19-1266; Rev 2; 1/07
High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
________________General Description
The MAX987/MAX988/MAX991/MAX992/MAX995/ MAX996 single/dual/quad micropower comparators feature low-voltage operation and rail-to-rail inputs and outputs. Their operating voltage ranges from +2.5V to +5.5V, making them ideal for both 3V and 5V systems. These comparators also operate with ±1.25V to ±2.75V dual supplies. They consume only 48µA per comparator while achieving a 120ns propagation delay. Input bias current is typically 1.0pA, and input offset voltage is typically 0.5mV. Internal hysteresis ensures clean output switching, even with slow-moving input signals. The output stage’s unique design limits supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX987/MAX991/MAX995 have a push-pull output stage that sinks as well as sources current. Large internal output drivers allow rail-to-rail output swing with loads up to 8mA. The MAX988/MAX992/MAX996 have an open-drain output stage that can be pulled beyond VCC to 6V (max) above VEE. These open-drain versions are ideal for level translators and bipolar to singleended converters. The single MAX987/MAX988 are available in tiny 5-pin SC70 packages, while the dual MAX991/MAX992 are available in ultra-small 8-pin SOT23 and µMAX® packages.
____________________________Features
♦ 120ns Propagation Delay ♦ 48µA Quiescent Supply Current ♦ +2.5V to +5.5V Single-Supply Operation ♦ Common-Mode Input Voltage Range Extends 250mV Beyond the Rails ♦ Push-Pull Output Stage Sinks and Sources 8mA Current (MAX987/MAX991/MAX995) ♦ Open-Drain Output Voltage Extends Beyond VCC (MAX988/MAX992/MAX996) ♦ Unique Output Stage Reduces Output Switching Current, Minimizing Overall Power Consumption ♦ 100µA Supply Current at 1MHz Switching Frequency ♦ No Phase Reversal for Overdriven Inputs ♦ Available in Space-Saving Packages: 5-Pin SOT23 (MAX987/MAX988) 8-Pin µMAX (MAX991/MAX992)
MAX987/MAX988/MAX991/MAX992/MAX995/MAX996
_______________Ordering Information
PART MAX987EXK-T MAX987EUK-T PIN-PACKAGE 5 SC70-5 5 SOT23-5 PKG CODE X5-1 U5-1 TOP MARK ABM ABZB
Selector Guide
PART MAX987 MAX988 MAX991 MAX992 MAX995 MAX996 COMPARATORS PER PACKAGE 1 1 2 2 4 4 OUTPUT STAGE Push-Pull Open-Drain Push-Pull Open-Drain Push-Pull Open-Drain
S8-2 MAX987ESA 8 SO — Ordering Information continued at end of data sheet. Note: All devices specified over the -40°C to +85°C operating temperature range. Typical Application Circuit appears at end of data sheet.
Pin Configurations
TOP VIEW
OUT 1 5 VEE
Applications
Portable/BatteryPowered Systems Mobile Communications Zero-Crossing Detectors Window Comparators Level Translators Threshold Detectors/ Discriminators Ground/Supply Sensing IR Receivers Digital Line Receivers
VCC 2
MAX987 MAX988
4 IN-
IN+ 3
SOT23/SC70 Pin Configurations continued at end of data sheet. 1
µMAX is a registered trademark of Maxim Integrated Products, Inc.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators MAX987/MAX988/MAX991/MAX992/MAX995/MAX996
