P50M*, P50B*, P50J* – 509 583 mA 100G Speed (4 lane power) P100*, R100* – 1003 1156 mA Example: P100LN to P100CR operation Current consumption on AVDD = AVDDL Base + AVDDH Base + P100* + P100* + AVDDC Table 65: AVDDC and AVDDT Current Consumption Pins Parameter Condition Min Ty p Max U n it s AVDDC Base Chip Base Power including leakage – – 10 mA AVDDT Base Chip Base Power including leakage – – 34 mA Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 105 88X5113 Datasheet - Public 7.4.2 88X5113 Current Consumption (Industrial) Table 66: DVDD Current Consumption Pins Parameter C ondi t i o n Min Ty p Max U n it s DVDD Base Chip Base Power including leakage – 84 941 mA 1G PCS (1 lane power) P1X, P1S, P1P – 6 8 mA 2.5G PCS (1 lane power) P2.5X – 13 16 mA 5G PCS (1 lane power) P5L, P5K – 13 13 mA 10G PCS - No FEC (1 lane power) P10LN, P10KN – 26 29 mA 10G PCS - KR FEC (1 lane power) P10KF, P10LF – 31 37 mA 25G PCS - No FEC (1 lane power) P25LN, P25LR, P25CN, P25KN, P25BN, P25JN – 54 60 mA 25G PCS - KR FEC (1 lane power) P25LF, P25CF, P25KF, P25BF, P25JF – 67 76 mA 25G PCS - RS FEC (1 lane power) P25LR, P25CR, P25KR, P25BR, P25JR – 99 111 mA 40G PCS - No FEC (4 lane power) P40LN, P40CN, P40KN – 97 109 mA 40G PCS - KR FEC (4 lane power) P40CF, P40KL, P40LF – 119 135 mA 50G PCS - No FEC (4 lane power) P50LN, P50CN, P50KN – 110 124 mA 50G PCS - KR FEC (4 lane power) P50CF, P50KF, P50LF – 139 160 mA 50G PCS - No FEC (2 lane power) P50MN, P50BN, P50JN – 107 122 mA 50G PCS - KR FEC (2 lane power) P50MF, P50BF, P50JF – 120 135 mA 50G PCS - RS FEC (2 lane power) P50MR, P50BR, P50JR – 221 231 mA 100G PCS - No FEC (4 lane power) P100LN, P100KN – 228 263 mA 100G PCS - RS FEC (4 lane power) P100LR, P100CR, P100KR – 430 481 mA Example: P100LN to P100CR operation Current consumption on DVDD = DVDD Base + P100LN + P100CR Doc. No. MV-S110852-U0 Rev. C Page 106 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications Current Consumption Table 67: AVDDL and AVDDH Current Consumption Pins Parameter Co n d i t i on Min Ty p Max U n it s AVDDL or AVDDH Base Chip Base Power including leakage – 54 350 mA 1G Speed (1 lane power) P1*, R1 – 74 90 mA 2.5G Spkvban641eed (1 lane power) P2.5X, R2.5 – 89 111 mA 5G Speed (1 lane power) P5*, R5* – 106 125 mA 10G Speed (1 lane power) P10*, R10* – 144 164 mA 25G Speed (1 lane power) P25*, R25* – 256 292 mA 40G Speed (4 lane power) P40*, R40* – 567 653 mA 50G Speed (4 lane power) P50L*, P50C*, P50K* – 641 739 mA 50G Speed (2 lane power) P50M*, P50B*, P50J* – 509 583 mA 100G Speed (4 lane power) P100*, R100* – 1003 1156 mA Example: P100LN to P100CR operation Current consumption on AVDD = AVDDL Base + AVDDH Base + P100* + P100* + AVDDC Table 68: AVDDC and AVDDT Current Consumption Pins Parameter Condition Min Ty p Max U n it s AVDDC Base Chip Base Power including leakage – – 10 mA AVDDT Base Chip Base Power including leakage – – 34 mA Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 107 88X5113 Datasheet - Public 7.5 Digital I/O Electrical Specifications 7.5.1 DC Operating Conditions Table 69: DC Operating Conditions (Over full range of values listed in the Recommended Operating Conditions unless otherwise specified) Sy mbol Parameter Pins C ondi t i o n Min Ty p Max U n it s VIH Input High Voltage All digital inputs VDDO* = 3.3V 2.0 – VDDO + 0.3V V VDDO* = 2.5V 1.75 – VDDO + 0.3V V VDDO* = 1.8V 1.26 – VDDO + 0.3V V VDDO* = 1.5V 1.05 – VDDO + 0.3V V VDDO* = 1.2V 0.84 – VDDO + 0.3V V VDDO* = 1.05V 0.74 – VDDO + 0.3V V VDDO* = 3.3V -0.3 – 0.8 V VDDO* = 2.5V -0.3 – 0.75 V VDDO* = 1.8V -0.3 – 0.54 V VDDO* = 1.5V -0.3 – 0.45 V VDDO* = 1.2V -0.3 – 0.36 V VDDO* = 1.05V -0.3 – 0.31 V VIL Input Low Voltage All digital inputs VOH High-level Output Voltage All digital outputs IOH = -4 mA VDDO - 0.4V – – V VOL Low-level Output Voltage All digital outputs IOL = 4 mA – – 0.4 V IILK Input Leakage Current With internal pull-up/pull-down resistor – 10 – 70 A All others without resistor – – – 10 A All pins – – – 5 pF CIN Input Capacitance Doc. No. MV-S110852-U0 Rev. C Page 108 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications Digital I/O Electrical Specifications 7.5.2 AC Operating Conditions Table 70: AC Operating Conditions (Over Full range of values listed in the Recommended Operating Conditions unless otherwise specified) Sy mbol P arameter Pins C o n d i t i on Min Ty p Max U n it s TR Rise Time GPIO[0] 20 to 80% of Vppd – 0.87 – ns TF Fall Time GPIO[0] 20 to 80% of Vppd – 0.68 – ns 7.5.3 Reset Timing Table 71: Reset Timing (Over Full range of values listed in the Recommended Operating Conditions unless otherwise specified) Symbol Parameter C o n d i t i on Min Ty p Max U n it s TPU_RESET Valid Power to RESET De-asserted – 10 – – ms TSU_CLK Number of Valid CLK Cycles Prior to RESET De-asserted – 50 – – clks TRESET Minimum Reset Pulse Width During Normal Operation – 10 – – ms Figure 33: Reset Timing Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 109 88X5113 Datasheet - Public 7.5.4 MDC/MDIO Management Interface Timing Table 72: MDC/MDIO Management Interface Timing (Over full range of values listed in the Recommended Operating Conditions unless otherwise specified) S ymb o l Pa r a m e te r C ondition Min Typ Max U ni t s TDLY_MDIO MDC to MDIO (Output) Delay Time 25 pf load on MDIO 3.5 – 19 ns TSU_ MDIO MDIO (Input) to MDC Setup Time – 6.5 – – ns THD_ MDIO MDIO (Input) to MDC Hold Time – 0.5 – – ns TP_ MDC MDC Period Subject to TREAD_DLY 401, 2 – – ns TH_ MDC MDC High – 12 – – ns TL_ MDC MDC Low – 12 – – ns TREAD_DLY Two MDC Period During Read Turnaround – 80 – – ns 1. TP_MDC is minimum of 25 ns for 40 MHz MDC clock support with stretched TA, but 40 ns (25 MHz) with standard TA as per IEEE specification. MDC of 40 MHz is supported only with VDDO supply of 1.8V and above. For lower VDDO, MDC frequency of up to 25 MHz is supported. 2. The maximum MDC frequency is dependent on the Reference Clock used (CLK1P/N). The TP_MDC listed is based on 156.25 MHz reference clock. Figure 34: MDC/MDIO Management Interface Doc. No. MV-S110852-U0 Rev. C Page 110 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications Digital I/O Electrical Specifications 7.5.5 JTAG Timing Table 73: JTAG Timing (Over full range of values listed in the Recommended Operating Conditions unless otherwise specified) Symbol Parameter C o n d i t i on Min Ty p Max Units TP_TCK TCK Period – 60 – – ns TH_TCK TCK High – 12 – – ns TL_TCK TCK Low – 12 – – ns TSU_TDI TDI, TMS-to-TCK Setup Time – 10 – – ns THD_TDI TDI, TMS-to-TCK Hold Time – 10 – – ns TDLY_TDO TCK-to-TDO Delay – 0 – 15 ns Figure 35: JTAG Timing Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 111 88X5113 Datasheet - Public 7.6 SERDES Electrical Specifications 7.6.1 Chip-to-Module 100 Gbps/25 Gbps Electrical Characteristics 7.6.1.1 Chip-to-Module 100 Gbps/25 Gbps Transmitter and Receiver Characteristics Table 74: Chip-to-Module CAUI-4/XXVAUI-1 Transmitter and Receiver Characteristics Sy mbol Description Min BR Baud rate 25.78125 Bppm Baud rate tolerance -100 UI Unit interval 38.787879 Vodis Transmitter disabled output differential noise level – Vodpp Output differential maximum peak-to-peak Tr Max Units Notes Gbps – ppm 1 ps – 35 mV – – 900 mV – Output transition time 10 – ps 8 Vosdc DC Common-mode voltage limits -0.3 2.8 V – Vosac AC Common-mode voltage limits (RMS) – 17.5 mV – RLOD Return loss differential output – – dB 2, 4 RLOCD Common to differential mode output return loss See note #3. dB 3, 4 Ehatx Differential output eye height A 95 – mV 10 Ehbtx Differential output eye height B 80 – mV 10 Ew tx Differential output eye width 0.46 – UI 5, 10 – 900 mV 7, 11 100 Transmitter Parameters Receiver Parameters Vidpp Input differential voltage RLID Return loss differential input See note #2. dB 2, 4 RLIDC Differential to common mode input return loss See note #3. dB 3, 4 Ehrx Receiver stress tolerance -eye height 228 – mV 5, 6, 11 Ew rx Receiver stress tolerance -eye width 0.57 – UI 5, 6, 11 Doc. No. MV-S110852-U0 Rev. C Page 112 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications Note The load is 100Ω differential for these parameters, unless otherwise specified. The Tx table is defined on TP1a and Rx table is defined on TP4a refer to 83E.2 CAUI-4 chip-to-module compliance point definitions in the IEEE 802.3 standard. • Defines the allowable reference clock difference and Rx baud rate tolerance relative to nominal. Tx baud rate is derived from multiplication of the reference clock(0ppmdelta). • RLOD and RLID are defined accordingly: For 10 MHz -8 GHz RLOD/RLID>9.5-0.37*f [dB] (Frequency defined in GHz). For 8 GHz -19 GHz