MX25U3235F
MX25U3235F
1.8V, 32M-BIT [x 1/x 2/x 4]
CMOS MXSMIO® (SERIAL MULTI I/O)
FLASH MEMORY
Key Features
• Fast Program and Erase time
• Multi I/O Support - Single I/O, Dual I/O and Quad I/O
• Quad Peripheral Interface (QPI) Read / Program Mode
• Program Suspend/Resume & Erase Suspend/Resume
P/N: PM1977
1
Rev. 1.6, July 12, 2017
MX25U3235F
Contents
1. FEATURES............................................................................................................................................................... 5
2. GENERAL DESCRIPTION...................................................................................................................................... 6
Table 1. Additional Feature...........................................................................................................................7
3. PIN CONFIGURATIONS .......................................................................................................................................... 8
4. PIN DESCRIPTION................................................................................................................................................... 8
5. BLOCK DIAGRAM.................................................................................................................................................... 9
6. DATA PROTECTION............................................................................................................................................... 10
Table 2. Protected Area Sizes.................................................................................................................... 11
Table 3. 4K-bit Secured OTP Definition.....................................................................................................12
7. MEMORY ORGANIZATION.................................................................................................................................... 13
Table 4. Memory Organization...................................................................................................................13
8. DEVICE OPERATION............................................................................................................................................. 14
8-1. Quad Peripheral Interface (QPI) Read Mode........................................................................................... 16
9. COMMAND DESCRIPTION.................................................................................................................................... 17
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.
9-9.
9-10.
9-11.
9-12.
9-13.
9-14.
9-15.
9-16.
9-17.
9-18.
9-19.
9-20.
9-21.
9-22.
9-23.
9-24.
P/N: PM1977
Table 5. Command Set...............................................................................................................................17
Write Enable (WREN)............................................................................................................................... 21
Write Disable (WRDI)................................................................................................................................ 22
Read Identification (RDID)........................................................................................................................ 23
Release from Deep Power-down (RDP), Read Electronic Signature (RES)............................................ 24
Read Electronic Manufacturer ID & Device ID (REMS)............................................................................ 26
QPI ID Read (QPIID)................................................................................................................................ 27
Table 6. ID Definitions ...............................................................................................................................27
Read Status Register (RDSR).................................................................................................................. 28
Table 7. Status Register.............................................................................................................................31
Write Status Register (WRSR).................................................................................................................. 32
Table 8. Protection Modes..........................................................................................................................33
Read Data Bytes (READ)......................................................................................................................... 36
Read Data Bytes at Higher Speed (FAST_READ)................................................................................... 37
Dual Read Mode (DREAD)....................................................................................................................... 39
2 x I/O Read Mode (2READ).................................................................................................................... 40
Quad Read Mode (QREAD)..................................................................................................................... 41
4 x I/O Read Mode (4READ).................................................................................................................... 42
Burst Read................................................................................................................................................ 45
Performance Enhance Mode.................................................................................................................... 46
Sector Erase (SE)..................................................................................................................................... 49
Block Erase (BE32K)................................................................................................................................ 50
Block Erase (BE)...................................................................................................................................... 51
Chip Erase (CE)........................................................................................................................................ 52
Page Program (PP).................................................................................................................................. 53
4 x I/O Page Program (4PP)..................................................................................................................... 55
Deep Power-down (DP)............................................................................................................................ 56
Enter Secured OTP (ENSO)..................................................................................................................... 57
2
Rev. 1.6, July 12, 2017
MX25U3235F
9-25. Exit Secured OTP (EXSO)........................................................................................................................ 57
