MX25L12873F
MX25L12873F
DATASHEET
P/N: PM1914
MX25L12873F
Contents
1. FEATURES............................................................................................................................................................... 4
2. GENERAL DESCRIPTION...................................................................................................................................... 6
Table 1. Read performance Comparison.....................................................................................................6
3. PIN CONFIGURATIONS .......................................................................................................................................... 7
4. PIN DESCRIPTION................................................................................................................................................... 7
5. BLOCK DIAGRAM.................................................................................................................................................... 8
6. DATA PROTECTION................................................................................................................................................. 9
Table 2. Protected Area Sizes....................................................................................................................10
Table 3. 4K-bit Secured OTP Definition..................................................................................................... 11
7. Memory Organization............................................................................................................................................ 12
Table 4. Memory Organization...................................................................................................................12
8. DEVICE OPERATION............................................................................................................................................. 13
8-1. Quad Peripheral Interface (QPI) Read Mode........................................................................................... 15
9. COMMAND DESCRIPTION.................................................................................................................................... 16
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.
9-9.
9-10.
9-11.
9-12.
9-13.
9-14.
9-15.
9-16.
9-17.
9-18.
9-19.
9-20.
9-21.
9-22.
9-23.
9-24.
P/N: PM1914
Table 5. Command Set...............................................................................................................................16
Write Enable (WREN)............................................................................................................................... 20
Write Disable (WRDI)................................................................................................................................ 21
Read Identification (RDID)........................................................................................................................ 22
Release from Deep Power-down (RDP), Read Electronic Signature (RES)............................................ 23
Read Electronic Manufacturer ID & Device ID (REMS)............................................................................ 25
QPI ID Read (QPIID)................................................................................................................................ 26
Table 6. ID Definitions ...............................................................................................................................26
Read Status Register (RDSR).................................................................................................................. 27
Read Configuration Register (RDCR)....................................................................................................... 28
Table 7. Configuration Register Table........................................................................................................32
Write Status Register (WRSR).................................................................................................................. 34
Table 8. Protection Modes..........................................................................................................................35
Read Data Bytes (READ)......................................................................................................................... 37
Read Data Bytes at Higher Speed (FAST_READ)................................................................................... 38
Dual Output Read Mode (DREAD)........................................................................................................... 39
2 x I/O Read Mode (2READ).................................................................................................................... 40
Quad Read Mode (QREAD)..................................................................................................................... 41
4 x I/O Read Mode (4READ).................................................................................................................... 42
Burst Read................................................................................................................................................ 44
Performance Enhance Mode.................................................................................................................... 45
Fast Boot.................................................................................................................................................. 48
Sector Erase (SE)..................................................................................................................................... 51
Block Erase (BE32K)................................................................................................................................ 52
Block Erase (BE)...................................................................................................................................... 53
Chip Erase (CE)........................................................................................................................................ 54
Page Program (PP).................................................................................................................................. 55
4 x I/O Page Program (4PP)..................................................................................................................... 57
2
Rev. 1.2, July 22, 2016
MX25L12873F
9-25.
9-26.
9-27.
9-28.
9-29.
Deep Power-down (DP)............................................................................................................................ 58
Enter Secured OTP (ENSO)..................................................................................................................... 59
Exit Secured OTP (EXSO)........................................................................................................................ 59
Read Security Register (RDSCUR).......................................................................................................... 59
Write Security Register (WRSCUR).......................................................................................................... 59
Table 9. Security Register Definition..........................................................................................................60
9-30. Write Protection Selection (WPSEL)......................................................................................................... 61
9-31. Advanced Sector Protection..................................................................................................................... 63
9-32. Password Protection Mode....................................................................................................................... 70
9-33. Program/Erase Suspend/Resume............................................................................................................ 72
9-34. Erase Suspend......................................................................................................................................... 72
9-35. Program Suspend..................................................................................................................................... 72
9-36. Write-Resume........................................................................................................................................... 74
9-37. No Operation (NOP)................................................................................................................................. 74
9-38. Software Reset (Reset-Enable (RSTEN) and Reset (RST)).................................................................... 74
9-39. Read SFDP Mode (RDSFDP)................................................................................................................... 76
Table 10. Signature and Parameter Identification Data Values .................................................................77
Table 11. Parameter Table (0): JEDEC Flash Parameter Tables...............................................................78
Table 12. Parameter Table (1): Macronix Flash Parameter Tables............................................................80
10. RESET.................................................................................................................................................................. 82
Table 13. Reset Timing-(Power On)...........................................................................................................82
Table 14. Reset Timing-(Other Operation).................................................................................................82
11. POWER-ON STATE.............................................................................................................................................. 83
12. ELECTRICAL SPECIFICATIONS......................................................................................................................... 84
Table 15. ABSOLUTE MAXIMUM RATINGS.............................................................................................84
Table 16. CAPACITANCE TA = 25°C, f = 1.0 MHz.....................................................................................84
Table 17. DC CHARACTERISTICS ..........................................................................................................86
Table 18. AC CHARACTERISTICS ..........................................................................................................87
13. OPERATING CONDITIONS.................................................................................................................................. 88
Table 19. Power-Up/Down Voltage and Timing..........................................................................................90
13-1. INITIAL DELIVERY STATE....................................................................................................................... 90
14. ERASE AND PROGRAMMING PERFORMANCE............................................................................................... 91
15. DATA RETENTION............................................................................................................................................... 91
16. LATCH-UP CHARACTERISTICS......................................................................................................................... 91
17. ORDERING INFORMATION................................................................................................................................. 92
18. PART NAME DESCRIPTION................................................................................................................................ 93
19. PACKAGE INFORMATION................................................................................................................................... 94
20. REVISION HISTORY ............................................................................................................................................ 97
P/N: PM1914
3
Rev. 1.2, July 22, 2016
MX25L12873F
3V 128M-BIT [x 1/x 2/x 4] CMOS MXSMIO (SERIAL MULTI I/O)
FLASH MEMORY
1. FEATURES
GENERAL
• Supports Serial Peripheral Interface -- Mode 0 and Mode 3
• Single Power Supply Operation
- 2.7 to 3.6 volt for read, erase, and program operations
• 128Mb: 134,217,728 x 1 bit structure or 67,108,864 x 2 bits (two I/O mode) structure or 33,554,432 x 4 bits (four
I/O mode) structure
• Protocol Support
- Single I/O, Dual I/O and Quad I/O
• Latch-up protected to 100mA from -1V to Vcc +1V
• Fast read for SPI mode
- Support clock frequency up to 133MHz for all protocols
- Support Fast Read, 2READ, DREAD, 4READ, QREAD instructions.
- Configurable dummy cycle number for fast read operation
• Default Quad I/O enable (QE bit=1), and can not be change
• Quad Peripheral Interface (QPI) available
• Equal Sectors with 4K byte each, or Equal Blocks with 32K byte each or Equal Blocks with 64K byte each
- Any Block can be erased individually
• Programming :
- 256byte page buffer
- Quad Input/Output page program(4PP) to enhance program performance
• Typical 100,000 erase/program cycles
• 20 years data retention
SOFTWARE FEATURES
• Input Data Format
- 1-byte Command code
• Advanced Security Features
- Block lock protection
The BP0-BP3 and T/B status bit defines the size of the area to be protection against program and erase instructions
- Advanced sector protection function (Solid and Password Protect)
• Additional 4K bit security OTP
- Features unique identifier
- factory locked identifiable, and customer lockable
• Command Reset
• Program/Erase Suspend and Resume operation
• Electronic Identification
- JEDEC 1-byte manufacturer ID and 2-byte device ID
- RES command for 1-byte Device ID
- REMS command for 1-byte manufacturer ID and 1-byte device ID
• Support Serial Flash Discoverable Parameters (SFDP) mode
HARDWARE FEATURES
• SCLK Input
- Serial clock input
P/N: PM1914
4
Rev. 1.2, July 22, 2016
MX25L12873F
• SI/SIO0
- Serial Data Input or Serial Data Input/Output for 2 x I/O read mode and 4 x I/O read mode
• SO/SIO1
- Serial Data Output or Serial Data Input/Output for 2 x I/O read mode and 4 x I/O read mode
• SIO2
- Serial data Input & Output for 4 x I/O read mode
• SIO3
- Serial data input & Output for 4 x I/O read mode
• PACKAGE
- 8-pin SOP (200mil)
- 16-pin SOP (300mil)
- 8-land WSON (6x5mm)
- All devices are RoHS Compliant and Halogen-free
P/N: PM1914
5
Rev. 1.2, July 22, 2016
MX25L12873F
2. GENERAL DESCRIPTION
MX25L12873F is 128Mb bits serial Flash memory, which is configured as 16,777,216 x 8 internally. When it is in
two or four I/O mode, the structure becomes 67,108,864 bits x 2 or 33,554,432 bits x 4. MX25L12873F feature a
serial peripheral interface and software protocol allowing operation on a simple 3-wire bus while it is in single I/O
mode. The three bus signals are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). Serial
access to the device is enabled by CS# input.
When it is in two I/O read mode, the SI pin and SO pin become SIO0 pin and SIO1 pin for address/dummy bits input and data output. When it is in four I/O read mode, the SI pin, SO pin, become SIO0 pin, SIO1 pin, SIO2 pin and
SIO3 pin for address/dummy bits input and data output.
The MX25L12873F MXSMIO (Serial Multi I/O) provides sequential read operation on whole chip.
After program/erase command is issued, auto program/erase algorithms which program/erase and verify the specified page or sector/block locations will be executed. Program command is executed on byte basis, or page (256
bytes) basis, or word basis for erase command is executed on sector (4K-byte), block (32K-byte), or block (64K-byte),
or whole chip basis.
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read
command can be issued to detect completion status of a program or erase operation via WIP bit.
Advanced security features enhance the protection and security functions, please see security features section for
more details.
When the device is not in operation and CS# is high, it is put in standby mode.
The MX25L12873F utilizes Macronix's proprietary memory cell, which reliably stores memory contents even after
100,000 program and erase cycles.
Table 1. Read performance Comparison
Numbers of
Dummy Cycles
Fast Read
(MHz)
Dual Output
Fast Read
(MHz)
Quad Output
Fast Read
(MHz)
Dual IO
Fast Read
(MHz)
Quad IO
Fast Read
(MHz)
4
-
-
-
84*
70
6
104
104
84
104
84*
8
104*
104*
104*
104
104
10
133
133
133
133
133
Note: * mean default status
P/N: PM1914
6
Rev. 1.2, July 22, 2016
MX25L12873F
4. PIN DESCRIPTION
3. PIN CONFIGURATIONS
8-PIN SOP (200mil)
SYMBOL
CS#
1
2
3
4
CS#
SO/SIO1
SIO2
GND
8
7
6
5
VCC
SIO3
SCLK
SI/SIO0
SI/SIO0
SO/SIO1
16-PIN SOP (300mil)
SIO3
VCC
RESET#
NC
NC
NC
CS#
SO/SIO1
1
2
3
4
5
6
7
8
SCLK
16
15
14
13
12
11
10
9
SIO2
SCLK
SI/SIO0
NC
NC
NC
NC
GND
SIO2
SIO3
RESET#
VCC
GND
NC
Note:
1. RESET# pin has internal pull up.
8-WSON (6mmx5mm)
CS#
SO/SIO1
SIO2
GND
P/N: PM1914
1
2
3
4
DESCRIPTION
Chip Select
Serial Data Input (for 1 x I/O)/ Serial
Data Input & Output (for 2xI/O or 4xI/O
read mode)
Serial Data Output (for 1 x I/O)/ Serial
Data Input & Output (for 2xI/O or 4xI/O
read mode)
Clock Input
Serial Data Input & Output (for 4xI/O
read mode)
Serial Data Input & Output (for 4xI/O
read mode)
Hardware Reset Pin Active low
+ 3V Power Supply
Ground
No Connection
8
7
6
5
VCC
SIO3
SCLK
SI/SIO0
7
Rev. 1.2, July 22, 2016
MX25L12873F
5. BLOCK DIAGRAM
X-Decoder
Address
Generator
SI/SIO0
SO/SIO1
SIO2 *
SIO3 *
Y-Decoder
Data
Register
WP# *
HOLD# *
RESET# *
CS#
SCLK
Memory Array
Sense
Amplifier
SRAM
Buffer
Mode
Logic
State
Machine
HV
Generator
Clock Generator
Output
Buffer
* Depends on part number options.
P/N: PM1914
8
Rev. 1.2, July 22, 2016
MX25L12873F
6. DATA PROTECTION
During power transition, there may be some false system level signals which result in inadvertent erasure or
programming. The device is designed to protect itself from these accidental write cycles.
The state machine will be reset as standby mode automatically during power up. In addition, the control register
architecture of the device constrains that the memory contents can only be changed after specific command
sequences have completed successfully.
In the following, there are several features to protect the system from the accidental write cycles during VCC powerup and power-down or from system noise.
• Valid command length checking: The command length will be checked whether it is at byte base and completed
on byte boundary.
• Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before
other command to change data.
• Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from
writing all commands except Release from deep power down mode command (RDP) and Read Electronic Signature command (RES), and softreset command.
• Advanced Security Features: there are some protection and security features which protect content from inadvertent write and hostile access.
P/N: PM1914
9
Rev. 1.2, July 22, 2016
MX25L12873F
I. Block lock protection
- The Software Protected Mode (SPM) use (BP3, BP2, BP1, BP0 and T/B) bits to allow part of memory to be
protected as read only. The protected area definition is shown as "Table 2. Protected Area Sizes", the protected
areas are more flexible which may protect various area by setting value of BP0-BP3 bits.
- In four I/O and QPI mode, the feature of HPM will be disabled.
Table 2. Protected Area Sizes
Protected Area Sizes (T/B bit = 0)
Status bit
BP3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
BP2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
BP1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
Protect Level
BP0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128Mb
0 (none)
1 (1 block, protected block 255th)
2 (2 blocks, block 254th-255th)
3 (4 blocks, block 252nd-255th)
4 (8 blocks, block 248th-255th)
5 (16 blocks, block 240th-255th)
6 (32 blocks, block 224th-255th)
7 (64 blocks, block 192nd-255th)
8 (128 blocks, block 128th-255th)
9 (256 blocks, protected all)
10 (256 blocks, protected all)
11 (256 blocks, protected all)
12 (256 blocks, protected all)
13 (256 blocks, protected all)
14 (256 blocks, protected all)
15 (256 blocks, protected all)
Protected Area Sizes (T/B bit = 1)
Status bit
BP3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
P/N: PM1914
BP2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
BP1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
BP0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Protect Level
128Mb
0 (none)
1 (1 block, protected block 0th)
2 (2 blocks, protected block 0th~1st)
3 (4 blocks, protected block 0th~3rd)
4 (8 blocks, protected block 0th~7th)
5 (16 blocks, protected block 0th~15th)
6 (32 blocks, protected block 0th~31st)
7 (64 blocks, protected block 0th~63rd)
8 (128 blocks, protected block 0th~127th)
9 (256 blocks, protected all)
10 (256 blocks, protected all)
11 (256 blocks, protected all)
12 (256 blocks, protected all)
13 (256 blocks, protected all)
14 (256 blocks, protected all)
15 (256 blocks, protected all)
10
Rev. 1.2, July 22, 2016
MX25L12873F
II. Additional 4K-bit secured OTP for unique identifier: to provide 4K-bit one-time program area for setting device unique serial number - Which may be set by factory or system customer.
