MX25L1006E
MX25L1006E
DATASHEET
P/N: PM1670
1
REV. 1.4, APR. 10, 2014
MX25L1006E
Contents
1. FEATURES......................................................................................................................................................... 4
2. GENERAL DESCRIPTION................................................................................................................................ 5
3. PIN CONFIGURATIONS..................................................................................................................................... 6
4. PIN DESCRIPTION............................................................................................................................................. 6
5. BLOCK DIAGRAM.............................................................................................................................................. 7
6. DATA PROTECTION........................................................................................................................................... 8
Table 1. Protected Area Sizes.................................................................................................................8
7. HOLD FEATURE................................................................................................................................................. 9
Figure 1. Hold Condition Operation ........................................................................................................9
Table 2. Command Definition................................................................................................................10
8. MEMORY ORGANIZATION...............................................................................................................................11
Table 3. Memory Organization ............................................................................................................. 11
9. DEVICE OPERATION....................................................................................................................................... 12
Figure 2. Serial Modes Supported........................................................................................................12
10. COMMAND DESCRIPTION............................................................................................................................ 13
10-1. Write Enable (WREN)...........................................................................................................................13
10-2. Write Disable (WRDI)............................................................................................................................13
10-3. Read Identification (RDID)....................................................................................................................13
10-4. Read Status Register (RDSR)..............................................................................................................14
Table 4. Status Register........................................................................................................................14
10-5. Write Status Register (WRSR)..............................................................................................................15
Table 5. Protection Modes.....................................................................................................................15
10-6. Read Data Bytes (READ).....................................................................................................................16
10-7. Read Data Bytes at Higher Speed (FAST_READ)...............................................................................16
10-8. Dual Output Mode (DREAD).................................................................................................................16
10-9. Sector Erase (SE).................................................................................................................................16
10-10. Block Erase (BE)..................................................................................................................................17
10-11. Chip Erase (CE)....................................................................................................................................17
10-12. Page Program (PP)..............................................................................................................................17
10-13. Deep Power-down (DP)........................................................................................................................18
10-14. Release from Deep Power-down (RDP), Read Electronic Signature (RES) .......................................18
10-15. Read Electronic Manufacturer ID & Device ID (REMS)........................................................................19
Table 6. ID Definitions...........................................................................................................................19
10-16. Read SFDP Mode (RDSFDP)...............................................................................................................20
Figure 3. Read Serial Flash Discoverable Parameter (RDSFDP) Sequence.......................................20
Table 7. Signature and Parameter Identification Data Values ..............................................................21
Table 8. Parameter Table (0): JEDEC Flash Parameter Tables............................................................22
Table 9. Parameter Table (1): Macronix Flash Parameter Tables.........................................................24
11. POWER-ON STATE........................................................................................................................................ 26
12. ELECTRICAL SPECIFICATIONS................................................................................................................... 27
Table 10. Absolute Maximum Ratings...................................................................................................27
Figure 4. Maximum Negative Overshoot Waveform.............................................................................27
Table 11. Capacitance TA = 25°C, f = 1.0 MHz....................................................................................27
Figure 5. Maximum Positive Overshoot Waveform...............................................................................27
Figure 6. Input Test Waveforms and Measurement Level.....................................................................28
P/N: PM1670
2
REV. 1.4, APR. 10, 2014
MX25L1006E
Figure 7. Output Loading......................................................................................................................28
Table 12. DC Characteristics ................................................................................................................29
Table 13. AC Characteristics.................................................................................................................30
Table 14. Power-Up Timing...................................................................................................................31
12-1. Initial Delivery State..............................................................................................................................31
13. Timing Analysis............................................................................................................................................. 32
Figure 8. Serial Input Timing.................................................................................................................32
Figure 9. Output Timing.........................................................................................................................32
Figure 10. Hold Timing..........................................................................................................................33
Figure 11. WP# Disable Setup and Hold Timing during WRSR when SRWD=1..................................33
Figure 12. Write Enable (WREN) Sequence (Command 06)................................................................34
Figure 13. Write Disable (WRDI) Sequence (Command 04)................................................................34
Figure 14. Read Identification (RDID) Sequence (Command 9F).........................................................34
Figure 15. Read Status Register (RDSR) Sequence (Command 05)...................................................35
Figure 16. Write Status Register (WRSR) Sequence (Command 01).................................................35
Figure 17. Read Data Bytes (READ) Sequence (Command 03).........................................................35
Figure 18. Read at Higher Speed (FAST_READ) Sequence (Command 0B).....................................36
Figure 19. Dual Output Read Mode Sequence (Command 3B)............................................................36
Figure 20. Page Program (PP) Sequence (Command 02)..................................................................37
Figure 21. Sector Erase (SE) Sequence (Command 20).....................................................................38
Figure 22. Block Erase (BE) Sequence (Command 52 or D8).............................................................38
Figure 23. Chip Erase (CE) Sequence (Command 60 or C7)..............................................................39
Figure 24. Deep Power-down (DP) Sequence (Command B9)...........................................................39
Figure 25. Read Electronic Signature (RES) Sequence (Command AB).............................................39
Figure 26. Release from Deep Power-down (RDP) Sequence (Command AB)..................................40
Figure 27. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90)................40
Figure 28. Power-up Timing..................................................................................................................41
14. RECOMMENDED OPERATING CONDITIONS.............................................................................................. 42
14-1. At Device Power-Up.............................................................................................................................42
Figure 29. AC Timing at Device Power-Up............................................................................................42
Figure 30. Power-Down Sequence.......................................................................................................43
15. ERASE AND PROGRAMMING PERFORMANCE......................................................................................... 44
17. DATA RETENTION......................................................................................................................................... 44
16. LATCH-UP CHARACTERISTICS................................................................................................................... 44
18. ORDERING INFORMATION........................................................................................................................... 45
19. PART NAME DESCRIPTION.......................................................................................................................... 46
20. PACKAGE INFORMATION............................................................................................................................. 47
21. REVISION HISTORY ...................................................................................................................................... 50
P/N: PM1670
3
REV. 1.4, APR. 10, 2014
MX25L1006E
1M-BIT [x 1/x 2] CMOS SERIAL FLASH
1. FEATURES
GENERAL
• Serial Peripheral Interface compatible -- Mode 0 and Mode 3
• 1,048,576 x 1 bit structure or 524,288 x 2 bits (Dual Output mode) Structure
• 32 Equal Sectors with 4K byte each
- Any Sector can be erased individually
• 2 Equal Blocks with 64K byte each
- Any Block can be erased individually
• Single Power Supply Operation
- 2.7 to 3.6 volt for read, erase, and program operations
• Latch-up protected to 100mA from -1V to Vcc +1V
PERFORMANCE
• High Performance
- Fast access time: 104MHz serial clock
- Serial clock of Dual Output mode: 80MHz
- Fast program time: 0.6ms(typ.) and 3ms(max.)/page (256-byte per page)
- Byte program time: 9us (typ.)
