0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX1187AEUI

MAX1187AEUI

  • 厂商:

    MAXIM(美信)

  • 封装:

  • 描述:

    MAX1187AEUI - 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range - Maxim Integrated...

  • 数据手册
  • 价格&库存
MAX1187AEUI 数据手册
19-2675; Rev 1; 1/03 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range General Description The MAX1179/MAX1187/MAX1189 16-bit, low-power, successive-approximation analog-to-digital converters (ADCs) feature automatic power-down, a factorytrimmed internal clock, and a 16-bit wide parallel interface. The devices operate from a single +4.75V to +5.25V analog supply and feature a separate digital supply input for direct interface with +2.7V to +5.25V digital logic. The MAX1179 accepts a bipolar input voltage range of ±5V. The MAX1187 accepts an analog input voltage range from 0 to +10V, while the MAX1189 accepts a bipolar analog input voltage range of ±10V. All devices consume only 23mW at a sampling rate of 135ksps when using an external reference and 29mW when using the internal +4.096V reference. AutoShutdown™ reduces supply current to 0.4mA at 10ksps. The MAX1179/MAX1187/MAX1189 are ideal for high-performance, battery-powered data-acquisition applications. Excellent AC performance (THD = -100dB) and DC accuracy (±2LSB INL) make the MAX1179/MAX1187/ MAX1189 ideal for industrial process control, instrumentation, and medical applications. The MAX1179/MAX1187/MAX1189 are available in a 28-pin TSSOP package and are fully specified over the -40°C to +85°C extended temperature range and the 0°C to +70°C commercial temperature range. o 16-Bit Wide Parallel Interface o Single +4.75V to +5.25V Analog Supply Voltage o Interfaces with +2.7V to +5.25V Digital Logic o ±2LSB INL (max) o ±1LSB DNL (max) o Low Supply Current (MAX1189) 5.3mA (External Reference) 6.2mA (Internal Reference) 5µA AutoShutdown Mode o Small Footprint 28-Pin TSSOP Package Features o Analog Input Voltage Range: ±10V, ±5V, or 0 to 10V MAX1179/MAX1187/MAX1189 Pin Configuration TOP VIEW D8 1 D9 2 D10 3 D11 4 D12 5 D13 6 28 D7 27 D6 26 D5 25 D4 24 D3 Applications Temperature Sensing and Monitoring Industrial Process Control I/O Modules Data-Acquisition Systems Precision Instrumentation D14 7 D15 8 R/C 9 EOC 10 AVDD 11 AGND 12 AIN 13 AGND 14 MAX1179 MAX1187 MAX1189 23 D2 22 D1 21 D0 20 DVDD 19 DGND 18 CS 17 RESET 16 REF 15 REFADJ TSSOP AutoShutdown is a trademark of Maxim Integrated Products, Inc. Ordering Information PART MAX1179ACUI MAX1179BCUI TEMP RANGE 0°C to +70°C 0°C to +70°C PIN-PACKAGE 28 TSSOP 28 TSSOP INPUT VOLTAGE RANGE ±5V ±5V INL (LSB) ±2 ±2 Ordering Information continued at end of data sheet. ________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range MAX1179/MAX1187/MAX1189 ABSOLUTE MAXIMUM RATINGS AVDD to AGND .........................................................-0.3V to +6V DVDD to DGND.........................................................-0.3V to +6V AGND to DGND.....................................................-0.3V to +0.3V AIN to AGND .....................................................-16.5V to +16.5V REF, REFADJ to AGND............................-0.3V to (AVDD + 0.3V) CS, R/C, RESET to DGND ........................................-0.3V to +6V D_, EOC to DGND ...................................-0.3V to (DVDD + 0.3V) Maximum Continuous Current Into Any Pin ........................50mA Continuous Power Dissipation (TA = +70°C) 28-Pin TSSOP (derate 12.8mW/°C above +70°C) .....1026mW Operating Temperature Range MAX11_ _ _CUI ...................................................0°C to +70°C MAX11_ _ _EUI ................................................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Junction Temperature ......................................................