RLOD/RLID>4.75-7.4Log(f/14) [dB] (Frequency defined in GHz). • RLOCD and RLID Care defined accordingly: For 10 MHz -12.89 GHz RLOCD/RLIDC>22-(20/25.78)*f [dB] (Frequency defined in GHz). For 12.89 GHz -19 GHz RLOCD/RLIDC>15-(6/25.78)*f [dB] (Frequency defined in GHz). • Relative to 100Ω differential and 25Ω common mode. • Defined with a Bit Error Rate (BER) of 10^-15. • Defined according to IEEE 802.3 section 83E.3.3.2 Host stressed input test. • Vidpp refers to the peak-to-peak. • Defined 20 to 80% of the signal. Refer to section 83E.3.1.5 Transition time in the IEEE 802.3 standard. • Refer to section 83E.3.1.4 Differential termination mismatch in IEEE 802.3 standard. • Refer to section 83E.3.1.6 Host output eye width and eye height in IEEE 802.3 standard. Defined on TP4 as defined in 83E.2 CAUI-4 chip-to-module compliance point definitions in IEEE 802.3 standard. Table 75: Chip-to-Module CAUI-4/XXVAUI-1 Settings and Configuration Parameter Setting / C o n f i g u ra t i on Vods The Vods is the output differential amplitude configurable range. When driving a test load, the minimum value is achieved with AMP=TBD and PRE=TBD, and the maximum value is achieved with AMP=TBD and PRE=TBD. Output amplitude and pre-emphasis are configurable. Viddp The Viddp is the input differential voltage. The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed 1.8V. Vodpp To achieve the specifications at Tp1a, the use of emphasis may be needed. Output Equalization For emphasis control information, refer to the Functional Specifications. NOTE: For further information, refer to the Functional Specifications. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 113 88X5113 Datasheet - Public 7.6.1.2 Chip-to-Module CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and Definitions Figure 36: Chip-to-Module CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and Definitions Figure 37: Chip-to-Module CAUI-4/XXVAUI-1 Transmitter Output Differential Amplitude and Eye Opening Doc. No. MV-S110852-U0 Rev. C Page 114 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications 7.6.2 Chip-to-Chip 100 Gbps/25 Gbps (CAUI-4/XXVAUI-1) Electrical Characteristics 7.6.2.1 Chip-to-Chip 100 Gbps/25 Gbps (CAUI-4/XXVAUI-1) Transmitter and Receiver Characteristics Table 76: Chip-to-Chip Gbps CAUI-4/XXVAUI-1 Interface Transmitter and Receiver Characteristics Symbol Description Min BR Baud rate 25.78125 Bppm Baud rate tolerance -100 UI Unit interval 38.787879 Max 100 U ni t s Notes Gbps – ppm 1 ps – Transmitter Parameters Vodis Transmitter disabled output differential noise level – 30 mV – Vodpp Output differential maximum peak-to-peak – 1200 mV – Vf Output waveform -Steady-state voltage 0.4 0.6 V 12 Vlfpp Output waveform -Linear fit pulse peak 0.71*Vf – V 12 Prec Output waveform -Pre-cursor full-scale range See note #13. – 13 Pstc Output waveform - Post-cursor full-scale range See note #13. – 13 Vsnr Transmitter signal-to-noise-and-distortion ratio 27 – dB 14 Vosdc DC Common-mode voltage limits 0.0 1.9 V – Vosac AC Common-mode voltage limits (RMS) – 12 mV – RLOD Return loss differential output See note #2. dB 2, 5 RLOC Return loss Common-Mode output See note #3. dB 3, 5 Juctx Output jitter -Effective bounded uncorrelated, peak-to-peak – 0.1 UI 10 Jeotx Output Even-Odd jitter – 0.035 UI 11 Jtpptx Output jitter -Effective total uncorrelated, peak-to-peak – 0.26 UI 6, 9, 10 1200 mV 8 Receiver Parameters Vidpp Input differential voltage – RLID Return loss differential input See note #2. dB 2, 5 RLIDC Differential to common mode input return loss See note #4. dB 4, 5 Rit Receiver interference tolerance See note #7. UI 7 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 115 88X5113 Datasheet - Public Note The load is 100Ω differential for these parameters, unless otherwise specified. General Comment: The Tx table is defined on TP0a as defined in 93.8.1.1 Transmitter test fixture in IEEE 802.3 standard. General Comment: The Rx table is defined on TP5a as defined in 93.8.2.1 Receiver test fixture in 802.3 IEEE standard. • • • • • • • • • • • • • • Defines the allowable reference clock difference and Rx baud rate tolerance relative to nominal. Tx baud rate is derived from multiplication of the reference clock (0 ppm delta). RLOD and RLID are defined accordingly: For 50 MHz - 6 GHz RLOD/RLID>12.05-f [dB] (Frequency defined in GHz). For 6 GHz -19 GHz RLOD/RLID>6.5-0.075*f [dB] (Frequency defined in GHz). RLOC is defined accordingly: For 50 MHz -6 GHz RLOC>9.05-f [dB] (Frequency defined in GHz). For 6 GHz -19 GHz RLOC>3.5-0.075*f [dB] (Frequency defined in GHz). RLIDC is defined accordingly: For 50 MHz -6.95 GHz RLIDC>25-1.44*f [dB] (Frequency defined in GHz). For 6.95 GHz -19 GHz RLIDC>15 [dB]. Relative to 100Ω differential and 25Ω common mode. Defined with a Bit Error Rate (BER) of 10^-15. Defined according to IEEE 802.3 section 83D.3.3.1 Receiver interference tolerance. Vidpp refers to the peak-to-peak. The output Tx jitter is defined when applying the effect of a single-pole high-pass filter on the jitter. The high-pass filter 3 dB point is located at 10 MHz. The transmitter output waveform follows IEEE requirements as specified in section 92.8.3.8.2 Effective bounded uncorrelated jitter and effective random jitter, (except that the range for fitting CDFLi and CDFRi will be from10^-6 to 10^-4). Defined for a PRBS9 pattern according to section 92.8.3.8.1 Even-odd jitter in 802.3 IEEE standard. The transmitter output waveform follows IEEE requirements as specified in section 93.8.1.5.2 Steady-state voltage and linear fit pulse peak, (except that the values of Np and Nw are 5). The transmitter output waveform follows IEEE requirements as specified in section 83D.3.1.1 Transmitter equalization settings. The transmitter output waveform follows IEEE requirements as specified in section 93.8.1.6 Transmitter output noise and distortion (except that the values of Np and Nw are 5). Table 77: Chip-to-Chip CAUI-4/XXVAUI-1 Settings and Configuration Pa rameter Setting/Configuration Vods The Vods is the output differential amplitude configurable range. When driving a test load, the minimum value is achieved with AMP=TBD and PRE=TBD, and the maximum value is achieved with AMP=TBD and PRE=TBD. Output amplitude and pre-emphasis are configurable. Viddp The Viddp is the input differential voltage. The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed 1.8V. Vodpp To achieve the specifications at Tp1a, the use of emphasis may be required. Doc. No. MV-S110852-U0 Rev. C Page 116 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications Table 77: Chip-to-Chip CAUI-4/XXVAUI-1 Settings and Configuration (Continued) Pa rameter Setting/Configuration Output Equalization For emphasis control information, refer to the Functional Specifications. NOTE: For further information, refer to the Functional Specifications. 7.6.2.2 Chip-to-Chip CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and Definitions Figure 38: Chip-to-Chip CAUI-4/XXVAUI-1 Interface Transmitter Output Voltage Limits and Definitions Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 117 88X5113 Datasheet - Public Figure 39: Chip-to-Chip CAUI-4/XXVAUI-1 Transmitter Output Differential Amplitude and Eye Opening Doc. No. MV-S110852-U0 Rev. C Page 118 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications 7.6.3 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Electrical Characteristics 7.6.3.1 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter and Receiver Characteristics Table 78: 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter and Receiver Characteristics Sy mbol Parameter Min BR Baud rate 25.78125 Bppm Baud rate tolerance -100 UI Unit interval 38.787879 Max 100 U ni t s Notes Gbps – ppm 1 ps – Transmitter Parameters Vodis Transmitter disabled output differential noise level – 35 mV – Vodpp Output differential maximum peak-to-peak – 1200 mV – Vf Output waveform - Steady-state voltage 0.34 0.6 V 12 Vlfpp Output waveform -Linear fit pulse peak 0.45*Vf – V 12 Ncs Output waveform - Normalized coefficient step size 0.0083 0.05 – 13 Prec Output waveform - Pre-cursor full-scale range 1.54 – – 14 Pstc Output waveform - Post-cursor full-scale range 4 – – 14 Vsnr Transmitter signal-to-noise-and-distortion ratio 26 – dB 15 Vosdc DC Common-mode voltage limits 0.0 1.9 V – Vosac AC Common-mode voltage limits (RMS) – 30 mV – RLOD Return loss differential output See note #2. dB 2, 5 RLOCD Return loss Common-Mode to Differential output See note #3. dB 3, 5 RLOC Return loss Common-Mode output 2 – dB 5, 16 Juctx Output jitter -Effective bounded uncorrelated, peak-to-peak – 0.1 UI 17 Jeotx Output Even-Odd