9-26. Read Security Register (RDSCUR).......................................................................................................... 57
Table 9. Security Register Definition..........................................................................................................58
9-27. Write Security Register (WRSCUR).......................................................................................................... 58
9-28. Write Protection Selection (WPSEL)......................................................................................................... 59
9-29. Single Block Lock/Unlock Protection (SBLK/SBULK)............................................................................... 62
9-30. Read Block Lock Status (RDBLOCK)....................................................................................................... 64
9-31. Gang Block Lock/Unlock (GBLK/GBULK)................................................................................................ 64
9-32. Program Suspend and Erase Suspend.................................................................................................... 65
Table 10. Readable Area of Memory While a Program or Erase Operation is Suspended........................65
Table 11. Acceptable Commands During Suspend after tPSL/tESL..........................................................66
Table 12. Acceptable Commands During Suspend (tPSL/tESL not required)............................................66
9-33. Program Resume and Erase Resume...................................................................................................... 68
9-34. No Operation (NOP)................................................................................................................................. 69
9-35. Software Reset (Reset-Enable (RSTEN) and Reset (RST)).................................................................... 69
9-36. Read SFDP Mode (RDSFDP)................................................................................................................... 71
Table 13. Signature and Parameter Identification Data Values .................................................................72
Table 14. Parameter Table (0): JEDEC Flash Parameter Tables...............................................................73
Table 15. Parameter Table (1): Macronix Flash Parameter Tables............................................................75
10. RESET.................................................................................................................................................................. 77
Table 16. Reset Timing...............................................................................................................................77
11. POWER-ON STATE.............................................................................................................................................. 78
12. ELECTRICAL SPECIFICATIONS......................................................................................................................... 79
Table 17. Absolute Maximum Ratings........................................................................................................79
Table 18. Capacitance................................................................................................................................79
Table 19. DC Characteristics......................................................................................................................81
Table 20. AC Characteristics .....................................................................................................................82
13. OPERATING CONDITIONS.................................................................................................................................. 84
Table 21. Power-Up Timing and VWI Threshold........................................................................................86
13-1. Initial Delivery State.................................................................................................................................. 86
14. ERASE AND PROGRAMMING PERFORMANCE............................................................................................... 87
15. LATCH-UP CHARACTERISTICS......................................................................................................................... 87
16. ORDERING INFORMATION................................................................................................................................. 88
17. PART NAME DESCRIPTION................................................................................................................................ 89
18. PACKAGE INFORMATION................................................................................................................................... 90
18-1. 8-pin SOP (200mil)................................................................................................................................... 90
18-2. 8-land WSON (6x5mm)............................................................................................................................ 91
18-3. 8-land USON (4x3mm)............................................................................................................................. 92
18-4. 8-land XSON(4x4mm).............................................................................................................................. 93
18-5. 12-ball WLCSP......................................................................................................................................... 94
19. REVISION HISTORY ............................................................................................................................................ 95
P/N: PM1977
3
Rev. 1.6, July 12, 2017
MX25U3235F
Figures
P/N: PM1977
Figure 1. Serial Modes Supported................................................................................................................................................14
Figure 2. Serial Input Timing.........................................................................................................................................................15
Figure 3. Output Timing................................................................................................................................................................15
Figure 4. Enable QPI Sequence (Command 35h)........................................................................................................................16
Figure 5. Reset QPI Mode (Command F5h).................................................................................................................................16
Figure 6. Write Enable (WREN) Sequence (SPI Mode)...............................................................................................................21
Figure 7. Write Enable (WREN) Sequence (QPI Mode)...............................................................................................................21