- Fast erase time: 40ms(typ.)/sector (4K-byte per sector) ; 0.8s(typ.) and 2s(max.)/chip
• Low Power Consumption
- Low active read current: 12mA(max.) at 104MHz and 4mA(max.) at 33MHz
- Low active programming current: 15mA (typ.)
- Low active sector erase current: 9mA (typ.)
- Low standby current: 15uA (typ.)
- Deep power-down mode 2uA (typ.)
• Minimum 100,000 erase/program cycles
• 20 years data retention
SOFTWARE FEATURES
• Input Data Format
- 1-byte Command code
• Block Lock protection
- The BP0~BP1 status bit defines the size of the area to be software protected against Program and Erase instructions.
• Auto Erase and Auto Program Algorithm
- Automatically erases and verifies data at selected sector
- Automatically programs and verifies data at selected page by an internal algorithm that automatically times the
program pulse widths (Any page to be programed should have page in the erased state first)
• Status Register Feature
• Electronic Identification
- JEDEC 2-byte Device ID
- RES command, 1-byte Device ID
• Support Serial Flash Discoverable Parameters (SFDP) mode
P/N: PM1670
4
REV. 1.4, APR. 10, 2014
MX25L1006E
HARDWARE FEATURES
• SCLK Input
- Serial clock input
• SI/SIO0
- Serial Data Input or Serial Data Output for Dual output mode
• SO/SIO1
- Serial Data Output or Serial Data Output for Dual output mode
• WP# pin
- Hardware write protection
• HOLD# pin
- pause the chip without diselecting the chip
• PACKAGE
- 8-pin SOP (150mil)
- 8-USON (2x3mm)
- 8-ball WLCSP
- All devices are RoHS Compliant and Halogen-free
2. GENERAL DESCRIPTION
MX25L1006E is a CMOS 1,048,576 bit serial Flash memory, which is configured as 131,072 x 8 internally. MX25L1006E features a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus.
The three bus signals are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). Serial access
to the device is enabled by CS# input.
MX25L1006E provides sequential read operation on whole chip.
After program/erase command is issued, auto program/erase algorithms which program/erase and verify the specified page or sector/block locations will be executed. Program command is executed on page (256 bytes) basis, and
erase command is executes on chip or sector (4K-bytes) or block (64K-bytes).
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read
command can be issued to detect completion status of a program or erase operation via WIP bit.
When the device is not in operation and CS# is high, it is put in standby mode.
The MX25L1006E utilizes Macronix's proprietary memory cell, which reliably stores memory contents even after
100,000 program and erase cycles.
P/N: PM1670
5
REV. 1.4, APR. 10, 2014
MX25L1006E
4. PIN DESCRIPTION
3. PIN CONFIGURATIONS
SYMBOL DESCRIPTION
CS#
Chip Select
Serial Data Input (for 1 x I/O)/ Serial Data
SI/SIO0
Input & Output (for Dual output mode)
Serial Data Output (for 1 x I/O)/ Serial Data
SO/SIO1
Input & Output (for Dual output mode)
SCLK Clock Input
Hold, to pause the device without
HOLD#
deselecting the device
WP# Write Protection
VCC
+ 3.3V Power Supply
GND Ground
8-PIN SOP (150mil)
CS#
SO/SIO1
WP#
GND
1
2
3
4
8
7
6
5
VCC
HOLD#
SCLK
SI/SIO0
8-LAND USON (2x3mm)
CS#
SO/SIO1
WP#
GND
1
2
3
4
VCC
HOLD#
SCLK
SI/SIO0
8
7
6
5
8-ball WLCSP TOP View
1
A
VCC
B
C
P/N: PM1670
2
3
HOLD#
SCLK
SI
4
5
CS#
SO
WP#
GND
6
REV. 1.4, APR. 10, 2014
MX25L1006E
5. BLOCK DIAGRAM
X-Decoder
Address
Generator
Memory Array
Page Buffer
SI
Data
Register
Y-Decoder
SRAM
Buffer
CS#
Mode
Logic
Sense
Amplifier
State
Machine
Output
Buffer
HV
Generator
SO
SCLK
P/N: PM1670
Clock Generator
7
REV. 1.4, APR. 10, 2014
MX25L1006E
6. DATA PROTECTION
During power transition, there may be some false system level signals which result in inadvertent erasure or
programming. The device is designed to protect itself from these accidental write cycles.