+150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (AVDD = DVDD = +5V ±5%, external reference = +4.096V, CREF = 10µF, CREFADJ = 0.1µF, VREFADJ = AVDD, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER DC ACCURACY Resolution Differential Nonlinearity RES MAX11_ _A DNL No missing codes over temperature MAX11_ _A Integral Nonlinearity INL MAX11_ _B MAX11_ _C Transition Noise Offset Error Gain Error Offset Drift Gain Drift AC ACCURACY (fIN = 1kHz, VAIN = full range, 135ksps) Signal-to-Noise Plus Distortion Signal-to-Noise Ratio Total Harmonic Distortion Spurious-Free Dynamic Range ANALOG INPUT MAX1179 Input Range VAIN MAX1187 MAX1189 MAX1179/MAX1187 MAX1179 Input Resistance RAIN MAX1177 MAX1189 Normal operation Shutdown mode Shutdown mode Normal operation Shutdown mode -5 0 -10 5.3 3 5.3 7.8 6 10 13.0 kΩ 6.9 +5 +10 +10 9.2 V SINAD SNR THD SFDR 92 86 87 90 91 -100 103 -92 dB dB dB dB RMS noise, external reference Internal reference -10 MAX11_ _B MAX11_ _C 16 -1 -1.0 -1 -2 -2 -4 0.6 0.75 0 0 16 ±1 +10 ±0.2 +1 +1.5 +2 +2 +2 +4 LSBRMS mV %FSR µV/°C ppm/°C LSB LSB Bits SYMBOL CONDITIONS MIN TYP MAX UNITS 2 _______________________________________________________________________________________ 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range ELECTRICAL CHARACTERISTICS (continued) (AVDD = DVDD = +5V ±5%, external reference = +4.096V, CREF = 10µF, CREFADJ = 0.1µF, VREFADJ = AVDD, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL CONDITIONS MAX1179, -5V ≤ VAIN ≤ +5V Input Current IAIN MAX1187, 0 ≤ VAIN ≤ +10V MAX1189, -10V ≤ VAIN ≤ +10V Normal operation Shutdown mode Normal/shutdown mode Normal operation Shutdown mode MIN -1.8 -1.8 -0.1 -1.8 -1.8 1 0.5 10 4.056 4.096 ±35 IREF-(SC) ±10 4.136 TYP MAX +0.4 +1.8 +2.0 +1.2 +1.8 1.4 mA MAX1189, VAIN = +10V, shutdown mode to operating mode 0.7 pF V ppm/°C mA mA UNITS MAX1179/MAX1187/MAX1189 MAX1179, VAIN = +5V, shutdown mode to operating mode Input Current Step at Power-Up IPU Input Capacitance INTERNAL REFERENCE REF Output Voltage REF Output Tempco REF Short-Circuit Current EXTERNAL REFERENCE REF and REFADJ Input Voltage Range REFADJ Buffer Disable Threshold REF Input Current REFADJ Input Current DIGITAL INPUTS/OUTPUTS Output High Voltage Output Low Voltage Input High Voltage Input Low Voltage Input Leakage Current Input Hysteresis Input Capacitance Three-State Output Leakage Three-State Output Capacitance CIN VREF 3.8 AVDD 0.4 IREF IREFADJ Normal mode, fSAMPLE = 135ksps Shutdown mode (Note 1) REFADJ = AVDD ISOURCE = 0.5mA, DVDD = +2.7V to +5.25V, DVDD AVDD = +5.25V 0.4 ISINK = 1.6mA, DVDD = +2.7V to +5.25V, AVDD = +5.25V 0.7 × DVDD 60 ±0.1 16 4.2 AVDD 0.1 100 ±10 V V µA µA VOH VOL VIH VIL V 0.4 V V 0.3 × DVDD V µA V pF ±10 15 µA pF Digital input = DVDD or 0V VHYST CIN IOZ COZ -1 0.2 15 +1 _______________________________________________________________________________________ 3 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range MAX1179/MAX1187/MAX1189 ELECTRICAL CHARACTERISTICS (continued) (AVDD = DVDD = +5V ±5%, external reference = +4.096V, CREF = 10µF, CREFADJ = 0.1µF, VREFADJ = AVDD, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER POWER SUPPLIES Analog Supply Voltage Digital Supply Voltage AVDD DVDD External reference, 135ksps Analog Supply Current IAVDD Internal reference, 135ksps MAX1187 MAX1179/MAX1189 MAX1187 MAX1179/MAX1189 5.2 0.5 3.7 0.75 AVDD = DVDD = +4.75V to +5.25V 3.5 4.0 4.75 2.70 5.25 5.25 2.9 5.3 3.8 6.2 5 µA mA mA LSB mA V V SYMBOL CONDITIONS MIN TYP MAX UNITS Shutdown Supply Current Digital Supply Current Power-Supply Rejection ISHDN IDVDD Shutdown mode, IAVDD + IDVDD (Note 1), digital input = DVDD or 0V Standby mode TIMING CHARACTERISTICS (Figures 1 and 2) (AVDD = +5V ±5V, DVDD = +2.7V to AVDD, external reference = +4.096V, CREF = 10µF, CREFADJ = 