0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
WJLXT6155LE.B5-866255

WJLXT6155LE.B5-866255

  • 厂商:

    MARVELL(迈威尔)

  • 封装:

    LQFP64

  • 描述:

    IC TXRX SONET/SDH 64LQFP

  • 数据手册
  • 价格&库存
WJLXT6155LE.B5-866255 数据手册
Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Datasheet The Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver (LXT6155 Transceiver) is a high speed fully integrated transceiver designed for 155 Mbps SDH/SONET/ATM transmission system applications. The LXT6155 Transceiver provides a LVPECL interface for fiber optics modules, and a CMI interface for coax cable drive. These circuits are implemented using Cortina Systems, Inc.’s proven low power 3.3V CMOS analog and digital circuits. The transmitter incorporates a parallel-to-serial converter, a frequency multiplier PLL, CMI line encoders, and line interfaces for both coax cable and optical fiber. The receiver incorporates an adaptive equalizer, a clock recovery PLL, Loss of Signal (LOS) detector, CMI and NRZ decoders, a serial-to-parallel converter, and an SDH/SONET frame byte detector/aligner. At the system interface, the LXT6155 Transceiver offers both parallel 8-bit and serial differential interfaces. The LXT6155 Transceiver also operates in either Hardware stand-alone mode or Software mode. Software mode is controlled by a serial microprocessor (µP) to program formats and operating/ test modes. Product Features  Complies with:  — Bellcore* SONET GR-253  — ITU-T G.703/813/958 STM1 Two line interface formats: — Fiber LVPECL NRZ         — Coax CMI Transmit synthesizer PLL Receive clock recovery PLL Adaptive CMI equalizer Analog circuitry for transformer drive Programmable LOS function CMI encoder and decoder Serial/Parallel and Parallel/Serial conversion Byte alignment for SDH/SONET frames Two modes of operation: — Microprocessor controlled; software mode     — Stand-alone; hardware mode No external crystal required. A 19.44 MHz crystal is optional Low power consumption (less than 760 mW typical) Operates from a single 3.3 V supply 64 pin LQFP package Applications    OC3/STM1 SDH/SONET Cross Connects OC3/STM1 SDH/SONET Add/Drop Mux OC3/STM1 Transmission Systems    OC3/STM1 Short Haul Serial Links OC3/STM1 ATM/WAN Transmission Systems OC3/STM1 ATM/WAN Access Systems LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Legal Disclaimer INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH CORTINA SYSTEMS® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN CORTINA'S TERMS AND CONDITIONS OF SALE OF SUCH PRODUCTS, CORTINA ASSUMES NO LIABILITY WHATSOEVER, AND CORTINA DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF CORTINA PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Cortina products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. CORTINA SYSTEMS®, CORTINA™, and the Cortina Earth Logo are trademarks or registered trademarks of Cortina Systems, Inc. or its subsidiaries in the US and other countries. Any other product and company names are the trademarks of their respective owners. Copyright © 2001-2007 Cortina Systems, Inc. All rights reserved. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 2 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Contents Contents 1.0 LXT6155 Transceiver Block Diagram...........................................................................................8 2.0 Pin Assignments and Signal Descriptions.................................................................................. 9 3.0 Functional Description................................................................................................................ 14 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4.0 Transmitter.......................................................................................................................... 14 3.1.1 Transmitted Signal ................................................................................................. 15 3.1.1.1 Fiber Based G.957/GR-253 Transmission Systems .............................. 15 3.1.2 Coax Based G.703/GR-253 Transmission Systems.............................................. 15 3.1.2.1 CMI Encoding ........................................................................................ 15 3.1.3 Tx Clock Monitoring ............................................................................................... 16 Receiver.............................................................................................................................. 16 3.2.1 Analog Front End and Timing Recovery ................................................................ 16 3.2.1.1 CMI Mode ..............................................................................................16 3.2.1.2 NRZ Mode..............................................................................................16 3.2.2 Receive Frame Detect and Byte Alignment ........................................................... 17 3.2.2.1 Loss of Signal (LOS).............................................................................. 18 3.2.2.2 Coax Interface........................................................................................ 18 3.2.2.3 Fiber Interface........................................................................................ 18 Clocks ................................................................................................................................. 19 3.3.1 Parallel Mode ......................................................................................................... 19 3.3.1.1 Transmit Parallel Input Clock (TPICLK) ................................................. 19 3.3.1.2 Receive Parallel Output Clock (RPOCLK) ............................................. 19 3.3.2 Serial Mode............................................................................................................ 19 3.3.2.1 Transmit Serial Input Clock (TSICLKP/TSICLKN) ................................. 19 3.3.2.2 Receive Serial Output Clock (RSOCLKP/RSOCLKN) ........................... 19 3.3.3 Crystal Reference Clock (XTALIN/XTALOUT)....................................................... 20 Jitter .................................................................................................................................... 20 3.4.1 Jitter Tolerance ...................................................................................................... 20 3.4.2 Jitter Generation (Intrinsic Jitter)............................................................................ 20 3.4.3 Jitter Transfer......................................................................................................... 20 Operational Modes ............................................................................................................. 20 3.5.1 Hardware Mode ..................................................................................................... 21 3.5.1.1 PLL Clock Reference (CIS pin) .............................................................. 21 3.5.1.2 Loopback Test (RLIS and LLIS pins) ..................................................... 22 3.5.1.3 Line Interface Selection (MODE Pin) ..................................................... 22 3.5.1.4 Parallel/Serial Mode Selection (SP pin) ................................................. 22 3.5.1.5 Tx Amplitude Trim .................................................................................. 23 3.5.2 Software Mode....................................................................................................... 23 3.5.2.1 Serial Input Clock (SCLK) ...................................................................... 23 3.5.2.2 Chip Select Input (CS) ........................................................................... 23 3.5.2.3 Serial Input Word (SDI) .......................................................................... 23 3.5.2.4 Serial Output Word (SDO) ..................................................................... 23 Serial System Interface....................................................................................................... 25 Parallel System Interface .................................................................................................... 25 Loopback Modes ................................................................................................................ 26 3.8.1 Local Loopback...................................................................................................... 26 3.8.2 Remote Loopback.................................................................................................. 26 Register Definitions..................................................................................................................... 27 Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 3 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 5.0 Figures Application Information .............................................................................................................. 34 5.1 5.2 Fiber Optic Module Interface ..............................................................................................34 Coax Interface .................................................................................................................... 35 6.0 Test Specifications ...................................................................................................................... 38 7.0 Mechanical Specifications .......................................................................................................... 50 Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LXT6155 Transceiver Block Diagram .............................................................................................. 8 LXT6155 Transceiver Pin Assignments .......................................................................................... 9 LXT6155 Transceiver System Interface ........................................................................................ 14 Example of CMI Encoded Binary Signal........................................................................................ 15 Receive Frame Synchronization and Frame Pulse Position ......................................................... 17 Framing State ................................................................................................................................ 18 Criteria for LOS Output.................................................................................................................. 18 Hardware Mode ............................................................................................................................. 21 Software Mode .............................................................................................................................. 24 Serial Data Output Word Structure (Read Cycle: R/W=High) ....................................................... 24 Serial Data Input Word Structure (Write Cycle: R/W = Low) ......................................................... 