The state machine will be reset as standby mode automatically during power up. In addition, the control register
architecture of the device constrains that the memory contents can only be changed after specific command
sequences have completed successfully.
In the following, there are several features to protect the system from the accidental write cycles during VCC powerup and power-down or from system noise.
• Valid command length checking: The command length will be checked whether it is at byte base and completed on byte boundary.
• Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before
other command to change data. The WEL bit will return to reset stage under following situation:
- Power-up
- Write Disable (WRDI) command completion
- Write Status Register (WRSR) command completion
- Page Program (PP) command completion
- Sector Erase (SE) command completion
- Block Erase (BE) command completion
- Chip Erase (CE) command completion
• Software Protection Mode (SPM): by using BP0-BP1 bits to set the part of Flash protected from data change.
• Hardware Protection Mode (HPM): by using WP# going low to protect the BP0-BP1 bits and SRWD bit from
data change.
• Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from
writing all commands except Release from deep power down mode command (RDP) and Read Electronic Signature command (RES).
Table 1. Protected Area Sizes
BP1
0
0
1
1
P/N: PM1670
Status bit
BP0
0
1
0
1
Protect level
1Mb
0 (none)
1 (1 block)
2 (2 blocks)
3 (All)
None
Block 1
All
All
8
REV. 1.4, APR. 10, 2014
MX25L1006E
7. HOLD FEATURE
HOLD# pin signal goes low to hold any serial communications with the device. The HOLD feature will not stop the
operation of write status register, programming, or erasing in progress.
The operation of HOLD requires Chip Select(CS#) keeping low and starts on falling edge of HOLD# pin signal
while Serial Clock (SCLK) signal is being low (if Serial Clock signal is not being low, HOLD operation will not start
until Serial Clock signal being low). The HOLD condition ends on the rising edge of HOLD# pin signal while Serial Clock(SCLK) signal is being low (if Serial Clock signal is not being low, HOLD operation will not end until Serial
Clock being low), see "Figure 1. Hold Condition Operation".
Figure 1. Hold Condition Operation
CS#
SCLK
HOLD#
Hold
Condition
(standard)
Hold
Condition
(non-standard)
The Serial Data Output (SO) is high impedance, both Serial Data Input (SI) and Serial Clock (SCLK) are don't care
during the HOLD operation. If Chip Select (CS#) drives high during HOLD operation, it will reset the internal logic of
the device. To re-start communication with chip, the HOLD# must be at high and CS# must be at low.
P/N: PM1670
9
REV. 1.4, APR. 10, 2014
MX25L1006E
Table 2. Command Definition
COMMAND
WREN
WRDI
(byte)
(write enable) (write disable)
1st
2nd
3rd
4th
5th
Action
06 (hex)
04 (hex)
RDID
(read
identification)
9F (hex)
outputs
sets the (WEL) resets the (WEL)
write enable
write enable
manufacturer
latch bit
latch bit
ID and 2-byte
device ID
COMMAND
Fast Read
RDSFDP
(byte)
(fast read data) (Read SFDP)
DREAD
(Dual Output
mode)
RDSR
(read status
register)
05 (hex)
to read out the
status register
WRSR (write
status register)
READ
(read data)
01 (hex)
03 (hex)
AD1
AD2
AD3
to write new n bytes read out
values to the until CS# goes
status register
high
SE
BE
(Sector Erase) (Block Erase)
1st
0B (hex)
5A (hex)
3B (hex)
20 (hex)
52 or D8 (hex)
2nd
3rd
4th
5th
AD1
AD2
AD3
Dummy
n bytes read out
until CS# goes
high
AD1
AD2
AD3
Dummy
Read SFDP
mode
AD1
AD2
AD3
AD1
AD2
AD3
AD1
AD2
AD3
COMMAND
(byte)
PP
(Page
Program)
DP
(Deep Power
Down)
RDP
(Release from
Deep Powerdown)
1st
02 (hex)
B9 (hex)
AB (hex)
2nd
3rd
4th
5th
AD1
AD2
AD3
Action
Action
to program the
selected page
enters deep
power down
mode
n bytes read out to erase the
until CS# goes selected sector
high
release from
deep power
down mode
to erase the
selected block
CE
(Chip Erase)
60 or C7 (hex)
to erase the
whole chip
REMS
RES
(Read
(Read
Electronic
Electronic ID) Manufacturer &
Device ID)
AB (hex)
90 (hex)
x
x
x
x
x
ADD(1)
to read out
Output the
1-byte Device manufacturer ID
and device ID
ID
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first.
(2) It is not allowed to adopt any other code which is not in the above command definition table.
P/N: PM1670
10
REV. 1.4, APR. 10, 2014
MX25L1006E
8. MEMORY ORGANIZATION
Table 3. Memory Organization
Block
1
0
P/N: PM1670
Sector
31
:
16
15
:
3
2
1
0
Address Range
01F000h
01FFFFh
:
:
010000h
010FFFh
00F000h
00FFFFh
:
:
003000h
003FFFh
002000h
002FFFh
001000h
001FFFh
000000h
000FFFh
11
REV. 1.4, APR. 10, 2014
MX25L1006E
9. DEVICE OPERATION
1. Before a command is issued, status register should be checked to ensure the device is ready for the intended
operation.