0.1µF, VREFADJ = AVDD, CLOAD = 20pF, TA = TMIN to TMAX.) PARAMETER Maximum Sampling Rate Acquisition Time Conversion Time CS Pulse Width High CS Pulse Width Low R/C to CS Fall Setup Time R/C to CS Fall Hold Time CS to Output Data Valid EOC Fall to CS Fall CS Rise to EOC Rise Bus Relinquish Time SYMBOL fSAMPLE(MAX) tACQ tCONV tCSH tCSL tDS tDH tDO tDV tEOC tBR DVDD = +4.75V to +5.25V DVDD = +2.7V to +5.25V DVDD = +4.75V to +5.25V DVDD = +2.7V to +5.25V DVDD = +4.75V to +5.25V DVDD = +2.7V to +5.25V DVDD = +4.75V to +5.25V DVDD = +2.7V to +5.25V 0 40 80 40 80 (Note 2) (Note 2) DVDD = +4.75V to +5.25V DVDD = +2.7V to +5.25V 40 40 60 0 40 60 40 80 2 4.7 CONDITIONS MIN TYP MAX 135 UNITS ksps µs µs ns ns ns ns ns ns ns ns Note 1: Maximum specification is limited by automated test equipment. Note 2: To ensure best performance, finish reading the data and wait tBR before starting a new acquisition. 4 _______________________________________________________________________________________ 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range MAX1179/MAX1187/MAX1189 Typical Operating Characteristics (AVDD = DVDD = +5V, external reference = +4.096V, CREF = 10µF, CREFADJ = 0.1µF, VREFADJ = AVDD, CLOAD = 20pF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Typical Application Circuit) INL vs. CODE MAX1179/87/89 toc01 DNL vs. CODE 2.0 1.5 1.0 DNL (LSB) 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 4.45 4.40 0 10000 20000 30000 40000 50000 60000 CODE -40 MAX1179/87/89 toc02 SUPPLY CURRENT (AVDD + DVDD) vs. TEMPERATURE 4.75 SUPPLY CURRENT (mA) 4.70 4.65 4.60 4.55 4.50 fSAMPLE = 135ksps SHUTDOWN MODE BETWEEN CONVERSIONS -20 0 20 40 60 80 TEMPERATURE (°C) 4.75V 5.0V MAX1179/87/89 toc03 2.5 2.0 1.5 1.0 INL (LSB) 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 0 10000 20000 30000 40000 50000 60000 CODE 2.5 4.80 5.25V SUPPLY CURRENT (AVDD + DVDD) vs. SAMPLE RATE MAX1179/87/89 toc04 SHUTDOWN CURRENT (AVDD + DVDD) vs. TEMPERATURE MAX1179/87/89 toc05 OFFSET ERROR vs. TEMPERATURE 8 6 OFFSET ERROR (mV) 4 2 0 -2 -4 -6 -8 -10 MAX1189 MAX1179/87/89 toc06 10 STANDBY MODE 5.0 SHUTDOWN SUPPLY CURRENT (µA) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 NO CONVERSIONS 10 1 SUPPLY CURRENT (mA) 0.1 SHUTDOWN MODE 0.01 0.001 0.0001 0.01 0.1 1 10 100 1000 SAMPLE RATE (ksps) 0 -40 -20 0 20 40 60 80 TEMPERATURE (°C) -40 -20 0 20 40 60 80 TEMPERATURE (°C) GAIN ERROR vs. TEMPERATURE MAX1179/87/89 toc07 INTERNAL REFERENCE vs. TEMPERATURE MAX1179/87/89 toc08 FFT AT 1kHz fSAMPLE = 135ksps -20 -40 MAGNITUDE (dB) -60 -80 -100 -120 -140 -160 -180 MAX 1179/87/89 toc09 0.20 0.15 GAIN ERROR (%FSR) 0.10 0.05 0 -0.05 -0.10 -0.15 -0.20 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 4.136 4.126 INTERNAL REFERENCE (V) 4.116 4.106 4.096 4.086 4.076 4.066 4.056 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 0 0 20 40 60 FREQUENCY (kHz) _______________________________________________________________________________________ 5 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range MAX1179/MAX1187/MAX1189 Typical Operating Characteristics (continued) (AVDD = DVDD = +5V, external reference = +4.096V, CREF = 10µF, CREFADJ = 0.1µF, VREFADJ = AVDD, CLOAD = 20pF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Typical Application Circuit) SINAD vs. FREQUENCY MAX1179/87/89 toc10 SPURIOUS-FREE DYNAMIC RANGE vs. FREQUENCY MAX1179/87/89 toc11 TOTAL HARMONIC DISTORTION vs. FREQUENCY -10 -20 -30 THD (dB) -40 -50 -60 -70 -80 -90 -100 -110 MAX1179/87/89 toc12 100 90 80 70 SINAD (dB) 60 50 40 30 20 10 0 1 10 FREQUENCY (kHz) fSAMPLE = 131ksps 120 100 80 SFDR (dB) 60 40 20 0 0 100 1 10 FREQUENCY (kHz) 100 1 10 FREQUENCY (kHz) 100 Pin Description PIN 1 2 3 4 5 6 7 8 NAME D8 D9 D10 D11 D12 D13 D14 D15 Three-State Digital Data Output Three-State Digital Data Output