0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX16036

MAX16036

  • 厂商:

    MAXIM(美信)

  • 封装:

  • 描述:

    MAX16036 - Low-Power Battery Backup Circuits in Small μDFN Packages - Maxim Integrated Products

  • 数据手册
  • 价格&库存
MAX16036 数据手册
19-0882; Rev 0; 7/07 Low-Power Battery Backup Circuits in Small µDFN Packages General Description The MAX16033–MAX16040 supervisory circuits reduce the complexity and number of components required for power-supply monitoring and battery control functions in microprocessor (µP) systems. The devices significantly improve system reliability and accuracy compared to other ICs or discrete components. The MAX16033–MAX16040 provide µP reset, backup-battery switchover, power-fail warning, watchdog, and chip-enable gating features. The MAX16033–MAX16040 operate from supply voltages up to 5.5V. The factory-set reset threshold voltage ranges from 2.32V to 4.63V. The devices feature a manual-reset input (MAX16033/MAX16037), a watchdog timer input (MAX16034/MAX16038), a battery-on output (MAX16035/MAX16039), an auxiliary adjustable reset input (MAX16036/MAX16040), and chip-enable gating (MAX16033–MAX16036). Each device includes a power-fail comparator and offers an active-low pushpull reset or an active-low open-drain reset. The MAX16033–MAX16040 are available in 2mm x 2mm, 8-pin or 10-pin µDFN packages and are fully specified from -40°C to +85°C. Features ♦ Low 1.2V Operating Supply Voltage ♦ Precision Monitoring of 5.0V, 3.3V, 3.0V, and 2.5V Power-Supply Voltages ♦ Independent Power-Fail Comparator ♦ Debounced Manual-Reset Input ♦ Watchdog Timer, 1.6s Timeout ♦ Battery-On Output Indicator ♦ Auxiliary User-Adjustable RESETIN ♦ Low 13µA Quiescent Supply Current ♦ Two Available Output Structures: Active-Low Push-Pull Reset Active-Low Open-Drain Reset ♦ Active-Low Reset Valid Down to 1.2V ♦ Power-Supply Transient Immunity ♦ 140ms (min) Reset Timeout Period ♦ Small 2mm x 2mm, 8-Pin and 10-Pin µDFN Packages MAX16033–MAX16040 Ordering Information PART* MAX16033LLB_ _+T MAX16033PLB_ _+T MAX16034LLB_ _+T MAX16034PLB_ _+T TEMP RANGE PINPACKAGE PKG CODE Applications Portable/BatteryPowered Equipment POS Equipment Critical µP/µC Power Monitoring Set-Top Boxes Controllers Computers Fax Machines Industrial Control Real-Time Clocks Intelligent Instrument -40°C to +85°C 10 µDFN-10 L1022-1 -40°C to +85°C 10 µDFN-10 L1022-1 -40°C to +85°C 10 µDFN-10 L1022-1 -40°C to +85°C 10 µDFN-10 L1022-1 Pin Configurations and Typical Operating Circuit appear at end of data sheet. Ordering Information continued on last page. *These parts offer a choice of reset threshold voltages. From the Reset Threshold Ranges table, insert the desired threshold voltage code in the blank to complete the part number. See Selector Guide for a listing of device features. +Denotes a lead-free package. T = Tape and reel. Selector Guide PART MAX16033_ MAX16034_ MAX16035_ MAX16036_ MAX16037_ MAX16038_ MAX16039_ MAX16040_ ✓ ✓ ✓ ✓ MR ✓ ✓ ✓ ✓ WATCHDOG BATTON RESETIN CEIN/CEOU ✓ ✓ ✓ ✓ PFI, PFO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ PIN-PACKAGE 10 µDFN-10 10 µDFN-10 10 µDFN-10 10 µDFN-10 8 µDFN-8 8 µDFN-8 8 µDFN-8 8 µDFN-8 Note: Replace “_” with L for push-pull or P for open-drain RESET and PFO outputs. ________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. Low-Power Battery Backup Circuits in Small µDFN Packages MAX16033–MAX16040 ABSOLUTE MAXIMUM RATINGS Terminal Voltages (with respect to GND) VCC, BATT, OUT .......................................................-0.3V to +6V RESET (open drain), PFO (open drain) ....................-0.3V to +6V RESET (push-pull), PFO (push-pull), BATTON, RESETIN, WDI MR, CEIN, CEOUT, PFI ............................-0.3V to (VOUT + 0.3V) Input Current VCC Peak..............................................................................1A VCC Continuous ............................................................250mA BATT Peak ....................................................................250mA BATT Continuous ............................................................40mA GND ................................................................................75mA Output Current OUT ..................................Short-Circuit Protected for up to 5s RESET, BATTON .............................................................20mA Continuous Power Dissipation (TA = +70°C) 8-Pin µDFN (derate 4.8mW/°C above +70°C) ..........380.6mW 10-Pin µDFN (derate 5mW/°C above +70°C) ...........402.8mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = 2.25V to 5.5V, VBATT = 3V, RESET not