- Security register bit 0 indicates whether the chip is locked by factory or not.
- To program the 4K-bit secured OTP by entering 4K-bit secured OTP mode (with Enter Security OTP command),
and going through normal program procedure, and then exiting 4K-bit secured OTP mode by writing Exit Security
OTP command.
- Customer may lock-down the customer lockable secured OTP by writing WRSCUR(write security register) command to set customer lock-down bit1 as "1". Please refer to "Table 9. Security Register Definition" for security
register bit definition and "Table 3. 4K-bit Secured OTP Definition" for address range definition.
- Note: Once lock-down whatever by factory or customer, it cannot be changed any more. While in 4K-bit secured
OTP mode, array access is not allowed.
Table 3. 4K-bit Secured OTP Definition
Address range
Size
Standard Factory Lock
xxx000~xxx00F
128-bit
ESN (electrical serial number)
xxx010~xxx1FF
3968-bit
N/A
P/N: PM1914
11
Customer Lock
Determined by customer
Rev. 1.2, July 22, 2016
MX25L12873F
7. Memory Organization
Table 4. Memory Organization
Block(64K-byte) Block(32K-byte)
Sector
254
508
individual block
lock/unlock unit:64K-byte
507
253
506
FF8FFFh
4087
FF7000h
FF7FFFh
…
individual 16 sectors
lock/unlock unit:4K-byte
4080
FF0000h
FF0FFFh
4079
FEF000h
FEFFFFh
…
509
FF8000h
4072
FE8000h
FE8FFFh
4071
FE7000h
FE7FFFh
…
510
4088
4064
FE0000h
FE0FFFh
4063
FDF000h
FDFFFFh
…
255
FFFFFFh
4056
FD8000h
FD8FFFh
4055
FD7000h
FD7FFFh
4048
FD0000h
FD0FFFh
47
02F000h
02FFFFh
…
511
Address Range
FFF000h
…
4095
1
2
1
0
0
027FFFh
…
028FFFh
027000h
32
020000h
020FFFh
31
01F000h
01FFFFh
…
3
028000h
39
24
018000h
018FFFh
23
017000h
017FFFh
…
4
individual block
lock/unlock unit:64K-byte
40
16
010000h
010FFFh
15
00F000h
00FFFFh
8
008000h
008FFFh
7
007000h
007FFFh
000000h
000FFFh
…
2
0
P/N: PM1914
individual 16 sectors
lock/unlock unit:4K-byte
…
5
…
individual block
lock/unlock unit:64K-byte
12
Rev. 1.2, July 22, 2016
MX25L12873F
8. DEVICE OPERATION
1. Before a command is issued, status register should be checked to ensure device is ready for the intended operation.
2. When incorrect command is inputted to this device, this device becomes standby mode and keeps the standby
mode until next CS# falling edge. In standby mode, SO pin of this device should be High-Z.
3. When correct command is inputted to this device, this device becomes active mode and keeps the active mode
until next CS# rising edge.
4. Input data is latched on the rising edge of Serial Clock (SCLK) and data shifts out on the falling edge of SCLK.
The difference of Serial mode 0 and mode 3 is shown as "Serial Modes Supported".
5. For the following instructions: RDID, RDSR, RDSCUR, READ, FAST_READ, 2READ, DREAD, 4READ, QREAD,
RDSFDP, RES, REMS, QPIID, RDDPB, RDSPB, RDPASS, RDLR, RDFBR, RDSPBLK, RDCR the shifted-in
instruction sequence is followed by a data-out sequence. After any bit of data being shifted out, the CS# can be
high. For the following instructions: WREN, WRDI, WRSR, SE, BE32K, BE, CE, PP, 4PP, DP, ENSO, EXSO,
WRSCUR, WPSEL, GBLK, GBULK, SPBLK, SUSPEND, RESUME, NOP, RSTEN, RST, EQIO, RSTQIO the
CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.
6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglected and not affect the current operation of Write Status Register, Program, Erase.
Figure 1. Serial Modes Supported
CPOL
CPHA
shift in
(Serial mode 0)
0
0
SCLK
(Serial mode 3)
1
1
SCLK
SI
shift out
MSB
SO
MSB
Note:
CPOL indicates clock polarity of Serial master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not
transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which Serial mode is
supported.
P/N: PM1914
13
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 2. Serial Input Timing
tSHSL
CS#
tCHSL
tSLCH
tCHSH
tSHCH
SCLK
tDVCH
tCHCL
tCHDX
tCLCH
LSB
MSB
SI
High-Z
SO
Figure 3. Output Timing
CS#
tCH
SCLK
tCLQV
tCLQX
tCL
tCLQV
tCLQX
LSB
SO
SI
P/N: PM1914
tSHQZ
ADDR.LSB IN
14
Rev. 1.2, July 22, 2016
MX25L12873F
8-1. Quad Peripheral Interface (QPI) Read Mode
QPI protocol enables user to take full advantage of Quad I/O Serial Flash by providing the Quad I/O interface in
command cycles, address cycles and as well as data output cycles.
Enable QPI mode
By issuing 35H command, the QPI mode is enable. After QPI mode enable, the device enter quad mode (4-4-4)
without QE bit status changed.
Figure 4. Enable QPI Sequence
CS#
MODE 3
SCLK
0
1
2
3
4
5
6
7
MODE 0
SIO0
35h
SIO[3:1]
Reset QPI (RSTQIO)
To reset the QPI mode, the RSTQIO (F5H) command is required. After the RSTQIO command is issued, the device
returns from QPI mode (4 I/O interface in command cycles) to SPI mode (1 I/O interface in command cycles).
Note:
For EQIO and RSTQIO commands, CS# high width has to follow "write spec" tSHSL for next instruction.
Figure 5. Reset QPI Mode
CS#
SCLK
SIO[3:0]
P/N: PM1914
F5h
15
Rev. 1.2, July 22, 2016
MX25L12873F
9. COMMAND DESCRIPTION
Table 5. Command Set
Read/Write Array Commands
Command
(byte)
READ
(normal read)
FAST READ
(fast read data)
Mode
SPI
SPI
2READ
DREAD
(1I 2O read)
4READ
(4 I/O read)
QREAD
(1I 4O read)
SPI
SPI
SPI/QPI
SPI
(2 x I/O read
command)
1st byte
03 (hex)
0B (hex)
BB (hex)
3B (hex)
EB (hex)
6B (hex)
2nd byte
ADD1
ADD1
ADD1
ADD1
ADD1
ADD1
3rd byte
ADD2
ADD2
ADD2
ADD2
ADD2
ADD2
4th byte
ADD3
ADD3
ADD3
ADD3
ADD3
ADD3
Dummy*
Dummy*
Dummy*
Dummy*
Dummy*
n bytes read out
until CS# goes
high
n bytes read out
by 2 x I/O until
CS# goes high
n bytes read out
by Dual output
until CS# goes
high
n bytes read out
by 4 x I/O until
CS# goes high
n bytes read out
by Quad output
until CS# goes
high
SPI/QPI
BE 32K
(block erase
32KB)
SPI/QPI
BE
(block erase
64KB)
SPI/QPI
5th byte
Data Cycles
Action
n bytes read out
until CS# goes
high
Command
(byte)
PP
(page program)
Mode
SPI/QPI
4PP
(quad page
program)
SPI
1st byte
02 (hex)
SE
(sector erase)
38 (hex)
20 (hex)
52 (hex)
D8 (hex)
2nd byte
ADD1
ADD1
ADD1
ADD1
3rd byte
ADD2
ADD2
ADD2
ADD2
4th byte
ADD3
ADD3
ADD3
ADD3
1-256
quad input to
program the
selected page
to erase the
selected sector
to erase the
selected 32K
block
to erase the
selected block
CE
(chip erase)
SPI/QPI
60 or C7 (hex)
5th byte
Data Cycles
Action
1-256
to program the
selected page
to erase whole
chip
* Dummy cycle numbers will be different depending on the bit6 & bit 7 (DC0 & DC1) setting in configuration register.
P/N: PM1914
16
Rev. 1.2, July 22, 2016
MX25L12873F
Register/Setting Commands
Mode
SPI/QPI
SPI/QPI
SPI/QPI
RDCR
(read
configuration
register)
SPI/QPI
1st byte
06 (hex)
04 (hex)
05 (hex)
15 (hex)
Command
(byte)
WREN
WRDI
(write enable) (write disable)
RDSR
(read status
register)
WRSR
(write status/
configuration
register)
SPI/QPI
01 (hex)
2nd byte
Values
3rd byte
Values
WPSEL
(Write Protect
Selection)
EQIO
(Enable QPI)
SPI/QPI
SPI
68 (hex)
35 (hex)
4th byte
5th byte
Data Cycles
Action
sets the (WEL)
resets the
to read out the to read out the
write enable
(WEL) write
values of the values of the
latch bit
enable latch bit status register configuration
register
Command
(byte)
RSTQIO
(Reset QPI)
Mode
1st byte
QPI
F5 (hex)
PGM/ERS
Suspend
(Suspends
Program/
Erase)
SPI/QPI
B0 (hex)
PGM/ERS
Resume
(Resumes
Program/
Erase)
SPI/QPI
30 (hex)
1-2
to write new
to enter and
values of the enable individal
block protect
status/
mode
configuration
register
Entering the
QPI mode
DP (Deep
power down)
RDP (Release
from deep
power down)
SBL
(Set Burst
Length)
RDFBR
(read fast boot
register)
SPI/QPI
B9 (hex)
SPI/QPI
AB (hex)
SPI/QPI
C0 (hex)
SPI
16(hex)
enters deep
power down
mode
release from
deep power
down mode
to set Burst
length
2nd byte
3rd byte
4th byte
5th byte
Data Cycles
Action
Command
(byte)
Mode
1st byte
1-4
Exiting the QPI
mode
WRFBR
ESFBR
(write fast boot (erase fast
register)
boot register)
SPI
SPI
17(hex)
18(hex)
2nd byte
3rd byte
4th byte
5th byte
Data Cycles
4
Action
P/N: PM1914
17
Rev. 1.2, July 22, 2016
MX25L12873F
ID/Security Commands
Command
(byte)
Mode
Address Bytes
1st byte
REMS
RDID
RES
(read electronic
QPIID
(read identific- (read electronic
manufacturer & (QPI ID Read)
ation)
ID)
device ID)
SPI
SPI/QPI
SPI
QPI
0
0
0
0
9F (hex)
AB (hex)
90 (hex)
AF (hex)
RDSFDP
ENSO
(enter secured
OTP)
EXSO
(exit secured
OTP)
SPI/QPI
3
5A (hex)
SPI/QPI
0
B1 (hex)
SPI/QPI
0
C1 (hex)
2nd byte
x
x
ADD1
3rd byte
x
x
ADD2
4th byte
x
ADD1 (Note 1)
ADD3
5th byte
Action
outputs JEDEC to read out
output the
ID: 1-byte
1-byte Device Manufacturer
Manufacturer
ID
ID & Device ID
ID & 2-byte
Device ID
Address Bytes
SPI/QPI
0
WRSCUR
(write
security
register)
SPI/QPI
0
1st byte
2B (hex)
2F (hex)
Command
(byte)
Mode
RDSCUR
(read security
register)
Dummy (8)
Read SFDP
mode
ID in QPI
interface
to enter the
to exit the
4K-bit secured 4K-bit secured
OTP mode
OTP mode
SPI
0
WRPASS
(write
password
register)
SPI
0
RDPASS
(read
password
register)
SPI
0
2C (hex)
2D (hex)
28 (hex)
27 (hex)
2
2
1-8
1-8
GBLK
(gang block
lock)
GBULK
(gang block
unlock)
WRLR
(write Lock
register)
RDLR
(read Lock
register)
SPI/QPI
0
SPI/QPI
0
SPI
0
7E (hex)
98 (hex)
2nd byte
3rd byte
4th byte
5th byte
Data Cycles
Action
whole chip
to read value to set the
of security lock-down bit write protect
register
as "1" (once
lock-down,
cannot be
updated)
whole chip
unprotect
Address Bytes
PASSULK
(password
unlock)
SPI
0
WRSPB
(SPB bit
program)
SPI
4
ESSPB
(all SPB bit
erase)
SPI
0
RDSPB
(read SPB
status)
SPI
4
SPBLK
(SPB lock
set)
SPI
0
1st byte
29 (hex)
E3 (hex)
E4 (hex)
E2 (hex)
A6 (hex)
Command
(byte)
Mode
RDSPBLK
WRDPB
(SPB lock
(write DPB
register read) register)
SPI
SPI
0
4
A7 (hex)
RDDPB
(read DPB
register)
SPI
4
E1 (hex)
E0 (hex)
2nd byte
ADD1
ADD1
ADD1
ADD1
3rd byte
ADD2
ADD2
ADD2
ADD2
4th byte
ADD3
ADD3
ADD3
ADD3
5th byte
ADD4
ADD4
ADD4
ADD4
1
1
Data Cycles
8
1
2
Action
P/N: PM1914
18
Rev. 1.2, July 22, 2016
MX25L12873F
Reset Commands
Mode
SPI/QPI
SPI/QPI
RST
(Reset
Memory)
SPI/QPI
1st byte
00 (hex)
66 (hex)
99 (hex)
Command
(byte)
NOP
RSTEN
(No Operation) (Reset Enable)
2nd byte
3rd byte
4th byte
5th byte
Action
Note 1: The count base is 4-bit for ADD(2) and Dummy(2) because of 2 x I/O. And the MSB is on SO/SIO1 which is different
from 1 x I/O condition.
Note 2: ADD=00H will output the manufacturer ID first and AD=01H will output device ID first.
Note 3: It is not recommended to adopt any other code not in the command definition table, which will potentially enter the hidden mode.
Note 4: Before executing RST command, RSTEN command must be executed. If there is any other command to interfere, the
reset operation will be disabled.