Three-State Digital Data Output Three-State Digital Data Output Three-State Digital Data Output Three-State Digital Data Output Three-State Digital Data Output Three-State Digital Data Output (MSB) Read/Convert Input. Power up and place the MAX1179/MAX1187/MAX1189 in acquisition mode by holding R/C low during the first falling edge of CS. During the second falling edge of CS, the level on R/C determines whether the reference and reference buffer power down or remain on after conversion. Set R/C high during the second falling edge of CS to power down the reference and buffer, or set R/C low to leave the reference and buffer powered up. Set R/C high during the third falling edge of CS to put valid data on the bus. End of Conversion. EOC drives low when conversion is complete. Analog Supply Input. Bypass with a 0.1µF capacitor to AGND. Analog Ground. Primary analog ground (star ground). Analog Input Analog Ground. Connect pin 14 to pin 12. FUNCTION 9 R/C 10 11 12 13 14 EOC AVDD AGND AIN AGND 6 _______________________________________________________________________________________ 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range Pin Description (continued) PIN 15 16 17 18 19 20 21 22 23 24 25 26 27 28 NAME REFADJ REF RESET CS DGND DVDD D0 D1 D2 D3 D4 D5 D6 D7 FUNCTION Reference Buffer Output. Bypass REFADJ with a 0.1µF capacitor to AGND for internal reference mode. Connect REFADJ to AVDD to select external reference mode. Reference Input/Output. Bypass REF with a 10µF capacitor to AGND. REF is the external reference input when in external reference mode. Reset Input. Logic high resets the device. Convert Start. The first falling edge of CS powers up the device and enables acquisition when R/C is low. The second falling edge of CS starts conversion. The third falling edge of CS loads the result onto the bus when R/C is high. Digital Ground Digital Supply Voltage. Bypass with a 0.1µF capacitor to DGND. Three-State Digital Data Output (LSB) Three-State Digital Data Output Three-State Digital Data Output Three-State Digital Data Output Three-State Digital Data Output Three-State Digital Data Output Three-State Digital Data Output Three-State Digital Data Output MAX1179/MAX1187/MAX1189 Detailed Description Converter Operation The MAX1179/MAX1187/MAX1189 use a successiveapproximation (SAR) conversion technique with an inherent track-and-hold (T/H) stage to convert an analog input into a 16-bit digital output. Parallel outputs provide a high-speed interface to microprocessors (µPs). The Functional Diagram at the end of the data sheet shows a simplified internal architecture of the MAX1179/MAX1187/MAX1189. Figure 3 shows a typical application circuit for the MAX1179/MAX1187/MAX1189. 1mA D0–D15 CLOAD = 20pF 1mA DGND A) DVDD D0–D15 CLOAD = 20pF DGND Analog Input Input Scaler The MAX1179/MAX1187/MAX1189 have an input scaler which allows conversion of true bipolar input voltages and input voltages greater than the power supply, while operating from a single +5V analog supply. The input scaler attenuates and shifts the analog input to match the input range of the internal DAC. The MAX1179 input voltage range is ±5V, while the MAX1189 input voltage HIGH-Z TO VOH, VOL TO VOH, AND VOH TO HIGH-Z B) HIGH-Z TO VOL, VOH TO VOL, AND VOL TO HIGH-Z Figure 1. Load Circuits range is ±10V. The MAX1187 has a unipolar input voltage range of 0 to +10V. Figure 4 shows the equivalent input circuit of the MAX1179/MAX1187/MAX1189. This circuit limits the current going into or out of AIN to less than 1.8mA. _______________________________________________________________________________________ 7 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range MAX1179/MAX1187/MAX1189 tCSL CS tACQ R/C tDH EOC HIGH-Z D0–D15 tCONV tDO DATA VALID tCSH REF POWERDOWN