asserted, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Operating Voltage Range Supply Current SYMBOL VCC, VBATT ICC CONDITIONS No load (Note 2) VCC = 2.8V No load, VCC > VTH VBATT = 2.8V, VCC = 0V, excluding IOUT IBATT (VBATT + 0.2V) < VCC < 5.5V VCC = 3.6V VCC = 5.5V Supply Current in Battery Backup Mode BATT Standby Current (Note 3) TA = +25°C TA = -40°C to +85°C TA = +25°C TA = -40°C to +85°C -0.1 -0.3 MIN 0 13 16 22 TYP MAX 5.5 30 35 50 1 µA 2 +0.02 +0.02 3.1 3.7 4.6 VBATT - 0.2 VBATT - 0.15 VBATT - 0.15 0 -40 mV V Ω µA µA UNITS V VCC = 4.75V, VCC > VTH, IOUT = 150mA VCC to OUT On-Resistance RON VCC = 3.15V, VCC > VTH, IOUT = 65mA VCC = 2.5V, VCC > VTH, IOUT = 25mA VBATT = 4.50V, VCC = 0V, IOUT = 20mA Output Voltage in Battery Backup Mode VOUT VBATT = 3.15V, VCC = 0V, IOUT = 10mA VBATT = 2.5V, VCC = 0V, IOUT = 5mA Battery-Switchover Threshold VSW VCC - VBATT, VCC < VTH VCC rising VCC falling 2 _______________________________________________________________________________________ Low-Power Battery Backup Circuits in Small µDFN Packages ELECTRICAL CHARACTERISTICS (continued) (VCC = 2.25V to 5.5V, VBATT = 3V, RESET not asserted, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER RESET OUTPUT MAX160_ _ _L_46 MAX160_ _ _L_44 Reset Threshold VTH MAX160_ _ _L_31 MAX160_ _ _L_29 MAX160_ _ _L_26 MAX160_ _ _L_23 VCC Falling Reset Delay Reset Active Timeout Period RESET Output Low Voltage RESET Output High Voltage RESET Output Leakage Current POWER-FAIL COMPARATOR PFI Input Threshold PFI Hysteresis PFI Input Current PFO Output Low Voltage PFO Output High Voltage PFO Leakage Current PFO Delay Time MANUAL RESET (MAX16033/MAX16037) VIL MR Input Voltage VIH Pullup Resistance to VCC Minimum Pulse Width Glitch Immunity MR to Reset Delay VCC = 3.3V 0.7 x VCC 20 1 100 120 165 kΩ µs ns ns 0.3 x VCC VOL VOH VPFI = 0V or VCC Output asserted VCC > 2.1V, ISINK = 1.6mA VCC > 1.2V, ISINK = 100µA 0.8 x VCC 1 4 -100 VPFI VPFI falling 1.185 1.235 1 +100 0.3 0.4 1.285 V % nA V V µA µs tRP VOL VOH ILKG RESET asserted ISINK = 1.6mA, VCC > 2.1V ISINK = 100µA, VCC > 1.2V 0.8 x VCC 1 VCC falling at 10V/ms 140 4.50 4.25 3.00 2.85 2.55 2.25 4.63 4.38 3.08 2.93 2.63 2.32 25 280 0.3 0.4 4.75 4.50 3.15 3.00 2.70 2.38 µs ms V V µA V SYMBOL CONDITIONS MIN TYP MAX UNITS MAX16033–MAX16040 MAX160_ _L only (push-pull), RESET not asserted, ISOURCE = 500µA, VCC > VTH(MAX) MAX160_ _P only (open drain), not asserted MAX160_ _L only (push-pull), VCC > VTH(MAX), ISOURCE = 500µA, output not asserted MAX160_ _P only (open drain), VPFO = 5.5V, not asserted VPFI + 100mV to VPFI - 100mV V _______________________________________________________________________________________ 3 Low-Power Battery Backup Circuits in Small µDFN Packages MAX16033–MAX16040 ELECTRICAL CHARACTERISTICS (continued) (VCC = 2.25V to 5.5V, VBATT = 3V, RESET not asserted, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Watchdog Timeout Period Minimum WDI Input Pulse Width SYMBOL tWD tWDI VIL WDI Input Voltage VIH WDI Input Current BATTON (MAX16035/MAX16039) Output Voltage Output Short-Circuit Current RESETIN (MAX16036/MAX16040) RESETIN Threshold RESETIN Input Current RESETIN to Reset Delay CEIN Leakage Current CEIN to CEOUT Resistance CEOUT Short-Circuit Current CEIN to CEOUT Propagation Delay (Note 4) (VRTH + 100mV) to (VRTH - 100mV) RESET asserted RESET not asserted, VCC = VTH(MAX), VCEIN = VCC / 2, ISINK = 10mA RESET asserted, VCEOUT = 0V 50Ω source impedance driver, CLOAD = 50pF VCC = 4.75V VCC = 3.15V 0.7 x VCC VBATT - 0.1 1 µs 1 1.5 2 CHIP-ENABLE GATING (MAX16033–MAX16036) ±1 100 2.0 7 9 µA Ω mA ns VRTH 1.185 1.235 0.01 1.5 1.285 25 V nA µs VOL ISINK = 3.2mA, VBATT = 2.1V Sink current, VCC = 5V Source current, VBATT > 2V 10 60 30 120 0.4 V mA µA 0.7 x VCC -1.0 +1.0 µA (Note 4) CONDITIONS MIN 1.00 100 0.3 x VCC TYP 1.65 MAX 2.25 UNITS s ns WATCHDOG (MAX16034/MAX16038) V VCC = 5V, VCC > VBATT, ISOURCE = 100µA CEOUT Output-Voltage High VCC = 0V, VBATT > 2.2V, ISOURCE = 1µA RESET to CEOUT Delay V Note 1: Note 2: Note 3: Note 4: All devices are 100% production tested at TA = +25°C. All overtemperature limits are guaranteed by design. VBATT can be 0V any time, or VCC can go down to 0V if VBATT is active (except at startup). Positive current flows into BATT. Guaranteed by design. 