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) ...................................................6V IN_-, IN_+ to VEE .......................................-0.3V to (VCC + 0.3V) Current into Input Pins .....................................................±20mA OUT_ to VEE MAX987/MAX991/MAX995 ....................-0.3V to (VCC + 0.3V) MAX988/MAX992/MAX996 ..................................-0.3V to +6V OUT_ Short-Circuit Duration to VEE or VCC ...........................10s Continuous Power Dissipation (TA = +70°C) 5-Pin SC70 (derate 3.1mW/°C above +70°C) ...............247mW 5-Pin SOT23 (derate 7.10mW/°C above +70°C)...........571mW 8-Pin SOT23 (derate 9.1mW/°C above +70°C).............727mW 8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 8-Pin µMAX (derate 4.5mW/°C above +70°C) ..............362mW 14-Pin TSSOP (derate 9.1mW/°C above +70°C) ..........727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (Note 1)
(VCC = +2.7V to +5.5V, VEE = 0V, VCM = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER Supply Voltage Supply Current per Comparator Power-Supply Rejection Ratio Common-Mode Voltage Range (Note 2) Input Offset Voltage (Note 3) Input Hysteresis Input Bias Current (Note 4) Input Offset Current Input Capacitance Common-Mode Rejection Ratio Output Leakage Current (MAX988/MAX992/ MAX996 only) Output Short-Circuit Current SYMBOL VCC CONDITIONS Inferred from PSRR test VCC = 5V ICC VCC = 2.7V PSRR VCMR 2.5V ≤ VCC ≤ 5.5V TA = +25°C TA = -40°C to +85°C VOS VHYST IB IOS CIN CMRR ILEAK VOUT = high Sourcing or sinking, VOUT = VEE or VCC VCC = 5V, ISINK = 8mA VCC = 2.7V, ISINK = 3.5mA VCC = 5V, ISOURCE = 8mA VCC = 2.7V, ISOURCE = 3.5mA TA = +25°C TA = -40°C to +85°C TA = +25°C TA = -40°C to +85°C TA = +25°C TA = -40°C to +85°C TA = +25°C TA = -40°C to +85°C 4.6 4.45 2.4 2.3 2.55 4.85 V 0.15 VCC = 5V VCC = 2.7V 95 35 0.2 0.4 0.55 0.3 0.4 V 50 Full common-mode range TA = +25°C TA = -40°C to +85°C ±2.5 0.001 0.5 1.0 80 1.0 10 TA = +25°C TA = -40°C to +85°C TA = +25°C TA = -40°C to +85°C 55 VEE 0.25 VEE ±0.5 80 VCC + 0.25 VCC ±5 ±7 mV mV nA pA pF dB µA 48 MIN 2.5 53 TYP MAX 5.5 80 96 80 96 dB V µA UNITS V
ISC
mA
OUT Output-Voltage Low
VOL
OUT Output-Voltage High (MAX987/MAX991/ MAX995 Only)
VOH
2
_______________________________________________________________________________________
High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
ELECTRICAL CHARACTERISTICS (continued)
(VCC = +2.7V to +5.5V, VEE = 0V, VCM = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER OUT Rise Time (MAX987/MAX991/ MAX995 Only) OUT Fall Time SYMBOL tRISE VCC = 5.0V CONDITIONS CL = 15pF CL = 50pF CL = 200pF CL = 15pF tFALL VCC = 5.0V CL = 50pF CL = 200pF MAX987/MAX991/ 10mV overdrive MAX995 only 100mV overdrive tPDPropagation Delay CL = 15pF, MAX988/MAX992/ 10mV overdrive VCC = 5V MAX996 only, RPULLUP = 5.1kΩ 100mV overdrive MAX987/MAX991/MAX995 only, CL = 15pF, VCC = 5V 10mV overdrive 100mV overdrive MIN TYP 15 20 40 15 20 40 210 120 210 ns 120 210 120 25 µs ns ns MAX UNITS
MAX987/MAX988/MAX991/MAX992/MAX995/MAX996
tPD+ Power-Up Time tPU
Note 1: All device specifications are 100% production tested at TA = +25°C. Limits over the extended temperature range are guaranteed by design, not production tested. Note 2: Inferred from the VOS test. Either or both inputs can be driven 0.3V beyond either supply rail without output phase reversal. Note 3: VOS is defined as the center of the hysteresis band at the input. Note 4: IB is defined as the average of the two input bias currents (IB-, IB+).
_______________________________________________________________________________________
3
High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators MAX987/MAX988/MAX991/MAX992/MAX995/MAX996
Typical Operating Characteristics
(VCC = +5V, VCM = 0V, TA = +25°C, unless otherwise noted.)