jitter – 0.035 UI 11 Jtpptx Output jitter - Effective total uncorrelated, peak-to-peak – 0.18 UI 6, 9, 17 1200 mV 8 Receiver Parameters Vidpp Input differential voltage – RLID Return loss differential input See note #2. dB 2, 5 RLIDC Differential to common mode input return loss See note #4. dB 4, 5 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 119 88X5113 Datasheet - Public Table 78: 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter and Receiver Characteristics (Continued) Sy mbol Parameter Min Rit Receiver interference tolerance Rjt Receiver jitter tolerance Note • • • • • • • • • • • • • • • Page 120 U ni t s Notes See note #7. UI 7 See note #10. UI 6, 10 The load is 100Ω differential for these parameters, unless otherwise specified. General Comment: The Tx table is defined on TP2 as defined in 92.11 Test fixtures in 802.3 IEEE standard. General Comment: The Rx table is defined onTP3 as defined in 92.11 Test fixtures in 802.3 IEEE standard. • Doc. No. MV-S110852-U0 Rev. C Max Defines the allowable reference clock difference and Rx baud rate tolerance relative to nominal. Tx baud rate is derived from multiplication of the reference clock (0 ppm delta). RLOD and RLID are defined accordingly: For 10 MHz -8 GHz RLOD/RLID>9.5-0.37*f [dB] (Frequency defined in GHz). For 8 GHz -19 GHz RLOD/RLID>4.75-7.4*Log(f/14) [dB] (Frequency defined in GHz). RLOCD and RLID Care defined accordingly: For 10 MHz -12.89 GHz RLOCD/RLIDC>22-(20/25.78)*f [dB] (Frequency defined in GHz). For 12.89 GHz -19 GHz RLOCD/RLIDC>15-(6/25.78)*f [dB] (Frequency defined in GHz). Relative to 100Ω differential and 25Ω common mode. Defined with a Bit Error Rate (BER) of 10^-5. Defined according to IEEE 802.3 section 92.8.4.4 Receiver interference tolerance test. Vidpp refers to the peak-to-peak. Defined according to IEEE 802.3 section 92.8.4.1 Receiver input amplitude tolerance. The output Tx jitter is defined when applying the effect of a single-pole high-pass filter on the jitter. The high-pass filter 3 dB point is located at 10 MHz. Defined according to IEEE802.3 section 92.8.4.5 Receiver jitter tolerance. Defined for a PRBS9 pattern according to section 92.8.3.8.1 Even-odd jitter in 802.3 IEEE standard. The transmitter output waveform follows IEEE requirements as specified in section 92.8.3.5.2 Steady-state voltage and linear fit pulse peak. The transmitter output waveform follows IEEE requirements as specified in section 92.8.3.5.4 Coefficient step size. The transmitter output waveform follows IEEE requirements as specified in section 92.8.3.5.5 Coefficient range. The transmitter output waveform follows IEEE requirements as specified in section 92.8.3.7 Transmitter output noise and distortion. Defined from 200 MHz to 19 GHz. The transmitter jitter follows IEEE requirements as specified in section 92.8.3.8.2 Effective bounded uncorrelated jitter and effective random jitter. CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications Table 79: 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Settings and Configuration Pa rameter Setting/Configuration Vods The Vods is the output differential amplitude configurable range. When driving a test load, the minimum value is achieved with AMP=TBD and PRE=TBD, and the maximum value is achieved with AMP=TBD and PRE=TBD. Output amplitude and pre-emphasis are configurable. Viddp The Viddp is the input differential voltage. The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed 1.8V. Vodpp To achieve the specifications at Tp1a, the use of emphasis may be needed. Output Equalization For emphasis control information, refer to the Functional Specifications. NOTE: For further information, refer to the Functional Specifications. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 121 88X5113 Datasheet - Public 7.6.3.2 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter Output Voltage Limits and Definitions Figure 40: 100GBASE-CR4/50GBASE-CR2/25GBASE-CR Interface Transmitter Output Voltage Limits and Definitions Doc. No. MV-S110852-U0 Rev. C Page 122 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications 7.6.4 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Electrical Characteristics 7.6.4.1 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter and Receiver Characteristics Table 80: 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter and Receiver Characteristics Symbol Parameter Min Max BR Baud rate Bppm Baud rate tolerance -100 UI Unit interval 38.787879 25.78125 100 Units Notes Gbps – ppm 1 ps – Transmitter Parameters Vodis Transmitter disabled output differential noise level – 30 mV – Vodpp Output differential maximum peak-to-peak – 1200 mV – Vf Output waveform - Steady-state voltage 0.4 0.6 V 12 Vlfpp Output waveform -Linear fit pulse peak 0.71*Vf – V 12 Ncs Output waveform - Normalized coefficient step size 0.0083 0.05 – 13 Prec Output waveform - Pre-cursor full-scale range 1.54 – – 14 Pstc Output waveform - Post-cursor full-scale range 4 – – 14 Vsnr Transmitter signal-to-noise-and-distortion ratio 27 – dB 15 Vosdc DC Common-mode voltage limits 0.0 1.9 V – Vosac AC Common-mode voltage limits (RMS) – 12 mV – RLOD Return loss differential output See note #2. dB 2, 5 RLOC Return loss Common-Mode output See note #3. dB 5, 16 Juctx Output jitter - Effective bounded uncorrelated, peak-to-peak – 0.1 UI 17 Jeotx Output Even-Odd jitter – 0.035 UI 11 Jtpptx Output jitter - Effective total uncorrelated, peak-to-peak – 0.18 UI 6, 9, 17 1200 mV 8 Receiver Parameters Vidpp Input differential voltage – RLID Return loss differential input See note #2. dB 2, 5 RLIDC Differential to common mode input return loss See note #4. dB 4, 5 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 123 88X5113 Datasheet - Public Table 80: 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter and Receiver Characteristics (Continued) Symbol Parameter Min Rit Receiver interference tolerance Rjt Receiver jitter tolerance Note • • • • • • • • • • • • • • • Page 124 Units Notes See note #7. UI 7 See note #10. UI 6, 10 The load is 100Ω differential for these parameters, unless otherwise specified. General Comment: The Tx table is defined on TP0a as defined in 93.8.1.1 Transmitter test fixture in the IEEE 802.3 standard. General Comment: The Rx table is defined on TP5a as defined in 93.8.2.1 Receiver test Micmac in the IEEE 802.3 standard. • Doc. No. MV-S110852-U0 Rev. C Max Defines the allowable reference clock difference and Rx baud rate tolerance relative to nominal. Tx baud rate is derived from multiplication of the reference clock (0 ppm delta). RLOD and RLID are defined accordingly: For 50 MHz -6 GHz RLOD/RLID>12.05-f [Frequency] (Frequency defined in GHz). For 6 GHz -19 GHz RLOD/RLID>6.5-0.075*f [dB] (Frequency defined in GHz). RLOC is defined accordingly: For 50 MHz -6 GHz RLOC>9.05-f [dB] (Frequency defined in GHz). For 6 GHz -19 GHz RLOC>3.5-0.075*f [dB] (Frequency defined in GHz). RLIDC is defined accordingly: For 50 MHz -6.95 GHz RLIDC>25-1.44*f [dB] (Frequency defined in GHz). For 6.95 GHz -19 GHz RLIDC>15 [dB]. Relative to 100Ω differential and 25Ω common mode. Defined with a Bit Error Rate (BER) of 10^-5. Defined according to IEEE 802.3 section 93.8.2.3 Receiver interference tolerance. Vidpp refers to the peak-to-peak. The output Tx jitter is defined when applying the effect of a single-pole high-pass filter on the jitter. The high-pass filter 3 dB point is located at 10 MHz. Defined according to IEEE 802.3 section 93.8.2.4 Receiver jitter tolerance Defined for a PRBS9 pattern according to section 92.8.3.8.1 Even-odd jitter in the IEEE 802.3 standard. The transmitter output waveform follows IEEE requirements as specified in section 93.8.1.5.2 Steady-state voltage and linear fit pulse peak. The transmitter output waveform follows IEEE requirements as specified in section 93.8.1.5.4 Coefficient step size. The transmitter output waveform follows IEEE requirements as specified in section 93.8.1.5.5 Coefficient range. The transmitter output waveform follows IEEE requirements as specified in section 93.8.1.6 Transmitter output noise and distortion. The transmitter output jitter follows IEEE requirements as specified. CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications Table 81: 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Settings and Configuration Parameter Setting/Configuration Vods The Vods is the output differential amplitude configurable range. When driving a test load, the minimum value is achieved with AMP=TBD and PRE=TBD, and the maximum value is achieved with AMP=TBD and PRE=TBD. Output amplitude and pre-emphasis are configurable. Viddp The Viddp is the input differential voltage. The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed 1.8V. Vodpp To achieve the specifications at Tp1a, the use of emphasis may be needed. Output Equalization For emphasis control information, refer to the Functional Specifications. NOTE: For further information, refer to the Functional Specifications. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 125 88X5113 Datasheet - Public 7.6.4.2 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter Output Voltage Limits and Definitions Figure 41: 100GBASE-KR4/50GBASE-KR2/25GBASE-KR Interface Transmitter Output Voltage Limits and Definitions Doc. No. MV-S110852-U0 Rev. C Page 126 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications 7.6.5 40 Gbps Parallel Physical Interface (XLPPI) Electrical Characteristics 7.6.5.1 40 Gbps Parallel Physical Interface (XLPPI) Interface Transmitter and Receiver Characteristics Table 82: XLPPI Interface Transmitter and Receiver Characteristics Symbol Parameter Min BR Baud rate 10.3125 Bppm Baud rate tolerance -100 UI Unit interval 96.969697 Max 100 Units Notes Gbps – ppm 1 ps – Transmitter Parameters Vodpp Output differential maximum peak-to-peak 190 700 mV – Vos Single-ended output voltage -0.3 1.9 V 11 QSQ Signal-to-noise-ratio 45 – V/V 14 Tr/Tf Output differential transition time 28 – ps 2, 11 RLOD Return loss differential output See note #3. 3, 4,11 RLOC Return loss common mode output See note #3. 3, 4, 11 Tlskew Output lane-to-lane skew – 29 ns – Tlskew v Output lane-to-lane skew variation – 200 ps – dZM Termination mismatch – 5 % 9, 11 Vocmac Output AC common mode voltage, RMS – 15 mV 11, 12 Jddpw st Output jitter - Data dependent pulse width shrinkage – 0.07 UI 11 J2tx Output 99% jitter - J2, peak-to-peak – 0.17 UI 8, 11 J9tx Output jitter - J9, peak-to-peak – 0.29 UI 8, 11 Jtpptx Output jitter - Total, peak-to-peak – 0.22 UI 5, 8, 11 Receiver Parameters Vidpps Input differential sensitivity 300 – mV 5,7,11 Vidpp Input differential voltage - 850 mV 5, 7. 11 – 850 mV 5,7,11 RLID Return loss differential input See note # 3. dB 3, 4, 11 RLICD Reflected input common mode to differential conversion 10 – dB 10, 11 Rlskew Input lane-to-lane skew – 160 ns – Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 127 88X5113 Datasheet - Public Table 82: XLPPI Interface Transmitter and Receiver Characteristics (Continued) Symbol Parameter Min Max Units Notes Rlskew v Input lane-to-lane skew variation – 4 ns – J2rx Input 99% jitter - J2, peak-to-peak – 0.42 UI 6, 11 J9rx Input jitter - J9, peak-to-peak – 0.65 UI 11 Jddpw sr Input jitter - Data dependent pulse width shrinkage – 0.34 UI 11, 13 Vicmac Input AC common mode voltage, RMS – 7.5 mV 11, 12 The load is 100Ω differential for these parameters, unless otherwise specified. The reference points are according to Figure 86-2 in the IEEE Std 802.3-2010. Note • • • • • • • • • • • • • • • • Doc. No. MV-S110852-U0 Rev. C Page 128 Defines the allowable reference clock difference and Rx baud rate tolerance relative to nominal. Tx baud rate is derived from multiplication of the reference clock (zero ppm delta). Defined from 20 to 80% of the signal's voltage levels when driving a pattern consisting of eight consecutive ones followed by an equal run of zeros with no equalization. Maximum transition time is limited by mask as defined in IEEE 802.3 section 86A.5.3.6 Eye mask for TP1a and TP4. RLOD/RLID are defined from: 10.0 MHz to 4.11 GHz RLOD/RLID>12-2(Frequency)^0.5 [dB] (Frequency defined in GHz). For 4.11 GHz to 11.1 GHz RLOD/RLID>6.3-13log(Frequency/5.5)[dB] (Frequency defined in GHz). RLOC is defined from: 10.0 MHz to 2.5 GHz RLOC>7-1.6*(Frequency) [dB] (Frequency defined in GHz). For 2.5 GHz to 11.1 GHz RLOC>3dB. Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components related to the transmitter/receiver breakout. Defined with a Hit Ratio of 5*10^-5. Defined with all but 1 percent of occurrences. Vidpps refers to the internal eye opening while Vidp prefers to the peak-to-peak. The output Tx jitter is defined when applying the effect of a single-pole high-pass filter on the-jitter. The high-pass filter 3 dB point is located at 4 MHz. Defined at 1 MHz frequency. Defined according to section 86A.5.3.2 Termination mismatch in the IEEE Std 802.3-2010. Defined from 10 MHz to 11.1 GHz. Defined at reference points TP1A or TP4A. For maximal allowed interconnect characteristics between points TP0 and TP1A or pointsTP4A and TP5, refer to Section 86A.5.1.1.1 Reference insertion losses of HC Band MCB in IEEE Std 803.2-2010. The parameter at any time is the average of signal(+) and signal(-) at that time. This parameter is calculated by applying the histogram function over 1 UI to the common mode signal. Defined in coherence with Section 86A.5.3.4 Data Dependent Pulse Width Shrinkage in IEEE Std 803.2-2010. The Qdq ratio is defined under the restrictions of the eye mask as defined in IEEE 802.3 section 86A.5.3.6 Eye mask for TP1a and TP4. CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications Table 83: XLPPI Settings and Configuration Parameter Setting/Configuration Vods The Vods is the output differential amplitude configurable range. When driving a test load, the minimum value is achieved with AMP=TBD and PRE=TBD, and the maximum value is achieved with AMP=TBD and PRE=TBD. Output amplitude and pre-emphasis are configurable. Viddp The Viddp is the input differential voltage. The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed 1.8V. Vodpp To achieve the specifications at P1a, the use of emphasis may be needed. Output Equalization Tx emphasis may be configured to achieve the required deterministic jitter at the module connector. For emphasis control information, refer to the Functional Specifications. NOTE: For further information, refer to the Functional Specifications. 7.6.5.2 XLPPI Interface Transmitter Output Voltage Limits and Definitions Figure 42: XLPPI Interface Transmitter Output Voltage Limits and Definitions Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 129 88X5113 Datasheet - Public Figure 43: XLPPI Transmitter Output Differential Amplitude and Eye Opening Doc. No. MV-S110852-U0 Rev. C Page 130 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications 7.6.6 40 Gbps Attachment Unit Interface (XLAUI) Electrical Characteristics 7.6.6.1 40 Gbps Attachment Unit Interface (XLAUI) Interface Transmitter and Receiver Characteristics Table 84: XLAUI Interface Transmitter and Receiver Characteristics Sy mbol Parameter BR Baud rate Bppm Baud rate tolerance UI Unit interval Min Max 10.3125 -100 100 96.969697 U ni t s Notes Gbps – ppm 1 ps – Transmitter parameters Vodpp Output differential peak-to-peak 400 760 mV 9 Vos Single-ended output voltage -0.4 1.9 V – DEtx Output de-emphasis 4.4 7 dB – Tr/Tf Output differential transition time 24 – ps 2 RLOD Return loss differential output 12 – dB 3,4 RLOC Return loss common mode output 9 – dB 3,4 Tlskew Output lane-to-lane skew – 28 ns – Tlskew v Output lane-to-lane skew variation – 200 ps – dZM Termination mismatch – 5 % 10 Vocmac Output AC common mode voltage – 15 mVRMS - Jdtx Output jitter - Deterministic, peak-to-peak – 0.17 UI - Jtpptx Output jitter - Total, peak-to-peak – 0.32 UI 5, 8 Evodpp Output eye width at Vodpp (min) 0.24 – UI – Receiver parameters Vidpps Input differential sensitivity 85 – mV 7 Vidpp Input differential voltage – 850 mV 7 RLID Return loss differential input 12 – dB 3, 4 RLICD Return loss common to differential input 15 – dB 11 Rlskew Input lane-to-lane skew – 161 ns – Rlskew v Input lane-to-lane skew variation – 3.8 ns – Jtrlsx Input jitter - Sinusoidal, low frequency – 5 UI 12 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 131 88X5113 Datasheet - Public Table 84: XLAUI Interface Transmitter and Receiver Characteristics (Continued) Sy mbol Parameter Min Max U ni t s Notes Jtrsx Input jitter - Sinusoidal, high frequency – 0.05 UI 13 Jdrx Input jitter - Deterministic, peak-to-peak – 0.42 UI – Jtpprx Input jitter - Total, peak-to-peak – 0.62 UI 5, 6 Vicmac Input AC common mode voltage – 20 mVRMS – The load is 100Ω differential for these parameters, unless otherwise specified. • Note • • • • • • • • • • • • Doc. No. MV-S110852-U0 Rev. C Page 132 Defines the allowable reference clock difference and Rx baud rate tolerance relative to nominal. Tx baud rate is derived from multiplication of the reference clock (0 ppm delta). Defined from 20 to 80% of the signal's voltage levels when driving a pattern consisting of eight consecutive ones followed by an equal run of zeros with no equalization. Max transition time is limited by mask as defined in IEEE 802.3 section 83A.3.3.5 Transmitter eye mask and transmitter jitter definition. Defined from 10 MHz to 2.125 GHz. For 2.125 GHz -11.1 GHz RLOD/RLID>6.5-13.33log(Frequency/5.5)[dB] (Frequency defined in GHz). For 2.125 GHz -7.1 GHz RLOC>3.5-13.33log(Frequency/5.5)[dB] (Frequency defined in GHz). For 7.1 GHz -11.1 GHz RLOC>2[dB]. Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components related to the transmitter/receiver breakout. Defined with a Bit Error Rate (BER) of 10^-12. This parameter does not include sinusoidal components. Vidpps refers to the internal eye opening while Vidpp refers to the peak-to-peak. The output Tx jitter is defined when applying the effect of a single-pole high-pass filter on the jitter. The high-pass filter 3 dB point is located at 4 MHz. Defined with emphasis disabled. Defined at 1 MHz frequency. Defined according to section 86A.5.3.2 Termination mismatch in IEEE Std 802.3ba. Defined from 10 MHz to 11.1 GHz. Defined below 40 kHz. Defined from 4 MHz to 20 MHz. CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications Table 85: XLAUI Settings and Configuration Parameter Setting/Configuration Vods The Vods is the output differential amplitude configurable range. When driving a test load, the minimum value is achieved with AMP=TBD and PRE=TBD, and the maximum value is achieved with AMP=TBD and PRE=TBD. Output amplitude and pre-emphasis are configurable. Viddp The Viddp is the input differential voltage. The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed 1.8V. Output Equalization Tx emphasis may be configured to achieve the required deterministic jitter at the module connector. For emphasis control information, refer to the Functional Specifications. NOTE: For further information, refer to the Functional Specifications. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 133 88X5113 Datasheet - Public 7.6.6.2 XLAUI Interface Transmitter Output Voltage Limits and Definitions Figure 44: XLAUI Interface Transmitter Output Voltage Limits and Definitions Figure 45: XLAUI Transmitter Output Differential Amplitude and Eye Opening Doc. No. MV-S110852-U0 Rev. C Page 134 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications 7.6.7 40GBASE-CR4 Electrical Characteristics 7.6.7.1 40GBASE-CR4 Interface Transmitter and Receiver Characteristics Table 86: 40GBASE-CR4 Interface Transmitter and Receiver Characteristics Sy mbol Parameter BR Baud rate Bppm Baud rate tolerance UI Unit interval Min Max 10.3125 -100 100 96.969697 U ni t s Notes Gbps – ppm 1 ps – Transmitter Parameters Vodis Transmitter disabled output differential noise level – 30 mV – Vodpp Output differential maximum peak-to-peak – 1200 mV – DEtx Output de-emphasis – 12 Vos Common-mode voltage limits 0.0 1.9 V – RLOD Return loss differential output 10 – dB 2, 3 Tlskew Output lane-to-lane skew – 54 ns – Tlskew v Output lane-to-lane skew variation – 600 ps – Jdtx Output jitter - Deterministic, peak-to-peak – 0.15 UI – Jdcdtx Output duty cycle distortion – 0.035 UI 9, 10 Jrndtx Output jitter - Random – 0.15 UI 4 Jtpptx Output jitter - Total, peak-to-peak – 0.28 UI 4, 7, 11 See note 12. Receiver Parameters Vidpp Input differential voltage – 1200 mV 6 RLID Return loss differential input 10 – dB 2, 3 RLIDC Differential to common mode input return loss 10 – dB 13 Rlskew Input lane-to-lane skew – 134 ns – Rlskew v Input lane-to-lane skew variation – 3.4 ns – Js Input sinusoidal jitter – 0.115 UI 5 Jrndrx Input random jitter – 0.13 UI 4, 5 Jdcd Input duty cycle distortion – 0.035 UI 5 Vinamp Calibrated far-end crosstalk – 6.3 mVRMS 5, 8 ICN Calibrated integrated crosstalk noise – 3.7 mVRMS 5 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 135 88X5113 Datasheet - Public The load is 100Ω differential for these parameters, unless otherwise specified.  Note  Defines the allow able reference clock difference and Rx baud rate tolerance relative to nominal. Tx baud rate is derived from multiplication of the reference clock (zero ppm delta). Defined from 50 MHz to 2.5 GHz. For 2.5 GHz -7.5 GHz RLOD>9-12log(Frequency/2.5)[dB] (Frequency defined in GHz). For 2.5 GHz -7.5 GHz RLID>9-12log(Frequency/2.5)[dB] (Frequency defined in GHz).            Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components related to the transmitter/receiver breakout. Defined with a Bit Error Rate (BER) of 10^-12. Defined for interference tests according IEEE 802.3 section 85.8.4.2 Receiver interference tolerance test. Vidpp refers to the peak-to-peak. The output Tx jitter is defined w hen applying the effect of a single-pole high-pass filter on the jitter. The high-pass filter 3 dB point is located at 4 MHz. The receiver tolerates noise at an amplitude specified under receiver interference tolerance test1. The value for test2 is 2.2 mV. Jdcdtx is included as a part of Jdtx. Defined for a 1010 pattern and includes the entire range of emphasis. The jitter is defined with emphasis off. The transmitter output waveform follow s IEEE requirements as specified in section 85.8.3.3 Transmitter output waveform. Defined from 10 MHz to 10 GHz. Table 87: 40GBASE-CR4 Settings and Configuration Pa rameter Setting/Configuration Viddp The Viddp is the input differential voltage. The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed 1.8V. Output Equalization The default as determined by the IEEE is 3 TAP FIR optimized per interconnect. NOTE: For further information, refer to the Functional Specifications. Doc. No. MV-S110852-U0 Rev. C Page 136 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications 7.6.7.2 40GBASE-CR4 Interface Transmitter Output Voltage Limits and Definitions Figure 46: 40GBASE-CR4Interface Transmitter Output Voltage Limits and Definitions Figure 47: 40GBASE-CR4Transmitter Output Differential Amplitude and Eye Opening Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 137 88X5113 Datasheet - Public 7.6.8 40GBASE-KR4 Electrical Characteristics 7.6.8.1 40GBASE-KR4 Interface Transmitter and Receiver Characteristics Table 88: 40GBASE-KR4 Interface Transmitter and Receiver Characteristics Sy mbol Parameter BR Baud rate Bppm Baud rate tolerance UI Unit interval Min Max 10.3125 -100 100 96.969697 Units Notes Gbps – ppm 1 ps – Transmitter Parameters Vodis Transmitter disabled output differential noise level – 30 mV – Vodpp Output differential maximum peak-to-peak – 1200 mV – Vos Common-mode voltage limits 0 1.9 V – Tr/Tf Output differential transition time 24 47 ps 10 RLOD Return loss differential output 9 – dB 2, 3 RLOC Return loss common mode output 6 – dB 2, 3 Tlskew Output lane-to-lane skew – 557 UI – Tlskew v Output lane-to-lane skew variation – 6 UI – Jdtx Output jitter - Deterministic, peak-to-peak – 0.15 UI – Jdcdtx Output duty cycle distortion – 0.035 UI 10, 11 Jrndtx Output jitter - Random – 0.15 UI 4 Jtpptx Output jitter - Total, peak-to-peak – 0.28 UI 4, 7 Receiver Parameters Vidpp Input differential voltage – 1200 mV 6 RLID Return loss differential input 9 – dB 2, 3 Rlskew Input lane-to-lane skew – 1382 UI – Rlskew v Input lane-to-lane skew variation – 35 UI – Js Input sinusoidal jitter – 0.115 UI 5 Jrndrx Input random jitter – 0.13 UI 4, 5 Jdcd Input duty cycle distortion – 0.035 UI 5 Vinamp Input broadband noise amplitude – 5.2 mVRMS 5, 9 Doc. No. MV-S110852-U0 Rev. C Page 138 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications Table 88: 40GBASE-KR4 Interface Transmitter and Receiver Characteristics (Continued) Sy mbol Parameter Min mTC Test Channel Magnitude factor Max 1 Units Notes – 5, 8 The load is 100Ω differential for these parameters, unless otherwise specified.  Defines the allow able reference clock difference and Rx baud rate tolerance relative to nominal. Tx baud rate is derived from multiplication of the reference clock (0 ppm delta).  Defined from 50 MHz to 2.5 GHz. For 2.5 GHz -7.5 GHz RLOD>9-12log(Frequency/2.5)[dB] (Frequency defined in GHz). Note For 2.5 GHz -7.5 GHz RLOC>6-12log(Frequency/2.5)[dB] (Frequency defined in GHz). For 2.5 GHz -7.5 GHz RLID>9-12log(Frequency/2.5)[dB] (Frequency defined in GHz).      Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components related to the transmitter/receiver breakout. Defined with a Bit Error Rate (BER) of 10^-12. Defined for interference tests according IEEE 802.3 Annex 69A. For informative interconnect characteristics, refer to IEEE 802.3 Annex 69B. Vidpp refers to the peak-to-peak. The output Tx jitter is defined w hen applying the effect of a single-pole high-pass filter on the jitter. The high-pass filter 3 dB point is located at 4 MHz.  mTC describes the insertion loss transmission magnitude relative to the maximal allowed fitted attenuation mask Amax over a predefined frequency range. Defined for test1. The value for test2 is 0.5.  