2. When incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby mode
until next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z. The CS# falling time needs to
follow tCHCL spec. (Please refer to "Table 13. AC Characteristics")
3. When correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until
next CS# rising edge. The CS# rising time needs to follow tCLCH spec. (Please refer to "Table 13. AC Characteristics")
4. Input data is latched on the rising edge of Serial Clock(SCLK) and data shifts out on the falling edge of SCLK.
The difference of Serial mode 0 and mode 3 is shown as "Figure 2. Serial Modes Supported".
5. For the following instructions: RDID, RDSR, READ, FAST_READ, RDSFDP, DREAD, RES and REMS the shifted-in instruction sequence is followed by a data-out sequence. After any bit of data being shifted out, the CS#
can be high. For the following instructions: WREN, WRDI, WRSR, SE, BE, CE, PP, RDP and DP the CS# must
go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.
6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglected and not affect the current operation of Write Status Register, Program, and Erase.
Figure 2. Serial Modes Supported
CPOL
CPHA
shift in
(Serial mode 0)
0
0
SCLK
(Serial mode 3)
1
1
SCLK
SI
shift out
MSB
SO
MSB
Note:
CPOL indicates clock polarity of Serial master:
-CPOL=1 for SCLK high while idle,
-CPOL=0 for SCLK low while not transmitting.
CPHA indicates clock phase.
The combination of CPOL bit and CPHA bit decides which Serial mode is supported.
P/N: PM1670
12
REV. 1.4, APR. 10, 2014
MX25L1006E
10. COMMAND DESCRIPTION
10-1.
Write Enable (WREN)
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, SE,
BE, CE, and WRSR, which are intended to change the device content, should be set every time after the WREN instruction setting the WEL bit.
The sequence of issuing WREN instruction is: CS# goes low→ sending WREN instruction code→ CS# goes high. (see
"Figure 12. Write Enable (WREN) Sequence (Command 06)")
10-2.
Write Disable (WRDI)
The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit.
The sequence of issuing WRDI instruction is: CS# goes low→ sending WRDI instruction code→ CS# goes high. (see
"Figure 13. Write Disable (WRDI) Sequence (Command 04)")
The WEL bit is reset by following situations:
- Power-up
- Write Disable (WRDI) instruction completion
- Write Status Register (WRSR) instruction completion
- Page Program (PP) instruction completion
- Sector Erase (SE) instruction completion
- Block Erase (BE) instruction completion
- Chip Erase (CE) instruction completion
10-3.
Read Identification (RDID)
RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The Macronix
Manufacturer ID is C2(hex), the memory type ID is 20(hex) as the first-byte device ID, and the individual device ID
of second-byte ID is as followings: 11(hex) for MX25L1006E.
The sequence of issuing RDID instruction is: CS# goes low→sending RDID instruction code→24-bits ID data out on
SO→to end RDID operation can use CS# to high at any time during data out. (see "Figure 14. Read Identification (RDID)
Sequence (Command 9F)")
While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage.
P/N: PM1670
13
REV. 1.4, APR. 10, 2014
MX25L1006E
10-4.
Read Status Register (RDSR)
The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even
in program/erase/write status register condition) and continuously. It is recommended to check the Write in Progress (WIP) bit before sending a new instruction when a program, erase, or write status register operation is in progress.
The sequence of issuing RDSR instruction is: CS# goes low→sending RDSR instruction code→Status Register
data out on SO (see "Figure 15. Read Status Register (RDSR) Sequence (Command 05)")
The definition of the status register bits is as below:
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write
status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status
register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status
register cycle.
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable
latch. When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/
erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the device will not accept program/erase/write status register instruction.
BP1, BP0 bits. The Block Protect (BP1, BP0) bits, non-volatile bits, indicate the protected area (as defined in "Table 1. Protected Area Sizes") of the device to against the program/erase instruction without hardware protection
mode being set. To write the Block Protect (BP1, BP0) bits requires the Write Status Register (WRSR) instruction to
be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector Erase (SE),
Block Erase (BE) and Chip Erase(CE) instructions (only if all Block Protect bits set to 0, the CE instruction can be
executed)
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protection (WP#) pin for providing hardware protection mode. The hardware protection mode requires SRWD sets to 1
and WP# pin signal is low stage. In the hardware protection mode, the Write Status Register (WRSR) instruction is
no longer accepted for execution and the SRWD bit and Block Protect bits (BP1, BP0) are read only.
Table 4. Status Register
bit7
bit6
bit5
bit4
SRWD (status
register write
protect)
0
0
0
1=status
register write
disable
bit3
BP1
(level of
protected
block)
bit2
BP0
(level of
protected
block)
(Note 1)
(Note 1)
bit1
bit0
WEL
WIP
(write enable
(write in
latch)
progress bit)
1=write
1=write
enable
operation
0=not write 0=not in write
enable
operation
Notes: 1. See the table "Table 1. Protected Area Sizes".
P/N: PM1670
14
REV. 1.4, APR. 10, 2014
MX25L1006E
10-5.
Write Status Register (WRSR)
The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the
Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP1, BP0) bits to define the protected area of
memory (as shown in "Table 1. Protected Area Sizes"). The WRSR also can set or reset the Status Register Write
Disable (SRWD) bit in accordance with Write Protection (WP#) pin signal. The WRSR instruction cannot be executed once the Hardware Protected Mode (HPM) is entered.
The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Register
data on SI→ CS# goes high. (see "Figure 16. Write Status Register (WRSR) Sequence (Command 01)")
The WRSR instruction has no effect on b6, b5, b4, b1, b0 of the status register.
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.
The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write
in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1
during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL)
bit is reset.