Note 5: The number in parentheses after "ADD" or "Data" stands for how many clock cycles it has. For example, "Data(8)"
represents there are 8 clock cycles for the data in.
P/N: PM1914
19
Rev. 1.2, July 22, 2016
MX25L12873F
9-1. Write Enable (WREN)
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, 4PP,
SE, BE32K, BE, CE, and WRSR, which are intended to change the device content WEL bit should be set every time
after the WREN instruction setting the WEL bit.
The sequence of issuing WREN instruction is: CS# goes low→sending WREN instruction code→ CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care in
SPI mode.
Figure 6. Write Enable (WREN) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
Command
SI
06h
High-Z
SO
Figure 7. Write Enable (WREN) Sequence (QPI Mode)
CS#
0
Mode 3
1
SCLK
Mode 0
Command
06h
SIO[3:0]
P/N: PM1914
20
Rev. 1.2, July 22, 2016
MX25L12873F
9-2. Write Disable (WRDI)
The Write Disable (WRDI) instruction is to reset Write Enable Latch (WEL) bit.
The sequence of issuing WRDI instruction is: CS# goes low→sending WRDI instruction code→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care in
SPI mode.
The WEL bit is reset by following situations:
- Power-up
- Reset# pin driven low
- WRDI command completion
- WRSR command completion
- PP command completion
- 4PP command completion
- SE command completion
- BE32K command completion
- BE command completion
- CE command completion
- PGM/ERS Suspend command completion
- Softreset command completion
- WRSCUR command completion
- WPSEL command completion
- GBLK command completion
- GBULK command completion
- WRLR command completion
- WRPASS command completion
- PASSULK command completion
- SPBLK command completion
- WRSPB command completion
- ESSPB command completion
- WRDPB command completion
- WRFBR command completion
- ESFBR command completion
Figure 8. Write Disable (WRDI) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
Command
SI
SO
P/N: PM1914
04h
High-Z
21
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 9. Write Disable (WRDI) Sequence (QPI Mode)
CS#
0
Mode 3
1
SCLK
Mode 0
Command
04h
SIO[3:0]
9-3. Read Identification (RDID)
The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The Macronix Manufacturer ID and Device ID are listed as "Table 6. ID Definitions".
The sequence of issuing RDID instruction is: CS# goes low→ sending RDID instruction code→24-bits ID data out
on SO→ to end RDID operation can drive CS# to high at any time during data out.
While Program/Erase operation is in progress, it will not decode the RDID instruction, therefore there's no effect on
the cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby
stage.
Figure 10. Read Identification (RDID) Sequence (SPI mode only)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
13 14 15 16 17 18
28 29 30 31
SCLK
Mode 0
Command
SI
9Fh
Manufacturer Identification
SO
High-Z
7
6
5
2
MSB
P/N: PM1914
1
Device Identification
0 15 14 13
3
2
1
0
MSB
22
Rev. 1.2, July 22, 2016
MX25L12873F
9-4. Release from Deep Power-down (RDP), Read Electronic Signature (RES)
The Release from Deep Power-down (RDP) instruction is completed by driving Chip Select (CS#) High. When Chip
Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the
Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in
the Deep Power-down mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip Select (CS#) must remain High for at least tRES2(max), as specified in "Table 18. AC CHARACTERISTICS". Once in
the Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions.
The RDP instruction is only for releasing from Deep Power Down Mode. Reset# pin goes low will release the Flash
from deep power down mode.
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as "Table 6. ID
Definitions". This is not the same as RDID instruction. It is not recommended to use for new design. For new design, please use RDID instruction.
Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except the device is in
progress of program/erase/write cycle; there's no effect on the current program/erase/write cycle in progress.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously
in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in
Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least
tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and execute
instruction.
Figure 11. Read Electronic Signature (RES) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38
SCLK
Mode 0
Command
SI
ABh
tRES2
3 Dummy Bytes
23 22 21
3
2
1
0
MSB
SO
Electronic Signature Out
High-Z
7
6
5
4
3
2
1
0
MSB
Deep Power-down Mode
P/N: PM1914
23
Stand-by Mode
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 12. Read Electronic Signature (RES) Sequence (QPI Mode)
CS#
MODE 3
0
1
2
3
4
5
6
7
SCLK
MODE 0
3 Dummy Bytes
Command
SIO[3:0]
X
ABh
X
X
X
X
X
H0
L0
MSB LSB
Data In
Data Out
Stand-by Mode
Deep Power-down Mode
Figure 13. Release from Deep Power-down (RDP) Sequence (SPI Mode)
CS#
0
Mode 3
1
2
3
4
5
6
tRES1
7
SCLK
Mode 0
Command
SI
ABh
High-Z
SO
Deep Power-down Mode
Stand-by Mode
Figure 14. Release from Deep Power-down (RDP) Sequence (QPI Mode)
CS#
Mode 3
tRES1
0
1
SCLK
Mode 0
Command
SIO[3:0]
ABh
Deep Power-down Mode
P/N: PM1914
24
Stand-by Mode
Rev. 1.2, July 22, 2016
MX25L12873F
9-5. Read Electronic Manufacturer ID & Device ID (REMS)
The REMS instruction is an alternative to the Release from Power-down/Device ID instruction that provides both the
JEDEC assigned manufacturer ID and the specific device ID.
The REMS instruction is very similar to the Release from Power-down/Device ID instruction. The instruction is initiated by driving the CS# pin low and shift the instruction code "90h" followed by two dummy bytes and one bytes address (A7~A0). After which, the Manufacturer ID for Macronix (C2h) and the Device ID are shifted out on the falling
edge of SCLK with most significant bit (MSB) first. The Device ID values are listed in "Table 6. ID Definitions". If the
one-byte address is initially set to 01h, then the device ID will be read first and then followed by the Manufacturer
ID. The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is
completed by driving CS# high.
Figure 15. Read Electronic Manufacturer & Device ID (REMS) Sequence (SPI Mode only)
CS#
SCLK
Mode 3
0
1
2
Mode 0
3
4
5
6
7
8
Command
SI
9 10
2 Dummy Bytes
15 14 13
90h
3
2
1
0
High-Z
SO
CS#
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
ADD (1)
SI
7
6
5
4
3
2
1
0
Manufacturer ID
SO
7
6
5
4
3
2
1
Device ID
0
7
6
5
4
3
2
MSB
MSB
1
0
7
MSB
Notes:
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first.
P/N: PM1914
25
Rev. 1.2, July 22, 2016
MX25L12873F
9-6. QPI ID Read (QPIID)
User can execute this QPIID Read instruction to identify the Device ID and Manufacturer ID. The sequence of issue
QPIID instruction is CS# goes low→sending QPI ID instruction→Data out on SO→CS# goes high. Most significant
bit (MSB) first.
After the command cycle, the device will immediately output data on the falling edge of SCLK. The manufacturer ID,
memory type, and device ID data byte will be output continuously, until the CS# goes high.
Table 6. ID Definitions
Command Type
RDID
9Fh
RES
ABh
REMS
90h
QPIID
AFh
P/N: PM1914
MX25L12873F
Manufactory ID
C2
Manufactory ID
C2
Manufactory ID
C2
Memory type
20
Electronic ID
17
Device ID
17
Memory type
20
26
Memory density
18
Memory density
18
Rev. 1.2, July 22, 2016
MX25L12873F
9-7. Read Status Register (RDSR)
The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even
in program/erase/write status register condition). It is recommended to check the Write in Progress (WIP) bit before
sending a new instruction when a program, erase, or write status register operation is in progress.
The sequence of issuing RDSR instruction is: CS# goes low→ sending RDSR instruction code→ Status Register data
out on SO.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
Figure 16. Read Status Register (RDSR) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
SCLK
Mode 0
command
05h
SI
SO
Status Register Out
High-Z
7
6
5
4
3
2
1
Status Register Out
0
7
6
5
4
3
2
1
0
7
MSB
MSB
Figure 17. Read Status Register (RDSR) Sequence (QPI Mode)
CS#
Mode 3 0
1
2
3
4
5
6
7
N
SCLK
Mode 0
SIO[3:0]
05h H0 L0 H0 L0 H0 L0
H0 L0
MSB LSB
Status Byte Status Byte Status Byte
P/N: PM1914
27
Status Byte
Rev. 1.2, July 22, 2016
MX25L12873F
9-8. Read Configuration Register (RDCR)
The RDCR instruction is for reading Configuration Register Bits. The Read Configuration Register can be read at
any time (even in program/erase/write configuration register condition). It is recommended to check the Write in
Progress (WIP) bit before sending a new instruction when a program, erase, or write configuration register operation
is in progress.
The sequence of issuing RDCR instruction is: CS# goes low→ sending RDCR instruction code→ Configuration Register data out on SO.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
Figure 18. Read Configuration Register (RDCR) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
SCLK
Mode 0
command
15h
SI
SO
Configuration register Out
High-Z
7
6
5
4
3
2
1
0
Configuration register Out
7
6
5
4
3
2
1
0
7
MSB
MSB
Figure 19. Read Configuration Register (RDCR) Sequence (QPI Mode)
CS#
Mode 3 0
1
2
3
4
5
6
7
N
SCLK
Mode 0
SIO[3:0]
15h H0 L0 H0 L0 H0 L0
H0 L0
MSB LSB
Config. Byte Config. Byte Config. Byte
P/N: PM1914
28
Config. Byte
Rev. 1.2, July 22, 2016
MX25L12873F
For user to check if Program/Erase operation is finished or not, RDSR instruction flow are shown as follows:
Figure 20. Program/Erase flow with read array data
start
WREN command
RDSR command*
WEL=1?
No
Yes
Program/erase command
Write program data/address
(Write erase address)
RDSR command
WIP=0?
No
Yes
RDSR command
Read WEL=0, BP[3:0], QE,
and SRWD data
Read array data
(same address of PGM/ERS)
Verify OK?
No
Yes
Program/erase successfully
Program/erase
another block?
No
Program/erase fail
Yes
* Issue RDSR to check BP[3:0].
* If WPSEL = 1, issue RDSPB and RDDPB to check the block status.
Program/erase completed
P/N: PM1914
29
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 21. Program/Erase flow without read array data (read P_FAIL/E_FAIL flag)
start
WREN command
RDSR command*
WEL=1?
No
Yes
Program/erase command
Write program data/address
(Write erase address)
RDSR command
WIP=0?
No
Yes
RDSR command
Read WEL=0, BP[3:0], QE,
and SRWD data
RDSCUR command
Yes
P_FAIL/E_FAIL =1 ?
No
Program/erase fail
Program/erase successfully
Program/erase
another block?
No
Yes
* Issue RDSR to check BP[3:0].
* If WPSEL = 1, issue RDSPB and RDDPB to check the block status.
Program/erase completed
P/N: PM1914
30
Rev. 1.2, July 22, 2016
MX25L12873F
Status Register
The definition of the status register bits is as below:
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status register
progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status register
cycle.
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable
latch. When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/
erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the device
will not accept program/erase/write status register instruction. The program/erase command will be ignored if it is applied to a protected memory area. To ensure both WIP bit & WEL bit are both set to 0 and available for next program/
erase/operations, WIP bit needs to be confirm to be 0 before polling WEL bit. After WIP bit confirmed, WEL bit needs
to be confirm to be 0.
BP3, BP2, BP1, BP0 bits. The Block Protect (BP3, BP2, BP1, BP0) bits, non-volatile bits, indicate the protected area
(as defined in "Table 2. Protected Area Sizes") of the device to against the program/erase instruction without hardware
protection mode being set. To write the Block Protect (BP3, BP2, BP1, BP0) bits requires the Write Status Register (WRSR)
instruction to be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector
Erase (SE), Block Erase 32KB (BE32K), Block Erase (BE) and Chip Erase (CE) instructions (only if Block Protect bits
(BP3:BP0) set to 0, the CE instruction can be executed). The BP3, BP2, BP1, BP0 bits are "0" as default. Which is unprotected.
QE bit. The Quad Enable (QE) bit, a non-volatile bit which is permanently set to "1". The flash always performs Quad
I/O mode.
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, default value is "0".
Status Register
bit7
SRWD (status
register write
protect)
bit6
QE
(Quad
Enable)
1=status
register write
disable
1=Quad
0=status
Enable
register write
enable
Non-volatile Non-volatile
bit
bit
bit5
BP3
(level of
protected
block)
bit4
BP2
(level of
protected
block)
bit3
BP1
(level of
protected
block)
bit2
BP0
(level of
protected
block)
(note 1)
(note 1)
(note 1)
(note 1)
Non-volatile
bit
Non-volatile
bit
Non-volatile
bit
Non-volatile
bit
bit1
bit0
WEL
WIP
(write enable
(write in
latch)
progress bit)
1=write
1=write
enable
operation
0=not write 0=not in write
enable
operation
volatile bit
volatile bit
Note 1: See the "Table 2. Protected Area Sizes".
P/N: PM1914
31
Rev. 1.2, July 22, 2016
MX25L12873F
Configuration Register
The Configuration Register is able to change the default status of Flash memory. Flash memory will be configured
after the CR bit is set.
ODS bit
The output driver strength (ODS2, ODS1, ODS0) bits are volatile bits, which indicate the output driver level (as
defined in Output Driver Strength Table) of the device. The Output Driver Strength is defaulted as 30 Ohms when
delivered from factory. To write the ODS bits requires the Write Status Register (WRSR) instruction to be executed.
TB bit
The Top/Bottom (TB) bit is a non-volatile OTP bit. The Top/Bottom (TB) bit is used to configure the Block Protect
area by BP bit (BP3, BP2, BP1, BP0), starting from TOP or Bottom of the memory array. The TB bit is defaulted as
“0”, which means Top area protect. When it is set as “1”, the protect area will change to Bottom area of the memory
device. To write the TB bits requires the Write Status Register (WRSR) instruction to be executed.