4 _______________________________________________________________________________________ Low-Power Battery Backup Circuits in Small µDFN Packages Typical Operating Characteristics (TA = +25°C, unless otherwise noted.) SUPPLY CURRENT vs. TEMPERATURE MAX16033 toc01 MAX16033–MAX16040 BATTERY SUPPLY CURRENT (BACKUP MODE) vs. TEMPERATURE MAX16033 toc02 BATT-TO-OUT ON-RESISTANCE vs. TEMPERATURE BATTERY-TO-OUT ON-RESISTANCE (Ω) 9 8 7 6 5 4 3 2 1 0 -40 -15 VBATT = 3V VBATT = 5V VCC = 0V VBATT = 2V MAX16033 toc03 20 19 18 SUPPLY CURRENT (µA) 17 16 15 14 13 12 11 10 -40 VCC = 5V 1.0 0.9 BATTERY SUPPLY CURRENT (µA) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 VBATT = 3V VCC = 0V 1.0 -15 10 35 60 85 -40 -15 10 35 60 85 10 35 60 85 TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C) VCC-TO-OUT ON-RESISTANCE vs. TEMPERATURE MAX16033 toc04 RESET TIMEOUT PERIOD vs. TEMPERATURE MAX16033 toc05 VCC-TO-RESET PROPAGATION DELAY vs. TEMPERATURE VCC-TO-RESET PROPAGATION DELAY (µs) VCC FALLING 0.25V/ms 90 75 60 1V/ms 45 30 15 10V/ms 0 -40 -20 0 20 40 60 80 105 MAX16033 toc06 MAX16033 toc08 230 225 RESET TIMEOUT PERIOD (ms) 220 215 210 205 200 195 190 185 180 1.4 VCC-TO-OUT ON-RESISTANCE (Ω) 1.2 1.0 0.8 0.6 0.4 0.2 0 VCC = 5V 120 VCC = 2.5V IOUT = 25mA VCC = 3V IOUT = 65mA VCC = 4.5V IOUT = 150mA -40 -25 -10 5 20 35 50 65 80 -40 -15 10 35 60 85 TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C) NORMALIZED RESET THRESHOLD vs. TEMPERATURE 1.003 1.002 1.001 1.000 0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.992 0.991 0.990 -40 -20 0 20 40 60 80 TEMPERATURE (°C) MAX16033 toc07 MAXIMUM TRANSIENT DURATION vs. RESET THRESHOLD OVERDRIVE 300 MAXIMUM TRANSIENT DURATION (µs) 250 200 150 100 50 0 1 10 100 1000 10,000 RESET THRESHOLD OVERDRIVE (VTH - VCC) (mV) MAX160_ _-29 (VTH = 2.93V) MAX160_ _-46 (VTH = 4.63V) RESET OCCURS ABOVE CURVE NORMALIZED RESET THRESHOLD _______________________________________________________________________________________ 5 Low-Power Battery Backup Circuits in Small µDFN Packages MAX16033–MAX16040 Typical Operating Characteristics (continued) (TA = +25°C, unless otherwise noted.) BATTERY SUPPLY CURRENT vs. SUPPLY VOLTAGE MAX16033 toc09 RESETIN THRESHOLD vs. TEMPERATURE MAX16033 toc10 RESETIN-TO-RESET PROPAGATION DELAY vs. TEMPERATURE RESETIN-TO-RESET PROPAGATION DELAY (µs) 2.8 2.5 2.3 2.0 1.8 1.5 1.3 1.0 -40 -15 10 35 60 85 MAX16036/ MAX16040 VOD = 50mV MAX16033 toc11 2.00 1.75 BATTERY SUPPLY CURRENT (µA) 1.50 1.25 1.00 0.75 0.50 0.25 0 -0.25 0 VTH = 2.93V VBATT = 2.8V 1.250 1.245 RESETIN THRESHOLD (V) 1.240 1.235 1.230 1.225 1.220 1.215 1.210 MAX16036/ MAX16040 3.0 VBATT = 2.5V VBATT = 2.3V 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) -40 -15 10 35 60 85 TEMPERATURE (°C) TEMPERATURE (°C) CEIN PROPAGATION DELAY vs. CEOUT LOAD CAPACITANCE MAX16033 toc12 CEIN TO CEOUT ON-RESISTANCE vs. TEMPERATURE MAX16033 toc13 WATCHDOG TIMEOUT PERIOD vs. TEMPERATURE 1.9 WATCHDOG TIMEOUT PERIOD (s) 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 VCC = 5V MAX16033 toc14 3.0 CEIN PROPAGATION DELAY (ns) 2.5 2.0 1.5 1.0 0.5 0 0 25 50 75 100 125 150 VCC = 5V 35 CEIN TO CEOUT ON-RESISTANCE (Ω) 30 25 20 15 10 VCC = 5V 5 0 VCC = 3V 2.0 VCC = 3V 175 -40 -15 10 35 60 85 -40 -15 10 35 60 85 CEOUT LOAD CAPACITANCE (pF) TEMPERATURE (°C) TEMPERATURE (°C) PFI-TO-PFO DELAY vs. TEMPERATURE MAX16033 toc15 PFI THRESHOLD vs. TEMPERATURE 1.245 1.240 PFI THRESHOLD (V) 1.235 1.230 1.225 1.220 1.215 MAX16033 toc16 5.00 4.75 4.50 PFI-TO-PFO DELAY (µs) 4.25 4.00 3.75 3.50 3.25 3.00 2.75 2.50 2.25 2.00 -40 FALLING EDGE VOD = 30mV 1.250 1.210 -15 10 35 60 85 -40 -15 10 35 60 85 TEMPERATURE (°C) TEMPERATURE (°C) 6 _______________________________________________________________________________________ Low-Power Battery Backup Circuits in Small µDFN Packages Pin Description PIN MAX16033– MAX16036 (10-pin µDFN) MAX16037– MAX16040 (8-pin µDFN) NAME FUNCTION MAX16033–MAX16040 1 1 RESET Active-Low Reset Output. RESET remains low when VCC is below the reset threshold (VTH), the manual-reset input is low, or RESETIN is low. It asserts low in pulses when the internal watchdog times out. RESET remains low for the reset timeout period (tRP) after VCC rises above the reset threshold, after the manual-reset input goes from low to high, after RESETIN goes high, or after the watchdog triggers a reset event. The MAX160_ _L is an active-low push-pull output, while the MAX160_ _P is an active-low open-drain output. Chip-Enable Input. The input to the chip-enable gating circuit. Connect to GND or OUT if not used. Power-Fail Input. PFO goes low when VPFI falls below 1.235V. Ground Manual-Reset Input (MAX16033/MAX16037). Driving MR low asserts RESET. RESET remains asserted as long as MR is low and for the reset timeout period (tRP) after MR transitions from low to high. Leave unconnected, or connect to VCC if not used. MR has an