Figure 8. Write Disable (WRDI) Sequence (SPI Mode)................................................................................................................22
Figure 9. Write Disable (WRDI) Sequence (QPI Mode)...............................................................................................................22
Figure 10. Read Identification (RDID) Sequence (SPI mode only)...............................................................................................23
Figure 11. Read Electronic Signature (RES) Sequence (SPI Mode)............................................................................................24
Figure 12. Read Electronic Signature (RES) Sequence (QPI Mode)...........................................................................................25
Figure 13. Release from Deep Power-down (RDP) Sequence (SPI Mode).................................................................................25
Figure 14. Release from Deep Power-down (RDP) Sequence (QPI Mode).................................................................................25
Figure 15. Read Electronic Manufacturer & Device ID (REMS) Sequence (SPI Mode only)......................................................26
Figure 16. Read Status Register (RDSR) Sequence (SPI Mode)................................................................................................28
Figure 17. Read Status Register (RDSR) Sequence (QPI Mode)................................................................................................28
Figure 18. Program/Erase flow with read array data....................................................................................................................29
Figure 19. Program/Erase flow without read array data (read P_FAIL/E_FAIL flag)....................................................................30
Figure 20. Write Status Register (WRSR) Sequence (SPI Mode)...............................................................................................32
Figure 21. Write Status Register (WRSR) Sequence (QPI Mode)..............................................................................................32
Figure 22. WRSR flow..................................................................................................................................................................34
Figure 23. WP# Setup Timing and Hold Timing during WRSR when SRWD=1...........................................................................35
Figure 24. Read Data Bytes (READ) Sequence (SPI Mode only)................................................................................................36
Figure 25. Read at Higher Speed (FAST_READ) Sequence (SPI Mode)....................................................................................38
Figure 26. Read at Higher Speed (FAST_READ) Sequence (QPI Mode)....................................................................................38
Figure 27. Dual Read Mode Sequence (Command 3Bh).............................................................................................................39
Figure 28. 2 x I/O Read Mode Sequence (SPI Mode only)..........................................................................................................40
Figure 29. Quad Read Mode Sequence (Command 6Bh)............................................................................................................41
Figure 30. 4 x I/O Read Mode Sequence (SPI Mode)..................................................................................................................43
Figure 31. 4 x I/O Read Mode Sequence (QPI Mode)..................................................................................................................43
Figure 32. W4READ (Quad Read with 4 dummy cycles) Sequence ...........................................................................................44
Figure 33. Burst Read - SPI Mode................................................................................................................................................45
Figure 34. Burst Read - QPI Mode...............................................................................................................................................45
Figure 35. 4 x I/O Read Performance Enhance Mode Sequence (SPI Mode).............................................................................47
Figure 36. 4 x I/O Read Performance Enhance Mode Sequence (QPI Mode).............................................................................48
Figure 37. Sector Erase (SE) Sequence (SPI Mode)..................................................................................................................49
Figure 38. Sector Erase (SE) Sequence (QPI Mode)..................................................................................................................49
Figure 39. Block Erase 32KB (BE32K) Sequence (SPI Mode)....................................................................................................50
Figure 40. Block Erase 32KB (BE32K) Sequence (QPI Mode)...................................................................................................50
Figure 41. Block Erase (BE) Sequence (SPI Mode).....................................................................................................................51
Figure 42. Block Erase (BE) Sequence (QPI Mode)....................................................................................................................51
Figure 43. Chip Erase (CE) Sequence (SPI Mode).....................................................................................................................52
Figure 44. Chip Erase (CE) Sequence (QPI Mode).....................................................................................................................52
Figure 45. Page Program (PP) Sequence (SPI Mode).................................................................................................................54
Figure 46. Page Program (PP) Sequence (QPI Mode)................................................................................................................54
Figure 47. 4 x I/O Page Program (4PP) Sequence (SPI Mode only)............................................................................................55
Figure 48. Deep Power-down (DP) Sequence (SPI Mode)..........................................................................................................56
Figure 49. Deep Power-down (DP) Sequence (QPI Mode)..........................................................................................................56
Figure 50. BP and SRWD if WPSEL=0........................................................................................................................................59
Figure 51. WPSEL Flow................................................................................................................................................................61