Table 7. Configuration Register Table
bit7
DC1
(Dummy
cycle 1)
bit6
DC0
(Dummy
cycle 0)
bit5
bit4
Reserved
Reserved
(note 2)
(note 2)
x
x
volatile bit
volatile bit
x
x
bit3
bit2
bit1
bit0
TB
ODS 2
ODS 1
ODS 0
(top/bottom (output driver (output driver (output driver
selected)
strength)
strength)
strength)
0=Top area
protect
1=Bottom
(note 1)
(note 1)
(note 1)
area protect
(Default=0)
OTP
volatile bit
volatile bit
volatile bit
Note 1: see "Output Driver Strength Table"
Note 2: see "Dummy Cycle and Frequency Table (MHz)"
P/N: PM1914
32
Rev. 1.2, July 22, 2016
MX25L12873F
Output Driver Strength Table
ODS2
0
0
0
0
1
1
1
1
ODS1
0
0
1
1
0
0
1
1
ODS0
0
1
0
1
0
1
0
1
Description
Reserved
90 Ohms
60 Ohms
45 Ohms
Reserved
20 Ohms
15 Ohms
30 Ohms (Default)
Note
Impedance at VCC/2
Dummy Cycle and Frequency Table (MHz)
DC[1:0]
00 (default)
01
10
11
DC[1:0]
00 (default)
01
10
11
DC[1:0]
00 (default)
01
10
11
P/N: PM1914
Numbers of Dummy
clock cycles
8
6
8
10
Numbers of Dummy
clock cycles
4
6
8
10
Fast Read
104
104
104
133
Dual Output Fast
Read
104
104
104
133
Quad Output Fast
Read
104
84
104
133
Dual IO Fast Read
84
104
104
133
Numbers of Dummy
Quad IO Fast Read
clock cycles
6
84
4
70
8
104
10
133
33
Rev. 1.2, July 22, 2016
MX25L12873F
9-9. Write Status Register (WRSR)
The WRSR instruction is for changing the values of Status Register Bits and Configuration Register Bits. Before
sending WRSR instruction, the Write Enable (WREN) instruction must be decoded and executed to set the Write
Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP3, BP2, BP1,
BP0) bits to define the protected area of memory (as shown in "Table 2. Protected Area Sizes"), but has no effect on
bit1(WEL) and bit0 (WIP) of the status register. The WRSR instruction cannot be executed once the Hardware Protected Mode (HPM) is entered.
The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Register
data on SI→CS# goes high.
The CS# must go high exactly at the 8 bits or 16 bits data boundary; otherwise, the instruction will be rejected and
not executed. The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes
high. The Write in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress.
The WIP sets 1 during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL) bit is reset.
Figure 22. Write Status Register (WRSR) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
SCLK
Mode 0
SI
SO
command
01h
Status
Register In
7
6
4
5
Configuration
Register In
2
3
0 15 14 13 12 11 10 9
1
8
MSB
High-Z
Note : The CS# must go high exactly at 8 bits or 16 bits data boundary to completed the write register command.
Figure 23. Write Status Register (WRSR) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
Mode 3
SCLK
Mode 0
Mode 0
SR in
Command
SIO[3:0]
P/N: PM1914
01h
H0
34
L0
CR in
H1
L1
Rev. 1.2, July 22, 2016
MX25L12873F
Software Protected Mode (SPM):
- When SRWD bit=0, the WREN instruction may set the WEL bit and can change the values of SRWD, BP3, BP2,
BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0 and T/B bit, is at software protected
mode (SPM).
Table 8. Protection Modes
Mode
Software protection
mode (SPM)
Status register condition
SRWD bit status
Memory
Status register can be written
in (WEL bit is set to "1") and
the SRWD, BP0-BP3
bits can be changed
SRWD bit=0
The protected area
cannot
be program or erase.
Note:
1. As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown in "Table 2.
Protected Area Sizes".
P/N: PM1914
35
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 24. WRSR flow
start
WREN command
RDSR command
WEL=1?
No
Yes
WRSR command
Write status register data
RDSR command
WIP=0?
No
Yes
RDSR command
Read WEL=0, BP[3:0], QE,
and SRWD data
Verify OK?
No
Yes
WRSR successfully
P/N: PM1914
WRSR fail
36
Rev. 1.2, July 22, 2016
MX25L12873F
9-10. Read Data Bytes (READ)
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on
the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address
is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can
be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been
reached.
The sequence of issuing READ instruction is: CS# goes low→sending READ instruction code→ 3-byte address on
SI→ data out on SO→to end READ operation can use CS# to high at any time during data out.
Figure 25. Read Data Bytes (READ) Sequence (SPI Mode only)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
Mode 0
SI
command
03h
24-Bit Address
23 22 21
3
2
1
0
MSB
SO
Data Out 1
High-Z
7
6
5
4
3
2
Data Out 2
1
0
7
MSB
P/N: PM1914
37
Rev. 1.2, July 22, 2016
MX25L12873F
9-11. Read Data Bytes at Higher Speed (FAST_READ)
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and
data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at
any location. The address is automatically increased to the next higher address after each byte data is shifted out,
so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when
the highest address has been reached.
Read on SPI Mode The sequence of issuing FAST_READ instruction is: CS# goes low→ sending FAST_READ
instruction code→ 3-byte address on SI→ 8 dummy cycles (default)→ data out on SO→ to end FAST_READ operation can use CS# to high at any time during data out.
In the performance-enhancing mode, P[7:4] must be toggling with P[3:0] ; likewise P[7:0]=A5h,5Ah,F0h or 0Fh can
make this mode continue and reduce the next 4READ instruction. Once P[7:4] is no longer toggling with P[3:0]; likewise P[7:0]=FFh,00h,AAh or 55h and afterwards CS# is raised and then lowered, the system then will escape from
performance enhance mode and return to normal operation.
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.
Figure 26. Read at Higher Speed (FAST_READ) Sequence (SPI Mode)
CS#
SCLK
Mode 3
0
1
2
Mode 0
3
5
6
7
8
9 10
Command
SI
SO
4
28 29 30 31
24-Bit Address
23 22 21
0Bh
3
2
1
0
High-Z
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Configurable
Dummy Cycle
SI
7
6
5
4
3
2
1
0
DATA OUT 2
DATA OUT 1
SO
7
6
5
4
2
1
0
7
MSB
MSB
P/N: PM1914
3
38
6
5
4
3
2
1
0
7
MSB
Rev. 1.2, July 22, 2016
MX25L12873F
9-12. Dual Output Read Mode (DREAD)
The DREAD instruction enable double throughput of Serial Flash in read mode. The address is latched on rising
edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the next
higher address after each byte data is shifted out, so the whole memory can be read out at a single DREAD instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing DREAD instruction, the following data out will perform as 2-bit instead of previous 1-bit.
The sequence of issuing DREAD instruction is: CS# goes low→ sending DREAD instruction→3-byte address on
SIO0→ 8 dummy cycles (default) on SIO0→ data out interleave on SIO1 & SIO0→ to end DREAD operation can
use CS# to high at any time during data out.
While Program/Erase/Write Status Register cycle is in progress, DREAD instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
Figure 27. Dual Read Mode Sequence
CS#
0
1
2
3
4
5
6
7
8
SCLK
…
Command
SI/SIO0
SO/SIO1
P/N: PM1914
30 31 32
9
3B
…
24 ADD Cycle
A23 A22
…
39 40 41 42 43 44 45
A1 A0
High Impedance
Configurable
Dummy Cycle
Data Out
1
Data Out
2
D6 D4 D2 D0 D6 D4
D7 D5 D3 D1 D7 D5
39
Rev. 1.2, July 22, 2016
MX25L12873F
9-13. 2 x I/O Read Mode (2READ)
The 2READ instruction enable double throughput of Serial Flash in read mode. The address is latched on rising
edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the next
higher address after each byte data is shifted out, so the whole memory can be read out at a single 2READ instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing 2READ instruction, the following address/dummy/data out will perform as 2-bit instead of previous 1-bit.
The sequence of issuing 2READ instruction is: CS# goes low→ sending 2READ instruction→ 3-byte address interleave on SIO1 & SIO0→ 4 dummy cycles (default) on SIO1 & SIO0→ data out interleave on SIO1 & SIO0→ to end
2READ operation can use CS# to high at any time during data out.
While Program/Erase/Write Status Register cycle is in progress, 2READ instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
Figure 28. 2 x I/O Read Mode Sequence (SPI Mode only)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
17 18 19 20 21 22 23 24 25 26 27 28 29 30
Mode 3
SCLK
Mode 0
Command
SI/SIO0
SO/SIO1
P/N: PM1914
BBh
12 ADD Cycles
Configurable
Dummy Cycle
Data
Out 1
Data
Out 2
A22 A20 A18
A4 A2 A0
D6 D4 D2 D0 D6 D4 D2 D0
A23 A21 A19
A5 A3 A1
D7 D5 D3 D1 D7 D5 D3 D1
40
Mode 0
Rev. 1.2, July 22, 2016
MX25L12873F
9-14. Quad Read Mode (QREAD)
The QREAD instruction enable quad throughput of Serial Flash in read mode. The address is latched on rising edge
of SCLK, and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum
frequency fQ. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single QREAD instruction.
The address counter rolls over to 0 when the highest address has been reached. Once writing QREAD instruction,
the following data out will perform as 4-bit instead of previous 1-bit.
The sequence of issuing QREAD instruction is: CS# goes low→ sending QREAD instruction → 3-byte address on
SI → 8 dummy cycle (Default) → data out interleave on SO3, SO2, SO1 & SO0→ to end QREAD operation can
use CS# to high at any time during data out.
While Program/Erase/Write Status Register cycle is in progress, QREAD instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
Figure 29. Quad Read Mode Sequence
CS#
0
1
2
3
4
5
6
7
8
…
Command
SIO0
SIO1
SIO2
SIO3
P/N: PM1914
29 30 31 32 33
9
SCLK
6B
…
24 ADD Cycles
A23 A22
…
High Impedance
38 39 40 41 42
A2 A1 A0
Configurable
dummy cycles
Data Data Data
Out 1 Out 2 Out 3
D4 D0 D4 D0 D4
D5 D1 D5 D1 D5
High Impedance
D6 D2 D6 D2 D6
High Impedance
D7 D3 D7 D3 D7
41
Rev. 1.2, July 22, 2016
MX25L12873F
9-15. 4 x I/O Read Mode (4READ)
The 4READ instruction enable quad throughput of Serial Flash in read mode. A Quad Enable (QE) bit of status Register must be set to "1" before sending the 4READ instruction. The address is latched on rising edge of SCLK, and
data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fQ.
The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single 4READ instruction. The address
counter rolls over to 0 when the highest address has been reached. Once writing 4READ instruction, the following
address/dummy/data out will perform as 4-bit instead of previous 1-bit.
4 x I/O Read on SPI Mode (4READ) The sequence of issuing 4READ instruction is: CS# goes low→ sending
4READ instruction→ 3-byte address interleave on SIO3, SIO2, SIO1 & SIO0→ 6 dummy cycles (Default) →data out
interleave on SIO3, SIO2, SIO1 & SIO0→ to end 4READ operation can use CS# to high at any time during data out.
4 x I/O Read on QPI Mode (4READ) The 4READ instruction also support on QPI command mode. The sequence
of issuing 4READ instruction QPI mode is: CS# goes low→ sending 4READ instruction→ 3-byte address interleave
on SIO3, SIO2, SIO1 & SIO0→ 6 dummy cycles (Default) →data out interleave on SIO3, SIO2, SIO1 & SIO0→ to
end 4READ operation can use CS# to high at any time during data out.
While Program/Erase/Write Status Register cycle is in progress, 4READ instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
P/N: PM1914
42
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 30. 4 x I/O Read Mode Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
Mode 3
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
SCLK
Mode 0
Command
6 ADD Cycles
Data
Out 1
Performance
enhance
indicator (Note 1)
Data
Out 2
Mode 0
Data
Out 3
Configurable
Dummy Cycle (Note 3)
EBh
A20 A16 A12 A8 A4 A0 P4 P0
D4 D0 D4 D0 D4 D0
SIO1
A21 A17 A13 A9 A5 A1 P5 P1
D5 D1 D5 D1 D5 D1
SIO2
A22 A18 A14 A10 A6 A2 P6 P2
D6 D2 D6 D2 D6 D2
SIO3
A23 A19 A15 A11 A7 A3 P7 P3
D7 D3 D7 D3 D7 D3
SIO0
Notes:
1. Hi-impedance is inhibited for the two clock cycles.
2. P7≠P3, P6≠P2, P5≠P1 & P4≠P0 (Toggling) is inhibited.
3. Configuration Dummy cycle numbers will be different depending on the bit6 & bit 7 (DC0 & DC1) setting in
configuration register.
Figure 31. 4 x I/O Read Mode Sequence (QPI Mode)
CS#
MODE 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
MODE 3
SCLK
MODE 0
SIO[3:0]
P/N: PM1914
MODE 0
EB
A5 A4 A3 A2 A1 A0
Data In
24-bit Address
X
X
X
X
Configurable
Dummy Cycle
43
X
X
H0 L0 H1 L1 H2 L2 H3 L3
MSB
Data Out
Rev. 1.2, July 22, 2016
MX25L12873F
9-16. Burst Read
This device supports Burst Read in both SPI and QPI mode.
To set the Burst length, following command operation is required to issue command: “C0h” in the first Byte (8-clocks),
following 4 clocks defining wrap around enable with “0h” and disable with“1h”.
The next 4 clocks are to define wrap around depth. Their definitions are as the following table:
Data
00h
01h
02h
03h
1xh
Wrap Around
Yes
Yes
Yes
Yes
No
Wrap Depth
8-byte
16-byte
32-byte
64-byte
X
The wrap around unit is defined within the 256Byte page, with random initial address. It is defined as “wrap-around
mode disable” for the default state of the device. To exit wrap around, it is required to issue another “C0” command
in which data=‘1xh”. Otherwise, wrap around status will be retained until power down or reset command. To change
wrap around depth, it is requried to issue another “C0” command in which data=“0xh”. QPI “EBh” and SPI “EBh”
support wrap around feature after wrap around is enabled. Burst read is supported in both SPI and QPI mode. The
device is default without Burst read.
Figure 32. SPI Mode
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9
D7
D6
10
11
12
13
14
15
SCLK
Mode 0
SIO
C0h
D5
D4
D3
D2
D1
D0
Figure 33. QPI Mode
CS#
Mode 3
0
1
2
3
SCLK
Mode 0
SIO[3:0]
C0h
H0
MSB
L0
LSB
Note: MSB=Most Significant Bit
LSB=Least Significant Bit
P/N: PM1914
44
Rev. 1.2, July 22, 2016
MX25L12873F
9-17. Performance Enhance Mode
The device could waive the command cycle bits if the two cycle bits after address cycle toggles.
Performance enhance mode is supported in both SPI and QPI mode.
In QPI mode, “EBh” and SPI “EBh” commands support enhance mode. The performance enhance mode is not
supported in dual I/O mode.
To enter performance-enhancing mode, P[7:4] must be toggling with P[3:0]; likewise P[7:0]=A5h, 5Ah, F0h or 0Fh
can make this mode continue and skip the next 4READ instruction. To leave enhance mode, P[7:4] is no longer
toggling with P[3:0]; likewise P[7:0]=FFh, 00h, AAh or 55h along with CS# is afterwards raised and then lowered.