internal 20kΩ pullup to VCC. Watchdog Input (MAX16034/MAX16038). If WDI remains high or low for longer than the watchdog timeout period (tWD), the internal watchdog timer runs out and a reset pulse is triggered for the reset timeout period (tRP). The internal watchdog clears whenever RESET asserts or whenever WDI sees a rising or falling edge (Figure 2). Battery-On Output (MAX16035/MAX16039). BATTON goes high during battery backup mode. Reset Input (MAX16036/MAX16040). When RESETIN falls below 1.235V, RESET asserts. RESET remains asserted as long as RESETIN is low and for at least tRP after RESETIN goes high. Active-Low Power-Fail Output. PFO goes low when VPFI falls below 1.235V. PFO stays low until VPFI goes above 1.235V. PFO also goes low when VCC falls below the reset threshold voltage. Supply Voltage, 1.2V to 5.5V Output. OUT sources from VCC when RESET is not asserted and from the greater of VCC or BATT when VCC is below the reset threshold voltage. Backup Battery Input. When VCC falls below the reset threshold, OUT switches to BATT if VBATT is 40mV greater than VCC. When VCC rises above VBATT, OUT switches to VCC. The 40mV hysteresis prevents repeated switching if VCC falls slowly. Chip-Enable Output. CEOUT goes low only when CEIN is low and reset is not asserted. When CEOUT is disconnected from CEIN, CEOUT is actively pulled up to OUT. 2 3 4 — 2 3 CEIN PFI GND MR 5 4 WDI BATTON RESETIN 6 7 8 5 6 7 PFO VCC OUT 9 8 BATT 10 — CEOUT _______________________________________________________________________________________ 7 Low-Power Battery Backup Circuits in Small µDFN Packages MAX16033–MAX16040 Functional Diagram BATTON (MAX16035/MAX16039 ONLY) 1.235V MAX16033– MAX16040 VCC OUT BATT CHIP-ENABLE OUTPUT CONTROL CEIN (MAX16033–MAX16036 ONLY) CEOUT MR (MAX16033/MAX16037 ONLY) RESET GENERATOR RESET WDI (MAX16034/MAX16038 ONLY) RESETIN (MAX16036/MAX16040 ONLY) WATCHDOG TRANSITION DETECTOR WATCHDOG TIMER PFO 1.235V 1.235V GND PFI 8 _______________________________________________________________________________________ Low-Power Battery Backup Circuits in Small µDFN Packages Detailed Description The Typical Operating Circuit shows a typical connection for the MAX16033–MAX16040. OUT powers the static random-access memory (SRAM). If V CC is greater than the reset threshold (VTH), or if VCC is lower than VTH but higher than VBATT, VCC is connected to OUT. If VCC is lower than VTH and VCC is less than VBATT, BATT is connected to OUT. OUT supplies up to 200mA from VCC. In battery-backup mode, an internal MOSFET connects the backup battery to OUT. The onresistance of the MOSFET is a function of the backupbattery voltage and temperature and is shown in the BATT-to-OUT On-Resistance vs. Temperature graph in the Typical Operating Characteristics. these devices to be used with most µPs and highspeed DSPs. When R ESET is deasserted, C E IN is connected to CEOUT through a low on-resistance transmission gate. If C E IN is high when R ESET is asserted, C E OUT remains high regardless of any subsequent transitions on CEIN during the reset event. If CEIN is low when RESET is asserted, CEOUT is held low for 1µs to allow completion of the read/write operation (Figure 1). After the 1µs delay expires, CEOUT goes high and stays high regardless of any subsequent transitions on C E IN during the reset event. When CEOUT is disconnected from CEIN, CEOUT is actively pulled up to OUT. The propagation delay through the chip-enable circuitry depends on both the source impedance of the drive to C E IN and the capacitive loading at C E OUT. The chip-enable propagation delay is specified from the 50% point of CEIN to the 50% point of CEOUT, using a 50Ω driver and 50pF load capacitance. Minimize the capacitive load at CEOUT and use a low output-impedance driver to minimize propagation delay. In high-impedance mode, the leakage current at CEIN is ±1µA (max) over temperature. In low-impedance mode, the impedance of CEIN appears as a 75Ω resistor in series with the load at CEOUT. MAX16033–MAX16040 Chip-Enable Signal Gating (MAX16033–MAX16036 Only) The MAX16033–MAX16036 provide internal gating of chip-enable (CE) signals to prevent erroneous data from being written to CMOS RAM in the event of a power failure or brownout condition. During normal operation, the CE gate is enabled and passes all CE transitions. When reset asserts, this path becomes disabled, preventing erroneous data from corrupting the CMOS RAM. The MAX16033–MAX16036 provide a series transmission gate from CEIN to CEOUT. A 2ns (typ) propagation delay from CEIN to CEOUT allows VCC VTH CEIN CEOUT RESET-TO-CEOUT DELAY tRD tRP tRD tRP * RESET PFO PFI > VPFI * IF CEIN GOES HIGH BEFORE RESET ASSERTS, CEOUT GOES HIGH WITHOUT DELAY AS CEIN GOES HIGH. Figure 1. RESET and Chip-Enable Timing _______________________________________________________________________________________ 9 Low-Power Battery Backup Circuits in Small µDFN Packages MAX16033–MAX16040 Backup Battery Switchover To preserve the contents of the RAM in a brownout or power failure, the MAX16033–MAX16040 automatically switch to back up the battery installed at BATT when the following two conditions are met: 1) VCC falls below the reset threshold voltage. 