19-2103; Rev 1; 10/06
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps
General Description
The LMX321/LMX358/LMX324 are single/dual/quad, low-cost, low-voltage, pin-to-pin compatible upgrades to the LMV321/LMV358/LMV324 family of general purpose op amps. These devices offer rail-to-rail outputs and an input common-mode range that extends below ground. These op amps draw only 105µA of quiescent current per amplifier, operate from a single +2.3V to +7V supply, and drive 2k Ω resistive loads to within 40mV of either rail. The LMX321/LMX358/LMX324 are unity-gain stable with a 1.3MHz gain-bandwidth product capable of driving capacitive loads up to 400pF. The combination of low voltage, low cost, and small package size makes these amplifiers ideal for portable/battery-powered equipment. The LMX321 single op amp is available in ultra-small 5pin SC70 and space-saving 5-pin SOT23 packages. The LMX358 dual op amp is available in the tiny 8-pin SOT23 or the 8-pin µMAX® package. The LMX324 quad op amp is available in 14-pin TSSOP and SO packages.
Features
♦ Upgrade to LMV321/LMV358/LMV324 Family ♦ Single +2.3V to +7V Supply Voltage Range ♦ Available in Space-Saving Packages 5-Pin SC70 (LMX321) 8-Pin SOT23 (LMX358) 14-Pin TSSOP (LMX324) ♦ 1.3MHz Gain-Bandwidth Product ♦ 105µ A Quiescent Current per Amplifier (VCC = +2.7V) ♦ No Phase Reversal for Overdriven Inputs ♦ No Crossover Distortion ♦ Rail-to-Rail Output Swing ♦ Input Common-Mode Voltage Range: VEE - 0.2V to VCC - 0.8V ♦ Drives 2kΩ Resistive Loads
LMX321/LMX358/LMX324
Applications
Cellular Phones Laptops Low-Power, Low-Voltage Applications Portable/Battery-Powered Equipment Cordless Phones Active Filters
PART LMX321AXK-T LMX321AUK-T LMX358AKA-T LMX358ASA LMX358AUA-T LMX324ASD LMX324AUD
Ordering Information
TEMP RANGE -40°C to +125°C -40°C to +125°C -40°C to +125°C -40°C to +125°C -40°C to +125°C -40°C to +125°C -40°C to +125°C PINPACKAGE 5 SC70-5 5 SOT23-5 8 SOT23-8 8 SO 8 µMAX-8 14 SO 14 TSSOP PKG CODE X5-1 U5-1 K8-2 S8-2 U8-1 S14-4 U14-1
Selector Guide appears at end of data sheet.
Pin Configurations
TOP VIEW
IN+ 1 VEE 2 IN- 3 4 OUT 5 VCC OUT1 1 IN1- 2 IN1+ 3 VEE 4 8 VCC 7 OUT2 6 IN25 IN2+ OUT1 1 IN1- 2 IN1+ 3 VCC 4 IN2+ 5 IN2- 6 OUT2 7 14 OUT4 13 IN412 IN4+ 11 VEE 10 IN3+ 9 IN38 OUT3
LMX321
LMX358
SC70-5/SOT23-5
LMX324
SOT23-8/SO/µMAX
TSSOP/SO
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps LMX321/LMX358/LMX324
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) ....................................-0.3V to +8V Differential Input Voltage (VIN+ - VIN-) ........................VEE to VCC OUT_ to VEE ...............................................-0.3V to (VCC + 0.3V) Output Short-Circuit Duration OUT_ Shorted to VCC or VEE ..................................Continuous Continuous Power Dissipation (TA = +70°C) 5-Pin SC70-5 (derate 3.1mW/°C above +70°C)...........247mW 5-Pin SOT23-5 (derate 7.1mW/°C above +70°C) ........571mW 8-Pin SOT23-8 (derate 7.52mW/°C above +70°C) ......602mW 8-Pin SO (derate 5.9mW/°C above +70°C)..................471mW 8-Pin µMAX (derate 4.5mW/°C above +70°C) .............362mW 14-Pin TSSOP (derate 9.1mW/°C above +70°C) .........727mW 14-Pin SO (derate 8.3mW/°C above +70°C)................667mW Operating Temperature Range .........................-40°C to +125°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VCC = +2.7V, VEE = 0V, VOUT = VCC/2, VCM = 1V, RL > 1MΩ, TA = +25°C, unless otherwise noted.)