CONTROL tDS tDV tEOC tBR HIGH-Z Figure 2. MAX1179/MAX1187/MAX1189 Timing Diagram Power-Down Modes +5V ANALOG 0.1µF +5V DIGITAL 0.1µF µP DATA BUS 16-BIT WIDE AVDD ANALOG INPUT AIN DVDD D0–D15 Select standby mode or shutdown mode with R/C during the second falling edge of CS (see Selecting Standby or Shutdown Mode section). The MAX1179/MAX1187/ MAX1189 automatically enter either standby mode (reference and buffer on) or shutdown (reference and buffer off) after each conversion depending on the status of R/C during the second falling edge of CS. R/C CS RESET MAX1179 MAX1187 MAX1189 Internal Clock EOC REF REFADJ The MAX1179/MAX1187/MAX1189 generate an internal conversion clock to free the microprocessor from the burden of running the SAR conversion clock. Total conversion time after entering hold mode (second falling edge of CS) to end-of-conversion (EOC) falling is 4.7µs (max). 0.1µF 10µF AGND DGND Applications Information Starting a Conversion CS and R/C control acquisition and conversion in the MAX1179/MAX1187/MAX1189 (see Figure 2). The first falling edge of CS powers up the device and puts it in acquire mode if R/C is low. The convert start (CS) is ignored if R/ C is high. The MAX1179/MAX1187/ MAX1189 need at least 12ms (CREFADJ = 0.1µF, CREF = 10µF) for the internal reference to wake up and settle before starting the conversion, if powering up from shutdown. Reset the MAX1179/MAX1187/ MAX1189 by toggling RESET with CS high. The next falling edge of CS begins acquisition. Figure 3. Typical Application Circuit for the MAX1179/MAX1187/ MAX1189 Track and Hold (T/H) In track mode, the internal hold capacitor acquires the analog signal (see Figure 4). In hold mode, the T/H switches open and the capacitive DAC samples the analog input. During the acquisition, the analog input (AIN) charges capacitor CHOLD. The acquisition ends on the second falling edge of CS. At this instant, the T/H switches open. The retained charge on CHOLD represents a sample of the input. In hold mode, the capacitive DAC adjusts during the remainder of the conversion time to restore node T/H OUT to zero within the limits of a 16-bit resolution. Force CS low to put valid data on the bus after conversion is complete. Selecting Standby or Shutdown Mode The MAX1179/MAX1187/MAX1189 have a selectable standby or low-power shutdown mode. In standby mode, the ADC ’ s internal reference and reference buffer do not power down between conversions, eliminating the need to wait for the reference to power up before performing the next conversion. Shutdown mode powers down the reference and reference buffer after 8 _______________________________________________________________________________________ 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range MAX1179/MAX1187/MAX1189 REF MAX1187 R2 AIN R3 161Ω 3.4kΩ TRACK S1 HOLD CHOLD 30pF T/H OUT TRACK HOLD S2 R3 S3 POWERDOWN AIN MAX1179/MAX1189 R2 161Ω 3.4kΩ TRACK S1 CHOLD 30pF T/H OUT HOLD S2 HOLD TRACK S1, S2 = T/H SWITCH S3 = POWER-DOWN (MAX1179/MAX1189 ONLY) R2 = 7.85kΩ (MAX1189) OR 3.92kΩ (MAX1179/MAX1187) R3 = 5.45kΩ (MAX1189) OR 17.79kΩ (MAX1179/MAX1187) Figure 4. Equivalent Input Circuit DATA OUT ACQUISITION CONVERSION CS R/C EOC REF AND BUFFER POWER Figure 5. Selecting Standby Mode completing a conversion. The reference and reference buffer require a minimum of 12ms (CREFADJ = 0.1µF, CREF = 10µF) to power up and settle from shutdown. The state of R/C during the second falling edge of CS selects which power-down mode the MAX1179/ MAX1187/MAX1189 enters upon conversion completion. Holding R/C low causes the MAX1179/MAX1187/ MAX1189 to enter standby mode. The reference and buffer are left on after the conversion completes. R/C high causes the MAX1179/MAX1187/MAX1189 to enter shutdown mode and power down the reference and