Figure 52. Block Lock Flow...........................................................................................................................................................62
Figure 53. Block Unlock Flow.......................................................................................................................................................63
Figure 54. Suspend to Read Latency...........................................................................................................................................65
Figure 55. Resume to Suspend Latency......................................................................................................................................67
Figure 56. Suspend to Program Latency......................................................................................................................................67
Figure 57. Resume to Read Latency............................................................................................................................................68
Figure 58. Software Reset Recovery............................................................................................................................................70
Figure 59. Reset Sequence (SPI mode).......................................................................................................................................70
Figure 60. Reset Sequence (QPI mode)......................................................................................................................................70
Figure 61. Read Serial Flash Discoverable Parameter (RDSFDP) Sequence.............................................................................71
Figure 62. RESET Timing.............................................................................................................................................................77
Figure 63. Maximum Negative Overshoot Waveform...................................................................................................................79
Figure 64. Maximum Positive Overshoot Waveform.....................................................................................................................79
Figure 65. Input Test Waveforms and Measurement Level..........................................................................................................80
Figure 66. Output Loading............................................................................................................................................................80
Figure 67. SCLK TIMING DEFINITION........................................................................................................................................80
Figure 68. AC Timing at Device Power-Up...................................................................................................................................84
Figure 69. Power-Down Sequence...............................................................................................................................................85
Figure 70. Power-up Timing..........................................................................................................................................................86
4
Rev. 1.6, July 12, 2017
MX25U3235F
1.8V 32M-BIT [x 1/x 2/x 4] CMOS MXSMIO® (SERIAL MULTI I/O)
FLASH MEMORY
1. FEATURES
SOFTWARE FEATURES
• Input Data Format
- 1-byte Command code
• Advanced Security Features
- Block lock protection
The BP0-BP3 status bit defines the size of the area
to be software protection against program and erase
instructions
- Additional 4k-bit secured OTP for unique identifier
• Auto Erase and Auto Program Algorithm
- Automatically erases and verifies data at selected
sector or block
- Automatically programs and verifies data at selected
page by an internal algorithm that automatically times
the program pulse widths (Any page to be programed
should have page in the erased state first)
• Status Register Feature
• Command Reset
• Program/Erase Suspend
• Electronic Identification
- JEDEC 1-byte manufacturer ID and 2-byte device
ID
- RES command for 1-byte Device ID
- REMS command for 1-byte manufacturer ID and
1-byte device ID
• Support Serial Flash Discoverable Parameters (SFDP)
mode
GENERAL
• Supports Serial Peripheral Interface -- Mode 0 and
Mode 3
• 33,554,432 x 1 bit structure
or 16,777,216 x 2 bits (two I/O mode) structure
or 8,388,608 x 4 bits (four I/O mode) structure
• Equal Sectors with 4K byte each,
or Equal Blocks with 32K byte each
or Equal Blocks with 64K byte each
- Any Block can be erased individually
• Single Power Supply Operation
- 1.65 to 2.0 volt for read, erase, and program operations
• Latch-up protected to 100mA from -1V to Vcc +1V
• Low Vcc write inhibit is from 1.0V to 1.4V
PERFORMANCE
• High Performance
- Fast read for SPI mode
- 1 I/O: 104MHz with 8 dummy cycles
- 2 I/O: 84MHz with 4 dummy cycles,
equivalent to 168MHz
- 4 I/O: 104MHz with 2+4 dummy cycles,
equivalent to 416MHz
- Fast read for QPI mode
- 4 I/O: 84MHz with 2+2 dummy cycles,
equivalent to 336MHz
- 4 I/O: 104MHz with 2+4 dummy cycles,
equivalent to 416MHz
- Fast program time:
0.5ms(typ.) and 3ms(max.)/page (256-byte per page)
- Byte program time: 12us (typical)
- 8/16/32/64 byte Wrap-Around Burst Read Mode
- Fast erase time:
- 35ms (typ.)/sector (4K-byte per sector);
- 200ms(typ.)/block (32K-byte per block),
- 350ms(typ.)/block (64K-byte per block)
• Low Power Consumption
- Low active read current:
- 20mA(typ.) at 104MHz,
15mA(typ.) at 84MHz
- Low active erase current:
- 18mA(typ.) at Sector Erase, Block Erase
(32KB/64KB);
20mA at Chip Erase
- Low active programming current: 20mA (typ.)
- Standby current: 10uA (typ.)
• Deep Power Down: 1.5uA(typ.)
• Typical 100,000 erase/program cycles
• 20 years data retention
P/N: PM1977
HARDWARE FEATURES
• SCLK Input
- Serial clock input
• SI/SIO0
- Serial Data Input or Serial Data Input/Output for 2 x
I/O read mode and 4 x I/O read mode
• SO/SIO1
- Serial Data Output or Serial Data Input/Output for 2
x I/O read mode and 4 x I/O read mode
• WP#/SIO2
- Hardware write protection or Serial Data Input/Output for 4 x I/O read mode
• RESET#/SIO3
- Hardware Reset pin or Serial input & Output for 4 x
I/O read mode
• PACKAGE
-8-pin SOP (200mil)
-8-land WSON (6x5mm)
-8-land USON (4x3mm)
-8-land XSON(4x4mm)
-12-ball WLCSP
- All devices are RoHS Compliant and Halogenfree
5
Rev. 1.6, July 12, 2017
MX25U3235F
2. GENERAL DESCRIPTION
MX25U3235F is 32Mb bits Serial NOR Flash memory, which is configured as 4,194,304 x 8 internally. When it is in
two or four I/O mode, the structure becomes 16,777,216 bits x 2 or 8,388,608 bits x 4.
MX25U3235F features a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus
while it is in single I/O mode. The three bus signals are a clock input (SCLK), a serial data input (SI), and a serial
data output (SO). Serial access to the device is enabled by CS# input.