SUPPLY CURRENT PER COMPARATOR vs. TEMPERATURE
MAX9879 TOC1
SUPPLY CURRENT PER COMPARATOR vs. OUTPUT TRANSITION FREQUENCY
MAX987 TOC2
90 VIN+ > VIN80 SUPPLY CURRENT (µA) 70 VCC = 5.5.V 60 50 40 30 -60 -40 -20 0 20 40 60 80 VCC = 2.5.V
1000
SUPPLY CURRENT (µA)
VCC = 5.5V 100 VCC = 2.5V
10 100 0.01 0.1 1 10 100 1000 10,000 TEMPERATURE (°C) OUTPUT TRANSITION FREQUENCY (kHz)
OUTPUT HIGH VOLTAGE vs. OUTPUT SOURCE CURRENT
MAX987-04
OUTPUT LOW VOLTAGE vs. OUTPUT SINK CURRENT
VIN+ < VINOUTPUT LOW VOLTAGE (mV) (VOL) 1000 VCC = 2.7V 100
MAX987-03a
10,000 VIN+ > VIN1000 OUTPUT HIGH VOLTAGE (mV) (VCC - VOH)
10,000
100
VCC = 2.7V VCC = 5.0V
10
VCC = 5.0V
1
10
0.1 0.01 0.1 1 10 100 OUTPUT SOURCE CURRENT (mA)
1 0.01 0.1 1 10 100 OUTPUT SINK CURRENT (mA)
OUTPUT SHORT-CIRCUIT CURRENT vs. TEMPERATURE
MAX987 05
INPUT OFFSET VOLTAGE vs. TEMPERATURE
MAX987 06
120 110 100 90 80 70 60 50 40 30 20 10 0 -60 -40 -20 0 20 40 60 80
1.1 0.9 OFFSET VOLTAGE (mV) 0.7 0.5 0.3 0.1 -0.1 -0.3
OUTPUT SINK CURRENT (mA)
VCC = 5.0V
VCC = 2.7V
100
-60
-40
-20
0
20
40
60
80
100
TEMPERATURE (°C)
TEMPERATURE (°C)
4
_______________________________________________________________________________________
High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators MAX987/MAX988/MAX991/MAX992/MAX995/MAX996
Typical Operating Characteristics (continued)
(VCC = +5V, VCM = 0V, TA = +25°C, unless otherwise noted.)
PROPAGATION DELAY vs. CAPACITIVE LOAD
MAX987 TOC8
PROPAGATION DELAY vs. TEMPERATURE
190 PROPAGATION DELAY (ns) 180 170 160 150 140 130 120 110 VCC = 5.5.V VCC = 2.5.V VOD = 50mV
MAX987 TOC9
10,000 VOD = 50mV PROPAGATION DELAY (ns)
200
1000
100 0.01
100 0.1 1 10 100 1000 -60 -40 -20 0 20 40 60 80 100 CAPACITIVE LOAD (nF) TEMPERATURE (°C)
PROPAGATION DELAY vs. INPUT OVERDRIVE
MAX987 TOC10
MAX987/MAX991/MAX995 PROPAGATION DELAY (tPD+)
MAX987-11
300 250 PROPAGATION DELAY (ns) 200 VCC = 2.5V 150 100 50 0 0 20 40 60 80 100 120 VCC = 5.5V
VOD = 50mV IN+ 50mV/div
OUT
2V/div
140
100ns/div
INPUT OVERDRIVE (mV)
PROPAGATION DELAY (tPD-)
MAX987-12
MAX987/MAX991/MAX995 SWITCHING CURRENT, OUT RISING
MAX987-13
VOD = 50mV 50mV/div IN+ 50mV/div IN+ 2V/div OUT
OUT
2V/div
ICC
2mA/div
VOD = 50mV 100ns/div 200ns/div
_______________________________________________________________________________________
5
High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators MAX987/MAX988/MAX991/MAX992/MAX995/MAX996
Typical Operating Characteristics (continued)
(VCC = +5V, VCM = 0V, TA = +25°C, unless otherwise noted.)