24 Serial Interface .............................................................................................................................. 25 Parallel Interface............................................................................................................................ 25 Local Loopback ............................................................................................................................. 26 Remote Loopback ......................................................................................................................... 26 3.3 V LVPECL to 3.3 V LVPECL Interface .................................................................................... 35 75 Ohm Coax Cable Interface ....................................................................................................... 36 Transmit Parallel Input Data Timing ..............................................................................................39 Transmit Serial Input Data Timing ................................................................................................. 40 Receive Serial Output Data Timing ............................................................................................... 41 Receive Parallel Output Data Timing ............................................................................................ 42 Microprocessor Input Timing Diagram........................................................................................... 44 Microprocessor Output Timing Diagram ........................................................................................ 44 CMI Encoded Zero per G.703 and STS-3 ..................................................................................... 45 CMI Encoded One per G.703 and STS-3 ...................................................................................... 46 Jitter Tolerance (template Values from Table 34) ......................................................................... 47 Jitter Generation Measurement Filter Characteristics ................................................................... 48 Typical Coax Jitter Transfer...........................................................................................................48 Typical Fiber Jitter Transfer ...........................................................................................................49 LXT6155 Transceiver LE Package Specification .......................................................................... 50 Tables 1 2 3 4 5 6 7 Pin Descriptions............................................................................................................................. 10 Standards Compliance .................................................................................................................. 15 Reference Clock Settings .............................................................................................................. 21 Loopback Selection ....................................................................................................................... 22 MODE Line Interface Settings ....................................................................................................... 22 Device Address/Control Byte......................................................................................................... 27 LXT6155 Transceiver Register Map (A) ............................................................................... 27 Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 4 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 Tables Primary Control Register Settings, Register #0 (Address A=0000)...................................... 28 Tx Control, Register #1 (Address A=0001) .......................................................................... 28 Transmit PLL1, Register #2 (Address A=0010).................................................................... 29 Transmit PLL2, Register #3 (Address A=0011).................................................................... 29 Equalizer Load, Register #4 (Address A=0100) ................................................................... 29 Equalizer & AGC, Register #5 (Address A=0101)................................................................ 29 Matching Filter 2, Register #6 (Address A=0110) ................................................................ 30 Slicer, Register #7 (Address A=0111) .................................................................................. 30 RxPLL 1, Register #8 (Address A=1000) ............................................................................. 30 Rx PLL 2, Register #9 (Address A=1001) ............................................................................ 31 Test, Register #10 (Address A=1010) .................................................................................. 31 Register, Bias and Fuse Controls, Register #11 (Address A=1011) .................................... 31 Rx Digital 1, Register #12 (Address A=1100)....................................................................... 32 Rx Digital 2, Register #13 (Address A=11001)..................................................................... 32 Status Control, Register #14 (Address A=1110) .................................................................. 33 Read-Only Register #15 (Address A=1111)......................................................................... 33 Transformer Specifications............................................................................................................ 36 Crystal Specifications .................................................................................................................... 37 Absolute Maximum Ratings ...........................................................................................................38 Recommended Operating Conditions ........................................................................................... 38 DC Electrical Characteristics (Vcc = 3.0 V to 3.6 V; TA = -40 °C to 85 °C)................................... 38 Transmit Timing Characteristics .................................................................................................... 39 Transmit Analog Characteristics.................................................................................................... 40 Receive Timing Characteristics ..................................................................................................... 41 Receive Analog Characteristics..................................................................................................... 42 Serial Control Timing ..................................................................................................................... 43 Jitter Tolerance Template (in UIpp) ............................................................................................... 46 Jitter Generation ............................................................................................................................ 47 Jitter Transfer ................................................................................................................................ 47 LXT6155 Transceiver LE Package Specification (64-Pin Low-Profile Quad Flat Pack) ................ 50 Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 5 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Revision History Revision History Revision 7.0 Revision Date: 14 February 2007 First release of this document from Cortina Systems, Inc. Revision 006 Revision Date: 01 February 2006 • Table 2, Standards Compliance, on page 15 — changed line rate from 155 Mbps to 155.52 Mbps. • Figure 5, Receive Frame Synchronization and Frame Pulse Position, on page 17 — Added Receive Output Frame Pulse (ROFP) heading to the drawing • Section 3.2.2.1, Loss of Signal (LOS), on page 18 — New last paragraph in this section • Section 3.5.1.1.2, XTAL, on page 22 — Added mention of RX LOS state machine. • Table 4, Loopback Selection, on page 22 — Updated pin headings to specify ADDR0 and ADDR1. • Figure 17, 75 Ohm Coax Cable Interface, on page 36 — Figure was incorrect. • Section 5.2, Coax Interface, on page 35 — Added a caution to ensure to decouple the system side center tap of the transformer. • Table 27, Recommended Operating Conditions, on page 38 — “Changed Ambient Operating Temperature” to “Case Operating Temperature”. • Table 28, DC Electrical Characteristics (Vcc = 3.0 V to 3.6 V; TA = -40 °C to 85 °C), on page 38 — Added “Differential input voltage (LVPECL)” parameter. Also, added a note to specify that the High and Low Level Input Voltage specs are valid for XTALIN when using an external clock. Revision 005 Revision Date: 01 January 2004 • Table 30, Transmit Analog Characteristics, on page 40 — Updated specifications for jitter transfer and jitter tolerance based on Bench DV data, and corrected figure reference for jitter transfer. • Figure 21, Receive Parallel Output Data Timing, on page 42 — Revised diagram. • Table 32, Receive Analog Characteristics, on page 42 — Updated specifications for jitter transfer and jitter tolerance based on Bench DV data. • Table 35, Jitter Generation, on page 47 — Updated specifications based on Bench DV data. • Table 36, Jitter Transfer, on page 47 — Updated specifications based on Bench DV data. Revision 004 Revision Date: 01 January 2003 Updated Figure 18 Revision 003 Revision Date: 01 August 2002 Updated Figure 16, note 1: R3, R4, R7, R8 = 82.5 Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 6 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Revision History Revision 002 Revision Date: 01 July 2002 Formatting change Revision 001 Revision Date: 01 January 2001 Initial version Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 7 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 1.0 1.0 LXT6155 Transceiver Block Diagram LXT6155 Transceiver Block Diagram Figure 1 shows the block diagram for the LXT6155 Transceiver. Figure 1 LXT6155 Transceiver Block Diagram P Control (CS, SCLK, SDI, SDO), Hardware (MODE0, SP, CIS, RIFE) TTIP1 4 Control Logic TRING1 TTIP0 Optional 19.4MHz crystal RLIS, LLIS 2 HWSEL TXISH 2 Control Registers 8 CMI Encode TRING0 XTALOUT XTALIN RTIP RRING Frequency Doubler Adaptive Equalizer TPID Parallel/ Serial 2 Local Loopback TPOS, TNEG Data Recovery Remote Loopback Divide 8 RPOCLK 2 Equalizer Control RXISH TPICLK x 8 Synthesizer PLL Clock Recovery PLL CMI/NRZ Decode Loss of Signal (LOS) TSICLKP, TSICLKN Serial/ Parallel Frame Detect & Byte Aligner 8 2 RSOCLKP, RSOCLKN RPOD RPOS, RNEG ROFP/CMIERR LOS LOCK Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 8 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 2.0 Pin Assignments and Signal Descriptions TTIP1 TRING1 TTIP0 TRING0 TGND WELL SUB HWSEL ADDR1/LLIS ADDR0/RLIS RAGND RTIP RRING RAGND RXISH 61 60 59 58 57 56 55 54 53 52 51 50 49 3 31 32 RPOD3 RPOD2 16 30 TPID7 RPOD4 15 29 SDO/RIFE RPOD5 14 28 SDI/CIS RPOD6 13 27 SCLK/SP RPOD7 12 26 CS/MODE RPOCLK 11 25 TDGND VCC 10 24 TNEG (top view) TPICLK 9 23 TPOS LXT6155LE TPID0 8 22 TSICLKN TPID1 7 21 TSICLKP TPID2 6 20 TDVCC TPID3 5 19 TAVCC TPID4 4 18 TXISH TPID5 TAGND 2 17 XTALOUT 1 TPID6 XTALIN 62 LXT6155 Transceiver Pin Assignments TVCC Figure 2 63 Pin Assignments and Signal Descriptions 64 2.0 Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver 48 VBIAS 47 ATST 46 RAVCC 45 LOS 44 LOCK 43 ROFP/CMIERR 42 RDGND 41 RDVCC 40 RPOS 39 RNEG 38 PVCC 37 RSOCLKN 36 RSOCLKP 35 GND 34 RPOD0 33 RPOD1 Page 9 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Table 1 2.0 Pin Assignments and Signal Descriptions Pin Descriptions (Sheet 1 of 4) I/O1 Type2 Pin # Pin Name 1 XTALIN 2 XTALOUT 3 TAGND S 4 TXISH AI/O 5 TAVCC S Transmit Analog Power Supply. 