PARAMETER DC CHARACTERISTICS Input Offset Voltage Input Offset Voltage Average Drift Input Bias Current Input Offset Current Common-Mode Rejection Ratio Power-Supply Rejection Ratio Input Common-Mode Voltage Range Large-Signal Voltage Gain VOS TCVOS IB IOS CMRR PSRR VCM AVOL -0.2V < VCM < 1.8V 2.3V < VCC < 7V, VOUT = 1V For CMRR > 72dB Limit Typ VCC - VOH VOL VCC - VOH VOL 72 82 -0.2 -0.2 20 120 12 10 40 25 105 210 420 1 1.3 64 24 f = 1kHz f = 1kHz 66 0.13 50 40 110 60 150 300 600 V/µs MHz degrees dB nV/√Hz pA/√Hz µA mV 1 6 18 1 92 96 +1.8 +1.9 50 8 6 mV µV/oC nA nA dB dB V V/mV SYMBOL CONDITIONS MIN TYP MAX UNITS
RL = 2kΩ to VEE, 0.3V < VOUT < 2.4V RL = 10kΩ to 1.35V
Output-Voltage Swing
VOUT RL = 2kΩ to 1.35V LMX321 (single)
Supply Current AC CHARACTERISTICS Slew Rate Gain-Bandwidth Product Phase Margin Gain Margin Input Noise-Voltage Density Input Current-Noise Density
ICC
LMX358 (dual) LMX324 (quad)
SR GBW φM GM en in
1V step Input CL = 200pF
2
_______________________________________________________________________________________
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps
ELECTRICAL CHARACTERISTICS
(VCC = +2.7V, VEE = 0V, VOUT = VCC/2, VCM = 1V, RL > 1MΩ, TA = -40°C to +125°C, unless otherwise noted.) (Note 1)
PARAMETER DC CHARACTERISTICS Input Offset Voltage Input Bias Current Input Offset Current Common-Mode Rejection Ratio Power-Supply Rejection Ratio Input Common-Mode Voltage Range Large-Signal Voltage Gain VOS IB IOS CMRR PSRR VCM AVOL -0.1 < VCM < +1.7V 2.3V < VCC < 7V, VOUT = 1V For CMRR > 60dB Limit Typ VCC - VOH VOL VCC - VOH VOL 60 75 -0.1 -0.1 10 130 50 150 70 180 360 720 µA mV +1.7 +1.8 9 70 15 mV nA nA dB dB V V/mV SYMBOL CONDITIONS MIN TYP MAX UNITS
LMX321/LMX358/LMX324
RL = 2kΩ to VEE, 0.3V < VOUT < 2.4V RL = 10kΩ to 1.55V
Output-Voltage Swing
VOUT RL = 2kΩ to 1.35V LMX321 (single)
Supply Current
ICC
LMX358 (dual) LMX324 (quad)
ELECTRICAL CHARACTERISTICS
(VCC = +5V, VEE = 0V, VOUT = VCC/2, VCM = 2V, RL > 1MΩ, TA = +25°C, unless otherwise noted.)