Table 5. Protection Modes
Mode
Software protection
mode (SPM)
Hardware protection
mode (HPM)
Status register condition
WP# and SRWD bit status
Memory
Status register can be written
in (WEL bit is set to "1") and
the SRWD, BP0-BP1
bits can be changed
WP#=1 and SRWD bit=0, or
WP#=0 and SRWD bit=0, or
WP#=1 and SRWD=1
The protected area
cannot
be program or erase.
The SRWD, BP0-BP1 of
status register bits cannot be
changed
WP#=0, SRWD bit=1
The protected area
cannot
be program or erase.
Note:
1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in "Table 1. Protected Area Sizes".
As the table above showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM).
Software Protected Mode (SPM):
-
When SRWD bit=0, no matter WP# is low or high, the WREN instruction may set the WEL bit and can
change the values of SRWD, BP1, BP0. The protected area, which is defined by BP1, BP0, is at software
protected mode (SPM).
-
When SRWD bit=1 and WP# is high, the WREN instruction may set the WEL bit can change the values of
SRWD, BP1, BP0. The protected area, which is defined by BP1, BP0, is at software protected mode (SPM)
Note: If SRWD bit=1 but WP# is low, it is impossible to write the Status Register even if the WEL bit has
previously been set. It is rejected to write the Status Register and not be executed.
Hardware Protected Mode (HPM):
-
When SRWD bit=1, and then WP# is low (or WP# is low before SRWD bit=1), it enters the hardware protected mode (HPM). The data of the protected area is protected by software protected mode by BP1, BP0
and hardware protected mode by the WP# to against data modification.
Note: to exit the hardware protected mode requires WP# driving high once the hardware protected mode is
entered. If the WP# pin is permanently connected to high, the hardware protected mode can never be
entered; only can use software protected mode via BP1, BP0.
P/N: PM1670
15
REV. 1.4, APR. 10, 2014
MX25L1006E
10-6.
Read Data Bytes (READ)
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on
the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address
is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can
be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been
reached.
The sequence of issuing READ instruction is: CS# goes low→ sending READ instruction code→ 3-byte address on
SI→ data out on SO→ to end READ operation can use CS# to high at any time during data out. (see "Figure 17.
Read Data Bytes (READ) Sequence (Command 03)")
10-7.
Read Data Bytes at Higher Speed (FAST_READ)
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and
data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at
any location. The address is automatically increased to the next higher address after each byte data is shifted out,
so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when
the highest address has been reached.
The sequence of issuing FAST_READ instruction is: CS# goes low→ sending FAST_READ instruction code→
3-byte address on SI→ 1-dummy byte address on SI→data out on SO→ to end FAST_READ operation can use
CS# to high at any time during data out. (see "Figure 18. Read at Higher Speed (FAST_READ) Sequence (Command
0B)")
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.
10-8.
Dual Output Mode (DREAD)
The DREAD instruction enables double throughput of Serial Flash in read mode. The address is latched on rising
edge of SCLK, and data of every two bits(interleave on 1I/2O pins) shift out on the falling edge of SCLK at a maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the next
higher address after each byte data is shifted out, so the whole memory can be read out at a single DREAD instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing DREAD instruction, the following data out will perform as 2-bit instead of previous 1-bit.
The sequence is shown as "Figure 19. Dual Output Read Mode Sequence (Command 3B)".
While Program/Erase/Write Status Register cycle is in progress, DREAD instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
The DREAD only performs read operation. Program/Erase /Read ID/Read status....operation do not support DREAD
throughputs.
10-9.
Sector Erase (SE)
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Sector Erase (SE). Any address
of the sector (see "Table 3. Memory Organization") is a valid address for Sector Erase (SE) instruction. The CS#
P/N: PM1670
16
REV. 1.4, APR. 10, 2014
MX25L1006E
must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
Address bits [Am-A12] (Am is the most significant address) select the sector address.
The sequence of issuing SE instruction is: CS# goes low → sending SE instruction code→ 3-byte address on SI →
CS# goes high. (see "Figure 21. Sector Erase (SE) Sequence (Command 20)")
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tSE
timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page
is protected by BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the page.
10-10. Block Erase (BE)
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". A Write Enable (WREN) instruction must be executed to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE). Any address of the block (see "Table 3. Memory Organization") is a valid address for Block Erase (BE) instruction. The
CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the
instruction will be rejected and not executed.
The sequence of issuing BE instruction is: CS# goes low → sending BE instruction code→ 3-byte address on SI →
CS# goes high. (see "Figure 22. Block Erase (BE) Sequence (Command 52 or D8)")
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tBE
timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page
is protected by BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the page.
10-11. Chip Erase (CE)
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). Any address of the
sector (see "Table 3. Memory Organization") is a valid address for Chip Erase (CE) instruction. The CS# must go
high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will
be rejected and not executed.
The sequence of issuing CE instruction is: CS# goes low→ sending CE instruction code→ CS# goes high. (see
"Figure 23. Chip Erase (CE) Sequence (Command 60 or C7)")
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE
timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip
is protected by BP1, BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed when
BP1, BP0 all set to "0".
10-12. Page Program (PP)
The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction
must be executed to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). The last address
P/N: PM1670
17
REV. 1.4, APR. 10, 2014
MX25L1006E
byte (the 8 least significant address bits, A7-A0) should be set to 0 for 256 bytes page program. If A7-A0 are not
all zero, transmitted data that exceed page length are programmed from the starting address (24-bit address that
last 8 bit are all 0) of currently selected page. The CS# must keep during the whole Page Program cycle. The CS#
must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. If the data bytes sent to the device exceeds 256, the last 256 data byte is
programmed at the request page and previous data will be disregarded. If the data bytes sent to the device has not
exceeded 256, the data will be programmed at the request address of the page. There will be no effort on the other
data bytes of the same page.