Issuing ”FFh” data cycle can also exit enhance mode. The system then will leave performance enhance mode and
return to normal operation.
After entering enhance mode, following CS# go high, the device will stay in the read mode and treat CS# go low of
the first clock as address instead of command cycle.
This sequence of issuing 4READ instruction is especially useful in random access: CS# goes low→send 4READ
instruction→3-bytes address interleave on SIO3, SIO2, SIO1 & SIO0 →performance enhance toggling bit P[7:0]→
4 dummy cycles (Default) →data out until CS# goes high → CS# goes low (the following 4READ instruction is
ignored) → 3-bytes random access address.
To conduct the Performance Enhance Mode Reset operation in SPI mode, FFh data cycle, 8 clocks, should be issued in 1I/O sequence. In QPI Mode, FFFFFFFFh data cycle, 8 clocks, in 4I/O should be issued.
If the system controller is being Reset during operation, the flash device will return to the standard SPI operation.
P/N: PM1914
45
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 34. 4 x I/O Read Performance Enhance Mode Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22
n
SCLK
Mode 0
Data
Out 2
Data
Out n
A20 A16 A12 A8 A4 A0 P4 P0
D4 D0 D4 D0
D4 D0
SIO1
A21 A17 A13 A9 A5 A1 P5 P1
D5 D1 D5 D1
D5 D1
SIO2
A22 A18 A14 A10 A6 A2 P6 P2
D6 D2 D6 D2
D6 D2
SIO3
A23 A19 A15 A11 A7 A3 P7 P3
D7 D3 D7 D3
D7 D3
Command
6 ADD Cycles
Data
Out 1
Performance
enhance
indicator (Note 1)
Configurable
Dummy Cycle (Note 2)
EBh
SIO0
CS#
n+1
...........
n+7 ...... n+9
........... n+13
...........
Mode 3
SCLK
6 ADD Cycles
Performance
enhance
indicator (Note 1)
Data
Out 1
Data
Out 2
Data
Out n
Mode 0
Configurable
Dummy Cycle (Note 2)
SIO0
A20 A16 A12 A8 A4 A0 P4 P0
D4 D0 D4 D0
D4 D0
SIO1
A21 A17 A13 A9 A5 A1 P5 P1
D5 D1 D5 D1
D5 D1
SIO2
A22 A18 A14 A10 A6 A2 P6 P2
D6 D2 D6 D2
D6 D2
SIO3
A23 A19 A15 A11 A7 A3 P7 P3
D7 D3 D7 D3
D7 D3
Notes:
1. If not using performance enhance recommend to keep 1 or 0 in performance enhance indicator.
Reset the performance enhance mode, if P7=P3 or P6=P2 or P5=P1 or P4=P0, ex: AA, 00, FF.
2. Configuration Dummy cycle numbers will be different depending on the bit6 & bit 7 (DC0 & DC1) setting in
configuration register.
P/N: PM1914
46
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 35. 4 x I/O Read Performance Enhance Mode Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
A1
A0
8
9
10
11
12
13
14
15
16
17
H0
L0
H1
L1
SCLK
Mode 0
SIO[3:0]
EBh
A5
A4
A3
A2
X
X
X
X
MSB LSB MSB LSB
P(7:4) P(3:0)
Data In
Data Out
performance
enhance
indicator
Configurable
Dummy Cycle (Note 1)
CS#
n+1
.............
SCLK
Mode 0
SIO[3:0]
A5
A4
A3
A2
A1
X
A0
X
X
H0
L0
H1
L1
MSB LSB MSB LSB
P(7:4) P(3:0)
6 Address cycles
X
Data Out
performance
enhance
indicator
Configurable
Dummy Cycle (Note 1)
Notes:
1. Configuration Dummy cycle numbers will be different depending on the bit6 & bit 7 (DC0 & DC1) setting in
configuration register.
2. Reset the performance enhance mode, if P7=P3 or P6=P2 or P5=P1 or P4=P0, ex: AA, 00, FF.
P/N: PM1914
47
Rev. 1.2, July 22, 2016
MX25L12873F
9-18. Fast Boot
The Fast Boot Feature provides the ability to automatically execute read operation after power on cycle or reset
without any read instruction.
A Fast Boot Register is provided on this device. It can enable the Fast Boot function and also define the number of
delay cycles and start address (where boot code being transferred). Instruction WRFBR (write fast boot register) and
ESFBR (erase fast boot register) can be used for the status configuration or alternation of the Fast Boot Register
bit. RDFBR (read fast boot register) can be used to verify the program state of the Fast Boot Register. The default
number of delay cycles is 13 cycles, and there is a 16bytes boundary address for the start of boot code access.
When CS# starts to go low, data begins to output from default address after the delay cycles (default as 13 cycles).
After CS# returns to go high, the device will go back to standard SPI mode. In the fast boot data out process from
CS# goes low to CS# goes high, a minimum of one byte must be output.
Once Fast Boot feature has been enabled, the device will automatically start a read operation after power on cycle,
reset command, or hardware reset operation.
The fast Boot feature support Quad I/O interface, the data is output by Quad I/O interface.
Fast Boot Register (FBR)
Bits
31 to 4
Description
FBSA (FastBoot Start
Address)
3
x
2 to 1
FBSD (FastBoot Start
Delay Cycle)
0
FBE (FastBoot Enable)
Bit Status
Default State
16 bytes boundary address for the start of boot
FFFFFFF
code access.
1
00: 7 delay cycles
01: 9 delay cycles
10: 11 delay cycles
11: 13 delay cycles
0=FastBoot is enabled.
1=FastBoot is not enabled.
Type
NonVolatile
NonVolatile
11
NonVolatile
1
NonVolatile
Note: If FBSD = 11, the maximum clock frequency is 133 MHz
If FBSD = 10, the maximum clock frequency is 104 MHz
If FBSD = 01, the maximum clock frequency is 84 MHz
If FBSD = 00, the maximum clock frequency is 70 MHz
P/N: PM1914
48
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 36. Fast Boot Sequence (QE bit =1)
CS#
Mode 3
0
-
-
-
-
-
-
-
n
n+1 n+2 n+3 n+5 n+6 n+7 n+8 n+9
SCLK
Mode 0
SIO0
SIO1
SIO2
SIO3
Delay Cycles
High Impedance
High Impedance
High Impedance
High Impedance
Data
Out 1
Data
Out 2
4
0
4
5
1
6
7
Data
Out 3
Data
Out 4
0
4
0
4
0
4
5
1
5
1
5
1
5
2
6
2
6
2
6
2
6
3
7
3
7
3
7
3
7
MSB
Note:
If FBSD = 11, delay cycles is 13 and n is 12.
If FBSD = 10, delay cycles is 11 and n is 10.
If FBSD = 01, delay cycles is 9 and n is 8.
If FBSD = 00, delay cycles is 7 and n is 6.
P/N: PM1914
49
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 37. Read Fast Boot Register (RDFBR) Sequence
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
37 38 39 40 41
SCLK
Mode 0
Command
SI
16h
Data Out 1
High-Z
SO
7
6
Data Out 2
5
26 25 24 7
6
MSB
MSB
Figure 38. Write Fast Boot Register (WRFBR) Sequence
CS#
0
Mode 3
1
2
3
4
5
6
7
8
9 10
37 38 39
SCLK
Mode 0
Command
SI
Fast Boot Register
17h
7
6
5
26 25 24
MSB
High-Z
SO
Figure 39. Erase Fast Boot Register (ESFBR) Sequence
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
SI
SO
P/N: PM1914
Command
18h
High-Z
50
Rev. 1.2, July 22, 2016
MX25L12873F
9-19. Sector Erase (SE)
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". The instruction is used for
any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before
sending the Sector Erase (SE). Any address of the sector (see "Table 4. Memory Organization") is a valid address
for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the least significant bit of the
address byte been latched-in); otherwise, the instruction will be rejected and not executed.
Address bits [Am-A12] (Am is the most significant address) select the sector address.
The sequence of issuing SE instruction is: CS# goes low→ sending SE instruction code→ 3-byte address on SI→
CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked while the Sector Erase cycle is in progress. The WIP sets 1 during the tSE
timing, and clears when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the
Block is protected by BP bits (WPSEL=0; Block Protect Mode) or SPB/DPB (WPSEL=1; Advanced Sector Protect
Mode), the Sector Erase (SE) instruction will not be executed on the block.
Figure 40. Sector Erase (SE) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Mode 0
24-Bit Address
Command
SI
20h
A23 A22
A2 A1 A0
MSB
Figure 41. Sector Erase (SE) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
24-Bit Address
Command
SIO[3:0]
20h A5 A4 A3 A2 A1 A0
MSB
P/N: PM1914
51
Rev. 1.2, July 22, 2016
MX25L12873F
9-20. Block Erase (BE32K)
The Block Erase (BE32K) instruction is for erasing the data of the chosen block to be "1". The instruction is used for
32K-byte block erase operation. A Write Enable (WREN) instruction be executed to set the Write Enable Latch (WEL)
bit before sending the Block Erase (BE32K). Any address of the block (see "Table 4. Memory Organization") is a
valid address for Block Erase (BE32K) instruction. The CS# must go high exactly at the byte boundary (the least
significant bit of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing BE32K instruction is: CS# goes low→ sending BE32K instruction code→ 3-byte address
on SI→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
The self-timed Block Erase Cycle time (tBE32K) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked while during the Block Erase cycle is in progress. The WIP sets during the
tBE32K timing, and clears when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If
the Block is protected by BP bits (WPSEL=0; Block Protect Mode) or SPB/DPB (WPSEL=1; Advanced Sector Protect Mode), the Block Erase (BE32K) instruction will not be executed on the block.
Figure 42. Block Erase 32KB (BE32K) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Mode 0
Command
SI
24-Bit Address
52h
A23 A22
A2 A1 A0
MSB
Figure 43. Block Erase 32KB (BE32K) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
24-Bit Address
Command
SIO[3:0]
52h
A5 A4 A3 A2 A1 A0
MSB
P/N: PM1914
52
Rev. 1.2, July 22, 2016
MX25L12873F
9-21. Block Erase (BE)
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used for
64K-byte block erase operation. A Write Enable (WREN) instruction must be executed to set the Write Enable Latch
(WEL) bit before sending the Block Erase (BE). Any address of the block (Please refer to "Table 4. Memory Organization") is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the
least significant bit of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing BE instruction is: CS# goes low→ sending BE instruction code→ 3-byte address on SI→
CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked while the Block Erase cycle is in progress. The WIP sets during the tBE
timing, and clears when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the Block
is protected by BP bits (WPSEL=0; Block Protect Mode) or SPB/DPB (WPSEL=1; Advanced Sector Protect Mode),
the Block Erase (BE) instruction will not be executed on the block.
Figure 44. Block Erase (BE) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Mode 0
Command
SI
24-Bit Address
D8h
A23 A22
A2 A1 A0
MSB
Figure 45. Block Erase (BE) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
24-Bit Address
Command
SIO[3:0]
D8h
A5 A4 A3 A2 A1 A0
MSB
P/N: PM1914
53
Rev. 1.2, July 22, 2016
MX25L12873F
9-22. Chip Erase (CE)
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must be executed to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS# must
go high exactly at the byte boundary, otherwise the instruction will be rejected and not executed.
The sequence of issuing CE instruction is: CS# goes low→sending CE instruction code→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked while the Chip Erase cycle is in progress. The WIP sets during the tCE timing, and clears when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared.
When the chip is under "Block protect (BP) Mode" (WPSEL=0). The Chip Erase(CE) instruction will not be executed, if one (or more) sector is protected by BP3-BP0 bits. It will be only executed when BP3-BP0 all set to "0".
When the chip is under "Advances Sector Protect Mode" (WPSEL=1). The Chip Erase (CE) instruction will be executed on unprotected block. The protected Block will be skipped. If one (or more) 4K byte sector was protected in
top or bottom 64K byte block, the protected block will also skip the chip erase command.
Figure 46. Chip Erase (CE) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
Command
SI
60h or C7h
Figure 47. Chip Erase (CE) Sequence (QPI Mode)
CS#
Mode 3
0
1
SCLK
Mode 0
SIO[3:0]
P/N: PM1914
Command
60h or C7h
54
Rev. 1.2, July 22, 2016
MX25L12873F
9-23. Page Program (PP)
The Page Program (PP) instruction is for programming memory bits to "0". One to 256 bytes can be sent to the device to be programmed. A Write Enable (WREN) instruction must be executed to set the Write Enable Latch (WEL)
bit before sending the Page Program (PP). If more than 256 data bytes are sent to the device, only the last 256
data bytes will be accepted and the previous data bytes will be disregarded. The Page Program instruction requires
that all the data bytes fall within the same 256-byte page. The low order address byte A[7:0] specifies the starting
address within the selected page. Bytes that will cross a page boundary will wrap to the beginning of the selected
page. The device can accept (256 minus A[7:0]) data bytes without wrapping. If 256 data bytes are going to be programmed, A[7:0] should be set to 0.
The sequence of issuing PP instruction is: CS# goes low→ sending PP instruction code→ 3-byte address on SI→ at
least 1-byte on data on SI→ CS# goes high.
The CS# must be kept to low during the whole Page Program cycle; The CS# must go high exactly at the byte
boundary (the latest eighth bit of data being latched in), otherwise the instruction will be rejected and will not be executed.
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked while the Page Program cycle is in progress. The WIP sets during the tPP
timing, and clears when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the
Block is protected by BP bits (WPSEL=0; Block Protect Mode) or SPB/DPB (WPSEL=1; Advanced Sector Protect
Mode) the Page Program (PP) instruction will not be executed.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
P/N: PM1914
55
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 48. Page Program (PP) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
1
0
7
6
5
3
2
1
0
2079
2
2078
3
2077
23 22 21
02h
SI
Data Byte 1
24-Bit Address
2076
Command
2075
Mode 0
4
1
0
MSB
MSB
2074
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
2073
2072
CS#
SCLK
Data Byte 2
7
SI
6
5
4
3
2
Data Byte 3
1
MSB
0
7
6
5
4
3
2
Data Byte 256
1
7
0
MSB
6
5
4
3
2
MSB
Figure 49. Page Program (PP) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
SCLK
Mode 0
Command
SIO[3:0]
02h
Data In
P/N: PM1914
24-Bit Address
A5
A4
A3
A2
A1
A0
H0
L0
H1
L1
H2
L2
H3
L3
Data Byte Data Byte Data Byte Data Byte
1
2
3
4
56
H255 L255
......