6 TDVCC S Transmit Digital Power Supply. 7 TSICLKP 8 TSICLKN 9 TPOS 10 TNEG 11 TDGND 12 13 CS/MODE SCLK/SP Description Crystal Input/Output. These pins are connected to an external 19.44 MHz crystal. Alternately, a stable external clock signal may be connected to XTALIN with XTALOUT left open. XTALIN should be connected to TAGND and XTALOUT should be left open if the transmit input clock is used as a clock reference AI/O Transmit Analog Ground. Transmit PLL Loop Filter Pin. Connecting a capacitor to TAGND from this pin controls the Tx PLL transfer function. This pin requires a 68 nF cap to TAGND. DI LVPECL Transmit Serial Input Clock, positive and negative. Differential Transmit clocks at 155.52 MHz. These pins are disabled when parallel mode is selected. DI LVPECL Transmit Serial Input Data, positive and negative. Differential input data from an overhead terminator at 155.52 Mbps, clocked in by TSICLK. These pins are disabled when parallel mode is selected. S DI DI Transmit Digital Ground. TTL TTL Chip Select Input, software mode (HWSEL = High). Register transactions through the P interface are initiated by the falling edge of this signal. Line Interface Mode, hardware mode (HWSEL = Low). Sets line interface mode to LVPECL (MODE = Low) or CMI (MODE = High). Serial Clock Input, software mode (HWSEL = High). Serial Microprocessor uses this pin to clock in/out data. SCLK can be from 0 to 4.096 MHz. Serial/Parallel Select, hardware mode (HWSEL = Low). When SP = Low, serial systems interface is used. When SP = High, 8bit parallel system interface is used. Serial Input Data, software mode (HWSEL = High). The serial data is applied to this pin when the LXT6155 Transceiver operates in software mode. SDI is sampled on the rising edge of SCLK. 14 SDI/CIS DI TTL Clock Input Select, hardware mode (HWSEL = Low). CIS sets the reference clock for centering the Rx PLL. If CIS = Low, then the LXT6155 Transceiver uses the transmit input clock as the reference. If CIS = High, then the LXT6155 Transceiver uses the crystal clock input (XTALIN) as the reference. 1. DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog Input/Output; S=Supply. 2. TTL = Transistor-to-Transistor Logic (5 V tolerant); LVPECL = Low-Voltage positive ECL. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 10 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Table 1 Pin # 2.0 Pin Assignments and Signal Descriptions Pin Descriptions (Sheet 2 of 4) Pin Name I/O1 Type2 Description Serial Output Data, software mode (HWSEL = High). The serial data from the on-chip register is output on this pin in software mode. Data output is valid on the rising edge of SCLK. This pin goes to a high impedance state when the serial port is being written to or when CS is High. 15 16 17 18 19 20 SDO/RIFE TPID7/TXTRIM3 TPID6/TXTRIM2 TPID5/TXTRIM1 TPID4/TXTRIM0 TPID3/TXTRIMENA DI/O DI TTL TTL Receive Input Frame Enabler, hardware mode (HWSEL = Low). The frame detection option is available only in parallel mode. If RIFE = Low, then the LXT6155 Transceiver disables the frame detection, and byte alignment. If RIFE = High, then the LXT6155 Transceiver enables the frame detection, and outputs RPOD bytes aligned to the SONET/SDH framer. This feature, if used, must be enabled prior to applying data to Rtip/Rring. Transmit Parallel Input Data. Transmit data from an Overhead Terminator at parallel speed 19.44 MHz, clocked in by TPICLK. TPID7 is the most significant bit, and is the first bit to be sent. These pins should be grounded or not connected when the LXT6155 Transceiver is used in serial mode. Transmit Trim Controls, in serial, hardware, coax mode only. These pins trim the amplitude of the line driver output from (nom 21%) to (nom +24%) in 3% steps. This feature is only enabled when pin #20 (TXTRIMENA) is High. DI TTL Transmit Parallel Input Data. Transmit data from an Overhead Terminator at parallel speed 19.44 MHz, clocked in by TPICLK. TPID7 is the most significant bit, and is the first bit to be sent. These pins should be grounded or not connected when the LXT6155 Transceiver is used in serial mode. Transmit Trim Enable, in serial, hardware, coax mode only. This pin enables the trimming of the line driver output by pins 16-19 when high. 21 22 23 TPID2 TPID1 TPID0 DI TTL Transmit Parallel Input Data. Transmit data from an Overhead Terminator at parallel speed 19.44 MHz, clocked in by TPICLK. TPID7 is the most significant bit, and is the first bit to be sent. These pins should be grounded or not connected when the LXT6155 Transceiver is used in serial mode. 24 TPICLK DI TTL Transmit Parallel Input Clock. Parallel transmit clock at 19.44 MHz. This pin is disabled when serial mode is selected and should be grounded or not connected. 25 VCC S 26 RPOCLK DO TTL Receive Parallel Output Clock. Parallel receive clock as recovered from received data. The clock is nominally 19.44 MHz, synchronized with RPOD. 27 28 29 30 31 32 33 34 RPOD7 RPOD6 RPOD5 RPOD4 RPOD3 RPOD2 RPOD1 RPOD0 DO TTL Receive Parallel Output Data. RPOD output aligned 8-bit bytes at RPOCLK clock rate. These pins are to be left open when serial mode is selected. RPOD7 is the most significant bit, and is the first to arrive. 35 GND S Power Supply. Ground. 1. DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog Input/Output; S=Supply. 2. TTL = Transistor-to-Transistor Logic (5 V tolerant); LVPECL = Low-Voltage positive ECL. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 11 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Table 1 Pin Descriptions (Sheet 3 of 4) Pin # Pin Name 36 RSOCLKP 37 RSOCLKN 38 PVCC 39 RNEG 40 2.0 Pin Assignments and Signal Descriptions RPOS I/O1 Type2 Description DO LVPECL Receive Serial Output Clock. Serial receive clock as recovered from received data. The clock is nominally 155.52 MHz, synchronized with output serial data RPOS and RNEG. S DO PECL Buffers Power Supply. LVPECL Receive Serial Output Data, positive and negative. These two pins provide recovered data synchronized to receive serial output clocks RSOCLKP and RSOCLKN. These pins are tristated and should be left open when parallel mode is selected. 41 RDVCC S Receive Digital Power Supply. 42 RDGND S Receive Digital Ground. 43 ROFP/ CMIERR DO TTL Receive Output Frame Pulse. In hardware mode (HWSEL = Low), this pin is asserted (High) on the last A2 byte in the (A1.....A1, A2.....A2) sequence in the RPOD traffic. A1=1111,0110 and A2=0010,1000 in binary. In software mode (HWSEL = High), this position is programmable. During coax operation, when frame detection is disabled (RIFE = 0 in HW/Reg #12, bit3 = 0), or in serial mode, this pin indicates CMI line code errors. These pulses are 50 ns wide (active high). One or more errors in 16 consecutive bits will causes a single pulse. 44 LOCK DO TTL Receive Output PLL Lock. A High indicates receive PLL has locked to incoming data. A Low indicates receive PLL is not locked. 45 LOS DO TTL Loss of Signal. An alarm output signal (high) indicating incoming signal voltage is weak or incoming data does not contain enough transitions. In software mode (HWSEL = 1) this pin can be configured to combine LOS and LOCK alarms. 46 RAVCC S Receive Analog Power Supply. 47 ATST - Analog Test. For factory test purposes only; do not connect. 48 VBIAS AI Analog Bias Input Voltage. This pin requires a 15 K (1%) pull-down resistor to RAGND. 49 RXISH A0 Analog Rx PLL External Cap. Connecting a capacitor to RAGND from this pin controls the Rx PLL transfer function. This pin requires a 330 nF cap to RAGND. 50 RAGND S 51 RRING 52 RTIP 53 RAGND 54 ADDR0/RLIS AI Receive Analog Ground. Analog S DI Receive Input Data, positive (RTIP) and negative (RRING). Accepts incoming signals (LVPECL or CMI) from the line interface. Receive Analog Ground. TTL Address 0, software mode (HWSEL = High). This pin together with ADDR1 sets the chip select address. Up to 4 LXT6155 Transceiver chips can be addressed by the P interface. Remote Loopback Input Select, hardware mode (HWSEL = Low). Together with LLIS sets the LXT6155 Transceiver in a loopback test mode. See Table 4 1. DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog Input/Output; S=Supply. 2. TTL = Transistor-to-Transistor Logic (5 V tolerant); LVPECL = Low-Voltage positive ECL. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 12 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Table 1 Pin # 55 2.0 Pin Assignments and Signal Descriptions Pin Descriptions (Sheet 4 of 4) Pin Name ADDR1/LLIS I/O1 DI Type2 TTL Address 1, software mode (HWSEL = High). This pin together with ADDR0 sets the chip select address. Up to 4 LXT6155 Transceiver chips can be addressed by the P interface. Local Loopback Input Select, hardware mode (HWSEL = Low). Together with RLIS sets the LXT6155 Transceiver in remote loopback mode. See Table 4 Hardware/Software Mode Select. When HWSEL = High, the LXT6155 Transceiver enters software (host) mode, and is ready to communicate with a serial microprocessor. When HWSEL = Low, the LXT6155 Transceiver operates in hardware standalone mode (without a serial P). 56 HWSEL DI 57 SUB S Reserved. Must be connected to GND. 58 WELL S Reserved. Must be connected to VCC. 59 TAGND S Transmit Analog Ground. 60 TRING0 61 TTIP0 62 TRING1 63 TTIP1 64 TAVCC TTL Description AO Transmit Output Data, positive (TTIP0) and negative (TRING0). Differential CMI driver outputs for coax interface. DO Transmit Output Data, positive (TTIP1) and negative (TRING1). Differential LVPECL NRZ driver outputs for a fiber optic transceiver. S Transmit Analog Power Supply. 1. DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog Input/Output; S=Supply. 2. TTL = Transistor-to-Transistor Logic (5 V tolerant); LVPECL = Low-Voltage positive ECL. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 13 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 3.0 3.0 Functional Description Functional Description The LXT6155 Transceiver is a front-end transceiver designed for 155 Mbps OC3/STM1/ ATM transmission applications. Table 2 lists the standards with which the LXT6155 Transceiver is compliant. The LXT6155 Transceiver interfaces to either a fiber transceiver or a coax cable on the line side, and on the system side, to an SDH/SONET Overhead Terminator or an ATM UNI. As shown in Figure 3, the LXT6155 Transceiver can function in Hardware standalone mode, or in Software mode controlled through an industry standard Motorola compatible 4-wire serial microprocessor interface. Figure 3 LXT6155 Transceiver System Interface 2 Fiber Optic Modules or Coax Transformers System Interface LXT6155 Line Interface 2 1 Tx 2 Rx 4  Processor (optional) SONET/SDH Overhead Terminator ATM UNI 1 Data/Clock (8-bit parallel or serial mode) 2 Data/Clock (8-bit parallel or serial mode) Receive Output Frame Pulse (ROFP) Receive Ouput PLL Lock (LOCK) Loss of Signal (LOS) The LXT6155 Transceiver can be set to operate in either CMI mode for the 75 coax interface or NRZ mode for the optical transceiver interface. The operating mode can be set in either hardware mode by using the MODE pin, or software mode by using Primary Control Register, bit 0. 3.1 Transmitter In serial mode, the LXT6155 Transceiver accepts both data (TPOS, TNEG) and clock signals (TSICLKP, TSICLKN). Serial clock signals are required for the LXT6155 Transceiver to run internal logic, reshape the line transmit pulses and generate the lowjitter clocks for Tx data generation. In parallel mode, the LXT6155 Transceiver accepts data TPID and clock TPICLK. TPICLK is internally multiplied by 8 to yield the 155.52 MHz clock for Tx data generation. Both serial and parallel clocks (TSICLKP/TSICLKN and TPICLK) must conform to the SONET/SDH standard frequency accuracy requirements. Depending on whether the selected media interface is coax or fiber, the data is CMI or NRZ encoded respectively, and passed to the appropriate line drivers. The LXT6155 Transceiver line drivers are high-speed buffers that meet the CMI templates and industry standard LVPECL signal requirements. The CMI output pins are TTIP0 and TRING0, and the NRZ LVPECL pins, TTIP1 and TRING1. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 14 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 3.1.1 3.1 Transmitter Transmitted Signal Transmitted signals conform to the standard templates listed in Table 2. Table 2 Standards Compliance SDH/SONET (Fiber) SDH/SONET (Coax) Item Line Rate (Mbps) Line Interface Line Code Signal Templates Jitter 3.1.1.1 STM1 OC3 STM1 STS-3 155.52 155.52 155.52 155.52 50  LVPECL 50  LVPECL 75  coax 75  coax NRZ NRZ CMI CMI G.957 STM1 Eye OC3 OC3 Eye G.703 CMI Template. CMI Eye STSX-3 CMI Template. CMI Eye G.958 G.825 GR-253 G.813 G.825 GR-253 Fiber Based G.957/GR-253 Transmission Systems The LXT6155 Transceiver provides 3.3 V LVPECL compatible signals for interfacing to a fiber optic transceiver. Please refer to Application Information for interface schematics. 3.1.2 Coax Based G.703/GR-253 Transmission Systems The LXT6155 Transceiver encodes and decodes CMI signals that are transmitted onto a 75  coax cable compliant with STM1/STS-3 CMI templates. Please refer to the CMI templates shown in Figure 24 on page 45 and Figure 25 on page 46. 3.1.2.1 CMI Encoding Coded Mark Inversion (CMI) is an encoding scheme adopted by SONET STS-3 and SDH STM1 standards. CMI encoding guarantees at least one transition per bit, thereby enhancing the clock recovery process. CMI encodes a “0” with a midpoint positive transition, and a “1” as Low or High, in opposite polarity to the previous encoded “1”. Refer to Figure 4, Figure 24 on page 45 and Figure 25 on page 46 for encoding and pulse template information. Figure 4 Example of CMI Encoded Binary Signal Binary 0 0 1 0 1 1 1 CMI T/2 T/2 T Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 15 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 3.1.3 3.2 Receiver Tx Clock Monitoring The LXT6155 Transceiver provides transmit clock monitoring for both serial and parallel operating modes. When using the crystal clock as a reference, the LXT6155 Transceiver monitors the TSICLKP/TSICLKN or the TPICLK input(s) for transitions. If no transition is seen within 200 ns, the tx_clk_alarm flag will be set (reg #15) and the transmitter outputs ttip1/tring1 or ttip0/tring0 will stop sending data to the line. This condition will remain until the LXT6155 Transceiver detects clock transitions at the transmitter input(s) TSICLKP/ TSICLKN or TPICLK. Transmit clock monitoring can be disabled in software mode only. In remote loopback, transmit clock monitoring is disabled in SW and HW mode. In SW mode, when using transmit clocks as the receive PLL reference, the user must disable transmit clock monitoring by setting reg #1 bit low. 3.2 Receiver 3.2.1 Analog Front End and Timing Recovery 3.2.1.1 CMI Mode Received data on RTIP/RRING goes through an adaptive equalizer. An adaptive f equalizer and adaptive Automatic Gain Control (AGC) compensate the frequency-andcable length dependent loss in data signal, and reshapes the signal to the optimal waveform. A Phase Locked Loop (PLL) then performs clock recovery operation, comparing the reshaped data phase against the receive output clock phase. The receive PLL requires an external reference (e.g. transmit input clock or XTAL clock) to start up the clock recovery process. This clock can be derived from XTALIN, TPICLK or TSICLK (8). The recovered clock is used to retime the CMI signals, and to decode CMI to NRZ. Coding errors are detected and flagged via the CMIERR pin in HW mode with the frame detect disabled or in serial mode. In software mode (HWSEL = High) CMI coding errors are indicated via the P interface interrupt register: Reg #15, mode 05. 3.2.1.2 NRZ Mode The on chip adaptive equalizer is bypassed. Data goes straight to the clock recovery phase locked loop. The PLL then performs clock recovery operation, comparing the data phase against the clock phase. This clock can be derived from XTALIN, TPICLK or TSICLK (8). The receive PLL requires an external reference (for example, a transmit input clock or XTAL clock) to start up the clock recovery process. The recovered clock is used to retime the data signals. When the recovered clock is within 488 ppm of the reference clock, the LOCK signal asserts. This alarm is also accessible on the P interface as a status bit (Reg #15, mode 0) and as an interrupt (Reg #15, mode 05). Once the recovered clock has been obtained and the NRZ data has been recovered, the LXT6155 Transceiver performs frame-detect-and-byte-alignment, and serial-toparallel conversion. The LXT6155 Transceiver optionally provides output data RPOD aligned to the SDH/SONET byte boundary. The user has the option to enable/disable the frame-alignment function in both hardware and software mode. The frame detect/byte alignment function generates the receive output frame pulse (ROFP). In HW mode (HWSEL = Low) ROFP asserts (high) on the third A2 byte. In SW mode (HWSEL = High) this position is programmable via register #13, bits . When byte alignment is disabled and the LXT6155 Transceiver is in CMI mode, the ROFP pin indicates CMI coding errors including polarity errors for ones and inversion errors for zeroes. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 16 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Figure 5 3.2 Receiver Receive Frame Synchronization and Frame Pulse Position RPOCLK A1 RPOD A1 A1 A2 A2 A2 J0 Z0 Z0 Start of SPE End of Previous Frame ROFP Frame Pulse Position -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 Hex Fh Eh Dh Ch Bh Ah 9h 0h 8h 1h 2h 3h 4h 5h 6h 7h Contents of REG 13h Binary 1111 1110 1101 1100 1011 1010 1001 0000 0001 0010 0011 0100 0101 0110 0111 1000 The clock recovery PLL’s center frequency comes from either the local crystal or a stable transmit input clock (TSICLKP/TSICLKN or TPICLK). If operated in loop-timed mode or remote loopback mode, an external reference clock must be used to center the internal PLL clock. In remote loopback, the receive reference remains either XTALIN or TSICLK or TPICLK, depending on the control selection. If an independent and stable transmit clock is available, the designer has the option of applying this clock to pin XTALIN to center the PLL, without the external crystal. The user can also replace the crystal by connecting the TPICLK (19.44 MHz) signal to the XTALIN pin. However, a local crystal is recommended for “keep alive” purposes in case the clock becomes unavailable. 3.2.2 Receive Frame Detect and Byte Alignment Receive Frame Detection only operates in parallel mode, if Frame Detection is enabled. The LXT6155 Transceiver provides aligned bytes RPOD following the distinct SONET OC3/STM1 frame marker word, 3 x A1, followed by 3 x A2, where A1=F6h and A2=28h. The Receive Output Frame Pulse (ROFP) asserts during the third A2 byte, and de-asserts after one complete RPOCLK clock period. If this feature is used, it can be enabled in register #12 bit in software mode1, or by setting the RIFE (pin 15) high in hardware mode prior to applying data to Rtip/Rring. Two consecutive frames with correct frame words (A1… A1 A2…A2) are required to change from an out-of-frame state (OOF) to an in-frame state. The OOF alarm is accessible in SW mode (HWSEL = High) as a status or interrupt signal (Reg #15). To declare an OOF condition, four consecutive frames with incorrect frame words are required. Byte alignment occurs when entering the in-frame state. In case of an OOF event, the byte alignment and frame pulse position are frozen. The ROFP output continues unchanged until re-entering the in-frame state. 1. For further details see register #12 description for usage. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 17 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Figure 6 3.2 Receiver Framing State 4 consecutive frames with errored FAS In Frame Out of Frame 2 consecutive frames with correct FAS 3.2.2.1 Loss of Signal (LOS) Loss of Signal provides an alarm signal indicating incoming signal voltage is weak or incoming data does not contain enough transitions. This signal is available in HW mode on pin #45 and in SW mode as status and interrupt (Reg #15, modes 00 and 05). During power-up, the LOS state machine may be stuck in an incorrect state until the LXT6155 Transceiver receives a transmit clock (TPICLK or TSICLKP/TSICLKN). For correct initialization in serial mode, a clock or local crystal should also be applied on XTALIN. The LOS alarm should be ignored until the clock(s) is in place. 3.2.2.2 Coax Interface Loss of Signal provides an alarm output that indicates weak line input signal. The LOS signal asserts when the incoming signals fall below a specified loss threshold, and deasserts when the line signal rises nominally 2 dB above the assert threshold, as shown in Figure 7 on page 18. The threshold is adjustable in SW mode (HWSEL = High) via the Processor interface. Figure 7 Criteria for LOS Output Nominal Value LOS De-assert HYS = 3 dB LOS Assert Level below nominal 3.2.2.3 Fiber Interface If no transition is detected during any 3112 bit times (20 sec), LOS asserts. LOS is cleared when two consecutive frame words with no LOS events between then are received. In SW mode (HWSEL = High) the assertion window is programmable from 128 bits to 4096 bits in four steps. The de-assertion criteria can also be configured to 12.5% transition density. The 12.5% density is determined by receipt of at least 4 transitions during a 32-bit sliding window. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 18 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 3.3 Clocks 3.3.1 Parallel Mode 3.3 Clocks The LXT6155 Transceiver accepts TPICLK synchronized with transmit input parallel data TPID. The data is serialized and transmitted at TTIP0/TRING0 or TTIP1/TRING1 depending on which line encoding mode is selected. The LXT6155 Transceiver in turn produces the receive output parallel clock RPOCLK, that is recovered from incoming line data RTIP/RRING, and is synchronized with receive output parallel data RPOD. 3.3.1.1 Transmit Parallel Input Clock (TPICLK) TPICLK is the transmit parallel input clock provided by the systems interface. This clock must be nominally 19.44 MHz, synchronized with parallel input data TPID. This clock is then internally multiplied by 8 to produce a serial clock, used for parallel-to-serial conversion, line drivers, and pulse reshaping. In HW mode (HWSEL = Low), TPID data is sampled on the falling edge of TPICLK. In SW mode (HWSEL = High), the clock polarity can be inverted (Reg #0, bit #3). 3.3.1.2 Receive Parallel Output Clock (RPOCLK) RPOCLK is the parallel output clock that is recovered from the line input data RTIP/ RRING. This clock is at 19.44 MHz, synchronized with parallel output data RP0D. In HW mode (HWSEL = Low), the RPOCLK clock rising edge is at the center of eye opening of RPOD as shown in Figure 21. In SW mode (HWSEL = High), the clock polarity can be inverted (Reg #0, bit #2). Under LOS (LOS=High) or Rx PLL loss of lock (LOCK=Low) conditions RPOCLK is switched to the reference selected by the CIS control in HW mode, or Reg #0 bit #5 in SW mode. Also, the parallel output is forced to all zeros. This feature can be disabled in SW mode (HWSEL = High) via register #10, bit #7. 3.3.2 Serial Mode At the transmit systems interface, the LXT6155 Transceiver accepts the transmit input clock TSICLKP/TSICLKN that is synchronized to incoming serial differential data TPOS/ TNEG. At the line interface, the LXT6155 Transceiver accepts RTIP/RRING data and produces the clocks RSOCLKP/RSOCLKN synchronized to receive output data RPOS/ RNEG. RSOCLKP/RSOCLKN clock edges are at the center of RPOS/RNEG. 3.3.2.1 Transmit Serial Input Clock (TSICLKP/TSICLKN) TSICLKP/TSICLKN is the serial input clock from the overhead terminator. This 155.52 MHz clock is rising edge centered with input serial data on TPOS and TNEG. These clock pins should be left open when the LXT6155 Transceiver operates in parallel mode. 3.3.2.2 Receive Serial Output Clock (RSOCLKP/RSOCLKN) RSOCLKP/RSOCLKN is the serial clock recovered from the line input data on RTIP/ RRING. This 155.52 MHz clock is falling edge centered with receive serial output data on RPOS/RNEG. These clock pins should be left open when the LXT6155 Transceiver operates in parallel mode. Under LOS (LOS=High) or Rx PLL loss of lock (LOCK=Low) conditions RSOCLK P/N is switched to the Tx serial clock. Also the serial output data is forced to all zeros. This feature can be disabled in SW mode (HWSEL = High) via register #10, bit #7. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 19 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 3.3.3 3.4 Jitter Crystal Reference Clock (XTALIN/XTALOUT) An optional 19.44 MHz crystal can be connected across the XTALIN and XTALOUT pins. This crystal reference provides an onchip clock that is independent of the external system clock (TSICLKP/TSICLKN or TPICLK). The main functions of the crystal reference clock are threefold: (1) to center the receive PLL at 155 MHz, (2) to keep the PLL centered at 155 MHz when LOS asserts, and (3) In the event incoming data is lost, to provide a reference clock for other devices which require it. The designer has the option to use this crystal reference clock or the transmit input clock (TSICLKP/TSICLKN or TPICLK) to center the receive PLL. Refer to Section Section 3.2.2.1, Loss of Signal (LOS), on page 18 for clock requirements relating to the LOS alarm signal. 3.4 Jitter The Bellcore GR-253 standard defines jitter as the “short-term variations of a digital signal’s significant instants from their ideal positions in time”. Significant instants are the optimum data sampling instants. Jitter parameters can be measured at the line interface, with system interface in loopback mode, yielding jitter accumulated in both transmitter and receiver. Isolated jitter measurements for transmitter and receiver can also be performed. Jitter specs are divided into three categories: jitter tolerance, jitter generation, and jitter transfer. Jitter values, in effect, measure the performance of the receive PLL and the transmit synthesizer PLL. 3.4.1 Jitter Tolerance Jitter tolerance is the peak-to-peak amplitude of sinusoidal jitter applied at the line interface input that causes an equivalent 1 dB SNR loss measured as BER = 10-10. Refer to Figure 26 on page 47 for the LXT6155 Transceiver performance. 3.4.2 Jitter Generation (Intrinsic Jitter) Jitter generation is the amount of transmit jitter at the output of the equipment with a jitterfree transmit input data and clock. For SONET/SDH, jitter generation is less than 0.01 UI rms, measured with a band-pass filter from 12 kHz to 1.3 MHz. Refer to Figure 27 on page 48 for the LXT6155 Transceiver performance. 3.4.3 Jitter Transfer Jitter transfer is defined as the ratio of output jitter to input jitter amplitude versus jitter frequency for a given bit rate. Input jitter amplitude is shown in the Jitter Tolerance curve. Output jitter is under the Jitter Transfer template. Refer to Figure 27 on page 48 and Figure 28 on page 48 for the LXT6155 Transceiver performance. 3.5 Operational Modes The LXT6155 Transceiver functions in both Hardware standalone and Software modes. The operating mode is set by the state of the HWSEL pin. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 20 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 3.5.1 3.5 Operational Modes Hardware Mode By setting HWSEL = Low, the LXT6155 Transceiver operates in standalone hardware mode, without a serial microprocessor interface. A subset of the functions available in the Software Mode can be set in Hardware Mode. LXT6155 Transceiver provides a comprehensive flexibility in configuring system clock preference settings, as well as providing pins for activating loopback test modes. Table 3, Table 4 and Table 5 show the settings that enable the functions available in hardware mode. Figure 8 Hardware Mode LXT6155 HWSEL MODE 3.5.1.1 GND Line interface encode/decode RLIS Remote loopback LLIS Local loopback CIS Clock reference select SP Serial/Parallel RIFE Frame Enable PLL Clock Reference (CIS pin) The reference clock plays two roles: it centers the receive PLL, and it provides the receive output clocks RSOCLKP/RSOCKLN and RPOCLK in case of Loss of Signal. When the LXT6155 Transceiver powers up, it looks for this reference clock to start-up internal blocks, including the receive PLL circuitry. Table 3 Reference Clock Settings CIS Clock Reference Low TICLK Default mode. The LXT6155 Transceiver uses the transmit input clock as the reference clock for on chip operations. No crystal is needed. XTAL The LXT6155 Transceiver uses the clock signal at XTALIN as the reference clock for Rx operation. This can either be an applied 19.44 MHz clock or a 19.44 MHz crystal can be connected across XTALIN & XTALOUT. See Table 25 for the crystal specifications. High 3.5.1.1.1 Note TICLK This is the transmit input clock(s): either TSICLKP/TSICLKN in serial mode or TPICLK in parallel mode. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 21 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 3.5.1.1.2 3.5 Operational Modes XTAL XTAL is an optional clock, created using an external crystal, connected across the XTALIN and XTALOUT pins. The crystal provides an independent and stable clock source. This clock is also used as the reference for the Tx clock monitoring circuitry and the Rx LOS state machine. 3.5.1.2 Loopback Test (RLIS and LLIS pins) The LXT6155 Transceiver allows two types of loopback test: Remote loopback and Local loopback. In Remote loopback, the received data and clock are looped back to the transmit line interface. The LXT6155 Transceiver still outputs recovered data and clock at the system interface. In Local loopback, the transmit data is looped back to the receive input at the line interface. The LXT6155 Transceiver also transmit data onto the line interface while looping back. For descriptive diagrams, please refer to Figure 14 on page 26 and Figure 15 on page 26. Table 4 3.5.1.3 Loopback Selection ADDR0/RLIS ADDR1/LLIS Low Low Description Normal operation. No loopback testing. Low High Local loopback test activate. High Low Remote loopback test activate. High High Invalid mode. Do not use. Line Interface Selection (MODE Pin) The MODE pin sets one of the two line interfaces, as described in Table 5. Table 5 3.5.1.4 MODE Line Interface Settings MODE Description Low Sets LVPECL NRZ mode to interface to a fiber optic module. CMI related blocks (e.g. input/output buffers, equalizer) are disabled. High Sets CMI mode to interface to a transformer and a 75  coax cable. NRZ related input/output buffers are disabled. Parallel/Serial Mode Selection (SP pin) In Hardware Mode, HWSEL = Low, the LXT6155 Transceiver can be set to operate in serial or parallel data mode, depending on how the Serial/Parallel SP pin is set. Setting the SP pin = High sets the LXT6155 Transceiver to an 8-bit parallel mode. Parallel pins TPID, TPICLK, RPOD, ROFP, RPOCLK, LOCK and LOS are be used. Serial pins TPOS, TNEG, TSICLKP, TSICLKN, RPOS, RNEG, RSOCLKP, RSOCLKN are unused and should be left open. Setting the SP pin = Low sets the LXT6155 Transceiver to serial mode. Pins TPOS, TNEG, TSICLKP, TSICLKN, RPOS, RNEG, RSOCLKP, RSOCLKN, LOCK and LOS are used. Pins TPID, TPICLK, RPOD and RPOCLK are unused and should be left open. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 22 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 3.5.1.5 3.5 Operational Modes Tx Amplitude Trim In Hardware, serial, coax mode, the line driver output amplitude can be controlled via pins 16 to 20. Setting TXTRIMENA (pin #20) high enables the trim capability. The trim range is -21% to +24% in 3% steps controlled by TXTRIM0-TXTRIM3. The minimum amplitude is at 0000 and the maximum amplitude is at 1111. This is the same control range as in SW mode. 3.5.2 Software Mode When HWSEL = High, the LXT6155 Transceiver operates in Software Mode. Control is through an external serial P interface. Figure 9 shows the pins used in Software Mode. The LXT6155 Transceiver uses four pins for the industry standard Serial Control Interface (SCP) bus: SCLK, CS, SDI and SDO. SCLK is the serial input control clock pin. CS is the chip select input. SDI is the serial data input pin, and SDO is the serial data output pin. Figure 10 and Figure 11 show the serial interface data structure. A data transaction is initiated by a falling edge on the Chip Select pin CS. A High-to-Low transition on CS is required for each access to the control registers. The first bit is a read/write bit (R/W), followed by seven address bits (A), and eight data bits (D). Every data transaction requires 16 SCLK cycles to complete. If R/W = High (Read), the LXT6155 Transceiver outputs a data byte D on the SDO pin. If R/W = Low (Write), the LXT6155 Transceiver accepts a data byte D on the SDI pin, while tristating SDO pin. It is recommended in SW mode operation, the registers are first initialized by writing a “0” to register #11 bit #6 (reset). 