PARAMETER DC CHARACTERISTICS Input Offset Voltage Input Offset Voltage Average Drift Input Bias Current Input Offset Current Input Differential Clamp Voltage Common-Mode Rejection Ratio Power-Supply Rejection Ratio Input Common-Mode Voltage Range Large-Signal Voltage Gain VOS TCVOS IB IOS VCLAMP CMRR PSRR VCM AVOL Force 100µA into IN+, IN- = GND measure VIN+ - VIN-, Figure 1 -0.2 < VCM < +4.1V 2.3V < VCC < 7V, VOUT = 1V, VCM = 1V For CMRR > 72dB RL = 2kΩ to VEE, 0.3V < VOUT < 4.7V Limit Typ 72 82 -0.2 -0.2 40 200 1 6 18 1 3.1 92 96 +4.1 +4.2 50 8 6 mV µV/oC nA nA V dB dB V V/mV SYMBOL CONDITIONS MIN TYP MAX UNITS
_______________________________________________________________________________________
3
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps LMX321/LMX358/LMX324
ELECTRICAL CHARACTERISTICS (continued)
(VCC = +5V, VEE = 0V, VOUT = VCC/2, VCM = 2V, RL > 1MΩ, TA = +25°C, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS RL = 10kΩ to 2.5V Output-Voltage Swing VOUT RL = 2kΩ to 2.5V Output Short-Circuit Current ISC Sourcing, VOUT = 0V Sinking, VOUT = 5V LMX321 (single) Supply Current AC CHARACTERISTICS Slew Rate Gain-Bandwidth Product Phase Margin Gain Margin Input Noise-Voltage Density Input Noise-Current Density SR GBW φM GM en in f = 1kHz f = 1kHz 3V step input CL = 200pF 1 1.3 65 25 65 0.13 V/µs MHz degrees dB nV/√Hz pA/√Hz ICC LMX358 (dual) LMX324 (quad) VCC - VOH VOL VCC - VOH VOL 5 10 MIN TYP 20 12 65 40 25 28 120 240 480 170 340 680 µA MAX 60 40 130 80 mA mV UNITS
ELECTRICAL CHARACTERISTICS
(VCC = +5V, VEE = 0V, VOUT = VCC/2, VCM = 2V, RL > 1MΩ, TA = -40°C to +125°C, unless otherwise noted.) (Note 1)
PARAMETER DC CHARACTERISTICS Input Offset Voltage Input Bias Current Input Offset Current Common-Mode Rejection Ratio Power-Supply Rejection Ratio Input Common-Mode Voltage Range Large-Signal Voltage Gain VOS IB IOS CMRR PSRR VCM AVOL -0.1 < VCM < +4.0V 2.3V < VCC < 7V, VOUT = 1V, VCM = 1V For CMRR > 63dB Limit Typ VCC - VOH VOL VCC - VOH VOL 63 75 -0.1 -0.1 20 170 70 190 90 210 420 840 µA mV +4.0 +4.1 9 70 15 mV nA nA dB dB V V/mV SYMBOL CONDITIONS MIN TYP MAX UNITS
RL = 2kΩ to VEE, 0.3V < VOUT < 4.7V RL = 10kΩ to 2.5V
Output-Voltage Swing
VOUT RL = 2kΩ to 2.5V LMX321 (single)
Supply Current
ICC
LMX358 (dual) LMX324 (quad)
Note 1: Specifications are 100% tested at TA = +25°C (exceptions noted). All temperature limits are guaranteed by design.
4
_______________________________________________________________________________________
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps LMX321/LMX358/LMX324
Typical Operating Characteristics
(TA = +25°C, VEE = 0V, unless otherwise noted.)