The sequence of issuing PP instruction is: CS# goes low→ sending PP instruction code→ 3-byte address on SI→ at
least 1-byte on data on SI→ CS# goes high. (see "Figure 20. Page Program (PP) Sequence (Command 02)")
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be check out during the Page Program cycle is in progress. The WIP sets 1 during the
tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the
page is protected by BP1, BP0 bits, the Page Program (PP) instruction will not be executed.
10-13. Deep Power-down (DP)
The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to entering the Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode
requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not active and all Write/Program/Erase instruction are ignored. When CS# goes high, it's only in standby mode not deep
power-down mode. It's different from Standby mode.
The sequence of issuing DP instruction is: CS# goes low→ sending DP instruction code→ CS# goes high. (see "Figure 24. Deep Power-down (DP) Sequence (Command B9)")
Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP)
and Read Electronic Signature (RES) instruction. (RES instruction to allow the ID been read out). When Powerdown, the deep power-down mode automatically stops, and when power-up, the device automatically is in standby
mode. For RDP instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of instruction
code been latched-in); otherwise, the instruction will not executed. As soon as Chip Select (CS#) goes high, a delay
of tDP is required before entering the Deep Power-down mode and reducing the current to ISB2.
10-14. Release from Deep Power-down (RDP), Read Electronic Signature (RES)
The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip
Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the
Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in
the Deep Power-down mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip
Select (CS#) must remain High for at least tRES2(max), as specified in "Table 13. AC Characteristics". Once in the
Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions.
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of "Table 6.
ID Definitions". This is not the same as RDID instruction. It is not recommended to use for new design. For new design, please use RDID instruction. Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except the device is in progress of program/erase/write cycle; there's no effect on the current program/
erase/write cycle in progress.
The sequence is shown as "Figure 25. Read Electronic Signature (RES) Sequence (Command AB)" and "Figure
26. Release from Deep Power-down (RDP) Sequence (Command AB)".
P/N: PM1670
18
REV. 1.4, APR. 10, 2014
MX25L1006E
The RES instruction is ended by CS# going high after the ID has been read out at least once. The ID outputs repeatedly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously
in Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at
least tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and
execute instruction.
The RDP instruction is for releasing from Deep Power-Down Mode.
10-15. Read Electronic Manufacturer ID & Device ID (REMS)
The REMS instruction is an alternative to the Release from Deep Power-down/Device ID instruction that provides
both the JEDEC assigned manufacturer ID and the specific device ID.
The REMS instruction is very similar to the Release from Deep Power-down/Device ID instruction. The instruction is
initiated by driving the CS# pin low and shift the instruction code "90h" followed by two dummy bytes and one bytes
address (A7~A0). After that, the Manufacturer ID for Macronix (C2h) and the Device ID are shifted out on the falling
edge of SCLK with most significant bit (MSB) first as shown in "Figure 27. Read Electronic Manufacturer & Device
ID (REMS) Sequence (Command 90)". The Device ID values are listed in Table of "Table 6. ID Definitions". If the
one-byte address is initially set to 01h, the device ID will be read first and then followed by the Manufacturer ID. The
Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving CS# high.
Table 6. ID Definitions
RDID Command
manufacturer ID
C2
memory type
20
electronic ID
10
device ID
10
RES Command
REMS Command
P/N: PM1670
manufacturer ID
C2
19
memory density
11
REV. 1.4, APR. 10, 2014
MX25L1006E
10-16. Read SFDP Mode (RDSFDP)
The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the functional
and feature capabilities of serial flash devices in a standard set of internal parameter tables. These parameter tables
can be interrogated by host system software to enable adjustments needed to accommodate divergent features
from multiple vendors. The concept is similar to the one found in the Introduction of JEDEC Standard, JESD68 on
CFI.
The sequence of issuing RDSFDP instruction is CS# goes low→send RDSFDP instruction (5Ah)→send 3 address
bytes on SI pin→send 1 dummy byte on SI pin→read SFDP code on SO→to end RDSFDP operation can use CS#
to high at any time during data out.
SFDP is a JEDEC Standard, JESD216.
Figure 3. Read Serial Flash Discoverable Parameter (RDSFDP) Sequence
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
SO
24 BIT ADDRESS
23 22 21
5Ah
3
2
1
0
High-Z
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Cycle
SI
7
6
5
4
3
2
1
0
DATA OUT 2
DATA OUT 1
SO
7
6
5
3
2
1
0
7
MSB
MSB
P/N: PM1670
4
20
6
5
4
3
2
1
0
7
MSB
REV. 1.4, APR. 10, 2014
MX25L1006E
Table 7. Signature and Parameter Identification Data Values
SFDP Table below is for MX25L1006EMI-10G, MX25L1006EZUI-10G and MX25L1006EBAI-10G
Description
SFDP Signature
Comment
Fixed: 50444653h
Add (h) DW Add Data (h/b) Data
(Byte)
(Bit)
(Note1)
(h)
00h
07:00
53h
53h
01h
15:08
46h
46h
02h
23:16
44h
44h
03h
31:24
50h
50h
SFDP Minor Revision Number
Start from 00h
04h
07:00
00h
00h
SFDP Major Revision Number
Start from 01h
This number is 0-based. Therefore,
0 indicates 1 parameter header.
05h
15:08
01h
01h
06h
23:16
01h
01h
07h
31:24
FFh
FFh
00h: it indicates a JEDEC specified
header.