When it is in two I/O read mode, the SI pin and SO pin become SIO0 pin and SIO1 pin for address/dummy bits input and data output. When it is in four I/O read mode, the SI pin, SO pin, WP# pin and RESET# pin become SIO0
pin, SIO1 pin, SIO2 pin and SIO3 pin for address/dummy bits input and data output.
The MX25U3235F MXSMIO® (Serial Multi I/O) provides sequential read operation on the whole chip.
After program/erase command is issued, auto program/erase algorithms which program/erase and verify the specified page or sector/block locations will be executed. Program command is executed on byte basis, or page (256
bytes) basis, or word basis. Erase command is executed on 4K-byte sector, 32K-byte block, or 64K-byte block, or
whole chip basis.
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read
command can be issued to detect completion status of a program or erase operation via WIP bit.
Advanced security features enhance the protection and security functions, please refer to the security features section for more details.
The MX25U3235F utilizes Macronix's proprietary memory cell, which reliably stores memory contents even after
100,000 program and erase cycles.
P/N: PM1977
6
Rev. 1.6, July 12, 2017
MX25U3235F
Table 1. Additional Feature
Protection and Security
MX25U3235F
Flexible Block Protection (BP0-BP3)
V
4K-bit security OTP
V
Read Performance
MX25U3235F
I/O mode
I/O
Dummy Cycle
Frequency
P/N: PM1977
SPI
QPI
1 I/O
1I /2O
2 I/O
1I/4O
4 I/O
4 I/O
4 I/O
4 I/O
8
8
4
8
4
6
4
6
104MHz 104MHz 84 MHz 104MHz 84 MHz 104MHz 84 MHz 104MHz
7
Rev. 1.6, July 12, 2017
MX25U3235F
3. PIN CONFIGURATIONS
4. PIN DESCRIPTION
8-PIN SOP (200mil)
SYMBOL
CS#
1
2
3
4
CS#
SO/SIO1
WP#/SIO2
GND
DESCRIPTION
Chip Select
Serial Data Input (for 1 x I/O)/ Serial
SI/SIO0
Data Input & Output (for 2xI/O or 4xI/
O read mode)
Serial Data Output (for 1 x I/O)/ Serial
SO/SIO1
Data Input & Output (for 2xI/O or 4xI/
O read mode)
SCLK
Clock Input
Write Protection Active Low or Serial
WP#/SIO2 Data Input & Output (for 4xI/O read
mode)
Hardware Reset Pin Active low or
RESET#/SIO3 Serial Data Input & Output (for 4xI/O
read mode)
VCC
+ 1.8V Power Supply
GND
Ground
Note: The pin of RESET#/SIO3 or WP#/SIO2 will
remain internal pull up function while this pin is
not physically connected in system configuration.
However, the internal pull up function will be
disabled if the system has physical connection to
RESET#/SIO3 or WP#/SIO2 pin.
VCC
RESET#/SIO3
SCLK
SI/SIO0
8
7
6
5
8-LAND WSON (6x5mm)
1
2
3
4
CS#
SO/SIO1
WP#/SIO2
GND
8
7
6
5
VCC
RESET#/SIO3
SCLK
SI/SIO0
8
7
6
5
VCC
RESET#/SIO3
SCLK
SI/SIO0
8
7
6
5
VCC
RESET#/SIO3
SCLK
SI/SIO0
8-LAND USON (4x3mm)
1
2
3
4
CS#
SO/SIO1
WP#/SIO2
GND
8-LAND XSON(4x4mm)
1
2
3
4
CS#
SO/SIO1
WP#/SIO2
GND
12-BALL BGA (WLCSP) TOP View
A
B
1
2
3
4
NC
VCC
CS#
NC
RESET#/SIO3
C
D
P/N: PM1977
SCLK
NC
SO/SIO1
WP#/SIO2
SI/SIO0 GND
NC
8
Rev. 1.6, July 12, 2017
MX25U3235F
5. BLOCK DIAGRAM
X-Decoder
Address
Generator
SI/SIO0
SO/SIO1
SIO2 *
SIO3 *
WP# *
HOLD# *
RESET# *
CS#
SCLK
Memory Array
Y-Decoder
Data
Register
Sense
Amplifier
SRAM
Buffer
Mode
Logic
State
Machine
HV
Generator
Clock Generator
Output
Buffer
* Depends on part number options.