Data Byte
256
Rev. 1.2, July 22, 2016
MX25L12873F
9-24. 4 x I/O Page Program (4PP)
The Quad Page Program (4PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must be executed to set the Write Enable Latch (WEL) bit and Quad Enable (QE) bit must be set to "1" before sending the Quad Page Program (4PP). The Quad Page Programming takes four pins: SIO0, SIO1, SIO2, and
SIO3 as address and data input, which can improve programmer performance and the effectiveness of application.
The other function descriptions are as same as standard page program.
The sequence of issuing 4PP instruction is: CS# goes low→ sending 4PP instruction code→ 3-byte address on
SIO[3:0]→ at least 1-byte on data on SIO[3:0]→CS# goes high.
If the page is protected by BP bits (WPSEL=0; Block Protect Mode) or SPB/DPB (WPSEL=1; Advanced Sector Protect Mode), the Quad Page Program (4PP) instruction will not be executed.
Figure 50. 4 x I/O Page Program (4PP) Sequence (SPI Mode only)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21
SCLK
Mode 0
Data Data Data Data
Byte 1 Byte 2 Byte 3 Byte 4
6 Address cycle
A0
4
0
4
0
4
0
4
0
SIO1
A21 A17 A13 A9 A5 A1
5
1
5
1
5
1
5
1
SIO2
A22 A18 A14 A10 A6 A2
6
2
6
2
6
2
6
2
SIO3
A23 A19 A15 A11 A7 A3
7
3
7
3
7
3
7
3
SIO0
P/N: PM1914
Command
38h
A20 A16 A12 A8 A4
57
Rev. 1.2, July 22, 2016
MX25L12873F
9-25. Deep Power-down (DP)
The Deep Power-down (DP) instruction is for setting the device to minimum power consumption (the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode requires the Deep Power-down (DP) instruction
to enter, during the Deep Power-down mode, the device is not active and all Write/Program/Erase instruction are
ignored. When CS# goes high, it's only in deep power-down mode not standby mode. It's different from Standby
mode.
The sequence of issuing DP instruction is: CS# goes low→sending DP instruction code→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP)
and Read Electronic Signature (RES) instruction and softreset command. (those instructions allow the ID being
reading out). When Power-down, or software reset command the deep power-down mode automatically stops, and
when power-up, the device automatically is in standby mode. For DP instruction the CS# must go high exactly at the
byte boundary (the latest eighth bit of instruction code been latched-in); otherwise, the instruction will not executed.
As soon as Chip Select (CS#) goes high, a delay of tDP is required before entering the Deep Power-down mode.
Figure 51. Deep Power-down (DP) Sequence (SPI Mode)
CS#
0
Mode 3
1
2
3
4
5
6
tDP
7
SCLK
Mode 0
Command
B9h
SI
Stand-by Mode
Deep Power-down Mode
Figure 52. Deep Power-down (DP) Sequence (QPI Mode)
CS#
Mode 3
0
1
tDP
SCLK
Mode 0
Command
SIO[3:0]
B9h
Stand-by Mode
P/N: PM1914
58
Deep Power-down Mode
Rev. 1.2, July 22, 2016
MX25L12873F
9-26. Enter Secured OTP (ENSO)
The ENSO instruction is for entering the additional 4K-bit secured OTP mode. While device is in 4K-bit secured
OTPmode, main array access is not available. The additional 4K-bit secured OTP is independent from main array
and may be used to store unique serial number for system identifier. After entering the Secured OTP mode, follow
standard read or program procedure to read out the data or update data. The Secured OTP data cannot be updated
again once it is lock-down.
The sequence of issuing ENSO instruction is: CS# goes low→ sending ENSO instruction to enter Secured OTP
mode→ CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
Please note that after issuing ENSO command user can only access secure OTP region with standard read or program procedure. Furthermore, once security OTP is lock down, only read related commands are valid.
9-27. Exit Secured OTP (EXSO)
The EXSO instruction is for exiting the additional 4K-bit secured OTP mode.
The sequence of issuing EXSO instruction is: CS# goes low→ sending EXSO instruction to exit Secured OTP
mode→ CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
9-28. Read Security Register (RDSCUR)
The RDSCUR instruction is for reading the value of Security Register bits. The Read Security Register can be read
at any time (even in program/erase/write status register/write security register condition) and continuously.
The sequence of issuing RDSCUR instruction is : CS# goes low→sending RDSCUR instruction→Security Register
data out on SO→ CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
9-29. Write Security Register (WRSCUR)
The WRSCUR instruction is for changing the values of Security Register Bits. The WREN (Write Enable) instruction
is required before issuing WRSCUR instruction. The WRSCUR instruction may change the values of bit1 (LDSO
bit) for customer to lock-down the 4K-bit Secured OTP area. Once the LDSO bit is set to "1", the Secured OTP area
cannot be updated any more.
The sequence of issuing WRSCUR instruction is :CS# goes low→ sending WRSCUR instruction → CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
The CS# must go high exactly at the boundary; otherwise, the instruction will be rejected and not executed.
P/N: PM1914
59
Rev. 1.2, July 22, 2016
MX25L12873F
Security Register
The definition of the Security Register bits is as below:
Write Protection Selection bit. Please reference to "Write Protection Selection"
Erase Fail bit. The Erase Fail bit is a status flag, which shows the status of last Erase operation. It will be set to "1",
if the erase operation fails. It will be set to "0", if the last operation is success. Please note that it will not interrupt or
stop any operation in the flash memory.
Program Fail bit. The Program Fail bit is a status flag, which shows the status of last Program operation. It will be
set to "1", if the program operation fails or the program region is protected. It will be set to "0", if the last operation is
success. Please note that it will not interrupt or stop any operation in the flash memory.
Erase Suspend bit. Erase Suspend Bit (ESB) indicates the status of Erase Suspend operation. Users may use
ESB to identify the state of flash memory. After the flash memory is suspended by Erase Suspend command, ESB
is set to "1". ESB is cleared to "0" after erase operation resumes.
Program Suspend bit. Program Suspend Bit (PSB) indicates the status of Program Suspend operation. Users may
use PSB to identify the state of flash memory. After the flash memory is suspended by Program Suspend command,
PSB is set to "1". PSB is cleared to "0" after program operation resumes.
Secured OTP Indicator bit. The Secured OTP indicator bit shows the chip is locked by factory or not. When it is
"0", it indicates non-factory lock; "1" indicates factory-lock.
Lock-down Secured OTP (LDSO) bit. By writing WRSCUR instruction, the LDSO bit may be set to "1" for cus
tomer lock-down purpose. However, once the bit is set to "1" (lock-down), the LDSO bit and the 4K-bit Secured OTP
area cannot be updated any more. While it is in 4K-bit secured OTP mode, main array access is not allowed.
Table 9. Security Register Definition
bit7
bit6
bit5
bit4
WPSEL
E_FAIL
P_FAIL
Reserved
0=normal
WP mode
1=individual
mode
(default=0)
0=normal
Erase
succeed
1=indicate
Erase failed
(default=0)
0=normal
Program
succeed
1=indicate
Program
failed
(default=0)
-
0=Erase
is not
suspended
1= Erase
suspended
(default=0)
Non-volatile
bit (OTP)
Volatile bit
Volatile bit
Volatile bit
Volatile bit
P/N: PM1914
bit3
bit2
ESB
PSB
(Erase
(Program
Suspend bit) Suspend bit)
60
bit1
bit0
LDSO
Secured OTP
(indicate if
indicator bit
lock-down)
0 = not lock0=Program
down
0 = nonis not
1 = lock-down
factory
suspended
lock
(cannot
1= Program
1 = factory
program/
suspended
lock
erase
(default=0)
OTP)
Non-volatile
Non-volatile
Volatile bit
bit
bit (OTP)
(OTP)
Rev. 1.2, July 22, 2016
MX25L12873F
9-30. Write Protection Selection (WPSEL)
There are two write protection methods provided on this device, (1) Block Lock (BP) protection mode (2) Advance
Sector protection mode. If WPSEL=0, flash is under BP protection mode . If WPSEL=1, flash is under Advance Sector protection mode. The default value of WPSEL is “0”. WPSEL command can be used to set WPSEL=1. Please
note that WPSEL is an OTP bit. Once WPSEL is set to 1, there is no chance to recovery WPSEL back to “0”.
If the flash is put on BP mode, the Advance Sector protection mode is disabled. Contrarily, if flash is on the Advance
Sector protection mode, the BP mode is disabled.
Every time after the system is powered-on, and the Security Register bit 7 is checked to be WPSEL=1, all
the blocks or sectors will be write protected by Dynamic Protected Bit (DPB) in default. User may only unlock
the blocks or sectors via GBULK instruction. Program or erase functions can only be operated after the Unlock instruction is conducted.
When WPSEL = 0: Block Lock (BP) protection mode,
Array is protected by BP3~BP0, where SRWD is bit 7 of status register that can be set by WRSR command.
When WPSEL =1: Advance Sector protection mode,
Blocks are individually protected by their own SPB or DPB lock bits which are set to “1” after power up. When the
system accepts and executes WPSEL instruction, the bit 7 in security register will be set. It will activate WRLR,
RDLR, WRPASS, RDPASS, PASSULK, WRSPB, ESSPB, SPBLK, RDSPBLK, WRDPB, RDDPB, GBLK, GBULK
etc instructions to conduct block lock protection and replace the original Software Protect Mode (SPM) use (BP3~BP0)
indicated block methods.
The sequence of issuing WPSEL instruction is: CS# goes low → sending WPSEL instruction to enter the individual
block protect mode → CS# goes high.
Write Protection Selection
Start
(Default in BP Mode)
WPSEL=1
Set
WPSEL Bit
Advance
Sector Protection
Set
Lock Register
WPSEL=0
Block Protection
(BP)
Bit 1 =0
Bit 2 =0
Password
Protection
P/N: PM1914
Solid
Protection
61
Dynamic
Protection
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 53. WPSEL Flow
start
WREN command
RDSCUR command
Yes
WPSEL=1?
No
WPSEL disable,
block protected by BP[3:0]
WPSEL command
RDSR command
WIP=0?
No
Yes
RDSCUR command
WPSEL=1?
No
Yes
WPSEL set successfully
WPSEL set fail
WPSEL enable.
Block protected by Advance Sector Protection
P/N: PM1914
62
Rev. 1.2, July 22, 2016
MX25L12873F
9-31. Advanced Sector Protection
There are two ways to implement software Advanced Sector Protection on this device: Password method or Solid
method. Through these two protection methods, user can disable or enable the programming or erasing operation
to any individual sector or all sectors.
There is a non-volatile (SPB) and volatile (DPB) protection bit related to the single sector in main flash array. Each
of the sectors is protected from programming or erasing operation when the bit is set. The temporary unprotect solid
write protect bit (USPB) can temporarily unprotect the sectors protected by SPB.
The figure below helps describing an overview of these methods. The device is default to the Solid mode when
shipped from factory. The detail algorithm of advanced sector protection is shown as follows:
Figure 54. Advanced Sector Protection Overview
Start
Bit 1=0
Bit 2=0
Set
Lock Register ?
Solid Protection Mode
Password Protection Mode
Set 64 bit Password
Set
SPB Lock Bit ?
SPBLK = 0
SPB Lock bit locked
All SPB can not be changeable
SPBLK = 1
SPB Lock bit Unlocked
SPB is changeable
Dynamic Protect Bit Register
(DPB)
DPB=1 sector protect
Sector Array
DPB=0 sector unprotect
P/N: PM1914
SPB Access Register
(SPB)
Temporary Unprotect
SPB bit (USPB)
SPB=1 Write Protect
USPB=0 SPB bit is disabled
SPB=0 Write Unprotect
USPB=1 SPB bit is effective
DPB 0
SA 0
SPB 0
DPB 1
SA 1
SPB 1
DPB 2
SA 2
SPB 2
:
:
:
:
:
:
DPB N-1
SA N-1
SPB N-1
DPB N
SA N
SPB N
63
USPB
Rev. 1.2, July 22, 2016
MX25L12873F
9-31-1. Lock Register
User can choose favorite sector protecting method via setting Lock Register bits 1 and 2. Lock Register is a 16bit one-time programmable register. Once bit 1 or bit 2 has been programmed (cleared to "0"), they will be locked
in that mode and the others will be disabled permanently. Bit 1 and bit 2 can not be programmed at the same time,
otherwise the device will abort the operation.
If user selects Password Protection mode, the password setting is required. User can set password by issuing
WRPASS command.
Lock Register
Bit 15-3
Reserved
x
OTP
Bit 2
Password Protection Mode Lock Bit
0=Password Protection Mode Enable
1= Password Protection Mode not
enable (Default =1)
OTP
Bit 1
Solid Protection Mode Lock Bit
Bit0
Reserved
0=Solid Protection Mode Enable
1= Solid Protection Mode not enable (Default =1)
x
OTP
OTP
Notes:
1. While bit 2 or bit 1 has been "0" status, other bits can't be changed any more. If set lock register program mode,
program fail will be set to "1".
2. While bit 2 and bit 1 is "1" status,other bits can be programmed, program fail will be set to "1".
Figure 55. Read Lock Register (RDLR) Sequence
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
SCLK
Mode 0
command
2Dh
SI
Register Out
High-Z
SO
7
6
5
4
3
2
Register Out
0 15 14 13 12 11 10 9
1
8
7
MSB
MSB
Figure 56. Write Lock Register (WRLR) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
SCLK
Mode 0
SI
SO
P/N: PM1914
Command
2Ch
High-Z
Lock Register In
7
6
5
4
3
2
1
0 15 14 13 12 11 10 9
8
MSB
64
Rev. 1.2, July 22, 2016
MX25L12873F
9-31-2. SPB Lock Bit (SPBLB)
The Solid Protection Bit Lock Bit (SPBLB) is assigned to control all SPB status. It is unique and volatile.
The default status of this register is determined by Lock Register bit 1 and bit 2 status. Refer to "SPB Lock Register"
for more SPB Lock information.
When under Solid Protect Mode, there is no software command sequence requested to unlock this bit. To clear the
SPB lock bit, just take the device through a reset or a power-up cycle. When under Password Protection Mode, in
order to prevent modification, the SPB Lock Bit must be set after all SPBs are setting the desired status.