08h
07:00
00h
00h
Start from 00h
09h
15:08
00h
00h
Start from 01h
0Ah
23:16
01h
01h
How many DWORDs in the
Parameter table
0Bh
31:24
09h
09h
0Ch
07:00
30h
30h
0Dh
15:08
00h
00h
0Eh
23:16
00h
00h
0Fh
31:24
FFh
FFh
it indicates Macronix manufacturer
ID
10h
07:00
C2h
C2h
Start from 00h
11h
15:08
00h
00h
Start from 01h
12h
23:16
01h
01h
How many DWORDs in the
Parameter table
13h
31:24
04h
04h
14h
07:00
60h
60h
15h
15:08
00h
00h
16h
23:16
00h
00h
17h
31:24
FFh
FFh
Number of Parameter Headers
Unused
ID number (JEDEC)
Parameter Table Minor Revision
Number
Parameter Table Major Revision
Number
Parameter Table Length
(in double word)
Parameter Table Pointer (PTP)
First address of JEDEC Flash
Parameter table
Unused
ID number
(Macronix manufacturer ID)
Parameter Table Minor Revision
Number
Parameter Table Major Revision
Number
Parameter Table Length
(in double word)
Parameter Table Pointer (PTP)
First address of Macronix Flash
Parameter table
Unused
P/N: PM1670
21
REV. 1.4, APR. 10, 2014
MX25L1006E
Table 8. Parameter Table (0): JEDEC Flash Parameter Tables
SFDP Table below is for MX25L1006EMI-10G, MX25L1006EZUI-10G and MX25L1006EBAI-10G
Description
Comment
Block/Sector Erase sizes
00: Reserved, 01: 4KB erase,
10: Reserved,
11: not support 4KB erase
Write Granularity
0: 1Byte, 1: 64Byte or larger
Write Enable Instruction Required 0: not required
1: required 00h to be written to the
for Writing to Volatile Status
status register
Registers
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
01b
02
1b
03
0b
30h
0: use 50h opcode,
1: use 06h opcode
Write Enable Opcode Select for
Note: If target flash status register is
Writing to Volatile Status Registers
nonvolatile, then bits 3 and 4 must
be set to 00b.
Contains 111b and can never be
Unused
changed
4KB Erase Opcode
01:00
31h
Data
(h)
E5h
04
0b
07:05
111b
15:08
20h
16
1b
18:17
00b
19
0b
20
0b
20h
(1-1-2) Fast Read (Note2)
0=not support 1=support
Address Bytes Number used in
addressing flash array
Double Transfer Rate (DTR)
Clocking
00: 3Byte only, 01: 3 or 4Byte,
10: 4Byte only, 11: Reserved
(1-2-2) Fast Read
0=not support 1=support
(1-4-4) Fast Read
0=not support 1=support
21
0b
(1-1-4) Fast Read
0=not support 1=support
22
0b
23
1b
33h
31:24
FFh
37h:34h
31:00
000F FFFFh
0=not support 1=support
32h
Unused
Unused
Flash Memory Density
(1-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states (Note3)
Clocks) not support
(1-4-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits (Note4)
38h
(1-4-4) Fast Read Opcode
39h
(1-1-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(1-1-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits
3Ah
(1-1-4) Fast Read Opcode
3Bh
P/N: PM1670
22
04:00
0 0000b
07:05
000b
15:08
FFh
20:16
0 0000b
23:21
000b
31:24
FFh
81h
FFh
00h
FFh
00h
FFh
REV. 1.4, APR. 10, 2014
MX25L1006E
SFDP Table below is for MX25L1006EMI-10G, MX25L1006EZUI-10G and MX25L1006EBAI-10G
Description
Comment
(1-1-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(1-1-2) Fast Read Number of
000b: Mode Bits not support
Mode Bits
(1-1-2) Fast Read Opcode
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
3Ch
3Dh
(1-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(1-2-2) Fast Read Number of
000b: Mode Bits not support
Mode Bits
3Eh
(1-2-2) Fast Read Opcode
3Fh
(2-2-2) Fast Read
0=not support 1=support
Unused
(4-4-4) Fast Read
0=not support 1=support
40h
Unused
04:00
0 1000b
07:05
000b
15:08
3Bh
20:16
0 0000b
23:21
000b
31:24
FFh
00
0b
03:01
111b
04
0b
07:05
111b
Data
(h)
08h
3Bh
00h
FFh
EEh
Unused
43h:41h
31:08
FFh
FFh
Unused
45h:44h
15:00
FFh
FFh
20:16
0 0000b
23:21
000b
(2-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(2-2-2) Fast Read Number of
000b: Mode Bits not support
Mode Bits
46h
(2-2-2) Fast Read Opcode
47h
31:24
FFh
FFh
49h:48h
15:00
FFh
FFh
20:16
0 0000b
23:21
000b
Unused
00h
(4-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(4-4-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits
4Ah
(4-4-4) Fast Read Opcode
4Bh
31:24
FFh
FFh
4Ch
07:00
0Ch
0Ch
4Dh
15:08
20h
20h
4Eh
23:16
10h
10h
4Fh
31:24
D8h
D8h
50h
07:00
00h
00h
51h
15:08
FFh
FFh
52h
23:16
00h
00h
53h
31:24
FFh
FFh
Sector Type 1 Size
Sector/block size = 2^N bytes (Note5)
0x00b: this sector type doesn't exist
Sector Type 1 erase Opcode
Sector Type 2 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 2 erase Opcode
Sector Type 3 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 3 erase Opcode
Sector Type 4 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 4 erase Opcode
P/N: PM1670
23
00h
REV. 1.4, APR. 10, 2014
MX25L1006E
Table 9. Parameter Table (1): Macronix Flash Parameter Tables