P/N: PM1977
9
Rev. 1.6, July 12, 2017
MX25U3235F
6. DATA PROTECTION
During power transition, there may be some false system level signals which result in inadvertent erasure or programming. The device is designed to protect itself from these accidental write cycles.
The state machine will be reset as standby mode automatically during power up. In addition, the control register
architecture of the device constrains that the memory contents can only be changed after specific command sequences have completed successfully.
In the following, there are several features to protect the system from the accidental write cycles during VCC powerup and power-down or from system noise.
• Power-on reset: to avoid sudden power switch by system power supply transition, the power-on reset (internal
timer) may protect the Flash.
• Valid command length checking: The command length will be checked whether it is at byte base and completed
on byte boundary.
• Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before issuing other commands to change data.
• Deep Power Down Mode: By entering deep power down mode, the flash device is under protected from writing
all commands except the Release from deep power down mode command (RDP) and Read Electronic Signature command (RES) and softreset command.
•
Advanced Security Features: there are some protection and security features which protect content from inadvertent write and hostile access.
I. Block lock protection
- The Software Protected Mode (SPM) use (BP3, BP2, BP1, BP0) bits to allow part of memory to be protected
as read only. The protected area definition is shown as "Table 2. Protected Area Sizes", the protected areas are
more flexible which may protect various area by setting value of BP0-BP3 bits.
- The Hardware Protected Mode (HPM) use WP#/SIO2 to protect the (BP3, BP2, BP1, BP0) bits and Status
Register Write Protect bit.
- In four I/O and QPI mode, the feature of HPM will be disabled.
P/N: PM1977
10
Rev. 1.6, July 12, 2017
MX25U3235F
Table 2. Protected Area Sizes
Status bit
Protect Level
BP3
BP2
BP1
BP0
0
0
0
0
0 (none)
0
0
0
1
1 (1block, protected block 63rd)
0
0
1
0
2 (2blocks, protected block 62nd-63rd)
0
0
1
1
3 (4blocks, protected block 60th-63rd)
0
1
0
0
4 (8blocks, protected block 56th-63rd)
0
1
0
1
5 (16blocks, protected block 48th-63rd)
0
1
1
0
6 (32blocks, protected block 32nd-63rd)
0
1
1
1
7 (64blocks, protected all)
1
0
0
0
8 (64blocks, protected all)
1
0
0
1
9 (32blocks, protected block 0th-31st)
1
0
1
0
10 (48blocks, protected block 0th-47th)
1
0
1
1
11 (56blocks, protected block 0th-55th)
1
1
0
0
12 (60blocks, protected block 0th-59th)
1
1
0
1
13 (62blocks, protected block 0th-61st)
1
1
1
0
14 (63blocks, protected block 0th-62nd)
1
1
1
1
15 (64blocks, protected all)
P/N: PM1977
11
Rev. 1.6, July 12, 2017
MX25U3235F
II. Additional 4K-bit secured OTP for unique identifier: to provide 4K-bit one-time program area for setting device unique serial number - Which may be set by factory or system customer.
- Security register bit 0 indicates whether the secured OTP area is locked by factory or not.
- To program the 4K-bit secured OTP by entering 4K-bit secured OTP mode (with Enter Security OTP command),
and going through normal program procedure, and then exiting 4K-bit secured OTP mode by writing Exit Security
OTP command.
- Customer may lock-down the customer lockable secured OTP by writing WRSCUR(write security register) command to set customer lock-down bit1 as "1". Please refer to "Table 9. Security Register Definition" for security
register bit definition and "Table 3. 4K-bit Secured OTP Definition" for address range definition.
- Note: Once lock-down whatever by factory or customer, it cannot be changed any more. While in 4K-bit secured OTP mode, array access is not allowed.