SUPPLY CURRENT PER AMPLIFIER vs. SUPPLY VOLTAGE
LMX321 toc01
INPUT BIAS CURRENT vs. TEMPERATURE
LMX321 toc02
INPUT BIAS CURRENT vs. DIFFERENTIAL INPUT VOLTAGE
300 INPUT BIAS CURRENT (µA) 200 100 0 -100 -200 -300 -400 -5 -4 -3 -2 -1 0 1 2 3 4 5 VCC = 5V
LMX321 toc03
160 SUPPLY CURRENT PER AMPLIFIER (µA) 140 120 100 80 60 40 20 0 0 1 2 3 4 5 6 TA = +25°C TA = -40°C TA = +85°C TA = +125°C
-10 -11 INPUT BIAS CURRENT (nA) -12 -13 -14 -15 -16 -17 -18 -19 -20 VCC = +5V, VIN = VCC/2
400
7
-40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C)
SUPPLY VOLTAGE (V)
DIFFERENTIAL INPUT VOLTAGE (V)
SOURCE CURRENT vs. OUTPUT VOLTAGE
LMX321 toc04
SOURCE CURRENT vs. OUTPUT VOLTAGE
LMX321 toc05
SINK CURRENT vs. OUTPUT VOLTAGE
VCC = 2.7V
LMX321 toc06
100
VCC = 2.7V
100 VCC = 5V 10
100
SOURCE CURRENT (mA)
SOURCE CURRENT (mA)
1
1
SINK CURRENT (mA) 0.01 0.1 1 10
10
10
1
0.1
0.1
0.1
0.01 0.01 0.1 1 10 OUTPUT VOLTAGE REFERENCED TO VCC (V)
0.01 OUTPUT VOLTAGE REFERENCED TO VCC (V)
0.01 0.001
0.01
0.1
1
10
OUTPUT VOLTAGE REFERENCED TO VEE (V)
SINK CURRENT vs. OUTPUT VOLTAGE
LMX321 toc07
OUTPUT VOLTAGE SWING vs. SUPPLY VOLTAGE
LMX321 toc08
OUTPUT VOLTAGE SWING vs. SUPPLY VOLTAGE
RL = 10kΩ OUTPUT VOLTAGE SWING (mV) 30 25 20 15 10 NEGATIVE SWING (VOL) 5 7 2 3 4 5 6 7 POSITIVE SWING (VCC - VOH)
LMX321 toc09
100
VCC = 5V
100 RL = 2kΩ 90 OUTPUT VOLTAGE SWING (mV) 80 70 60 50 40 30 NEGATIVE SWING (VOL) 2 3 4 5 6 POSITIVE SWING (VCC - VOH)
35
SINK CURRENT (mA)
10
1
0.1
0.01 0.001
20 0.01 0.1 1 10 OUTPUT VOLTAGE REFERENCED TO VEE (V) SUPPLY VOLTAGE (V)
SUPPLY VOLTAGE (V)
_______________________________________________________________________________________
5
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps LMX321/LMX358/LMX324
Typical Operating Characteristics (continued)
(TA = +25°C, VEE = 0V, unless otherwise noted.)
INPUT VOLTAGE NOISE vs. FREQUENCY
600 550 500 450 400 350 300 250 200 150 100 50 0 1 10
LMX321 toc10
INPUT CURRENT NOISE vs. FREQUENCY
LMX321 toc11
CROSSTALK REJECTION vs. FREQUENCY
-50 CROSSTALK REJECTION (dB) -70 -90 VCC = 5V, RL = 5kΩ
LMX321 toc12
VCC = 2.7V TO 5V, VCM = VCC/2
4.0 INPUT CURRENT NOISE (pA/√Hz) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0
VCC = 2.7V TO 5V, VCM = VCC/2
INPUT VOLTAGE NOISE (nV/√Hz)
-110 -130 -150
100
1k
10k
100k
1
10
100
1k
10k
100k
100
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
FREQUENCY (Hz)
FREQUENCY (Hz)
POWER-SUPPLY REJECTION RATIO vs. FREQUENCY
LMX321 toc13
INPUT OFFSET VOLTAGE vs. COMMON-MODE VOLTAGE
LMX321 toc14
INPUT OFFSET VOLTAGE vs. COMMON-MODE VOLTAGE
VCC = 2.5V, VEE = -2.5V
LMX321 toc15 LMX321 toc18
0 VCC = 2.7V TO 5V -20 -40 PSRR-
0.10 VCC = 1.35V, VEE = -1.35V 0.05 0 ∆VOS (mV)
0.15 0.10 0.05 ∆VOS (mV) 0 -0.05 -0.10 -0.15 -0.20
PSRR (dB)
-60 -80 -100 -120 100 1k 10k FREQUENCY (Hz)
PSRR+
-0.05 -0.10 -0.15 -0.20
100k
1M
-1.7
-1.2
-0.7
-0.2
0.3
0.8
-2.8 -2.3 -1.8 -1.3 -0.8 -0.3 0.2 0.7 1.2 1.7 2.2 COMMON-MODE VOLTAGE (V)
COMMON-MODE VOLTAGE (V)
INPUT OFFSET VOLTAGE vs. OUTPUT VOLTAGE
LMX321 toc16
INPUT OFFSET VOLTAGE vs. OUTPUT VOLTAGE