SWITCHING CURRENT, OUT FALLING
MAX987-14
1MHZ RESPONSE
MAX987-15
VOD = 50mV IN+ 50mV/div IN+ 50mV/div
OUT
2V/div
ICC
2mA/div
OUT
2V/div
VOD = 50mV 200ns/div 200ns/div
POWER-UP DELAY
MAX987-16
VIN- = 50mV VIN+ = 0V
VCC
2V/div
OUT
2V/div
5µs/div
6
_______________________________________________________________________________________
High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
______________________________________________________________Pin Description
PIN MAX987 MAX988 SOT23/ SC70 1 2 3 4 5 — — — — — — — — — — — — — MAX991 MAX996 SO/µMAX/ SOT23 — 8 — — 4 1 2 3 5 6 7 — — — — — — — MAX995 MAX996 SO/ TSSOP — 4 — — 11 1 2 3 5 6 7 8 9 10 12 13 14 — OUT VCC IN+ INVEE OUTA INAINA+ INB+ INBOUTB OUTC INCINC+ IND+ INDOUTD N.C. Comparator Output Positive Supply Voltage Comparator Noninverting Input Comparator Inverting Input Negative Supply Voltage Comparator A Output Comparator A Inverting Input Comparator A Noninverting Input Comparator B Noninverting Input Comparator B Inverting Input Comparator B Output Comparator C Output Comparator C Inverting Input Comparator C Noninverting Input Comparator D Noninverting Input Comparator D Inverting Input Comparator D Output No Connection. Not internally connected.
MAX987/MAX988/MAX991/MAX992/MAX995/MAX996
NAME
FUNCTION
SO 6 7 3 2 4 — — — — — — — — — — — — 1, 5, 8
_______________________________________________________________________________________
7
High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators MAX987/MAX988/MAX991/MAX992/MAX995/MAX996
Detailed Description
The MAX987/MAX988/MAX991/MAX992/MAX995/ MAX996 are single/dual/quad low-power, low-voltage comparators. They have an operating supply voltage range between +2.5V and +5.5V and consume only 48µA per comparator, while achieving 120ns propagation delay. Their common-mode input voltage range extends 0.25V beyond each rail. Internal hysteresis ensures clean output switching, even with slow-moving input signals. Large internal output drivers allow rail-torail output swing with up to 8mA loads. The output stage employs a unique design that minimizes supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX987/MAX991/MAX995 have a push-pull output structure that sinks as well as sources current. The MAX988/MAX992/MAX996 have an opendrain output stage that can be pulled beyond VCC to an absolute maximum of 6V above VEE.
Applications Information
Additional Hysteresis
MAX987/MAX991/MAX995 The MAX987/MAX991/MAX995 have ±2.5mV internal hysteresis. Additional hysteresis can be generated with three resistors using positive feedback (Figure 1). Unfortunately, this method also slows hysteresis response time. Use the following procedure to calculate resistor values for the MAX987/MAX991/MAX995. 1) Select R3. Leakage current at IN is under 10nA; therefore, the current through R3 should be at least 1µA to minimize errors caused by leakage current. The current through R3 at the trip point is (VREF VOUT) / R3. Considering the two possible output states and solving for R3 yields two formulas: R3 = V REF / 1µA or R3 = (V REF - V CC) / 1µA. Use the smaller of the two resulting resistor values. For example, if VREF = 1.2V and VCC = 5V, then the two R3 resistor values are 1.2MΩ and 3.8MΩ. Choose a 1.2MΩ standard value for R3. 2) Choose the hysteresis band required (VHB). For this example, choose 50mV. 3) Calculate R1 according to the following equation: R1 = R3 x (VHB / VCC) For this example, insert the values R1 = 1.2MΩ x (50mV / 5V) = 12kΩ. 4) Choose the trip point for VIN rising (VTHR; VTHF is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. For this example, choose 3V.
Input Stage Circuitry
The devices’ input common-mode range extends from -0.25V to (VCC + 0.25V). These comparators may operate at any differential input voltage within these limits. Input bias current is typically 1.0pA if the input voltage is between the supply rails. Comparator inputs are protected from overvoltage by internal body diodes connected to the supply rails. As the input voltage exceeds the supply rails, these body diodes become forward biased and begin to conduct. Consequently, bias currents increase exponentially as the input voltage exceeds the supply rails.
Output Stage Circuitry
These comparators contain a unique output stage capable of rail-to-rail operation with up to 8mA loads. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with this family of comparators, the supply-current change during an output transition is extremely small. The Typical Operating Characteristics Supply Current vs. Output Transition Frequency graph shows the minimal supply-current increase as the output switching frequency approaches 1MHz. This characteristic eliminates the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. Battery life increases substantially in high-speed, battery-powered applications.