buffer after conversion (see Figures 5 and 6). Set the voltage at REF high during the second falling edge of CS to realize the lowest current operation. Standby Mode While in standby mode, the supply current is less than 3.7mA (typ). The next falling edge of CS with R/C low causes the MAX1179/MAX1187/MAX1189 to exit standby mode and begin acquisition. The reference and reference buffer remain active to allow quick turn-on time. _______________________________________________________________________________________ 9 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range MAX1179/MAX1187/MAX1189 ACQUISITION CONVERSION DATA OUT CS R/C EOC REF & BUFFER POWER Figure 6. Selecting Shutdown Mode +5V 68kΩ MAX1179 MAX1187 MAX1189 REFADJ 0.1µF 100kΩ 150kΩ Figure 7. MAX1179/MAX1187/MAX1189 Reference Adjust Circuit External Reference An external reference can be placed at either the input (REFADJ) or the output (REF) of the MAX1179/ MAX1187/MAX1189’s internal buffer amplifier. Using the buffered REFADJ input makes buffering the external reference unnecessary. The input impedance of REFADJ is typically 5k Ω . The internal buffer output must be bypassed at REF with a 10µF capacitor. Connect REFADJ to AVDD to disable the internal buffer. Directly drive REF using an external 3.8V to 4.2V reference. During conversion, the external reference must be able to drive 100µA of DC load current and have an output impedance of 10Ω or less. For optimal performance, buffer the reference through an op amp and bypass REF with a 10µF capacitor. Consider the MAX1179/MAX1187/MAX1189’s equivalent input noise (0.6LSB) when choosing a reference. Shutdown Mode In shutdown mode, the reference and reference buffer shut down between conversions. Shutdown mode reduces supply current to 0.5µA (typ) immediately after the conversion. The next falling edge of CS with R/C low causes the reference and buffer to wake up and enter acquisition mode. To achieve 16-bit accuracy, allow 12ms (CREFADJ = 0.1µF, CREF = 10µF) for the internal reference to wake up. Reading the Conversion Result EOC flags the microprocessor when a conversion is complete. The falling edge of EOC signals that the data is valid and ready to be output to the bus. D0–D15 are the parallel outputs of the MAX1179/MAX1187/ MAX1189. These three-state outputs allow for direct connection to a microcontroller I/O bus. The outputs remain high-impedance during acquisition and conversion. Data is loaded onto the bus with the third falling edge of CS with R/C high (after tDO). Bringing CS high forces the output bus back to high impedance. The MAX1179/MAX1187/MAX1189 then wait for the next falling edge of CS to start the next conversion cycle (see Figure 2). Internal and External Reference Internal Reference The internal reference of the MAX1179/MAX1187/ MAX1189 is internally buffered to provide +4.096V output at REF. Bypass REF to AGND and REFADJ to AGND with 10µF and 0.1µF, respectively. Sink or source current at REFADJ to make fine adjustments to the internal reference. The input impedance of REFADJ is nominally 5kΩ. Use the circuit of Figure 7 to adjust the internal reference to ±1.5%. 10 ______________________________________________________________________________________ 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range MAX1179/MAX1187/MAX1189 OUTPUT CODE 11 . . . 1111 11 . . . 1110 11 . . . 1101 10 . . . 0001 10 . . . 0000 01 . . . 1111 00 . . . 0011 00 . . . 0010 00 . . . 0001 00 . . . 0000 -32768 -32766 -32767 -32765 INPUT RANGE = -5V TO +5V FULL-SCALE TRANSITION OUTPUT CODE 11 . . . 111 11 . . . 110 11 . . . 101 INPUT RANGE = 0 TO +10V FULL-SCALE TRANSITION FULL-SCALE RANGE (FSR) = +10V 1LSB = FSR x VREF 65536 x 4.096 FULL-SCALE RANGE (FSR) = +10V 1LSB = 00 . . . 011 00 . . . 010 00 . . . 001 00 . . . 