VCC = +1.35V, VEE = -1.35V RL = 600Ω 75 INPUT OFFSET VOLTAGE (mV) 50 RL = 2kΩ RL = 10kΩ GAIN (dB) 25 0 -25 -50 -75 100
LMX321 toc17
GAIN AND PHASE vs. FREQUENCY and RESISTIVE LOAD
50 40 30 20 10 0 -10 -20 VCC = 2.5V, VEE = -2.5V CL = 0pF, RL TO VEE AVCL = 60dB, VOUT = 0V RL = 100kΩ 10k 100k 1M 10M RL = 600Ω RL = 100kΩ 100 80 60 40 20 0 -20 -40 FREQUENCY (Hz) PHASE MARGIN (degrees)
100 75 INPUT OFFSET VOLTAGE (µV) 50 25 0 -25 -50 -75 -100 -3 -2 -1 0 RL = 10kΩ
VCC = 2.5V, VEE = -2.5V RL = 600Ω RL = 2kΩ
100
1
2
3
-1.5
-1.0
-0.5
0
0.5
1.0
1.5
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
6
_______________________________________________________________________________________
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps LMX321/LMX358/LMX324
Typical Operating Characteristics (continued)
(TA = +25°C, VEE = 0V, unless otherwise noted.)
GAIN AND PHASE vs. FREQUENCY and RESISTIVE LOAD
50 40 30 GAIN (dB) 20 10 0 -10 -20 10k 100k 1M 10M FREQUENCY (Hz) RL = 600Ω VCC = 1.35V, VEE = -1.35V CL = 0, RL TO VEE AVCL = 60dB, VOUT = 0V RL = 100kΩ RL = 100kΩ
LMX321 toc19
GAIN AND PHASE vs. FREQUENCY AND CAPACITIVE LOAD
100 80 60 40 20 0 -20 -40 50 40 30 PHASE (degrees) GAIN (dB) 20 10 0 -10 -20 10k 100k 1M 10M FREQUENCY (Hz) VCC = 2.5V, VEE = -2.5V RL = 600Ω TO VEE AVCL = 60dB, VOUT = 0V CL = 0 CL = 500pF CL = 1nF 20 0 -20 -40
LMX321 toc20
GAIN AND PHASE vs. FREQUENCY AND CAPACITIVE LOAD
100 80 60 40 50 40 30 GAIN (dB) 20 10 0 -10 -20 CL = 1nF CL = 500pF CL = 100pF VCC = 2.5V, VEE = -2.5V RL = 100kΩ TO VEE AVCL = 60dB, VOUT = 0V 10k 100k 0 -20 CL = 0 1M 10M -40
LMX321 toc21
100 80 60 40 20
RL = 600Ω
CL = 0 CL = 100pF CL = 500pF CL = 1nF
PHASE (degrees)
FREQUENCY (Hz)
GAIN AND PHASE vs. FREQUENCY AND TEMPERATURE
50 40 TA = -40°C PHASE (degrees) 30 GAIN (dB) 20 10 0 -10 -20 VCC = 2.5V, VEE = -2.5V RL = 2kΩ TO VEE AVCL = 60dB, VOUT = 0V 10k 100k 1M 10M FREQUENCY (Hz) TA = +25°C TA = +85°C TA = +125°C TA = +85°C TA = -25°C 60 40 20 0 -20 -40
LMX321 toc22
CAPACITIVE-LOAD STABILITY
MAXLMX toc23
SLEW RATE vs. SUPPLY VOLTAGE
RL = 10kΩ VIN = 1V STEP, AVCL = +1V/V RISING EDGE
LMX321 toc24
100
TA = -40°C TA = +25°C 80 LOAD CAPACITANCE (pF)
4000 3500 UNSTABLE 3000 2500 2000 1500 1000 STABLE 500 0 100 1k 10k
1.10 1.08 SLEW RATE (V/µs) 1.06 1.04 1.02 1.00 0.98 0.96
FALLING EDGE
100k
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
LOAD RESISTANCE (Ω)
SUPPLY VOLTAGE (V)
NONINVERTING LARGE-SIGNAL RESPONSE
LMX321 toc25
NONINVERTING SMALL-SIGNAL RESPONSE
LMX321 toc26
TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY
LMX321 toc27
10
RL = 2kΩ VCC = 5V VIN 1V/div VIN 100mV/div
RL = 2kΩ VCC = 5V 1 THD+N (%) VCC = 2.7V, AV = +10, VOUT = 1VP-P VCC = 5V, AV = +10, VOUT = 2.5VP-P 0.1
VOUT 1V/div
VOUT 100mV/div
0.01
VCC = 2.7V, AV = +1, VOUT = 1VP-P VCC = 5V, AV = +1, VOUT = 2.5VP-P
0.001 1µs/div 1µs/div 10 100 1k FREQUENCY (Hz) 10k 100k
_______________________________________________________________________________________
7
PHASE (degrees)
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps LMX321/LMX358/LMX324
Typical Operating Characteristics (continued)
(TA = +25°C, VEE = 0V, unless otherwise noted.)