VCC R3
R1 VIN VCC R2 VEE
0.1µF OUT
VREF
MAX987 MAX991 MAX995
Figure 1. Additional Hysteresis (MAX987/MAX991/MAX995)
8
_______________________________________________________________________________________
High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
5) Calculate R2 as shown. For this example, choose an 8.2kΩ standard value: 1 R2 = ⎛ VTHR ⎞ 1 1 ⎜V ⎟ − R1 − R 3 ⎝ REF x R1⎠ R2 = 1 = 8.03kΩ ⎛ 1 1 3.0V ⎞ − ⎜ ⎟− 12kΩ 2.2MΩ ⎝ 1.2 x 12kΩ ⎠
MAX987/MAX988/MAX991/MAX992/MAX995/MAX996
Use the following procedure to calculate resistor values: 1) Select R3 according to the formulas R3 = VREF / 1µA or R3 = (VREF - VCC) / 1µA - R4. Use the smaller of the two resulting resistor values. 2) Choose the hysteresis band required (VHB). For this example, choose 50mV. 3) Calculate R1 according to the following equation: R1 = (R3 + R4) x (VHB / VCC) 4) Choose the trip point for VIN rising (VTHR; VTHF is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. 5) Calculate R2 as follows: R2 = 1 ⎛ VTHR ⎞ 1 1 ⎜V ⎟ − R1 − R 3 + R4 ⎝ REF x R1⎠
6) Verify trip voltages and hysteresis as follows: ⎛1 1 1⎞ + + VIN rising: VTHR = VREF x R1 x ⎜ ⎟ R2 R3 ⎠ ⎝ R1 ⎛ R1 x VCC ⎞ VIN falling : VTHF = VTHR − ⎜ ⎟ R3 ⎝ ⎠ Hysteresis = VTHR − VTHF MAX988/MAX992/MAX996 The MAX988/MAX992/MAX996 have ±2.5mV internal hysteresis. They have open-drain outputs and require an external pullup resistor (Figure 2). Additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX987/MAX991/MAX995.
6) Verify trip voltages and hysteresis as follows: VIN rising: VTHR = VREF x R1 x ⎛1 ⎞ 1 1 + + ⎜ ⎟ R2 R3 + R4 ⎠ ⎝ R1 ⎛ R1 x VCC ⎞ VIN falling : VTHF = VTHR − ⎜ ⎟ ⎝ R3 + R4 ⎠
VCC R3 0.1µF R1 VIN VCC R2 VEE OUT R4
Hysteresis = VTHR − VTHF
Circuit Layout and Bypassing
These comparators’ high-gain bandwidth requires design precautions to maximize their high-speed capability. The recommended precautions are: 1) Use a PCB with an unbroken, low-inductance ground plane. 2) Place a decoupling capacitor (a 0.1µF ceramic capacitor is a good choice) as close to V CC as possible. 3) On the inputs and outputs, keep lead lengths short to avoid unwanted parasitic feedback around the comparators. 4) Solder the devices directly to the PCB instead of using a socket.
VREF
MAX988 MAX992 MAX996
Figure 2. Additional Hysteresis (MAX988/MAX992/MAX996)
_______________________________________________________________________________________
9
High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators MAX987/MAX988/MAX991/MAX992/MAX995/MAX996
Zero-Crossing Detector
Figure 3 shows a zero-crossing detector application. The MAX987’s inverting input is connected to ground, and its noninverting input is connected to a 100mVp-p signal source. As the signal at the noninverting input crosses 0V, the comparator’s output changes state.
Logic-Level Translator
Figure 4 shows an application that converts 5V logic levels to 3V logic levels. The MAX988 is powered by the +5V supply voltage, and the pullup resistor for the MAX988’s open-drain output is connected to the +3V supply voltage. This configuration allows the full 5V logic swing without creating overvoltage on the 3V logic inputs. For 3V to 5V logic-level translation, simply connect the +3V supply to VCC and the +5V supply to the pullup resistor.