2) VCC is below VBATT. Table 1 lists the status of the inputs and outputs in battery-backup mode. The devices do not power-up if the only voltage source is VBATT. OUT only powers up from VCC at startup. VCC. This input can be driven from TTL/CMOS logic outputs or with open-drain/collector outputs. Connect a normally-open momentary switch from MR to GND to create a manual-reset function; external debounce circuitry is not required. When driving M R from long cables or when using the device in a noisy environment, connect a 0.1µF capacitor from MR to GND to provide additional noise immunity. Watchdog Input (MAX16034/MAX16038 Only) The watchdog monitors µP activity through the watchdog input (WDI). RESET asserts when the µP fails to toggle WDI. Connect WDI to a bus line or µP I/O line. A change of state (high to low, low to high, or a minimum 100ns pulse) resets the watchdog timer. If WDI remains high or low for longer than the watchdog timeout period (tWD), the internal watchdog timer runs out and triggers a reset pulse for the reset timeout period (tRP). The internal watchdog timer clears whenever reset is asserted or whenever WDI sees a rising or falling edge. If WDI remains in either a high or low state, a reset pulse periodically asserts after every watchdog timeout period (tWD); see Figure 2. Table 1. Input and Output Status in Battery-Backup Mode PIN VCC OUT BATT RESET BATTON MR, RESETIN, CEIN, and WDI CEOUT PFO STATUS Disconnected from OUT Connected to BATT Connected to OUT. Current drawn from the battery is less than 1µA (at VBATT = 2.8V, excluding IOUT) when VCC = 0V. Asserted High state Inputs ignored Connected to OUT Asserted WDI tRP RESET tWD tWD tRP Manual-Reset Input (MAX16033/MAX16037 Only) Many µP-based products require manual-reset capability, allowing the user or external logic circuitry to initiate a reset. For the MAX16033/MAX16037, a logic-low on MR asserts RESET. RESET remains asserted while MR is low and for a minimum of 140ms (tRP) after it returns high. MR has an internal 20kΩ (min) pullup resistor to tWD = WATCHDOG TIMEOUT PERIOD tRP = RESET TIMEOUT PERIOD Figure 2. MAX16034/MAX16038 Watchdog Timeout Period and Reset Active Time 10 ______________________________________________________________________________________ Low-Power Battery Backup Circuits in Small µDFN Packages BATTON Indicator (MAX16035/MAX16039 Only) BATTON is a push-pull output that asserts high when in battery-backup mode. BATTON typically sinks 3.2mA at a 0.4V saturation voltage. In battery-backup mode, this terminal sources approximately 10µA from OUT. Use BATTON to indicate battery-switchover status or to supply base drive to an external pass transistor for higher current applications (see Figure 3). Power-Fail Comparator The MAX16033–MAX16040 issue an interrupt (nonmaskable or regular) to the µP when a power failure occurs. The power line is monitored by two external resistors connected to the power-fail input (PFI). When the voltage at PFI falls below 1.235V, the power-fail output (PFO) drives the processor’s NMI input low. An earlier power-fail warning can be generated if the unregulated DC input of the regulator is available for monitoring. The MAX16033– MAX16040 turn off the power-fail comparator and force PFO low when VCC falls below the reset threshold voltage (see Figure 1). The MAX160_ _L devices provide push-pull PFO outputs. The MAX160_ _P devices provide open-drain PFO outputs. VCC MAX16033–MAX16040 RESETIN Comparator (MAX16036/MAX16040 Only) An internal 1.235V reference sets the RESETIN threshold voltage. R ESET asserts when the voltage at RESETIN is below 1.235V. Use the RESETIN function to monitor a secondary power supply. Use the following equations to set the reset threshold voltage (VRTH) of the secondary power supply (see Figure 4): VRTH = VREF (R1 / R2 + 1) where VREF = 1.235V. To simplify the resistor selection, choose a value for R2 and calculate R1. R1 = R2 [(VRTH / VREF) - 