3.5.2.1 Serial Input Clock (SCLK) This pin accepts a clock up to 4.096 MHz for data transactions between the LXT6155 Transceiver and the SCP bus. The LXT6155 Transceiver clocks SDO data out on the falling edge, and clocks SDI data in on the rising edge of SCLK (see Figure 10 and Figure 11). 3.5.2.2 Chip Select Input (CS) On the falling edge of CS, the LXT6155 Transceiver starts data transactions. On the rising edge of CS, the LXT6155 Transceiver stops data transaction. The CS pin must be held Low for at least 16 SCLK cycles to complete a full Read or Write data transaction. If CS is held Low less than 16 SCLK cycles, then the data transaction is ignored. At the end of each Write/Read transaction, CS must return High, between the 16th and 17th clock edges. 3.5.2.3 Serial Input Word (SDI) Figure 11 shows the serial interface input data word structure. When the first input bit R/W = Low, a Write operation is performed. The SCLK clocks data in on the SDI pin during the second 8 bits D of the Write operation. Data is clocked in on the rising edge of SCLK. During the entire 16 bit operation, SDO remains tristated. Refer to Table 6 on page 27 through Table 23 on page 33 for control register descriptions. 3.5.2.4 Serial Output Word (SDO) The serial output word structure is shown in Figure 10. When the first input bit R/W = High, a Read operation is specified. SDO becomes active after A0 has been clocked in. The first bit out of SDO changes the state of SDO from High-Z to a Low/High. SDO is clocked out on the falling edge of SCLK. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 23 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Figure 9 3.5 Operational Modes Software Mode LXT6155 HWSEL VCC CS Chip select in SDI Serial data in SDO Serial data out SCLK Serial clock in ADDR0, ADDR1 Figure 10 Device address settings Serial Data Output Word Structure (Read Cycle: R/W=High) CS SCLK DON'T CARE SDI DON'T CARE Don't Care R/W =1 A6 SDO Figure 11 A5 A4 A3 A2 A1 A0 High Impedance Don't Care D7 D6 D5 D4 D3 D2 D1 D0 Serial Data Input Word Structure (Write Cycle: R/W = Low) CS SCLK SDI SDO Don't Care R/W =0 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Don't Care High Impedance Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 24 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 3.6 3.6 Serial System Interface Serial System Interface The serial interface permits the LXT6155 Transceiver to communicate with an Overhead Termination device at 155.52 Mbps. Data and clock lines are differential 3.3 V LVPECL signals. Refer to Figure 12. 3.7 Parallel System Interface The parallel interface allows the LXT6155 Transceiver to communicate with the system chip at 19.44 MHz, 8 bits per clock cycle. Data and clock lines are TTL compatible signals. Refer to Figure 13. Figure 12 Serial Interface Overhead Terminator/ATM UNI LXT6155 Nevada 4 TPOS, TNEG TSICLKP, TSICLKN DATA_OUT CLK_OUT 4 RPOS, RNEG RSOCLKP, RSOCLKN DATA_IN CLK_IN CMIERR, LOS LOS Processor (optional) CS SDI SDO SCLK Figure 13 4 Chip Select Data I/O Clock Parallel Interface Nevada TPID TPICLK 9 RPOD RPOCLK 9 LOS, ROFP/ CMIERR 2 CS SDI SDO SCLK Overhead Terminator/ATM UNI DATA_OUT BYTE_TCLK DATA_IN BYTE_RCLK LOS, RIFP Processor (optional) 4 Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Chip Select Data I/O Clock Page 25 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 3.8 3.8 Loopback Modes Loopback Modes The LXT6155 Transceiver provides two loopback modes that can be executed in either hardware or software mode: local loopback and remote loopback. In remote loopback mode, the crystal reference clock is used to center the receive PLL to prevent illegal clock looping. 3.8.1 Local Loopback Local loopback routes the transmit line output signals (TTIP and TRING) back to the receive line inputs (RTIP and RRING). In this mode, the line transmit output signals are active (see Figure 14). 3.8.2 Remote Loopback Remote loopback routes the receive system output signals, both data and clock, to the transmit system input (see Figure 15 on page 26). In this mode, system outputs (RPOD or RPOS/RNEG) are still active. Figure 14 Local Loopback TTIP0, TRING0, TTIP1, TTIP1 RTIP, RRING Figure 15 Line Buffer P/S Equalizer PLL TPID , TPICLK, TPOS/TNEG, TSICLKP/N S/P RPOD , RPOCLK, RPOS/RNEG, RSOCLKP/N Remote Loopback TTIP0, TRING0, TTIP1, TTIP1 RTIP, RRING Line Buffer Equalizer TPID , TPICLK, TPOS/TNEG, TSICLKP/N P/S PLL S/P Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver RPOD , RPOCLK, RPOS/RNEG, RSOCLKP/N Page 26 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 4.0 4.0 Register Definitions Register Definitions There are a total of sixteen (16) control registers in the LXT6155 Transceiver addressed by the lowest four address bits, A. See Table 8 through Table 23 for details. Table 6 Device Address/Control Byte A Description A LXT6155 Transceiver Device Select. By using pins ADDR1 and ADDR0, up to four LXT6155 Transceiver devices can be addressed. For a successful data transaction to occur, A6 and A5 must match the polarity settings on ADDR1 and ADDR0, respectively. Using these controls, up to four LXT6155 Transceiver devices can be independently controlled. A4 Not Used. Set to 0 during transactions. A Table 7 LXT6155 Transceiver Register Map (see Table 7). LXT6155 Transceiver Register Map (A) Register # A Register Name Type 0 0000 Primary Control R/W 1 0001 Transmit Control R/W 2 0010 Transmit PLL1 R/W 3 0011 Transmit PLL2 R/W 4 0100 Equalizer load R/W 5 0101 Equalizer/AGC R/W 6 0110 Matching filter2 R/W 7 0111 Slicer R/W 8 1000 Receive PLL 1 R/W 9 1001 Receive PLL 2 R/W 10 1010 Test R/W 11 1011 Reset and Bias R/W 12 1100 Receive Digital 1 R/W 13 1101 Receive Digital 2 R/W 14 1110 Status/Interrupt Control R/W 15 1111 Status/Interrupt Output Read-only Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 27 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Table 8 4.0 Register Definitions Primary Control Register Settings, Register #0 (Address A=0000) Bit Default 7 0 Mnemonic lpbk_cntl 6 0 5 0 pll_ref 4 0 — 3 1 clk_inv 2 1 1 0 sys_int 0 0 media_sel Description Local loopback: 0 = No loopback 1 = Activate local loopback Remote loopback: 0 = No loopback 1 = Activate remote loopback PLL/Equalizer reference clock control: 0 = Use TPICLK clock 1 = Use external crystal (XTALIN) Not used TPICLK polarity at system interface: 0 = TPID sampled on the rising edge of TPICLK 1 = TPID sampled on the falling edge of TPICLK RPOCLK polarity at system interface: 0 = RPOD transitions on the rising edge of RPOCLK 1 = RPOD transitions on the falling edge of RPOCLK Systems interface mode selection: 0 = Serial mode 1 = Parallel 8-bit mode Media and line code selection: 0 = Fiber (NRZ) 1 = Coax (CMI) . Table 9 Tx Control, Register #1 (Address A=0001) Bit Default Mnemonic 7 1 tx_ena 6 1 tx_dig_reset 5 0 — 4:1 0.1.1.1 tx_amp_trim 0 1 tx_clk_sw_ena Description Tx output enable: 0 = outputs disabled 1 = outputs active Tx digital circuitry reset. This can be used to minimize power consumption when the device is disabled but not powered down. It must be enabled when the device is active. 0 = reset 1 = active Not for customer use. Transmit amplitude trim: 0000 = -21% 1111 = +24% Tx clock detection enable. This must be disabled in SW mode when pll_ref=0 (reg#0=0) 0 = disable 1 = enable Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 28 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 4.0 Register Definitions . Table 10 Transmit PLL1, Register #2 (Address A=0010) Bit Default Mnemonic Description 7:5 0.1.1 — Not for customer use. 4:3 0.0 — Not for customer use. 2:1 1.0 — Not for customer use. 0 1 — Not for customer use. . Table 11 Table 12 Table 13 Transmit PLL2, Register #3 (Address A=0011) Bit Default Mnemonic Description 7 1 — Not for customer use. 6 1 — Not for customer use. 5 1 — Not for customer use. 4 0 — Not for customer use. 3 0 — Not for customer use. 2 0 — Not for customer use. 1:0 1.0 — Not for customer use. Equalizer Load, Register #4 (Address A=0100) Bit Default Mnemonic Description 7 0 — 6:2 0.0.0.0.0 — Not for customer use. 1 0 — Not for customer use. 0 1 — Not for customer use. Not for customer use. Equalizer & AGC, Register #5 (Address A=0101) (Sheet 1 of 2) Bit Default Mnemonic Description 7 1 eq_adapt_enab Equalizer adaption enable: 0 = freeze adaption 1 = activate adaption 6:5 0.0 eq_adapt_gain Equalizer adaption step size: 00 = 1 01 = 2 10 = 4 11 = 8 4 1 agc_adapt_ena AGC adaption enable: 0 = freeze adaption 1 = activate adaption Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 29 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Table 13 Equalizer & AGC, Register #5 (Address A=0101) (Sheet 2 of 2) Bit Table 14 4.0 Register Definitions Default Mnemonic 3:2 0.0 agc_adapt_gain 1 1 afe_ena 0 0 — Description AGC adaption step size: 00 = 1 01 = 2 10 = 4 11 = 8 Analog front end enable (also enables matching filter oscillator core): 0 = disabled (no bias) 1 = enabled Not for customer use. Matching Filter 2, Register #6 (Address A=0110) Bit Default Mnemonic Description 7:5 0.1.0 — Not for customer use. 4:3 1.0 — Not for customer use. 2:1 0.0 — Not for customer use. 0 1 — Not for customer use. 1. This register is used in CMI (co-ax) mode only. Table 15 Table 16 Slicer, Register #7 (Address A=0111) Bit Default Mnemonic Description 7:4 0.0.0.0 — Not for customer use. 3 1 — Unused 2 0 — Not for customer use. 1 0 — Not for customer use. 0 0 — Not for customer use. RxPLL 1, Register #8 (Address A=1000) Bit Default Mnemonic Description 7:5 0.1.1 — Not for customer use. 4:3 0.0 — Not for customer use. 2 0 — Not for customer use 1 0 — Unused 0 1 — Not for customer use. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 30 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Table 17 Table 18 Table 19 4.0 Register Definitions Rx PLL 2, Register #9 (Address A=1001) Bit Default Mnemonic Description 7 1 — Not for customer use. 6 1 — Not for customer use. 5:3 0.1.1 freq_det_pw 2 1 — Not for customer use. 1 1 — Not for customer use. 0 1 — Not for customer use. Frequency detector output pulse width ({1 to 8} * 6.43 ns) Test, Register #10 (Address A=1010) Bit Default Mnemonic Description 7 1 los_clk_ena 6 0 — 5:2 0.0.0.0 — Not for customer use. 1 1 — Not for customer use. 0 0 — Not for customer use. Enables Rx clock switching under LOS/LOCK condition: 0 = disable 1 = enable Not for customer use. Register, Bias and Fuse Controls, Register #11 (Address A=1011) Bit Default Mnemonic Description Power down all bias generators. This bit can be used to power down all the active analog circuitry on the device. 