VCC 0.1µF 2 100mV 4 IN+ OUT 1 3 IN100kΩ 3 IN+ VCC 100kΩ 4 IN-
+5V (+3V)
0.1µF +3V (+5V) 2 VCC RPULLUP 1 3V (5V) LOGIC OUT
OUT
MAX987
VEE 5 5V (3V) LOGIC IN VEE 5
MAX988
Figure 3. Zero-Crossing Detector
Figure 4. Logic-Level Translator
Pin Configurations (continued)
TOP VIEW
N.C. 1 IN- 2 IN+ 3 VEE 4
8 7
N.C. VCC OUT N.C.
OUTA 1 INA- 2 INA+ 3 VEE 4
8 7
VCC OUTB INBINB+
OUTA 1 INA- 2 INA+ 3
14 OUTD 13 IND12 IND+
MAX987 MAX988
6 5
MAX991 MAX992
6 5
VCC 4 INB+ 5 INB- 6
MAX995 MAX996
11 VEE 10 INC+ 9 8 INCOUTC
SO
SO/µMAX/SOT23
OUTB 7
SO/TSSOP
10
______________________________________________________________________________________
High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
Typical Application Circuit
VCC
__Ordering Information (continued)
PART MAX988EXK-T PIN-PACKAGE 5 SC70-5 5 SOT23-5 8 SO 8 SOT23-8 8 µMAX-8 8 SO 8 SOT23-8 8 µMAX-8 8 SO 14 TSSOP 14 SO 14 TSSOP 14 SO PKG CODE X5-1 U5-1 S8-2 K8-5 U8-1 S8-2 K8-5 U8-1 S8-2 U14-1 S14-4 U14-1 S14-4 TOP MARK ABN ABZC — AAEB — — AAEC — — — — — —
MAX987/MAX988/MAX991/MAX992/MAX995/MAX996
VIN VCC IN+ OUT IN-
0.1µF
MAX988EUK-T MAX988ESA MAX991EKA-T MAX991EUA-T MAX991ESA MAX992EKA-T MAX992EUA-T MAX992ESA MAX995EUD MAX995ESD MAX996EUD
*RPULLUP
MAX98_ MAX99_
VEE VREF
* MAX988/MAX992/MAX996 ONLY
MAX996ESD
THRESHOLD DETECTOR
Note: All devices specified over the -40°C to +85°C operating temperature range.
__________________________________________________Tape-and-Reel Information
4.0 ±0.1 1.0 ±0.1 1.5 +0.1/-0.0 DIAMETER 2.0 ±0.05 1.75 ±0.1 A
3.5 ±0.05 2.2 ±0.1
8.0 ±0.3
0.5 RADIUS TYPICAL Bo 0.30 ±0.05 0.8 ±0.05 0.30R MAX.
4.0 ±0.1
A0 A
1.0 MINIMUM
Ko
Ao = 3.1mm ±0.1 Bo = 2.7mm ±0.1 Ko = 1.2mm ±0.1
NOTE: DIMENSIONS ARE IN MM. AND FOLLOW EIA481-1 STANDARD.
______________________________________________________________________________________
11
High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators MAX987/MAX988/MAX991/MAX992/MAX995/MAX996
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
SOT-23 5L .EPS
12
______________________________________________________________________________________
High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
8LUMAXD.EPS
MAX987/MAX988/MAX991/MAX992/MAX995/MAX996
4X S
8
8
INCHES DIM A A1 A2 b MIN 0.002 0.030 MAX 0.043 0.006 0.037
MILLIMETERS MAX MIN 0.05 0.75 1.10 0.15 0.95
Ø0.50±0.1
E
H
0.6±0.1
c D e E H L
1
1
0.6±0.1
α
S
D
BOTTOM VIEW
0.014 0.010 0.007 0.005 0.120 0.116 0.0256 BSC 0.120 0.116 0.198 0.188 0.026 0.016 6° 0° 0.0207 BSC
0.25 0.36 0.13 0.18 2.95 3.05 0.65 BSC 2.95 3.05 4.78 5.03 0.41 0.66 0° 6° 0.5250 BSC
TOP VIEW
A2
A1
A
c e b L
α
SIDE VIEW
FRONT VIEW
PROPRIETARY INFORMATION TITLE:
PACKAGE OUTLINE, 8L uMAX/uSOP
APPROVAL DOCUMENT CONTROL NO. REV.
21-0036
1 1
J
Revision History
Pages changed at Rev 2: 1–6, 8–13
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13 © 2007 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.