1] Since the input current at RESETIN is 25nA (max), large values (up to 1MΩ) can be used for R2 with no significant loss in accuracy. VIN R1 MAX16036 MAX16040 RESETIN R2 Figure 4. Setting RESETIN Voltage for the MAX16036/MAX16040 2.4V TO 5.5V 0.1µF VCC BATT BATTON OUT (CEOUT) CE CMOS RAM MAX16035 MAX16039 (CEIN) ADDRESS DECODE A0–A15 µP GND ( ) FOR MAX16035 ONLY RESET RESET Figure 3. MAX16035/MAX16039 BATTON Driving an External Pass Transistor ______________________________________________________________________________________ 11 Low-Power Battery Backup Circuits in Small µDFN Packages MAX16033–MAX16040 RESET A µP’s reset input puts the µP in a known state. The MAX16033–MAX16040 µP supervisory circuits assert a reset to prevent code-execution errors during powerup, power-down, and brownout conditions. R ESET asserts when VCC is below the reset threshold voltage and for at least 140ms (tRP) after VCC rises above the reset threshold. RESET also asserts when MR is low (MAX16033/MAX16037) or when RESETIN is below 1.235V (MAX16036/MAX16040). The MAX16034/ MAX16038 watchdog function causes RESET to assert in pulses following a watchdog timeout (Figure 2). The MAX160_ _L devices provide push-pull RESET outputs. The MAX160_ _P devices provide open-drain RESET outputs. Applications Information Operation Without a Backup Power Source The MAX16033–MAX16040 provide a battery backup function. If a backup power source is not used, connect BATT to GND and OUT to VCC. Using a Super Cap as a Backup Power Source Super caps are capacitors with extremely high capacitance, such as 0.47F. Figure 5 shows two methods to use a super cap as a backup power source. Connect the super cap through a diode to the 3V input (Figure 5a) or connect the super cap through a diode to 5V (Figure 5b) if a 5V supply is available. The 5V supply charges the super cap to a voltage close to 5V, allowing a longer backup period. Since VBATT can be higher than VCC while VCC is above the reset threshold voltage, there are no special precautions required when using these µP supervisors with a super cap. 3V OR 3.3V 3V OR 3.3V VCC 5V 1N4148 VCC MAX16033– MAX16040 1N4148 MAX16033– MAX16040 BATT 0.47F 0.47F BATT (a) (b) Figure 5. Using a Super Cap as a Backup Source 12 ______________________________________________________________________________________ Low-Power Battery Backup Circuits in Small µDFN Packages MAX16033–MAX16040 START VCC VCC SET WDI LOW RESET TO µP SUBROUTINE OR PROGRAM LOOP SET WDI HIGH V+ MAX16033– MAX16040 MR R1 PFI PFO GND R2 RETURN END Figure 6. Watchdog Flow Diagram Figure 7. Monitoring an Additional Power Supply Watchdog Software Considerations One way to help the watchdog timer to monitor software execution more closely is to set and reset the watchdog at different points in the program, rather than pulsing the watchdog input periodically. Figure 6 shows a flow diagram where the I/O driving the watchdog is set low in the beginning of the program, set high at the beginning of every subroutine or loop, and set low again when the program returns to the beginning. If the program should hang in any subroutine, the watchdog would timeout and reset the µP. Connect PFO to MR in applications that require RESET to assert when the second voltage falls below its threshold. RESET remains asserted as long as PFO holds MR low, and for 140ms (min) after PFO goes high. Replacing the Backup Battery Decouple BATT to GND with a 0.1µF capacitor. The backup power source may be removed while V CC remains valid without the danger of triggering a reset pulse. The device does not enter battery-backup mode when VCC stays above the reset threshold voltage. Power-Fail Comparator Monitoring an Additional Power Supply Monitor another voltage by connecting a resistive divider to PFI as shown in Figure 7. The threshold voltage is: VTH(PFI) = 1.235 (R1 / R2 + 1) where VTH(PFI) is the threshold at which the monitored voltage will trip PFO. To simplify the resistor selection, choose a value for R2 and calculate R1. R1 = R2 [(VTH(PFI) / 1.235) - 1] Adding Hysteresis to the Power-Fail Comparator The power-fail comparator provides a typical hysteresis of 12mV, which is sufficient for most applications where a power-supply line is being monitored through an external voltage-divider. Connect a voltage-divider between PFI and PFO as shown in Figure 8a to provide additional noise immunity. Select the ratio of R1 and R2 such that VPFI falls to 1.235V when VIN drops to its trip point, VTRIP. R3 adds hysteresis and is typically more than 10 times the value of R1 or R2. The