The receiver tolerates noise at an amplitude specified under receiver interference tolerance test1. The value for test2 is 12 mV. Jdcdtx is included as a part of Jdtx. Defined for a 1010 pattern and includes the entire range of emphasis. The transmitter output waveform follow s IEEE requirements as specified in section 72.7.1.10 Transmitter output waveform requirements.    Table 89: 40GBASE-KR4 Settings and Configuration Parameter Setting / C o n f i g u ra t i on Viddp The Viddp is the input differential voltage. The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed 1.8V. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 139 88X5113 Datasheet - Public Table 89: 40GBASE-KR4 Settings and Configuration (Continued) Parameter Setting / C o n f i g u ra t i on Output Equalization The default as determined by the IEEE is 3 TAP FIR optimized per interconnect. NOTE: For further information, refer to the Functional Specifications. 7.6.8.2 40GBASE-KR4 Interface Transmitter Output Voltage Limits and Definitions Figure 48: 40GBASE-KR4 Interface Transmitter Output Voltage Limits and Definitions Doc. No. MV-S110852-U0 Rev. C Page 140 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications Figure 49: 40GBASE-KR4 Transmitter Output Differential Amplitude and Eye Opening Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 141 88X5113 Datasheet - Public 7.6.9 SFP+ Interface (SFI) Limiting Module Electrical Characteristics 7.6.9.1 SFI Transmitter and Receiver Characteristics Table 90: SFI Transmitter and Receiver Characteristics Sy mbol Parameter BR Baud rate Bppm Baud rate tolerance UI Unit interval Min Max 10.3125 -100 100 96.969697 U ni t s N o t es Gbps – ppm 1 ps – Transmitter parameters Vodpp Output differential peak-to-peak 190 700 mV 9,14,7 Vos Single-ended output voltage -0.3 1.9 V 13 DEtx Output de-emphasis 4.4 7 dB 13 Tr/Tf Output differential transition time 24 – ps 2, 13 RLOD Return loss differential output 12 – dB 3,4,13 RLOC Return loss common mode output 9 – dB 3,4,13 dZM Termination mismatch – 5 % 10,13 Vocmac Output AC common mode voltage – 12 mVRMS 13,15 Jutx Output jitter - Uncorrelated, RMS – 0.023 UI 5,14,12 Jddpw st Output jitter - Data dependent pulse width shrinkage – 0.055 UI 14 Jddtx Output jitter - Data dependent, peak-to-peak – 0.1 UI 14 Jtpptx Output jitter - Total, peak-to-peak – 0.28 UI 8,14,17 Receiver parameters Vidpps Input differential sensitivity 300 – mV 7,14 Vidpp Input differential voltage – 850 mV 7,14 RLID Return loss differential input 12 – dB 3,4,13 RLICD Reflected input common mode to differential conversion 15 – -dB 11,13 J2 Input 99% jitter - peak-to-peak – 0.42 UI 6,14,16 Jddpw sr Input jitter - Data dependent pulse width shrinkage – 0.3 UI 14, 16 Jtpprx Input jitter - Total, peak-to-peak – 0.7 UI 5,14,16 Vicmac Input AC common mode voltage, RMS – 7.5 mVRMS 14,15,16 Doc. No. MV-S110852-U0 Rev. C Page 142 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications The load is 100Ω differential for these parameters, unless otherwise specified. The reference points are according to Table 10 SFI Reference Points in SFF 8431 Rev. 4.1 standard. Note                  Defines the allow able reference clock difference and Rx baud rate tolerance relative to nominal. Tx baud rate is derived from multiplication of the reference clock (zero ppm delta). Defined from 20 to 80% of the signal's voltage levels w hen driving a pattern consisting of 8 consecutive ones follow ed by an equal run of zeros with no equalization. Max transition time is limited by mask as defined in SFF 8431 Rev. 4.1 standard. Figure 19 Transmitter Differential Output Compliance Mask at B and B. RLOD/RLID are defined from 10 MHz to 2.8 GHz. Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components related to the transmitter/receiver breakout. Defined with a Bit Error Rate (BER) of 10^-12. Defines with all but 1 percent of occurrences. Vidpps refers to the internal eye opening while Vidpp refers to the peak-to-peak. The output Tx jitter is defined w hen applying the effect of a single-pole, high-pass filter on the jitter. The high-pass filter 3 dB point is located at 4 MHz. Defined with emphasis disabled. Defined at 1 MHz frequency. Defined according to section D.16 Termination Mismatch in SFF 8431 Rev. 4.1 standard. Defined from 10 MHz to 11.1 GHz. Jutx includes random jitter. Defined at reference points A or D. Defined at reference points B or C. For maximal allow ed interconnect characteristics between points A and B or points C and D, refer to Appendix A SFI Channel Recommendation in SFF 8431 Rev. 4.1 standard. The parameter at any time is the average of signal(+) and signal(-) at that time. This parameter is calculated by applying the histogram function over one UI to the common mode signal. Defined in coherence with Table 14 Host receiver supporting limiting module input in SFF-8431 Rev4.1 standard. Defined with a Hit Ratio of 5*10^-5. Table 91: SFI Settings and Configuration Pa rameter Setting/Configuration Viddp The Viddp is the input differential voltage. The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed 1.8V. Output Equalization De-emphasis to be set to minimize data dependent jitter at compliance point B. For compliance point definition refer to chapter 3.3 SFI Test Points Definition and Measurements in the SFF-8431 standard. NOTE: For further information, refer to the Functional Specifications. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 143 88X5113 Datasheet - Public 7.6.9.2 SFP+ Direct Attach Cable (10GSFP+CU Appendix E) Transmitter and Receiver Characteristics Table 92: 10GSFP+CU Transmitter and Receiver Characteristics Sy mbol Parameter BR Baud rate Bppm Baud rate tolerance UI Unit interval Min Max 10.3125 -100 100 96.969697 U ni t s N ot e s Gbps – ppm 1 ps – Transmitter Parameters Vodpp Output differential peak-to-peak 190 700 mV 9, 14, 17 VMAT Output voltage modulation amplitude peak-to-peak 300 – mV 6, 14 Vos Single-ended output voltage -0.3 1.9 V 13 Qsq Signal to noise ratio quality 63 – – 14, 18 DEtx Output de-emphasis 4.4 7 dB 13 Tr/Tf Output differential transition time 24 – ps 2, 13 RLOD Return loss differential output 12 – dB 3, 4, 13 RLOC Return loss common mode output 9 – dB 3, 4,13 dZM Termination mismatch – 5 % 10, 13 Vocmac Output AC common mode voltage – 12 mVRMS 13, 15 TWDPc Copper cable stressor transmitter penalty – 10.7 dBe 14, 19 Jutx Output jitter - Uncorrelated, RMS – 0.023 UI 5, 14, 12 Jddpw st Output jitter - Data dependent pulse width shrinkage – 0.055 UI 14 Jddtx Output jitter - Data dependent, peak-to-peak – 0.1 UI 14 Jtpptx Output jitter - Total, peak-to-peak – 0.28 UI 8, 4, 17 Receiver Parameters Vidpp Input differential voltage - 850 mV 7, 14 VMAR Input voltage modulation amplitude peak-to-peak 180 – mV 6, 14 RLID Return loss differential input 12 – dB 3, 4, 13 RLICD Reflected input common mode to differential conversion 15 – dB 11, 13 WDPc Waveform distortion penalty of the ISI generator – 9.3 dBe 14, 19 Vinamp Input broadband noise amplitude – mVRMS 14, 20 Doc. No. MV-S110852-U0 Rev. C Page 144 CONIFIDENTIAL Document Classification: Public 2.14 Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications Table 92: 10GSFP+CU Transmitter and Receiver Characteristics (Continued) Sy mbol Parameter Min Vicmac Input AC common mode voltage, RMS – Max 13.5 U ni t s N ot e s mVRMS 14, 15, 16 The load is 100Ω differential for these parameters, unless otherwise specified.  Note                      The reference points are according to Table 10 SFI Reference Points in SFF 8431 Rev. 4.1 standard. Defines the allow able reference clock difference and Rx baud rate tolerance relative to nominal. Tx baud rate is derived from multiplication of the reference clock (zero ppm delta). Defined from 20 to 80% of the signal's voltage levels w hen driving a pattern consisting of 8 consecutive ones follow ed by an equal run of zeros with no equalization. Max transition time is limited by mask as defined in SFF 8431 Rev. 4.1 standard. Figure 19 Transmitter Differential Output Compliance Mask at B and B. RLOD/RLID are defined from 10 MHz to 2.8 GHz. For 2.8 GHz -11.1 GHz RLOD/RLID>8.15-13.33log(Frequency/5.5)[dB] (Frequency defined in GHz). RLOC is defined from 10.0 MHz to 4.74 GHz. For 4.74 GHz -7.1 GHz RLOC>8.1-13.33log(Frequency/5.5)[dB] (Frequency defined in GHz). Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components related to the transmitter/receiver breakout. Defined with a Bit Error Rate (BER) of 10^-12. For test definition refer to section D.7 Voltage Modulation Amplitude (VMA) in SFF 8431 Rev. 4.1 standard. Vidpps refers to the internal eye opening while Vidpp refers to the peak-to-peak. The output Tx jitter is defined w hen applying the effect of a single-pole, high-pass filter on the jitter. The high-pass filter 3 dB point is located at 4 MHz. Defined with emphasis disabled. Defined at 1 MHz frequency. Defined according to section D.16 Termination Mismatch in SFF 8431 Rev. 4.1 standard. Defined from 10 MHz to 11.1 GHz. Jutx includes random jitter. Defined at reference points A or D. Defined at reference points B or C. For maximal allowed interconnect characteristics between points A and B or points C and D, refer to Appendix A SFI Channel Recommendation in SFF 8431 Rev. 4.1 standard. The parameter at any time is the average of signal(+) and signal(-) at that time. This parameter is calculated by applying the histogram function over one UI to the common mode signal. Defined in coherence with Table 14 Host receiver supporting limiting module input in SFF-8431 Rev4.1 standard. Defined with a Hit Ratio of 5*10^-5. Qsq = 1/RN. For test definition of RN refer to section D.8 Relative noise (RN) in SFF 8431 Rev. 4.1 standard. For calculation, refer to Appendix G Mat-lab code for TWDP in SFF 8431 Rev. 4.1 standard. Defined for interference tests according to D. 11 Test Method For A Host Receiver For A Limiting Module in SFF 8431 Rev. 4.1 standard. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 145 88X5113 Datasheet - Public Table 93: 10GSFP+CU Settings and Configuration Pa rameter Setting/Configuration Viddp The Viddp is the input differential voltage. The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed 1.8V. Output Equalization The default as determined by the IEEE is 3 TAP FIR optimized per interconnect. NOTE: For further information, refer to the Functional Specifications. Figure 50: SFI Transmitter Output Voltage Limits and Definitions Doc. No. MV-S110852-U0 Rev. C Page 146 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications Figure 51: SFI Transmitter Output Differential Amplitude and Eye Opening Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 147 88X5113 Datasheet - Public 7.6.10 10 Gigabit Small Form Factor Pluggable Interface (XFI) Electrical Characteristics 7.6.10.1 XFI Interface Transmitter and Receiver Characteristics Table 94: XFI Interface Transmitter and Receiver Characteristics Sy mbol Parameter BR Baud rate Bppm Baud rate tolerance UI Unit interval Min Max U ni t s Notes Gbps – ppm 1 96.969697 ps – 100 Ω 1 10.3125 -100 100 Transmitter Parameters Zod Reference output differential impedance dRom Termination output mismatch – 5 % 1 Vcm DC Common Mode Voltage 0 1.9 V – tRH/tFH Output rise and fall time 24 – ps 2 Vocm Output AC common mode voltage - 15 mV(RMS) 1, 7 – 15 mVRMS 1, 7 20 – dB 3 10 – dB 4 See note #5. dB 5, 12 dB 6, 12 – 1, 7 Ω 1 SDD22 Differential output return loss SCC22 Common mode output return loss 6 – Txjit Transmitter output jitter specifications See note # 7. Receiver Parameters Zid Reference input differential impedance 100 dRim Termination input mismatch – 5 % 1 Vicm Input AC common mode voltage – 25 mVRMS 1 20 – dB 3 10 – dB 4 dB 5, 12 SDD22 Differential output return loss See note #5. SCC11 Common mode input return loss 6 – dB 9, 10, 12 SCD11 Differential to common mode input conversion 12 – dB 9 Rxjit Receiver input jitter specifications See note # 11. – 1, 11 Doc. No. MV-S110852-U0 Rev. C Page 148 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications The load is 100Ω differential for these parameters, unless otherwise specified.  Note                        Defines the allow able reference clock difference and Rx baud rate tolerance relative to nominal. Tx baud rate is derived from multiplication of the reference clock (0 ppm delta). Defined from 50.0 MHz to 2.5 GHz. For 2.5 GHz -7.5 GHz RLOD>9-12log(Frequency/2.5)[dB] (Frequency defined in GHz). For 2.5 GHz -7.5 GHz RLID>9-12log(Frequency/2.5)[dB] (Frequency defined in GHz). Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components related to the transmitter/receiver breakout. Defined with a Bit Error Rate (BER) of 10^-12. Defined for compliant transmitter and interference tests according to IEEE 802.3 section 85.8.4.2 Receiver interference tolerance test. Defined with a cable interconnect 4.6 < WDPC < 4.8 that complies with interconnect parameters definition. Vidpp refers to the peak-to-peak. The output Tx jitter is defined w hen applying the effect of a single-pole, high-pass filter on the jitter. The high-pass filter 3 dB point is located at 4 MHz. As calculated using code in Appendix G Matlab Code For TWDP in SFF-8431 version 4.1 standard. The parameter value includes the module compliance boards. Jdcdtx is included as a part of Jdtx. Defined for a 1010 pattern and includes the entire range of emphasis. The jitter is defined with emphasis off. Transmitter output waveform follow s IEEE requirements as specified in IEEE Std 802.3-2008 section 72.7.1.11 Transmitter output waveform requirements. Defined from 10 MHz to 10 GHz. As defined in D.7 Voltage Modulation Amplitude in SFF-8431 version 4.1 standard. Defined between host device pins (with host device removed) and Host Compliance Board (HCB) SMAs. Defined from 10.0 MHz to 5 GHz. For 5 GHz -11.1 GHz HBRL>23.25-8.75log(Frequency/5)[dB] (Frequency defined in GHz). Defined for a 1010 pattern according to IEEE Std 802.3-2008 section 72.6.10.4.2 Training. The interconnect parameters are defined with compliant transmitter as defined in Transmitter Parameters section. This value is applied for Vamp (min). Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 149 88X5113 Datasheet - Public 7.6.11 10GBASE-KR Electrical Characteristics 7.6.11.1 10GBASE-KR Interface Transmitter and Receiver Characteristics Table 95: 10GBASE-KR Interface Transmitter and Receiver Characteristics Sy mbol Parameter BR Baud rate Bppm Baud rate tolerance UI Unit interval Min Max 10.3125 -100 100 96.969697 Units Notes Gbps – ppm 1 ps – Transmitter Parameters Vodis Transmitter disabled output differential noise level – 30 mV – Vodpp Output differential maximum peak-to-peak – 1200 mV – Vos Common-mode voltage limits 0 1.9 V – Tr/Tf Output differential transition time 24 47 ps 10 RLOD Return loss differential output 9 – dB 2, 3 RLOC Return loss common mode output 6 – dB 2, 3 Jdtx Output jitter - Deterministic, peak-to-peak – 0.15 UI – Jdcdtx Output duty cycle distortion – 0.035 UI 10, 11 Jrndtx Output jitter - Random – 0.15 UI 4 Jtpptx Output jitter - Total, peak-to-peak – 0.28 UI 4, 7 Receiver Parameters Vidpp Input differential voltage – 1200 mV 6 RLID Return loss differential input 9 – dB 2, 3 Js Input sinusoidal jitter – 0.15 UI 5 Jrndrx Input random jitter – 0.13 UI 4, 5 Jdcd Input duty cycle distortion – 0.035 UI 5 Vinamp Input broadband noise amplitude – 5.2 mVRMS 5, 9 mTC Test channel magnitude factor 1 – – 5, 8 Doc. No. MV-S110852-U0 Rev. C Page 150 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications SERDES Electrical Specifications The load is 100Ω differential for these parameters, unless otherwise specified.  Note  Defines the allow able reference clock difference and Rx baud rate tolerance relative to nominal. Tx baud rate is derived from multiplication of the reference clock (0 ppm delta). Defined from 50 MHz to 2.5 GHz. For 2.5 GHz -7.5 GHz RLOD>9-12log(Frequency/2.5)[dB] (Frequency defined in GHz). For 2.5 GHz -7.5 GHz RLOC>6-12log(Frequency/2.5)[dB] (Frequency defined in GHz). For 2.5 GHz -7.5 GHz RLID>9-12log(Frequency/2.5)[dB] (Frequency defined in GHz).           Relative to 100Ω differential and 25Ω common mode. Return loss includes contributions from on-chip circuitry, chip packaging, and off-chip optimized components related to the transmitter/receiver breakout. Defined with a Bit Error Rate (BER) of 10^-12. Defined for interference tests according IEEE 802.3 Annex 69A. For informative interconnect characteristics, refer to IEEE 802.3 Annex 69B. Vidpp refers to the peak-to-peak. The output Tx jitter is defined w hen applying the effect of a single-pole high-pass filter on the jitter. The high-pass filter 3 dB point is located at 4 MHz. mTC describes the insertion loss transmission magnitude relative to the maximal allowed fitted attenuation mask Amax over a predefined frequency range. Defined for test1. The value for test2 is 0.5. The receiver tolerates noise at an amplitude specified under receiver interference tolerance test1.The value for test2 is 12 mV. Jdcdtx is included as a part of Jdtx. Defined for a 1010 pattern and includes the entire range of emphasis. The transmitter output waveform follows IEEE requirements as specified in section 72.7.1.10 Transmitter output waveform requirements. Table 96: 10GBASE-KR Settings and Configuration Parameter Setting / C o n f i g u ra t i on Viddp The Viddp is the input differential voltage. The maximum single-ended voltage (common mode voltage and swing voltage) must not exceed 1.8V. Output Equalization The default as determined by the IEEE is 3 TAP FIR optimized per interconnect. 