0= active 1=power down 7 0 bias_pwrdn 6 1 reg_reset 5:2 1.0.0.0 — Not for customer use. 1:0 0.0 — Not for customer use. Register array reset, ignores remainder of transaction (active low). This register is write only. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 31 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 4.0 Register Definitions . Table 20 Rx Digital 1, Register #12 (Address A=1100) Bit Default Mnemonic 7 0 los_format 6 1 los_amp_trim 5:4 1.1 los_ena Description Combine (logical OR) LOS/LOCK function onto LOS pin: 0 = disable 1 = enable Amplitude LOS threshold trim: 0 = Reduced ALOS dessert threshold (-3db) 1 = Nominal ALOS thresholds LOS disable controls (amplitude LOS & digital LOS): 0 = disable 1 = enable Byte align enable: If used, this feature must be enabled during system configuration prior to applying data to the receiver. If this is not possible see the Cortina Systems® LXT6155 155 Mbps SDH/SONET/ ATM Transceiver Application Note (document number 249280) for further details. 0 = byte align disabled 1 = byte align enabled 3 0 frame_ena 2 0 — Not for customer use. 1 0 — Not for customer use. 0 1 — Not for customer use. . Table 21 Rx Digital 2, Register #13 (Address A=11001) Bit Default Mnemonic 7 1 rx_dig_reset 6:3 0.0.0.0 cnffp 2:1 0 1.0 1 los_tran_assert los_tran_deass ert Description Rx digital circuitry reset. This can be used to minimize power consumption when the device is disabled but not powered down. It must be enabled when the device is active 0 = reset 1 = normal operation Frame pulse position. Refer to Figure 7 for usage. D-LOS transition density count for assertion: 00 = 128 01 = 512 10 = 3112 11 = 4096 A-LOS assertion integration period: 00 = 2048 bits 01 = 512 bits 10 = 128 bits 11 = 32 bits D-LOS transition density count for de-assertion: 0 = 4/32 1 = SONET compliant1 A-LOS de-assertion integration period: 0 = 0 bits 1 = 128 bits 1. SONET compliant LOS de-assertion refers to Bellcore GR-253, pages 6-16 (section 6.2.1.1.1), recommendation R6-54, LOS alarm is de-asserted (cleared) when two valid frame headers have been received with no LOS events in the interval. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 32 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 4.0 Register Definitions . Table 22 Status Control, Register #14 (Address A=1110) Bit Default Mnemonic 7:4 0.0.0.0 — 3:0 Table 23 0.0.0.0 Description Unused stat_cont Status register (register #15) mux control (indirect addressing to increase read space) Read-Only Register #15 (Address A=1111) Value of: stat_cont 00 (Status register) Status Output bit 7 bit 6 bit 5 bit 4 Analog LOS Digital LOS Tx clock activity alarm status SONET OOF signal bit 3 bit 2 Unused3 bit 1 bit 0 Rx PLL frequency lock alarm Unused3 01 Not for customer use. Not for customer use. 02 Not for customer use. Not for customer use. 03 (Fuse contentsupper bits) Not for customer use. 04 (Fuse contentsupper bits) 051,2 (Interrupt register) 064 (Device ID) 1. 2. 3. 4. Not for customer use. Analog LOS interrupt Digital LOS interrupt (los_ana_i) (los_dig_i) Tx clock alarm interrupt Not for customer use. OOF interrupt Unused (oof_i) MSB 3 Unused 3 Rx PLL frequency lock alarm interrupt (rx_lock_i) CMI coding error alarm interrupts (cmi_err_i) LSB Bits 7:1 are cleared upon reading the status register (stat_cont = 00). Bit 0 is cleared upon reading interrupt register (stat_cont = 05). Ignore these bits during register transactions, unpredictable contents Contains device revision number in hexadecimal notation. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 33 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 5.0 5.0 Application Information Application Information The following provides application examples of interfacing the LXT6155 Transceiver to the line side and the overhead terminator side. Line side encoding schemes can be one of two types: LVPECL NRZ encoded for a fiber optic module, or CMI encoded for a 75  coax cable. On the systems side, serial differential or parallel eight-bit modes can be used. All signals are TTL level compatible, except serial interface signals (TPOS, TNEG, TSICLKP, TSICLKN, RSOCLKP, RSOCLKN, RPOS, and RNEG) which are 3.3 V LVPECL compatible. 5.1 Fiber Optic Module Interface The LXT6155 Transceiver is designed to directly drive a 3.3 V LVPECL fiber optic transceiver. The LVPECL drivers require the proper transmission line impedance to correctly drive the fiber module. Signal traces should be 50  controlled impedance lines and should be biased to the appropriate level. Please refer to Figure 16 on page 35 for the proper interface. To interface the LXT6155 Transceiver LVPECL signals to a 5 V PECL fiber optic module, please refer to the Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Application Note (document number 249280). Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 34 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 49 RXISH 330 nF 48 RAGND RDGND GND TDGND RAGND SUB TAVCC RDVCC PVCC VCC TDVCC RAVCC Well 53 42 35 11 50 57 5 41 38 25 6 46 38 RAVCC 3.3 V LVPECL to 3.3 V LVPECL Interface TAVCC DVCC Figure 16 5.2 Coax Interface VCC R1 R2 50 Controlled impedance RTIP 52 VBIAS RD 15k 1% 4 RRING 51 RD* TXISH VCC 68 nF R3 LXT6155 Transceiver R5 NC 47 ATST 3.3V Fiber Optic Module R4 R6 TTIP1 63 TD TRING1 62 TD* R7 R8 Notes: 1) R1, R2, R5, R6 = 127 , 1% 2) R3, R4, R7, R8 = 82.5 , 1% 3) Transmission lines should be 50 , controlled impedance strip lines. Keep length as short as possible. 4) VCC = 3.3V for both resistor network, and Fiber Optic Module. B0072-02 5.2 Coax Interface As shown in Figure 17 on page 36, the LXT6155 Transceiver directly drives a transformer connected to a 75  coaxial cable with up to 12.7 dB cable loss at 78 MHz. This is approximately 110 m of RG59U. Please refer to manufacturers specifications for maximum cable lengths. Output CMI waveform conform to the ITU G.703 specifications. Rise and fall times are less than 2.0 ns. Caution: Be careful to decouple the system side center tap of the transformer, as shown in Figure 17 on page 36. Also any additional protection against line overvoltage must be applied symmetrically in order to preserve the balanced operation of the LXT6155 Transceiver input and output stage. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 35 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Figure 17 5.2 Coax Interface 75 Ohm Coax Cable Interface TAVCC RAVCC 46 RAVCC WELL VCC TDVCC RDVCC PVCC TAVCC TAVCC RAGND SUB GND TDGND RAGND RDGND TAGND TGND RXISH 58 6 25 41 38 5 64 50 57 11 35 53 42 3 59 49 DVCC RTIP 1.0 F 330nF 48 VBIAS RRING 1.0nF 1CT:1 52 51 75 1% 15k 1% 37.5 Strip Line 75 Coax 75 Coax 75 Strip Line VCC LXT6155 Transceiver 37.5 1% NC 47 ATST TTIP1 37.5 1% 1CT:1 63 37.5 Strip Line 4 TXISH TRING1 62 1.0 F 68nF 1.0nF . Table 24 Transformer Specifications Parameter Transmission, S12 Return Loss, S11 Min Typ Max Unit -3 dB Low — — 10 MHz -3 dB High 320 — — MHz -20 dB Low — — 5 MHz Notes -20 dB High 250 — — MHz In-band Loss — — — 0.5 dB 30 MHz ~ 300 MHz Common mode rejection — — — -10 dB DC~250 MHz Cross-talk in dual packages — — — -40 dB DC~156 MHz Turns ratio — 0.97 1.0 1.03 Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 36 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Table 25 5.2 Coax Interface Crystal Specifications Parameter Min Typ Max Unit Center frequency — Freq tolerance -20 Temperature drift Aging 19.44 — MHz — 20 ppm At 25 C -20 — 20 ppm -40 ~ 85 C -10 — 10 ppm First 10 years Mode Notes Fundamental Shunt capacitance — — 5 pF Equivalent resistance — 8.4 40  Temperature Range -40 — 85 C Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 37 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 6.0 6.0 Test Specifications Test Specifications Information in Table 26 through Table 36 on page 47 and Figure 18 on page 39 through Figure 29 on page 49 represent the performance specifications of the LXT6155 Transceiver and are guaranteed by test, except as noted by design. Table 26 Absolute Maximum Ratings Parameter Sym DC supply (reference to GND) Max Unit Vcc — 4.0 V Input voltage, TTL pins Vin (TTL) GND -0.3 5.5 V Input voltage, other pins Vin GND -0.3 VCC + 0.3 V Input current, any pin Iin -10 25 mA Storage temperature Tstg -65 150 °C Caution: Table 27 Min Operating at or beyond these limits may result in damage to the device. Normal operation not guaranteed at these extremes. Recommended Operating Conditions Parameter Sym Min Typ Max Unit DC supply (referenced to GND) Vcc 3.0 3.3 3.6 V Tc -40 25 85 °C Case operating temperature serial/fiber 150 serial/coax Total current consumption — parallel/fiber — 210 — parallel/coax Table 28 mA 100 150 DC Electrical Characteristics (Vcc = 3.0 V to 3.6 V; TA = -40 °C to 85 °C) (Sheet 1 of 2) Sym Min Typ1 Max Unit Vih1 Vcc-1.03 — Vcc-0.88 V Low level input voltage (LVPECL) Vil1 Vcc-1.81 — Vcc-1.62 V Differential input voltage (LVPECL) Vidiff 0.1 — — V High level output voltage (LVPECL) Voh1 Vcc-1.03 Vcc-0.95 Vcc-0.88 V Low level output voltage (LVPECL) Vol1 Vcc-1.81 Vcc-1.70 Vcc-1.62 V High level input voltage (TTL)2 Vih2 2.0 — — V 2 Vil2 — — 0.8 V Voh2 2.4 — — V Parameter High level input voltage (LVPECL) Low level input voltage (TTL) High level output voltage (TTL) Test Conditions 50  pulled down to VCC 2.0 V. IOH = 4 mA 1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to production testing. 2. These specs are also valid for XTALIN when using an external clock. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 38 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Table 28 6.0 Test Specifications DC Electrical Characteristics (Vcc = 3.0 V to 3.6 V; TA = -40 °C to 85 °C) (Sheet 2 of 2) Sym Min Typ1 Max Unit Vol2 — — 0.4 V Input leakage current, low (TTL) Ill — — 10 A Input leakage current, high (TTL) Ilh — — 10 A Parameter Low level output voltage (TTL) Test Conditions IOL = 4 mA 1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to production testing. 2. These specs are also valid for XTALIN when using an external clock. Table 29 Transmit Timing Characteristics Parameter Sym Min Typ1 Max Unit Transmit serial input clock frequency — — 155.52 — MHz Transmit serial input clock frequency error — -20 — +20 ppm Transmit serial input clock duty cycle — 45 — 55 % Transmit serial input clock and data rise / fall time2 — — — 1.2 ns Transmit parallel input clock frequency — — 19.44 — MHz Transmit parallel input clock frequency error — -20 — +20 ppm Transmit parallel input clock duty cycle — 45 — 55 % Transmit parallel input data & clock rise/ fall time2 — 2 — 10 ns TPICLK to TPID hold time Thtpid 3 — — ns TPICLK to TPID setup time Tstpid 2 — — ns TSICLKP(TSICLKN) to TPOS (TNEG) setup time Tstpos 1.25 — — ns TSICLKP (TSICLKN) to TPOS (TNEG) hold time Thtpos 0.75 — — ns Test Conditions Compliant with GR253 20% - 80% 1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to production testing. 