SHORT-CIRCUIT CURRENT vs. TEMPERATURE (SINKING)
LMX321 toc28
SHORT-CIRCUIT CURRENT vs. TEMPERATURE (SOURCING)
LMX321 toc29
OUTPUT IMPEDANCE vs. FREQUENCY
VCC = 2.7V TO 5V AVCL = +1V/V OUTPUT IMPEDANCE (Ω) 100
LMX321 toc30
40 SHORT-CIRCUIT CURRENT (mA) 35 30 25 20 15 10 5 0 VCC = 5V
40 SHORT-CIRCUIT CURRENT (mA) 35 30 25 20 15 10 5 0 VCC = 2.7V VCC = 5V
1000
VCC = 2.7V
10
1
0.01
0.001 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz)
-40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C)
Pin Description
PIN NAME LMX321 1 2 3 4 5 — — — — — — — — — — — — LMX358 — 4 — — 8 1 2 3 7 6 5 — — — — — — LMX324 — 11 — — 4 1 2 3 7 6 5 8 9 10 14 13 12 IN+ VEE INOUT VCC OUT1 IN1IN1+ OUT2 IN2IN2+ OUT3 IN3IN3+ OUT4 IN4IN4+ Noninverting Amplifier Input Negative Supply. Connect to ground for single-supply operation. Inverting Amplifier Input Output Positive Supply Output for Amplifier 1 Inverting Input for Amplifier 1 Noninverting Input for Amplifier 1 Output for Amplifier 2 Inverting Input for Amplifier 2 Noninverting Input for Amplifier 2 Output for Amplifier 3 Inverting Input for Amplifier 3 Noninverting Input for Amplifier 3 Output for Amplifier 4 Inverting Input for Amplifier 4 Noninverting Input for Amplifier 4 FUNCTION
8
_______________________________________________________________________________________
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps LMX321/LMX358/LMX324
3.5kΩ RL CL
3.5kΩ
LMX321 LMX358 LMX324
Figure 1. Input Protection Circuit
Figure 3. Capacitive-Load-Driving Circuit
VIN 2V/div 2.5V
VIN 100mV/div
VCC = 5V, VEE = 0V, CL = 2.2nF, RL = 2kΩ 2.6V
2.4V
VOUT 1V/div
VOUT 100mV/div
2.6V
-2.5V 200µs/div VCC = 2.5V, VEE = -2.5V, AVCL = 2V/V
4µs/div
2.4V
Figure 2. Rail-to-Rail Output Swing
Figure 4. Output With Excessive Capacitive Load
Detailed Description
Input Protection Circuit
The LMX321/LMX358/LMX324’s inputs are protected from large differential input voltages by internal 3.5kΩ series resistors and back-to-back triple diode stacks across the inputs (Figure 1). For differential input voltages (much less than 1.8V), input resistance is typically 3MΩ. For differential input voltages greater than 1.8V, input resistance is around 7kΩ, and the input bias current can be approximated by the following equation: IBIAS = (VDIFF - 1.8V) / 7kΩ In the region where the differential input voltage approaches 1.8V, input resistance decreases exponentially from 3MΩ to 7kΩ as the diode block begins conducting. Inversely, the bias current increases with the same curve.