3 TAP FIR capabilities comply with the IEEE 802.3 standard section 72.7.1.10 Transmitter Output Waveform. For FIR control information, refer to the Functional Specifications. NOTE: For further information, refer to the Functional Specifications. Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 151 88X5113 Datasheet - Public 7.6.11.2 10GBASE-KR Interface Transmitter Output Voltage Limits and Definitions Figure 52: 10GBASE-KR Interface Transmitter Output Voltage Limits and Definitions Figure 53: 10GBASE-KR Transmitter Output Differential Amplitude and Eye Opening Doc. No. MV-S110852-U0 Rev. C Page 152 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Electrical Specifications Reference Clock 7.7 Reference Clock Table 97: Reference Clock (Over full range of values listed in the Recommended Operating Conditions unless otherwise specified) Sy mbol Parameter Co ndi t i o n 1 Min Ty p Max U ni t s -100 ppm 156.25 +100 ppm MHz – 0.5 0.8 ns 0.4 0.8 1.2 V FCLK Clock Frequency TR, TF Rise and Fall Times VPPD Peak-to-Peak Differential Voltage ZIND Input Impedance Differential 80 100 120 Ω ZINC Input Impedance Common Mode – 100K – Ω TDUTY Duty Cycle 45 50 55 % JRMS RMS Jitter – 0.17 0.5 ps 20 to 80% of VPPD Integrated from 12 KHz to 20 MHz2 1. CLKP/N must have an external AC-coupling capacitor. 2. Specification assumes that there are no spurs in the phase noise plot. Figure 54: Reference Clock Input Waveform Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 153 88X5113 Datasheet - Public 7.8 Output 25 MHz Clock Table 98: Output 25 MHz Clock (Over full range of values listed in the Recommended Operating Conditions unless otherwise specified) Symbol Parameter C ondi t i o n Min Ty p Max Units FCLK Clock Frequency – – 25 – MHz JRMS RMS Jitter – – 500 – ps, rms VDIFF Differential Amplitude Peak-to-Peak – 760 780 800 TR/TF Rise/Fall Time 2 pF, 50Ω termination/load 100 115 130 Doc. No. MV-S110852-U0 Rev. C Page 154 CONIFIDENTIAL Document Classification: Public mV ps Copyright © 2020 Marvell September 21, 2020 Electrical Specifications Latency 7.9 Latency The transmit latency is measured from the input of the PPM FIFO to the SERDES transmit pin. The receive latency is measured from the SERDES receive pin to the input of the PPM FIFO. The total latency in each direction is the sum of receive and transmit latency in the path. Table 99: Chip Pin-to-pin Latency (Rx + Tx) Pa rameter Lat e n c y Var i a t i on ( D y na m i c ) La t e n c y J i t t e r Min Ty p Max 1G PCS (1 lane) – – – 194.96 – 2.5G PCS (1 lane) – – – 74.95 – 5G PCS (1 lane) – – – 313.36 – 10G PCS - No FEC (1 lane) – – – 144.52 – 10G PCS - KR FEC (1 lane) – – – 434.07 – 25G PCS - No FEC (1 lane) 22 3.8 57 70 79 25G PCS - KR FEC (1 lane) 22 3.8 172 186 194 25G PCS - RS FEC (1 lane) 46 24.3 456 484.6 502 40G PCS - No FEC (4 lane) 33 17.6 167 180 200 40G PCS - KR FEC (4 lane) 32 17.6 455 468 487 50G PCS - No FEC (4 lane) 0 14.08 – 143.6 – 50G PCS - KR FEC (4 lane) 0 14.08 – 374.5 – 50G PCS - No FEC (2 lane) 0 14.08 – 139.89 – 50G PCS - KR FEC (2 lane) 0 14.08 – 372.02 – 50G PCS - RS FEC (2 lane) 0 14.08 – 360.85 – 100G PCS - No FEC (4 lane) 39 4.5 134 151 173 100G PCS - RS FEC (4 lane) 44 4.5 215 246 259 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 155 88X5113 Datasheet - Public 8 Mechanical Drawings 8.1 Package Mechanical Drawings Figure 55: 169-pin FCBGA 14 × 14 Package Mechanical Drawings — Top and Side View Doc. No. MV-S110852-U0 Rev. C Page 156 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Mechanical Drawings Package Mechanical Drawings Figure 56: 169-pin FCBGA 14 × 14 Package Mechanical Drawings — Bottom View Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 157 88X5113 Datasheet - Public Table 100: 169-pin FCBGA (14 mm × 14 mm) Package Dimensions D i me ns i o n i n m m Sy m b o l Min N om Max Total Thickness A 2.770 2.890 3.010 Stand Off A1 0.400 -- 0.600 Substrate Thickness A2 Thickness from Substrate Surface to Die Backside A3 Body Size D 14.000 BSC E 14.000 BSC 0.940 REF --- REF Ball Diameter 0.600 Ball Width b Ball Pitch e 1.000 BSC Ball Count n 169 Edge Ball Center to Center D1 12.000 BSC E1 12.000 BSC D2 --- E2 --- Package Edge Tolerance aaa 0.100 Substrate Parallelism bbb --- Top Parallelism ccc 0.200 Coplanarity ddd 0.150 Ball Offset eee 0.250 Ball Offset fff 0.100 Expose Die Size Doc. No. MV-S110852-U0 Rev. C Page 158 CONIFIDENTIAL Document Classification: Public 0.500 --- 0.700 Copyright © 2020 Marvell September 21, 2020 Order Information Ordering Part Numbers and Package Markings 9 Order Information 9.1 Ordering Part Numbers and Package Markings Figure 57 shows the ordering part numbering scheme for the 88X5113 device. Figure 57: Sample Part Number 88X5113 – xx – xxx 4 x000 - T123 Custom (optional) Part Number 88X5113 C us t o m C ode Custom Code Temperature Range C = Commercial I = Industrial Package Code BVW = 169-pin FCBGA Environmental 4 = Green+ Lead-free bumps Table 101: 88X5113 Part Order Option Pa ckage Type P a rt O rde r N u mbe r 88X5113 169-pin FCBGA 14 × 14 - Commercial 88X5113-XX-BVW4C000 88X5113 169-pin FCBGA 14 × 14 - Industrial 88X5113-XX-BVW4I000 Copyright © 2020 Marvell September 21, 2020 CONIFIDENTIAL Document Classification: Public Doc. No. MV-S110852-U0 Rev. C Page 159 88X5113 Datasheet - Public 9.1.1 Marking Example Figure 58 and Figure 59 are examples of the package marking and pin 1 locations for the 88X5113 169-pin FCBGA 14 × 14 commercial and industrial Green package. Figure 58: 88X5113 169-pin FCBGA Commercial Green Package Marking and Pin 1 Location Logo 88X5113-xxx4 Country of origin Part number, package code, environmental code Environmental Code - 4 = Green + Lead-free bumps Lot Number YYWW xx@ Country Date code, custom code, assembly plant code YYWW (Contained in the mold ID or marked as the last line on the package.) xx = Date code = Custom code @ = Assembly location code Pin 1 location Note: The above example is not drawn to scale. Location of markings is approximate. Figure 59: 88X5113 169-pin FCBGA Industrial Green Package Marking and Pin 1 Location Logo 88X5113-xxx4 Country of origin (Contained in the mold ID or marked as the last line on the package.) Lot Number YYWW xx@ Country Part number, package code, environmental code Environmental Code - 4 = Green + Lead-free bumps Date code, custom code, assembly plant code I YYWW xx = Date code = Custom code @ = Assembly location code Industrial Pin 1 location Note: The above example is not drawn to scale. Location of markings is approximate. Doc. No. MV-S110852-U0 Rev. C Page 160 CONIFIDENTIAL Document Classification: Public Copyright © 2020 Marvell September 21, 2020 Revision History A Table 102: Revision History Revision History Revision Date Section Detail Rev. C September 21, 2020 All applicable • Corporate rebranding and template update • New Marvell logos added to all figures with Marvell logo marking Rev. B July 30, 2018 All applicable Initial release Copyright © 2020 Marvell September 21, 2020 Doc. No. MV-S110852-U0 Rev. C Document Classification: Public Page 161 88X5113 Datasheet - Public Doc. No. MV-S110852-U0 Rev. C Page 162 Copyright © 2020 Marvell Document Classification: Public September 21, 2020 Marvell first revolutionized the digital storage industry by moving information at speeds never thought possible. Today, that same breakthrough innovation remains at the heart of the company's storage, networking and connectivity solutions. With leading intellectual property and deep system-level knowledge, Marvell semiconductor solutions continue to transform the enterprise, cloud, automotive, industrial, and consumer markets. For more information, visit www.marvell.com. © 2020 Marvell. All rights reserved. The MARVELL mark and M logo are registered and/or common law trademarks of Marvell and/or its Affiliates in the US and/or other countries. This document may also contain other registered or common law trademarks of Marvell and/or its Affiliates. Doc. No. MV-S110852-U0 Rev. C Revised: September 21, 2020
88X5113-A1-BVW4C000 价格&库存

很抱歉,暂时无法提供与“88X5113-A1-BVW4C000”相匹配的价格&库存,您可以联系我们找货

免费人工找货
88X5113-A1-BVW4C000
    •  国内价格
    • 152+402.73200

    库存:1520