000 FSR x VREF 65536 x 4.096 -1 0 +1 +32766 +32768 +32767 0 1 2 3 65534 65536 65535 INPUT VOLTAGE (LSB) INPUT VOLTAGE (LSB) Figure 8. MAX1179 Transfer Function Figure 9. MAX1187 Transfer Function OUTPUT CODE 11 . . . 1111 11 . . . 1110 11 . . . 1101 10 . . . 0001 10 . . . 0000 01 . . . 1111 00 . . . 0011 00 . . . 0010 00 . . . 0001 00 . . . 0000 -32768 -32766 -32767 -32765 INPUT RANGE = -10V TO +10V FULL-SCALE TRANSITION FULL-SCALE RANGE (FSR) = +20V 1LSB = FSR x VREF 65536 x 4.096 -1 0 +1 +32766 +32768 +32767 INPUT VOLTAGE (LSB) Figure 10. MAX1189 Transfer Function Transfer Function Figures 8, 9, and 10 show the MAX1179/MAX1187/ MAX1189’s output transfer functions. The MAX1179 and MAX1189 outputs are coded in offset binary, while the MAX1187 is coded in standard binary. step-change in input signal. The input amplifier must have a high enough slew rate to complete the required output voltage change before the beginning of the acquisition time. Figure 11 shows an example of this circuit using the MAX427. Figures 12a and 12b show how the MAX1179 and MAX1189 analog input current varies depending on whether the chip is operating or powered down. The part is fully powered down between conversions if the voltage at R/C is set high during the second falling edge of CS. The input current abruptly steps to the powered up value at the start of acquisition. This step in the input current can disrupt the ADC input, depending on the driving circuit’s output impedance at high frequencies. If the driving circuit cannot fully settle by the end of acquisition time, the accuracy of the system can be compromised. To avoid this situation, increase the acquisition time, use a driving circuit that can settle within tACQ, or leave the MAX1179/MAX1189 powered up by setting the voltage at R/C low during the second falling edge of CS. Layout, Grounding, and Bypassing For best performance, use printed circuit (PC) boards. Do not run analog and digital lines parallel to each other, and do not lay out digital signal paths underneath the ADC package. Use separate analog and digital ground planes with only one point connecting the two ground systems (analog and digital) as close to the device as possible. Route digital signals far away from sensitive analog and reference inputs. If digital lines must cross analog lines, do so at right angles to minimize coupling digital noise 11 Input Buffer Most applications require an input buffer amplifier to achieve 16-bit accuracy and prevent loading the source. Switch the channels immediately after acquisition, rather than near the end of or after a conversion when the input signal is multiplexed. This allows more time for the input buffer amplifier to respond to a large ______________________________________________________________________________________ 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range MAX1179/MAX1187/MAX1189 Definitions REF Integral Nonlinearity ** MAX1179 MAX1187 MAX1189 MAX427 ANALOG INPUT *MAX1187 ONLY. **MAX1179/MAX1189 ONLY. AIN * Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. This straight line can be either a best-straight-line fit or a line drawn between the end points of the transfer function, once offset and gain errors have been nullified. The static linearity parameters for the MAX1179/MAX1187/ MAX1189 are measured using the endpoint method. Differential Nonlinearity Differential nonlinearity (DNL) is the difference between an actual step-width and the ideal value of 1LSB. A DNL error specification of 1LSB guarantees no missing codes and a monotonic transfer function. Figure 11. MAX1179/MAX1187/MAX1189 Fast-Settling Input Buffer Signal-to-Noise Ratio For a waveform perfectly reconstructed from digital samples, signal-to-noise ratio (SNR) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization noise error only and results directly from the ADC’s resolution (N bits): SNR = ((6.02 ✕ N) + 1.76)dB where N = 16 bits. In reality, there are other noise sources besides quantization noise: thermal noise, reference noise, clock jitter, onto the analog lines. If the analog and digital sections share the same supply, isolate the digital and analog supply by connecting them with a low value (10 Ω ) resistor or ferrite bead. The ADC is sensitive to high-frequency noise on the AV DD supply. Bypass AV DD to AGND with a 0.1µF capacitor in parallel with a 1µF to 10µF low-ESR capacitor with the smallest capacitor closest to the device. Keep capacitor leads short to minimize stray inductance. MAX1179 ANALOG INPUT CURRENT vs. ANALOG INPUT VOLTAGE 2.0 1.5 ANALOG INPUT CURRENT (mA) 1.0 0.5 SHUTDOWN MODE 0 -0.5 -1.0 -1.5 -2.0 -5.0 -2.5 0 2.5 5.0 ANALOG INPUT VOLTAGE (V) STANDBY MODE ANALOG INPUT CURRENT (mA) 1.5 1.0 0.5 MAX1189 ANALOG INPUT CURRENT vs. ANALOG INPUT VOLTAGE SHUTDOWN MODE 0 STANDBY MODE -0.5 -1.0 -1.5 -10 -5 0 5 10 ANALOG INPUT VOLTAGE (V) Figure 12a. MAX1179 Analog Input Current Figure 12b. MAX1189 Analog Input Current 12 ______________________________________________________________________________________ 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset. Total Harmonic Distortion Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as:  2 2 2 2   V2 + V3 + V4 + V5     THD = 20 × log   V1       where V1 is the fundamental amplitude and V2 through V5 are the 2nd- through 5th-order harmonics. MAX1179/MAX1187/MAX1189 Signal-to-Noise Plus Distortion Signal-to-noise plus distortion (SINAD) is the ratio of the fundamental input frequency’s RMS amplitude to the RMS equivalent of all the other ADC output signals.   SignalRMS SINAD(db) = 20 × log  (Noise + Distortion)RMS    Effective Number of Bits Effective number of bits (ENOB) indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC’s error consists of quantization noise only. With an input range equal to the fullscale range of the ADC, calculate the effective number of bits as follows:  SINAD - 1.76  ENOB =     6.02 Spurious-Free Dynamic Range Spurious-free dynamic range (SFDR) is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest frequency component. Chip Information TRANSISTOR COUNT: 15,383 PROCESS: BiCMOS Ordering Information (continued) PART MAX1179CCUI MAX1179AEUI MAX1179BEUI MAX1179CEUI MAX1187ACUI MAX1187BCUI MAX1187CCUI MAX1187AEUI MAX1187BEUI MAX1187CEUI MAX1189ACUI MAX1189BCUI MAX1189CCUI MAX1189AEUI* MAX1189BEUI* MAX1189CEUI* TEMP RANGE 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C PIN-PACKAGE 28 TSSOP 28 TSSOP 28 TSSOP 28 TSSOP 28 TSSOP 28 TSSOP 28 TSSOP 28 TSSOP 28 TSSOP 28 TSSOP 28 TSSOP 28 TSSOP 28 TSSOP 28 TSSOP 28 TSSOP 28 TSSOP INPUT VOLTAGE RANGE ±5V ±5V ±5V ±5V 0 to +10V 0 to +10V 0 to +10V 0 to +10V 0 to +10V 0 to +10V ±10V ±10V ±10V ±10V ±10V ±10V INL (LSB) ±4 ±2 ±2 ±4 ±2 ±2 ±4 ±2 ±2 ±4 ±2 ±2 ±4 ±2 ±2 ±4 *Future product—contact factory for availability. ______________________________________________________________________________________ 13 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range MAX1179/MAX1187/MAX1189 Functional Diagram REFADJ 5kΩ REFERENCE OUTPUT REGISTERS REF 16 BITS 16 BITS D0–D15 AVDD AGND DVDD DGND AIN AGND RESET INPUT SCALER CAPACITIVE DAC MAX1179 MAX1187 MAX1189 CLOCK CS R/C SUCCESSIVEAPPROXIMATION REGISTER AND CONTROL LOGIC EOC 14 ______________________________________________________________________________________ 16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) TSSOP4.40mm.EPS MAX1179/MAX1187/MAX1189 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15 © 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
MAX1187AEUI 价格&库存

很抱歉,暂时无法提供与“MAX1187AEUI”相匹配的价格&库存,您可以联系我们找货

免费人工找货