2. Not production tested, guaranteed by design and other correlation factors. Figure 18 Transmit Parallel Input Data Timing Tstpid Thtpid TPICLK* TPID *This shows timing in HW mode. In SW mode (HWSEL=1) this clock polarity can be inverted. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 39 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Figure 19 6.0 Test Specifications Transmit Serial Input Data Timing TSICLKP TSICLKN Tstpos Thtpos TPOS TNEG Table 30 Transmit Analog Characteristics Parameters Transmit jitter generation2 (Intrinsic jitter SONET spec) Note 12 kHz - 1.3 MHz Min Typ1 Max Unit — — 0.1 UIpp — — 0.01 UIrm s Transmit jitter generation2 500 Hz - 1.3 MHz — — 1.5 UIpp (Intrinsic jitter SDH spec) 65 kHz - 1.3 MHz — — 0.075 UIpp DC - 230 kHz — — 0.4 dB Synthesizer capture range Fcap -20 — +20 ppm Synthesizer track range Ftrack -20 — +20 ppm Synthesizer lock time Tlock — — 100 s Transmit output rise and fall times - CMI signals TTIP0 TRING0 — — 2.2 ns Transmit output amplitude CMI signals TRING0 0.9 — 1.1 Vpp 1.6 2.0 — k Transmit jitter transfer function peaking2 TTIP0/TRING0 output impedance TTIP0 Zout Test Conditions PRBS(23) pattern. Transmit input data and clock have no input jitter. Receive line input is all zeros. PRBS(23) data. Input jitter as shown in Figure 26. parallel mode 10% - 90% 0 m cable length 1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to production testing. 2. Not production tested, guaranteed by design and other correlation factors. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 40 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Table 31 6.0 Test Specifications Receive Timing Characteristics Parameter Receive serial output clock frequency Sym RSOCLKp RSOCLKn Min Typ1 Max Unit — 155.5 2 — MHz Receive serial output clock duty cycle RSOCLKdc 45 — 55 % Receive serial output clock and data rise/fall time2 — — — 1.2 ns RSOCLKP/RSOCLKN to RPOS/RNEG propagation delay RSOCLKpd -0.5 — 1.5 ns Receive parallel output clock frequency RPOCLK — 19.44 — MHz Receive parallel output clock duty cycle RPOCPdc 45 — 55 % Receive parallel output data & clock rise/fall time RPOCLKt 2 — 5 ns RPOCLKpd 0 — 7 ns RPOCLK to ROFP propagation delay ROFPpd 0 — 4 ns Reference Input Clock into XTALIN pin (TTL) REFCLK — 19.44 — MHz -100 — 100 ppm RPOCLK to RPOD propagation delay Reference Clock Offset from Nominal Test Conditions 20% - 80%. The REFCLK replaces the crystal 1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to production testing. 2. Not production tested, guaranteed by design and other correlation factors. Figure 20 Receive Serial Output Data Timing RSOCLKP RSOCLKN RSOCLKPD RPOS RNEG Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 41 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Figure 21 6.0 Test Specifications Receive Parallel Output Data Timing RPOCLK1 RPOCLKPD RPOD ROFPPD ROFP 1. Signals shown in HW Mode. In SW Mode (HWSEL=1), the RPOCLK polarity can be inverted. Refer to Table 8 on page 28 for details. Table 32 Receive Analog Characteristics (Sheet 1 of 2) Parameter Note Min Typ1 Max Unit Test Conditions — 15 — — dB BER=1E-12. PRBS (23) data. CMI encoded. Input white noise = 5 mV RMS max. Assert — 20 — sec No data transition. Default LOS setting. De-assert — 187.5 — sec No LOS events. Default LOS settings. Assert 18 — — dB De-assert 17 — — dB Attenuation measured at 78 MHz, CMI, 75 load. 12.7 dB cable loss plus remaining flat loss. HYS 1.0 — 4.0 dB — — 0.01 UIrm s (intrinsic jitter SONET spec) 12 kHz 1.3 MHz — — 0.1 UIpp Receive jitter generation2 500 Hz 1.3 MHz — — 0.5 UIpp 65 kHz 1.3 MHz — — 0.075 UIpp DC - 230 kHz — — 0.12 dB 0.1 Hz - 19.3 Hz 39 — — UIpp 500 Hz 6.5 kHz 1.5 — — UIpp 65 kHz - 0.15 — — UIpp End to end loss budget (coax)1 LOS - fiber LOS Thresholds - Coax LOS hysteresis - coax Receive jitter generation2 (intrinsic jitter SDH spec) Receive jitter transfer peaking2 Receive jitter tolerance2 Measured from the level where LOS is asserted. PRBS(23) data. CMI encoded PRBS(23) at RTIP/RRING with no data jitter. Transmit input = all zeros Refer to Figure 27 and Table 35. PRBS(23) Data. jitter transfer fuction shown in Figure 28. BER=1E-10. Input jitter as the max. tolerance curve shown in Figure 26 1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to production testing. 2. Not production tested, guaranteed by design and other correlation factors. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 42 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Table 32 6.0 Test Specifications Receive Analog Characteristics (Sheet 2 of 2) Note Min Typ1 Max Unit PLL nominal center frequency Fnom — 155.52 — MHz PLL capture range Fcap -20 — +20 ppm PLL track range Ftrack -20 — +20 ppm PLL lock time Tlock — 100 — s PRBS(23) pattern, from data applied at RTIP/ RRING. Device in fiber optic mode. — 500 — bits From data applied 4 — — k Differential resistance Parameter Equalizer adaptation time Line input impedance (RTIP and RRING) RIN Test Conditions 1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to production testing. 2. Not production tested, guaranteed by design and other correlation factors. Table 33 Serial Control Timing Parameter Sym Min Typ Max Unit Rise/Fall time - All TTL outputs tRF — — 25 ns SDI to SCLK setup time tDC 5 — — ns SCLK to SDI hold time tCDH 5 — — ns tCL 120 — — ns SCLK low time SCLK high time tCH 120 — — ns SCLK rise and fall time tR, tF — — 25 ns CS to SCLK setup time tCC 5 — — ns SCLK to CS hold time tCCH 5 — — ns CS inactive time tCWH 5 — — ns SCLK to SDO valid tCDV 0 — 20 ns SCLK falling edge to SDO high Z tCDZ 0 — 20 ns tCZ 0 — 20 ns CS rising edge to SDO high Z Test Conditions1 Load 1.6 mA, 50 pF 1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to production testing. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 43 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Figure 22 6.0 Test Specifications Microprocessor Input Timing Diagram CS tCC tCCH tCH tCL SCLK tDC SDI tCDH R/W CONTROL BYTE Figure 23 tCWH DATA BYTE Microprocessor Output Timing Diagram CS tCZ SCLK tCDV SDO High Z Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver tCDZ High Z Page 44 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Figure 24 6.0 Test Specifications CMI Encoded Zero per G.703 and STS-3 T = 6.43 ns V 0.60 0.55 0.50 0.45 0.40 (Note 1) (Note 1) 1 ns 0.1 ns 1.608 ns 1 ns 0.1 ns 0.35 ns Nominal zero level (Note 2) 0.35 ns Nominal pulse 1.608 ns 1 ns 0.1 ns 0.1 ns 0.05 –0.05 1 ns –0.40 –0.45 –0.50 –0.55 –0.60 1 ns 1 ns 1.608 ns 1.608 ns (Note 1) (Note 1) T1818930-92 Negative transitions Positive transition at mid-unit interval Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 45 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Figure 25 6.0 Test Specifications CMI Encoded One per G.703 and STS-3 T = 6.43 ns V 0.60 0.55 0.50 0.45 0.40 (Note 1) (Note 1) 1 ns 0.1 ns Nominal pulse 0.1 ns (Note 4) 1 ns 0.5 ns 0.5 ns Nominal 0.05 zero level – 0.05 (Note 2) 3.215 ns 3.215 ns 1.2 ns – 0.40 – 0.45 – 0.50 – 0.55 – 0.60 1.2 ns 1 ns 1 ns 1.608 ns 1.608 ns (Note 1) Negative transition Positive transition T1818940-92 Note: The maximum “steady state” amplitude should not exceed the 0.55 V limit. Overshoots and other transients are permitted to fall into the dotted area. Note: With the signal applied, the vertical position of the trace can be adjusted with the objective of meeting the limits of the masks. Any such adjustment should be the same for both masks and should not exceed 0.05 V. Table 34 Jitter Tolerance Template (in UIpp) Frequency OC3 STM1 10 Hz 15 — 19.3 Hz — 39 30 Hz 15 — 300 Hz 1.5 — 500 Hz — 1.5 6.5 kHz 1.5 1.5 65 kHz 0.15 0.15 1.3 MHz 0.15 0.15 Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 46 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Figure 26 6.0 Test Specifications Jitter Tolerance (template Values from Table 34) 100 Input Jitter [UI(pk-pk)] Measured Data OC3 Template 10 STM1 Template 1 0.1 10Hz 1Hz Table 35 100Hz 1KHz 10KHz Frequency 100KHz 1MHz 10MHz Jitter Generation Signal f11 f21 OC3 12 kHz 1.3 MHz STM1 Measured Jitter 0.01 UI rms 0.1 UIpp 500 Hz 1.3 MHz 1.5 UIpp 65 kHz 1.3 MHz 0.075 UIpp 1. See Figure 27 on page 48 for definition of cut-off frequencies. Table 36 Jitter Transfer Signal f11 A11 Unit OC3 230 kHz 0.4 dB STM1 230 kHz 0.4 dB 1. See Figure 28 on page 48 for definition of cut-off frequencies and gain. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 47 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 6.0 Test Specifications Figure 27 Jitter Generation Measurement Filter Characteristics Figure 28 Typical Coax Jitter Transfer 10 A1 0 -10 Gain Coax mode LXT6155 spec. -20 ITU G.825 template -30 -40 1 10 100 1000 10000 Frequency [Hz] Note: 100000 1000000 1000000 0 f1 Measured with the device in remote loopback. Data reflects total jitter in both Tx and Rx path. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 48 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Figure 29 6.0 Test Specifications Typical Fiber Jitter Transfer 10 A1 0 Gain -10 Fiber mode LXT6155 ATM Transceiver spec. ITU G.825 spec. -20 -30 -40 1 10 100 1000 10000 Frequency (Hz) 100000 1000000 1E+07 f1 B0074-02 Note: Measured with the device in remote loopback. Data reflects total jitter in both Tx and Rx path. Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 49 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 7.0 Mechanical Specifications 7.0 Mechanical Specifications Figure 30 LXT6155 Transceiver LE Package Specification D D1 e/ for sides with even number of pins 2 e E1 for sides with odd number of pins E 3 L1 A2 A  A1 B L Table 37 3 LXT6155 Transceiver LE Package Specification (64-Pin Low-Profile Quad Flat Pack) Inches Millimeters Dim Min Max Min Max A — .063 — 1.60 A1 .002 .006 0.05 0.15 A2 .053 .057 1.35 1.45 B .007 .011 0.17 0.27 1 12.00 BSC D1 1 0.394 BSC 10.00 BSC1 E 0.472 BSC1 12.00 BSC1 1 D 0.472 BSC 1 E1 0.394 BSC 10.00 BSC1 e 0.020 BSC1 0.50 BSC1 L 0.018 L1 0.030 0.45 0.75 1.00 REF 0.039 REF 3 11° 13° 11° 13° q 0° 7° 0° 7° 1. BSC—Basic Spacing between Centers Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver Page 50 LXT6155 Transceiver Datasheet 249612, Revision 7.0 14 Feburary 2007 Contact Information Contact Information Cortina Systems, Inc. 840 W. California Ave Sunnyvale, CA 94086 408-481-2300 sales@cortina-systems.com apps@cortina-systems.com www.cortina-systems.com This document contains information proprietary to Cortina Systems, Inc. Any use or disclosure, in whole or in part, of this information to any unauthorized party, for any purposes other than that for which it is provided is expressly prohibited except as authorized by Cortina Systems, Inc. in writing. Cortina Systems, Inc. reserves its rights to pursue both civil and criminal penalties for copying or disclosure of this material without authorization. *Other names and brands may be claimed as the property of others. © Cortina Systems, Inc. 2007 Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver End of Document Page 51
WJLXT6155LE.B5-866255 价格&库存

很抱歉,暂时无法提供与“WJLXT6155LE.B5-866255”相匹配的价格&库存,您可以联系我们找货

免费人工找货