SPB Lock Register
Bit
7-1
Description
Reserved
0
SPBLK (Lock SPB Bit)
Bit Status
X
0= SPB bit protected
1= SPB bit unprotected
Default
0000000
Solid protected Mode=1
Password Protected Mode=0
Type
Volatile
Volatile
Figure 57. SPB Lock Bit Set (SPBLK) Sequence
CS#
0
Mode 3
1
2
3
4
5
6
7
SCLK
Mode 0
Command
SI
A6h
High-Z
SO
Figure 58. Read SPB Lock Register (RDSPBLK) Sequence
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
SCLK
Mode 0
command
A7h
SI
SO
High-Z
Register Out
7
6
5
4
2
1
0
7
6
5
4
3
2
1
0
7
MSB
MSB
P/N: PM1914
3
Register Out
65
Rev. 1.2, July 22, 2016
MX25L12873F
9-31-3. Solid Protection Bits
The Solid write Protection bit (SPB) is a nonvolatile bit with the same endurances as the Flash memory. It is
assigned to each sector individually.
When a SPB is set to “1”, the associated sector may be protected, preventing any program or erase operation
on this sector. The SPB bits are set individually by WRSPB command. However, it cannot be cleared individually.
Issuing the ESSPB command will erase all SPB in the same time.
To unprotect a protected sector (corresponding SPB cleared to “0”), the SPB lock bit must be unlocked first. Under
password protection mode (lock register bit 2 set as "0"), a PASSULK command is requested before unlocking SPB
lock bit. However, while the device is under Solid Protection mode (lock register bit 1 set as "0"), just a reset or a
power-up cycle can unlock the SPB lock bit.
After the SPB lock bit unlocked, the SPB status can be changed for desired settings. To lock the Solid Protection
Bits after the modification has finished, the SPB Lock Bit must be set once again.
To verify the programming state of the SPB for a given sector, issuing a RDSPB Command to the device is required.
Note:
1. Once SPB Lock Bit is set, its program or erase command will not be executed and time-out without programming
or erasing the SPB.
SPB Register
Bit
Description
7 to 0
SPB (Solid protected Bit)
P/N: PM1914
Bit Status
00h= SPB for the sector address unprotected
FFh= SPB for the sector address protected
66
Default
Type
00h
Non-volatile
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 59. Read SPB Status (RDSPB) Sequence
CS#
Mode 3
0
1
2
3
4
5
6
7
8
37 38 39 40 41 42 43 44 45 46 47
9
SCLK
Mode 0
Command
SI
32-Bit Address
(Note)
E2h
A31 A30
A2 A1 A0
MSB
Data Out
High-Z
SO
7
6
5
4
3
2
1
0
MSB
Note: One dummy byte follow 3-byte address.
Figure 60. SPB Erase (ESSPB) Sequence
CS#
1
0
Mode 3
2
3
4
5
6
7
SCLK
Mode 0
Command
SI
E4h
High-Z
SO
Figure 61. SPB Program (WRSPB) Sequence
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9
37 38 39
SCLK
Mode 0
SI
Command
32-Bit Address
(Note)
E3h
A31 A30
A2 A1 A0
MSB
Note: One dummy byte follow 3-byte address.
P/N: PM1914
67
Rev. 1.2, July 22, 2016
MX25L12873F
9-31-4. Dynamic Write Protection Bits
The Dynamic Protection features a volatile type protection to each individual sector. It can protect sectors from
unintentional change, and is easy to disable when there are necessary changes.
All DPBs are default as protected (FFh) after reset or upon power up cycle. Via setting up Dynamic Protection bit (DPB)
by write DPB command (WRDPB), user can cancel the Dynamic Protection of associated sector.
The Dynamic Protection only works on those unprotected sectors whose SPBs are cleared. After the DPB state is
cleared to “0”, the sector can be modified if the SPB state is unprotected state.
DPB Register
Bit
7 to 0
Description
Bit Status
Default
00h= DPB for the sector address unprotected
DPB (Dynamic protected Bit)
FFh
FFh= DPB for the sector address protected
Type
Volatile
Figure 62. Read DPB Register (RDDPB) Sequence
CS#
0
Mode 3
1
2
3
4
5
6
7
8
37 38 39 40 41 42 43 44 45 46 47
9
SCLK
Mode 0
Command
SI
32-Bit Address
(Note)
E0h
A31 A30
A2 A1 A0
MSB
Data Out
High-Z
SO
7
6
5
4
3
2
1
0
MSB
Note: One dummy byte follow 3-byte address.
Figure 63. Write DPB Register (WRDPB) Sequence
CS#
Mode 3
0
1
2
3
4
5
6
7
8
37 38 39 40 41 42 43 44 45 46 47
9
SCLK
Mode 0
SI
Command
E1h
Data Byte 1
32-Bit Address
(Note)
A31 A30
A2 A1 A0
MSB
7
6
5
4
3
2
1
0
MSB
Note: One dummy byte follow 3-byte address.
P/N: PM1914
68
Rev. 1.2, July 22, 2016
MX25L12873F
9-31-5. Temporary Un-protect Solid write protect bit (USPB)
Temporary Un-protect Solid write Protect Bit is volatile bit. Software can temporarily unprotect write protect sectors
despite of SPBs' property when DPBs are cleared. While the USPB=1, all the SPBs’ property is masked.
Notes:
1. Upon power up, the USPB status is default protected. The USPB can be unprotected (to “0”) or protected (to “1”)
as often as needed. The hardware reset will reset USPB/DPB to their default values.
2. Please refer to "9-31-7. Sector Protection States Summary Table" for the sector state with the protection status of
DPB/SPB/USPB bits.
9-31-6. Gang Block Lock/Unlock (GBLK/GBULK)
These instructions are only effective after WPSEL was executed. The GBLK/GBULK instruction is a chip-based protected or unprotected operation. It can enable or disable all DPB.
The WREN (Write Enable) instruction is required before issuing GBLK/GBULK instruction.
The sequence of issuing GBLK/GBULK instruction is: CS# goes low → send GBLK/GBULK (7Eh/98h) instruction
→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
The CS# must go high exactly at the byte boundary, otherwise, the instruction will be rejected and not be executed.
9-31-7. Sector Protection States Summary Table
DPB bit
0
0
0
0
1
1
1
1
P/N: PM1914
Protection Status
SPB bit
0
0
1
1
0
0
1
1
Sector State
USPB bit
0
1
0
1
0
1
0
1
Unprotect
Unprotect
Unprotect
Protect
Protect
Protect
Protect
Protect
69
Rev. 1.2, July 22, 2016
MX25L12873F
9-32. Password Protection Mode
The security level of Password Protection Method is higher than the Solid protection mode. The 64 bit password is
requested before modify SPB lock bit status. When device is under password protection mode, the SPB lock bit is
cleared to “0”, after a power-up cycle or Reset Command.
A correct password is required for password Unlock command, to unlock the SPB lock bit. Await 2us is necessary to
unlocked the device after valid password is given. After that, the SPB bits are allows to be changed. The Password
Unlock command are issued slower than 2us every time, to prevent hacker from trying all the 64-bit password
combinations.
To place the device in password protection mode, a few more steps are required. First, prior to entering the
password protection mode, it is necessary to set a 64-bit password to verify it. Password verification is only
allowed during the password programming operation. Second, the password protection mode is then activated
by programming the Password Protection Mode Lock Bit to”0”. This operation is not reversible. Once the bit is
programmed, it cannot be erased, and the device remains permanently in password protection mode, and the 64-bit
password can neither be retrieved nor reprogrammed. Moreover, all commands to the address where the password
is stored are disabled.
The password is all “1”s when shipped from the factory, it is only capable of programming "0"s under password
program command. All 64-bit password combinations are valid as a password. No special address is required for
programming the password. The password is no longer readable after the Password Protection mode is selected by
programming Lock register bit 2 to "0".
Once sector under protected status, device will ignores the program/erase command, enable status polling and
returns to read mode without contents change. The DPB, SPB and SPB lock bit status of each sector can be
verified by issuing DPB, SPB and SPB Lock bit read commands.
● The unlock operation may fail if the password provided by password unlock command does not match the
previously entered password. It causes the same result when a programming operation is performed on a
protected sector. The P_FAIL bit is set to 1 and the WIP Bit remains set.
● It is not allowed to execute the Password Unlock command faster than every 100us ± 20us. The reason behind it
is to make it impossible to hack into the system by running through all the combinations of a set of 64-bit password (58
million years). To verify if the device has completed the password unlock command and is available to process
a new password command, the Read Status Register command is needed to read the WIP bit. When a valid
password is provided the password unlock command does not insert the 100us delay before returning the WIP
bit to zero.
● It is not feasible to set the SPB Lock bit if the password is missing after the Password Mode is selected.
Password Register (PASS)
Bits
Field
Function Type
Name
63 to 0 PWD
P/N: PM1914
Description
Default State
Non-volatile OTP storage of 64 bit password. The
Hidden
password is no longer readable after the password
OTP FFFFFFFFFFFFFFFFh
Password
protection mode is selected by programming Lock
register bit 2 to zero.
70
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 64. Read Password Register (RDPASS) Sequence
CS#
Mode 3
0
1
2
3
4
5
6
7
8
69 70 71 72 73
9
SCLK
Mode 0
Command
SI
27h
Data Out 1
High-Z
SO
7
Data Out 2
6
58 57 56 7
6
MSB
MSB
Figure 65. Write Password Register (WRPASS) Sequence
CS#
Mode 3
0
1
2
3
4
5
6
7
8
69 70 71
9
SCLK
Mode 0
Command
SI
Password
7
28h
6
58 57 56
9
69 70 71
MSB
SO
High-Z
Figure 66. Password Unlock (PASSULK) Sequence
CS#
Mode 3
0
1
2
3
4
5
6
7
8
SCLK
Mode 0
SI
Command
Password
7
29h
6
58 57 56
MSB
SO
P/N: PM1914
High-Z
71
Rev. 1.2, July 22, 2016
MX25L12873F
9-33. Program/Erase Suspend/Resume
The device allow the interruption of Sector-Erase, Block-Erase or Page-Program operations and conduct other
operations.
After issue suspend command, the system can determine if the device has entered the Erase-Suspended mode
through Bit2 (PSB) and Bit3 (ESB) of security register. (please refer to "Table 9. Security Register Definition")
The latency time of erase operation :
Suspend to suspend ready timing: 20us.
Resume to another suspend timing: 1ms.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
9-34. Erase Suspend
Erase suspend allow the interruption of all erase operations. After the device has entered Erase-Suspended mode,
the system can read any sector(s) or Block(s) except those being erased by the suspended erase operation.
Reading the sector or Block being erase suspended is invalid.
After erase suspend, WEL bit will be clear, only read related, resume and reset command can be accepted. (including:
03h, 0Bh, 3Bh, 6Bh, BBh, EBh, 5Ah, C0h, 06h, 04h, 2Bh, 9Fh, AFh, 05h, ABh, 90h, B1h, C1h, B0h, 30h, 66h, 99h,
00h, 35h, F5h, 15h, 2Dh, 27h, A7h, E2h, E0h, 16h)
If the system issues an Erase Suspend command after the sector erase operation has already begun, the device
will not enter Erase-Suspended mode until 20us time has elapsed.
Erase Suspend Bit (ESB) indicates the status of Erase Suspend operation. Users may use ESB to identify the state
of flash memory. After the flash memory is suspended by Erase Suspend command, ESB is set to "1". ESB is
cleared to "0" after erase operation resumes.
9-35. Program Suspend
Program suspend allows the interruption of all program operations. After the device has entered ProgramSuspended mode, the system can read any sector(s) or Block(s) except those being programmed by the suspended
program operation. Reading the sector or Block being program suspended is invalid.
After program suspend, WEL bit will be cleared, only read related, resume and reset command can be accepted.
(including: 03h, 0Bh, 3Bh, 6Bh, BBh, EBh, 5Ah, C0h, 06h, 04h, 2Bh, 9Fh, AFh, 05h, ABh, 90h, B1h, C1h, B0h, 30h,
66h, 99h, 00h, 35h, F5h, 15h, 2Dh, 27h, A7h, E2h, E0h, 16h)
Program Suspend Bit (PSB) indicates the status of Program Suspend operation. Users may use PSB to identify the
state of flash memory. After the flash memory is suspended by Program Suspend command, PSB is set to "1". PSB
is cleared to "0" after program operation resumes.
P/N: PM1914
72
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 67. Suspend to Read Latency
CS#
Suspend Command
[B0]
Program latency : 20us
Erase latency:20us
Read Command
Figure 68. Resume to Read Latency
CS#
Resume Command
[30]
TSE/TBE/TPP
Read Command
Figure 69. Resume to Suspend Latency
CS#
P/N: PM1914
Resume Command
[30]
1ms
73
Suspend
Command
[B0]
Rev. 1.2, July 22, 2016
MX25L12873F
9-36. Write-Resume
The Write operation is being resumed when Write-Resume instruction issued. ESB or PSB (suspend status bit) in
Status register will be changed back to “0”.
The operation of Write-Resume is as follows: CS# drives low → send write resume command cycle (30H) → drive
CS# high. By polling Busy Bit in status register, the internal write operation status could be checked to be completed
or not. The user may also wait the time lag of TSE, TBE, TPP for Sector-erase, Block-erase or Page-programming.
WREN (command "06") is not required to issue before resume. Resume to another suspend operation requires
latency time of 1ms.
Please note that, if "performance enhance mode" is executed during suspend operation, the device can not
be resumed. To restart the write command, disable the "performance enhance mode" is required. After the
"performance enhance mode" is disabled, the write-resume command is effective.
9-37. No Operation (NOP)
The “No Operation” command is only able to terminate the Reset Enable (RSTEN) command and will not affect any
other command.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
during SPI mode.
9-38. Software Reset (Reset-Enable (RSTEN) and Reset (RST))
The Software Reset operation combines two instructions: Reset-Enable (RSTEN) command following a Reset (RST)
command. It returns the device to a standby mode. All the volatile bits and settings will be cleared then, which
makes the device return to the default status as power on.
To execute Reset command (RST), the Reset-Enable (RSTEN) command must be executed first to perform the
Reset operation. If there is any other command to interrupt after the Reset-Enable command, the Reset-Enable will
be invalid.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
If the Reset command is executed during program or erase operation, the operation will be disabled, the data under
processing could be damaged or lost.
The reset time is different depending on the last operation. For details, please refer to "Table 14. Reset Timing(Other Operation)" for tREADY2.
P/N: PM1914
74
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 70. Software Reset Recovery
Stand-by Mode
66
CS#
99
tREADY2
Mode
Note: Refer to "Table 14. Reset Timing-(Other Operation)" for tREADY2.