SFDP Table below is for MX25L1006EMI-10G, MX25L1006EZUI-10G and MX25L1006EBAI-10G
Description
Comment
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
Data
(h)
Vcc Supply Maximum Voltage
2000h=2.000V
2700h=2.700V
3600h=3.600V
61h:60h
07:00
15:08
00h
36h
00h
36h
Vcc Supply Minimum Voltage
1650h=1.650V
2250h=2.250V
2350h=2.350V
2700h=2.700V
63h:62h
23:16
31:24
00h
27h
00h
27h
H/W Reset# pin
0=not support 1=support
00
0b
H/W Hold# pin
0=not support 1=support
01
1b
Deep Power Down Mode
0=not support 1=support
02
1b
S/W Reset
0=not support 1=support
03
0b
S/W Reset Opcode
Reset Enable (66h) should be
issued before Reset Opcode
Program Suspend/Resume
0=not support 1=support
12
0b
Erase Suspend/Resume
0=not support 1=support
13
0b
14
1b
15
0b
66h
23:16
FFh
FFh
67h
31:24
FFh
FFh
65h:64h
Unused
Wrap-Around Read mode
0=not support 1=support
Wrap-Around Read mode Opcode
11:04
1111 1111b 4FF6h
(FFh)
Wrap-Around Read data length
08h:support 8B wrap-around read
16h:8B&16B
32h:8B&16B&32B
64h:8B&16B&32B&64B
Individual block lock
0=not support 1=support
00
0b
Individual block lock bit
(Volatile/Nonvolatile)
0=Volatile 1=Nonvolatile
01
1b
09:02
1111 1111b
(FFh)
10
1b
11
0b
Individual block lock Opcode
Individual block lock Volatile
protect bit default protect status
0=protect 1=unprotect
Secured OTP
0=not support 1=support
Read Lock
0=not support 1=support
12
0b
Permanent Lock
0=not support 1=support
13
0b
Unused
15:14
11b
Unused
31:16
FFh
FFh
31:00
FFh
FFh
Unused
6Bh:68h
6Fh:6Ch
C7FEh
MX25L1006EMI-10G-SFDP_2014-04-08
P/N: PM1670
24
REV. 1.4, APR. 10, 2014
MX25L1006E
Note 1: h/b is hexadecimal or binary.
Note 2: (x-y-z) means I/O mode nomenclature used to indicate the number of active pins used for the opcode (x),
address (y), and data (z). At the present time, the only valid Read SFDP instruction modes are: (1-1-1), (2-2-2),
and (4-4-4)
Note 3: Wait States is required dummy clock cycles after the address bits or optional mode bits.
Note 4: Mode Bits is optional control bits that follow the address bits. These bits are driven by the system controller
if they are specified. (eg,read performance enhance toggling bits)
Note 5: 4KB=2^0Ch,32KB=2^0Fh,64KB=2^10h
Note 6: All unused and undefined area data is blank FFh.
P/N: PM1670
25
REV. 1.4, APR. 10, 2014
MX25L1006E
11. POWER-ON STATE
The device is at below states when power-up:
- Standby mode (please note it is not deep power-down mode)
- Write Enable Latch (WEL) bit is reset
The device must not be selected during power-up and power-down stage unless the VCC achieves below correct
level:
- VCC minimum at power-up stage and then after a delay of tVSL (Refer to "Table 14. Power-Up Timing")
- GND at power-down
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.
An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change
during power up state.
For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is not
guaranteed. The read, write, erase, and program command should be sent after the time delay: tVSL after VCC
reached VCC minimum level.
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL.
Please refer to the figure of "Table 14. Power-Up Timing".
Note:
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommended.(generally around 0.1uF)
P/N: PM1670
26
REV. 1.4, APR. 10, 2014
MX25L1006E
12. ELECTRICAL SPECIFICATIONS
Table 10. Absolute Maximum Ratings
RATING
VALUE
Industrial grade
Ambient Operating Temperature
Storage Temperature
-40°C to 85°C
-65°C to 150°C
Applied Input Voltage
-0.5V to 4.6V
Applied Output Voltage
-0.5V to 4.6V
VCC to Ground Potential
-0.5V to 4.6V
NOTICE:
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is stress rating only and functional operational sections of this specification is not implied. Exposure
to absolute maximum rating conditions for extended period may affect reliability.
2. Specifications contained within the following tables are subject to change.
3. During voltage transitions, all pins may overshoot to 4.6V or -0.5V for period up to 20ns.
4. All input and output pins may overshoot to VCC+0.5V while VCC+0.5V is smaller than or equal to 4.6V.
Figure 5. Maximum Positive Overshoot Waveform
Figure 4. Maximum Negative Overshoot Waveform
20ns
4.6V
0V
3.6V
-0.5V
20ns
Table 11. Capacitance TA = 25°C, f = 1.0 MHz
Symbol Parameter
CIN
COUT
P/N: PM1670
Min.
Typ.
Max.
Unit
Input Capacitance
6
pF
VIN = 0V
Output Capacitance
8
pF
VOUT = 0V
27
Conditions
REV. 1.4, APR. 10, 2014
MX25L1006E
Figure 6. Input Test Waveforms and Measurement Level
Input timing reference level
0.8VCC
0.2VCC
0.7VCC
0.3VCC
Output timing reference level
AC
Measurement
Level
0.5VCC
Note: Input pulse rise and fall time are