hysteresis window extends above (VH) and below (VL) the original trip point, VTRIP. Connecting an ordinary signal diode in series with R3 as shown in Figure 8b causes the lower trip point (VL) to coincide with the trip point without hysteresis (VTRIP). This method provides additional noise margin without compromising the accuracy of the power-fail threshold when the monitored voltage is falling. Set the current through R1 and R2 to be at least 10µA to ensure that the 100nA (max) PFI input current does not shift the trip point. Set R3 to be higher than 10kΩ to reduce the load at PFO. Capacitor C1 adds additional noise rejection. ______________________________________________________________________________________ 13 Low-Power Battery Backup Circuits in Small µDFN Packages MAX16033–MAX16040 (a) VCC (b) VCC VIN VIN R1 PFI R2 C1 R3 MAX16033– MAX16040 R1 PFI R2 C1 R3 MAX16033– MAX16040 PFO (PUSH-PULL) GND TO µP TO µP PFO (PUSH-PULL) GND PFO 0V VL VH VIN PFO 0V VTRIP VH VIN VTRIP R1 ⎞ ⎛ VTRIP = VPFT⎜1 + ⎟ ⎝ R2 ⎠ R1 R1 ⎞ ⎛ VH = (VPFT + VPFH)⎜1 + + ⎟ ⎝ R2 R3 ⎠ R1 R1 ⎞ R1 ⎛ VL = VPFT⎜1 + VCC + ⎟− ⎝ ⎠ R2 R3 R3 VPFT = 1.235V VPFH = 12mV R1 ⎞ ⎛ VTRIP = VPFT⎜1 + ⎟ ⎝ R2 ⎠ R1 R1 ⎞ R1 ⎛ VH = (VPFT + VPFH)⎜1 + + VD ⎟− ⎝ ⎠ R2 R3 R3 VL = VTRIP VPFT = 1.235V VPFH = 12mV VD = DIODE FORWARD VOLTAGE Figure 8. (a) Adding Additional Hysteresis to the Power-Fail Comparator. (b) Shifting the Additional Hysteresis above VTRIP 14 ______________________________________________________________________________________ Low-Power Battery Backup Circuits in Small µDFN Packages Monitoring a Negative Voltage Connect the circuit as shown in Figure 9 to use the power-fail comparator to monitor a negative supply rail. PFO stays low when V- is good. When V- rises to cause PFI to be above +1.235V, PFO goes high. Ensure VCC comes up before the negative supply. MAX16033–MAX16040 3.0V OR 3.3V VCC Negative-Going VCC Transients The MAX16033–MAX16040 are relatively immune to short-duration, negative-going V CC transients. Resetting the µP when V CC experiences only small glitches is not usually desired. The Typical Operating Characteristics section contains a Maximum Transient Duration vs. Reset Threshold Overdrive graph. The graph shows the maximum pulse width of a negative-going VCC transient that would not trigger a reset pulse. As the amplitude of the transient increases (i.e., goes further below the reset threshold voltage), the maximum allowable pulse width decreases. Typically, a VCC transient that goes 100mV below the reset threshold and lasts for 25µs does not trigger a reset pulse. A 0.1µF bypass capacitor mounted close to VCC provides additional transient immunity. R1 PFI R2 MAX16033– MAX16040 PFO V- GND PFO VL VTRIP V0V ⎡ VCC ⎤ 1⎞ ⎛1 VTRIP = R2⎢( VPFT + VPFH) ⎜ + ⎟− ⎥ ⎝ R1 R2 ⎠ R1 ⎦ ⎣ ⎡ VCC ⎤ 1⎞ ⎛1 VL = R2⎢( VPFT) ⎜ + ⎟− ⎥ ⎝ R1 R2 ⎠ R1 ⎦ ⎣ VPFT = 1.235V VPFH = 12mV Figure 9. Monitoring a Negative Voltage ______________________________________________________________________________________ 15 Low-Power Battery Backup Circuits in Small µDFN Packages MAX16033–MAX16040 Device Marking Codes PART MAX16033LLB23+T MAX16033LLB26+T MAX16033LLB29+T MAX16033LLB31+T MAX16033LLB44+T MAX16033LLB46+T MAX16033PLB23+T MAX16033PLB26+T MAX16033PLB29+ MAX16033PLB31+ MAX16033PLB44+T MAX16033PLB46+ MAX16034LLB23+T MAX16034LLB26+T MAX16034LLB29+T MAX16034LLB31+T MAX16034LLB44+T MAX16034LLB46+T MAX16034PLB23+T MAX16034PLB26+T MAX16034PLB29+ MAX16034PLB31+ MAX16034PLB44+T MAX16034PLB46+ TOP MARK +ABE +ABF +ABG +ABH +ABI +ABJ +ABK +ABL +ABM +ABN +ABO +ABP +ABQ +ABR +ABS +ABT +ABU +ABV +ABW +ABX +ABY ABZ +ACA +ACB PART MAX16035LLB23+T MAX16035LLB26+T MAX16035LLB29+ MAX16035LLB31+ MAX16035LLB44+T MAX16035LLB46+ MAX16035PLB23+T MAX16035PLB26+T MAX16035PLB29+ MAX16035PLB31+ MAX16035PLB44+T MAX16035PLB46+ MAX16036LLB23+T MAX16036LLB26+T MAX16036LLB29+ MAX16036LLB31+ MAX16036LLB44+T MAX16036LLB46+ MAX16036PLB23+T MAX16036PLB26+T MAX16036PLB29+ MAX16036PLB31+ MAX16036PLB44+T MAX16036PLB46+ TOP MARK +ACC +ACD +ACE +ACF +ACG +ACH +ACI +ACJ +ACK +ACL +ACM +ACN +ACO +ACP +ACQ +ACR +ACS +ACT +ACU +ACV +ACW +ACX +ACY +ACZ PART MAX16037LLA23+T MAX16037LLA26+T MAX16037LLA29+ MAX16037LLA31+ MAX16037LLA44+T MAX16037LLA46+ MAX16037PLA23+T MAX16037PLA26+T MAX16037PLA29+ MAX16037PLA31+ MAX16037PLA44+T MAX16037PLA46+ MAX16038LLA23+T MAX16038LLA26+T MAX16038LLA29+ MAX16038LLA31+ MAX16038LLA44+T MAX16038LLA46+ MAX16038PLA23+T MAX16038PLA26+T MAX16038PLA29+ MAX16038PLA31+ MAX16038PLA44+T MAX16038PLA46+ TOP MARK +ABX +ABY +ABZ +ACA +ACB +ACC +ACD +ACE +ACF +ACG +ACH +ACI +ACJ +ACK +ACL +ACM +ACN +ACO +ACP +ACQ +ACR +ACS +ACT +ACU PART MAX16039LLA23+T MAX16039LLA26+T MAX16039LLA29+T MAX16039LLA31+T MAX16039LLA44+T MAX16039LLA46+T MAX16039PLA23+T MAX16039PLA26+T MAX16039PLA29+ MAX16039PLA31+ MAX16039PLA44+T MAX16039PLA46+ MAX16040LLA23+T MAX16040LLA26+T MAX16040LLA29+T MAX16040LLA31+T MAX16040LLA44+T MAX16040LLA46+T MAX16040PLA23+T MAX16040PLA26+T MAX16040PLA29+ MAX16040PAL31+ MAX16040PLA44+T MAX16040PLA46+ TOP MARK +ACV +ACW +ACX +ACY +ACZ +ADA +ADB +ADC +ADD +ADE +ADF +ADG +ADH +ADI +ADJ +ADK +ADL +ADM +ADN +ADO +ADP +ADQ +ADR +ADS Note: 48 standard versions shown in bold are available. Sample stock is generally held on standard versions only. Contact factory for nonstandard versions availability. 16 ______________________________________________________________________________________ Low-Power Battery Backup Circuits in Small µDFN Packages Pin Configurations TOP VIEW CEOUT CEOUT MAX16033–MAX16040 BATT BATT OUT OUT PFO VCC 10 9 8 7 6 10 9 8 VCC 7 4 GND VCC 6 3 GND MAX16033 MAX16034 + 1 RESET 2 CEIN 3 PFI 4 GND 5 MR (WDI) MAX16035 MAX16036 + 1 RESET 2 CEIN 3 PFI 5 BATTON (RESETIN) BATTON (RESETIN) PFO 5 4 10-µDFN ( ) FOR MAX16034 ONLY 10-µDFN ( ) FOR MAX16036 ONLY BATT BATT OUT 8 7 6 5 8 7 MAX16037 MAX16038 + 1 RESET 2 PFI 3 GND 4 MR (WDI) MAX16039 MAX16040 + 1 RESET 2 PFI 8-µDFN ( ) FOR MAX16038 ONLY 8-µDFN ( ) FOR MAX16040 ONLY + DENOTES A LEAD-FREE PACKAGE. ______________________________________________________________________________________ OUT VCC PFO PFO 6 17 Low-Power Battery Backup Circuits in Small µDFN Packages MAX16033–MAX16040 Typical Operating Circuit 2.4V TO 5.5V 0.1µF CMOS RAM VCC ADDITIONAL DC VOLTAGE BATT OUT 0.1µF CE REALTIME CLOCK R3 MAX16033– MAX16040 RESETIN* R4 ADDITIONAL DC VOLTAGE RESET R1 PFI R2 CEIN** GND ADDRESS DECODE PFO WDI*** CEOUT** A0–A15 RESET I/O µP I/O * RESETIN APPLIES TO MAX16035/MAX16039 ONLY. **CEIN AND CEOUT APPLY TO MAX16033–MAX16036 ONLY. ***WDI APPLIES TO MAX16034/MAX16038 ONLY. 18 ______________________________________________________________________________________ Low-Power Battery Backup Circuits in Small µDFN Packages Ordering Information (continued) PART* MAX16035LLB_ _+T MAX16035PLB_ _+T MAX16036LLB_ _+T MAX16036PLB_ _+T MAX16037LLA_ _+T MAX16037PLA_ _+T MAX16038LLA_ _+T MAX16038PLA_ _+T MAX16039LLA_ _+T MAX16039PLA_ _+T MAX16040LLA_ _+T MAX16040PLA_ _+T TEMP RANGE PINPACKAGE PKG CODE SUFFIX 46 44 31 29 26 23 Reset Threshold Ranges RESET THRESHOLD VOLTAGE (V) MIN 4.50 4.25 3.00 2.85 2.55 2.25 TYP 4.63 4.38 3.08 2.93 2.63 2.32 MAX 4.75 4.50 3.15 3.00 2.70 2.38 MAX16033–MAX16040 -40°C to +85°C 10 µDFN-10 L1022-1 -40°C to +85°C 10 µDFN-10 L1022-1 -40°C to +85°C 10 µDFN-10 L1022-1 -40°C to +85°C 10 µDFN-10 L1022-1 -40°C to +85°C 8 µDFN-8 -40°C to +85°C 8 µDFN-8 -40°C to +85°C 8 µDFN-8 -40°C to +85°C 8 µDFN-8 -40°C to +85°C 8 µDFN-8 -40°C to +85°C 8 µDFN-8 -40°C to +85°C 8 µDFN-8 -40°C to +85°C 8 µDFN-8 L822-1 L822-1 L822-1 L822-1 L822-1 L822-1 L822-1 L822-1 Chip Information PROCESS: BiCMOS *These parts offer a choice of reset threshold voltages. From the Reset Threshold Ranges table, insert the desired threshold voltage code in the blank to complete the part number. See Selector Guide for a listing of device features. +Denotes a lead-free package. T = Tape and reel. ______________________________________________________________________________________ 19 Low-Power Battery Backup Circuits in Small µDFN Packages MAX16033–MAX16040 Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) D A e b N XXXX XXXX XXXX SOLDER MASK COVERAGE E PIN 1 0.10x45∞ L PIN 1 INDEX AREA SAMPLE MARKING 7 1 A A L1 (N/2 -1) x e) C L C L b A A2 A1 L e EVEN TERMINAL L e ODD TERMINAL PACKAGE OUTLINE, 6, 8, 10L uDFN, 2x2x0.80 mm -DRAWING NOT TO SCALE- 21-0164 A 1 2 20 ______________________________________________________________________________________ 6, 8, 10L UDFN.EPS Low-Power Battery Backup Circuits in Small µDFN Packages Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) MAX16033–MAX16040 COMMON DIMENSIONS SYMBOL A A1 A2 D E L L1 MIN. 0.70 0.15 0.020 1.95 1.95 0.30 NOM. 0.75 0.20 0.025 2.00 2.00 0.40 0.10 REF. MAX. 0.80 0.25 0.035 2.05 2.05 0.50 PACKAGE VARIATIONS PKG. CODE L622-1 L822-1 L1022-1 N 6 8 10 e 0.65 BSC 0.50 BSC 0.40 BSC b 0.30±0.05 0.25±0.05 0.20±0.03 (N/2 -1) x e 1.30 REF. 1.50 REF. 1.60 REF. PACKAGE OUTLINE, 6, 8, 10L uDFN, 2x2x0.80 mm -DRAWING NOT TO SCALE- 21-0164 A 2 2 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21 © 2007 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc. Heaney
MAX16036 价格&库存

很抱歉,暂时无法提供与“MAX16036”相匹配的价格&库存,您可以联系我们找货

免费人工找货