Figure 71. Reset Sequence (SPI mode)
tSHSL
CS#
SCLK
Mode 3
Mode 3
Mode 0
Mode 0
Command
Command
99h
66h
SIO0
Figure 72. Reset Sequence (QPI mode)
tSHSL
CS#
MODE 3
MODE 3
MODE 3
SCLK
MODE 0
SIO[3:0]
P/N: PM1914
Command
MODE 0
66h
Command
MODE 0
99h
75
Rev. 1.2, July 22, 2016
MX25L12873F
9-39. Read SFDP Mode (RDSFDP)
The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the functional
and feature capabilities of serial flash devices in a standard set of internal parameter tables. These parameter tables
can be interrogated by host system software to enable adjustments needed to accommodate divergent features
from multiple vendors. The concept is similar to the one found in the Introduction of JEDEC Standard, JESD68 on
CFI.
The sequence of issuing RDSFDP instruction is CS# goes low→send RDSFDP instruction (5Ah)→send 3 address
bytes on SI pin→send 1 dummy byte on SI pin→read SFDP code on SO→to end RDSFDP operation can use CS#
to high at any time during data out.
SFDP is a JEDEC Standard, JESD216.
Figure 73. Read Serial Flash Discoverable Parameter (RDSFDP) Sequence
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
SO
24 BIT ADDRESS
23 22 21
5Ah
3
2
1
0
High-Z
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Cycle
SI
7
6
5
4
3
2
1
0
DATA OUT 2
DATA OUT 1
SO
7
6
5
3
2
1
0
7
MSB
MSB
P/N: PM1914
4
76
6
5
4
3
2
1
0
7
MSB
Rev. 1.2, July 22, 2016
MX25L12873F
Table 10. Signature and Parameter Identification Data Values
Description
SFDP Signature
Comment
Fixed: 50444653h
Add (h) DW Add
(Byte)
(Bit)
00h
07:00
Data
(h/b) note1
53h
Data
(h)
53h
01h
15:08
46h
46h
02h
23:16
44h
44h
03h
31:24
50h
50h
SFDP Minor Revision Number
Start from 00h
04h
07:00
00h
00h
SFDP Major Revision Number
Start from 01h
This number is 0-based. Therefore,
0 indicates 1 parameter header.
05h
15:08
01h
01h
06h
23:16
01h
01h
07h
31:24
FFh
FFh
00h: it indicates a JEDEC specified
header.
08h
07:00
00h
00h
Start from 00h
09h
15:08
00h
00h
Start from 01h
0Ah
23:16
01h
01h
How many DWORDs in the
Parameter table
0Bh
31:24
09h
09h
0Ch
07:00
30h
30h
0Dh
15:08
00h
00h
0Eh
23:16
00h
00h
0Fh
31:24
FFh
FFh
it indicates Macronix manufacturer
ID
10h
07:00
C2h
C2h
Start from 00h
11h
15:08
00h
00h
Start from 01h
12h
23:16
01h
01h
How many DWORDs in the
Parameter table
13h
31:24
04h
04h
14h
07:00
60h
60h
15h
15:08
00h
00h
16h
23:16
00h
00h
17h
31:24
FFh
FFh
Number of Parameter Headers
Unused
ID number (JEDEC)
Parameter Table Minor Revision
Number
Parameter Table Major Revision
Number
Parameter Table Length
(in double word)
Parameter Table Pointer (PTP)
First address of JEDEC Flash
Parameter table
Unused
ID number
(Macronix manufacturer ID)
Parameter Table Minor Revision
Number
Parameter Table Major Revision
Number
Parameter Table Length
(in double word)
Parameter Table Pointer (PTP)
First address of Macronix Flash
Parameter table
Unused
P/N: PM1914
77
Rev. 1.2, July 22, 2016
MX25L12873F
Table 11. Parameter Table (0): JEDEC Flash Parameter Tables
Description
Comment
Block/Sector Erase sizes
00: Reserved, 01: 4KB erase,
10: Reserved,
11: not support 4KB erase
Write Granularity
0: 1Byte, 1: 64Byte or larger
Write Enable Instruction Required 0: not required
1: required 00h to be written to the
for Writing to Volatile Status
status register
Registers
Add (h) DW Add
(Byte)
(Bit)
31h
(1-1-2) Fast Read (Note2)
0=not support 1=support
Address Bytes Number used in
addressing flash array
Double Transfer Rate (DTR)
Clocking
00: 3Byte only, 01: 3 or 4Byte,
10: 4Byte only, 11: Reserved
01:00
01b
02
1b
03
0b
30h
0: use 50h opcode,
1: use 06h opcode
Write Enable Opcode Select for
Note: If target flash status register is
Writing to Volatile Status Registers
nonvolatile, then bits 3 and 4 must
be set to 00b.
Contains 111b and can never be
Unused
changed
4KB Erase Opcode
Data
(h/b) note1
0=not support 1=support
32h
Data
(h)
E5h
04
0b
07:05
111b
15:08
20h
16
1b
18:17
00b
19
0b
20
1b
20h
F1h
(1-2-2) Fast Read
0=not support 1=support
(1-4-4) Fast Read
0=not support 1=support
21
1b
(1-1-4) Fast Read
0=not support 1=support
22
1b
23
1b
33h
31:24
FFh
37h:34h
31:00
07FF FFFFh
Unused
Unused
Flash Memory Density
(1-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states (Note3)
Clocks) not support
(1-4-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits (Note4)
38h
(1-4-4) Fast Read Opcode
39h
(1-1-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(1-1-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits
3Ah
(1-1-4) Fast Read Opcode
3Bh
P/N: PM1914
78
04:00
0 0100b
07:05
010b
15:08
EBh
20:16
0 1000b
23:21
000b
31:24
6Bh
FFh
44h
EBh
08h
6Bh
Rev. 1.2, July 22, 2016
MX25L12873F
Description
Comment
(1-1-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not supported
(1-1-2) Fast Read Number of
000b: Mode Bits not supported
Mode Bits
Add (h) DW Add
(Byte)
(Bit)
3Ch
(1-1-2) Fast Read Opcode
3Dh
(1-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not supported
(1-2-2) Fast Read Number of
000b: Mode Bits not supported
Mode Bits
3Eh
(1-2-2) Fast Read Opcode
3Fh
(2-2-2) Fast Read
0=not support 1=support
Unused
(4-4-4) Fast Read
40h
0=not support 1=support
Unused
Data
(h/b) note1
04:00
0 1000b
07:05
000b
15:08
3Bh
20:16
0 0100b
23:21
000b
31:24
BBh
00
0b
03:01
111b
04
1b
07:05
111b
Data
(h)
08h
3Bh
04h
BBh
FEh
Unused
43h:41h
31:08
FFh
FFh
Unused
45h:44h
15:00
FFh
FFh
20:16
0 0000b
23:21
000b
(2-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not supported
(2-2-2) Fast Read Number of
000b: Mode Bits not supported
Mode Bits
46h
(2-2-2) Fast Read Opcode
47h
31:24
FFh
FFh
49h:48h
15:00
FFh
FFh
20:16
0 0100b
23:21
010b
Unused
00h
(4-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not supported
(4-4-4) Fast Read Number of
000b: Mode Bits not supported
Mode Bits
4Ah
(4-4-4) Fast Read Opcode
4Bh
31:24
EBh
EBh
4Ch
07:00
0Ch
0Ch
4Dh
15:08
20h
20h
4Eh
23:16
0Fh
0Fh
4Fh
31:24
52h
52h
50h
07:00
10h
10h
51h
15:08
D8h
D8h
52h
23:16
00h
00h
53h
31:24
FFh
FFh
Sector Type 1 Size
(Note5)
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 1 erase Opcode
Sector Type 2 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 2 erase Opcode
Sector Type 3 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 3 erase Opcode
Sector Type 4 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 4 erase Opcode
P/N: PM1914
79
44h
Rev. 1.2, July 22, 2016
MX25L12873F
Table 12. Parameter Table (1): Macronix Flash Parameter Tables
Description
Comment
Add (h) DW Add
(Byte)
(Bit)
Data
(h/b) note1
Data
(h)
Vcc Supply Maximum Voltage
2000h=2.000V
2700h=2.700V
3600h=3.600V
61h:60h
07:00
15:08
00h
36h
00h
36h
Vcc Supply Minimum Voltage
1650h=1.650V
2250h=2.250V
2350h=2.350V
2700h=2.700V
63h:62h
23:16
31:24
00h
27h
00h
27h
H/W Reset# pin
0=not support 1=support
00
0b
H/W Hold# pin
0=not support 1=support
01
0b
Deep Power Down Mode
0=not support 1=support
02
1b
S/W Reset
0=not support 1=support
03
1b
S/W Reset Opcode
Reset Enable (66h) should be issued 65h:64h
before Reset Opcode
Program Suspend/Resume
0=not support 1=support
12
1b
Erase Suspend/Resume
0=not support 1=support
13
1b
14
1b
15
1b
66h
23:16
C0h
C0h
67h
31:24
64h
64h
Unused
Wrap-Around Read mode
0=not support 1=support
Wrap-Around Read mode Opcode
11:04
1001 1001b F99Ch
(99h)
Wrap-Around Read data length
08h:support 8B wrap-around read
16h:8B&16B
32h:8B&16B&32B
64h:8B&16B&32B&64B
Individual block lock
0=not support 1=support
00
1b
Individual block lock bit
(Volatile/Nonvolatile)
0=Volatile 1=Nonvolatile
01
0b
09:02
1110 0001b
(E1h)
10
0b
11
1b
Individual block lock Opcode
Individual block lock Volatile
protect bit default protect status
0=protect 1=unprotect
Secured OTP
0=not support 1=support
Read Lock
0=not support 1=support
12
0b
Permanent Lock
0=not support 1=support
13
0b
Unused
15:14
11b
Unused
31:16
FFh
FFh
[31:00]
FFh
FFh
Unused
P/N: PM1914
6Bh:68h
6Fh:6Ch
80
CB85h
Rev. 1.2, July 22, 2016
MX25L12873F
Note 1: h/b is hexadecimal or binary.
Note 2: (x-y-z) means I/O mode nomenclature used to indicate the number of active pins used for the opcode (x),
address (y), and data (z). At the present time, the only valid Read SFDP instruction modes are: (1-1-1), (2-2-2),
and (4-4-4)
Note 3: Wait States is required dummy clock cycles after the address bits or optional mode bits.
Note 4: Mode Bits is optional control bits that follow the address bits. These bits are driven by the system controller
if they are specified. (eg,read performance enhance toggling bits)
Note 5: 4KB=2^0Ch,32KB=2^0Fh,64KB=2^10h
Note 6: All unused and undefined area data is blank FFh.
P/N: PM1914
81
Rev. 1.2, July 22, 2016
MX25L12873F
10. RESET
Driving the RESET# pin low for a period of tRLRH or longer will reset the device. After reset cycle, the device is at
the following states:
- Standby mode
- All the volatile bits such as WEL/WIP/SRAM lock bit will return to the default status as power on.
- 3-byte address mode
If the device is under programming or erasing, driving the RESET# pin low will also terminate the operation and data
could be lost. During the resetting cycle, the SO data becomes high impedance and the current will be reduced to
minimum.
Figure 74. RESET Timing
CS#
tRHSL
SCLK
tRH tRS
RESET#
tRLRH
tREADY1 / tREADY2
Table 13. Reset Timing-(Power On)
Symbol Parameter
tRHSL Reset# high before CS# low
tRS
Reset# setup time
tRH
Reset# hold time
tRLRH Reset# low pulse width
tREADY1 Reset Recovery time
Min.
10
15
15
10
35
Typ.
Max.
Unit
us
ns
ns
us
us
Min.
10
15
15
10
40
35
310
12
25
100
40
Typ.
Max.
Unit
us
ns
ns
us
us
us
us
ms
ms
ms
ms
Table 14. Reset Timing-(Other Operation)
Symbol
tRHSL
tRS
tRH
tRLRH
Parameter
Reset# high before CS# low
Reset# setup time
Reset# hold time
Reset# low pulse width
Reset Recovery time (During instruction decoding)
Reset Recovery time (for read operation)
Reset Recovery time (for program operation)
tREADY2 Reset Recovery time(for SE4KB operation)
Reset Recovery time (for BE64K/BE32KB operation)
Reset Recovery time (for Chip Erase operation)
Reset Recovery time (for WRSR operation)
P/N: PM1914
82
Rev. 1.2, July 22, 2016
MX25L12873F
11. POWER-ON STATE
The device is at below states when power-up:
- Standby mode (please note it is not deep power-down mode)
- Write Enable Latch (WEL) bit is reset
The device must not be selected during power-up and power-down stage unless the VCC achieves below correct
level:
- VCC minimum at power-up stage and then after a delay of tVSL
- GND at power-down
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.
An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change
during power up state. When VCC is lower than VWI (POR threshold voltage value), the internal logic is reset and
the flash device has no response to any command.
For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is not
guaranteed. The read, write, erase, and program command should be sent after the below time delay:
- tVSL after VCC reached VCC minimum level
Please refer to the "Figure 81. Power-up Timing".
Note:
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommended. (generally around 0.1uF)
- At power-down stage, the VCC drops below VWI level, all operations are disable and device has no response
to any command. The data corruption might occur during the stage while a write, program, erase cycle is in
progress.
P/N: PM1914
83
Rev. 1.2, July 22, 2016
MX25L12873F
12. ELECTRICAL SPECIFICATIONS
Table 15. ABSOLUTE MAXIMUM RATINGS
RATING
VALUE
Ambient Operating Temperature
Industrial grade
-40°C to 85°C
Storage Temperature
-65°C to 150°C
Applied Input Voltage
-0.5V to VCC+0.5V
Applied Output Voltage
-0.5V to VCC+0.5V
VCC to Ground Potential
-0.5V to 4.0V
NOTICE:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage
to the device. This is stress rating only and functional operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended period may affect reliability.
2. Specifications contained within the following tables are subject to change.
3. During voltage transitions, all pins may overshoot Vss to -2.0V and Vcc to +2.0V for periods up to 20ns, see
Figure 75 and Figure 76.
Figure 76. Maximum Positive Overshoot Waveform
Figure 75. Maximum Negative Overshoot Waveform
20ns
20ns
20ns
Vss
Vcc + 2.0V
Vss-2.0V
Vcc
20ns
20ns
20ns
Table 16. CAPACITANCE TA = 25°C, f = 1.0 MHz
Symbol Parameter
CIN
COUT
P/N: PM1914
Min.
Typ.
Max.
Unit
Input Capacitance
6
pF
VIN = 0V
Output Capacitance
8
pF
VOUT = 0V
84
Conditions
Rev. 1.2, July 22, 2016
MX25L12873F
Figure 77. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL
Input timing reference level
0.8VCC
Output timing reference level
0.7VCC
AC
Measurement
Level
0.8V
0.2VCC
0.5VCC
Note: Input pulse rise and fall time are