Rail-to-Rail Output Stage
The LMX321/LMX358/LMX324 drive 2kΩ loads and still typically swing within 40mV of the supply rails. Figure 2 shows the output voltage swing of the LMX321 configured with AVCL = +2V/V.
Driving Capacitive Loads
Driving a capacitive load can cause instability in many op amps, especially those with low quiescent current. The LMX321/LMX358/LMX324 are unity-gain stable for a range of capacitive loads to above 400pF. Figure 4 shows the response of the LMX321 with an excessive capacitive load. Adding a series resistor between the output and the load capacitor (Figure 5) improves the circuit’s response by isolating the load capacitance from the op amp’s output.
_______________________________________________________________________________________
9
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps LMX321/LMX358/LMX324
RISO CL LMX321 LMX358 LMX324
VCC 2V/div
Figure 5. Capacitive-Load-Driving Circuit With Isolation Resistor
VOUT 1V/div
Applications Information
Power-Up
The LMX321/LMX358/LMX324 outputs typically settle within 10µs after power-up. Figure 6 shows the output voltage on power-up and power-down.
4µs/div
Figure 6. Power-Up/Power-Down Waveform
Power Supplies and Layout
The LMX321/LMX358/LMX324 operate from a single +2.3V to +7V power supply. Bypass the power supply with a 0.1µF capacitor to ground as close to VCC as possible.
Good layout techniques optimize performance by minimizing the amount of stray capacitance at the op amp’s inputs and outputs. Place external components close to the op amp to minimize trace lengths and stray capacitance.
Selector Guide
PART LMX321AXK-T LMX321AUK-T LMX358AKA-T LMX358ASA LMX358AUA-T LMX324ASD LMX324AUD AMPLIFIERS PER PACKAGE 1 1 2 2 2 4 4 TOP MARK ACP ADSQ AAIR — — — —
Chip Information
LMX321 TRANSISTOR COUNT: 88 LMX358 TRANSISTOR COUNT: 175 LMX324 TRANSISTOR COUNT: 349 PROCESS: Bipolar
10
______________________________________________________________________________________
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
SC70, 5L.EPS
LMX321/LMX358/LMX324
PACKAGE OUTLINE, 5L SC70
21-0076
E
1
1
______________________________________________________________________________________
11
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps LMX321/LMX358/LMX324
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
SOT-23 5L .EPS
12
______________________________________________________________________________________
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
SOT23, 8L .EPS
LMX321/LMX358/LMX324
______________________________________________________________________________________
13
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps LMX321/LMX358/LMX324
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
8LUMAXD.EPS
4X S
8
8
INCHES DIM A A1 A2 b MIN 0.002 0.030 MAX 0.043 0.006 0.037
MILLIMETERS MAX MIN 0.05 0.75 1.10 0.15 0.95
Ø0.50±0.1
E
H
0.6±0.1
c D e E H L
1
1
0.6±0.1
α
S
D
BOTTOM VIEW
0.014 0.010 0.007 0.005 0.120 0.116 0.0256 BSC 0.120 0.116 0.198 0.188 0.026 0.016 6° 0° 0.0207 BSC
0.25 0.36 0.13 0.18 2.95 3.05 0.65 BSC 2.95 3.05 4.78 5.03 0.41 0.66 0° 6° 0.5250 BSC
TOP VIEW
A2
A1
A
c e b L
α
SIDE VIEW
FRONT VIEW
PROPRIETARY INFORMATION TITLE:
PACKAGE OUTLINE, 8L uMAX/uSOP
APPROVAL DOCUMENT CONTROL NO. REV.
21-0036
1 1
J
14
______________________________________________________________________________________
Single/Dual/Quad, General-Purpose, Low-Voltage, Rail-to-Rail Output Op Amps
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
TSSOP4.40mm.EPS
LMX321/LMX358/LMX324
PACKAGE OUTLINE, TSSOP 4.40mm BODY
21-0066
I
1 1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15 © 2007 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.