Table 3. 4K-bit Secured OTP Definition
Address range
Size
Standard Factory Lock
xxx000-xxx00F
128-bit
ESN (electrical serial number)
xxx010-xxx1FF
3968-bit
N/A
P/N: PM1977
12
Customer Lock
Determined by customer
Rev. 1.6, July 12, 2017
MX25U3235F
7. MEMORY ORGANIZATION
Table 4. Memory Organization
Block(64K-byte) Block(32K-byte)
Sector (4K-byte)
62
124
individual block
lock/unlock unit:64K-byte
123
61
122
3F7FFFh
individual 16 sectors
lock/unlock unit:4K-byte
…
3F8FFFh
3F7000h
1008
3F0000h
3F0FFFh
1007
3EF000h
3EFFFFh
1000
3E8000h
3E8FFFh
999
3E7000h
3E7FFFh
…
125
3F8000h
1015
…
126
1016
992
3E0000h
3E0FFFh
991
3DF000h
3DFFFFh
…
63
3FFFFFh
984
3D8000h
3D8FFFh
983
3D7000h
3D7FFFh
976
3D0000h
3D0FFFh
47
02F000h
02FFFFh
…
127
Address Range
3FF000h
…
1023
1
2
1
0
0
027FFFh
…
028FFFh
027000h
32
020000h
020FFFh
31
01F000h
01FFFFh
…
3
028000h
39
24
018000h
018FFFh
23
017000h
017FFFh
…
4
individual block
lock/unlock unit:64K-byte
40
16
010000h
010FFFh
15
00F000h
00FFFFh
…
2
8
008000h
008FFFh
7
007000h
007FFFh
000000h
000FFFh
0
P/N: PM1977
individual 16 sectors
lock/unlock unit:4K-byte
…
5
…
individual block
lock/unlock unit:64K-byte
13
Rev. 1.6, July 12, 2017
MX25U3235F
8. DEVICE OPERATION
1. Before a command is issued, status register should be checked to ensure device is ready for the intended operation.
2. When incorrect command is inputted to this device, it enters standby mode and remains in standby mode until
next CS# falling edge. In standby mode, SO pin of the device is High-Z.
3. When correct command is inputted to this device, it enters active mode and remains in active mode until next
CS# rising edge.
4. Input data is latched on the rising edge of Serial Clock (SCLK) and data shifts out on the falling edge of SCLK.
The difference of Serial mode 0 and mode 3 is shown as "Figure 1. Serial Modes Supported".
5. For the following instructions: RDID, RDSR, RDSCUR, READ, FAST_READ, DREAD, 2READ, QREAD, 4READ,
W4READ, RDSFDP, RES, REMS, QPIID, RDBLOCK, the shifted-in instruction sequence is followed by a dataout sequence. After any bit of data being shifted out, the CS# can be high. For the following instructions: WREN,
WRDI, WRSR, SE, BE32K, BE, CE, PP, 4PP, DP, ENSO, EXSO, WRSCUR, WPSEL, SBLK, SBULK, GBULK,
SUSPEND, RESUME, NOP, RSTEN, RST, EQIO, RSTQIO the CS# must go high exactly at the byte boundary;
otherwise, the instruction will be rejected and not executed.
6. While a Write Status Register, Program or Erase operation is in progress, access to the memory array is neglected and will not affect the current operation of Write Status Register, Program, Erase.
Figure 1. Serial Modes Supported
CPOL
CPHA
shift in
(Serial mode 0)
0
0
SCLK
(Serial mode 3)
1
1
SCLK
SI
shift out
MSB
SO
MSB
Note:
CPOL indicates clock polarity of Serial master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not
transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which Serial mode is
supported.
P/N: PM1977
14
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 2. Serial Input Timing
tSHSL
CS#
tCHSL
tSLCH
tCHSH
tSHCH
SCLK
tDVCH
tCHCL
tCHDX
tCLCH
LSB
MSB
SI
High-Z
SO
Figure 3. Output Timing
CS#
tCH
SCLK
tCLQV
tCLQX
tCL
tCLQV
tCLQX
LSB
SO
SI
P/N: PM1977
tSHQZ
ADDR.LSB IN
15
Rev. 1.6, July 12, 2017
MX25U3235F
8-1. Quad Peripheral Interface (QPI) Read Mode
QPI protocol enables user to take full advantage of Quad I/O Serial Flash by providing the Quad I/O interface in
command cycles, address cycles and as well as data output cycles.
Enable QPI mode
By issuing EQIO command (35h), the QPI mode is enabled.
Figure 4. Enable QPI Sequence (Command 35h)
CS#
MODE 3
SCLK
0
1
2
3
4
5
6
7
MODE 0
SIO0
35
SIO[3:1]
Reset QPI (RSTQIO)
To reset the QPI mode, the RSTQIO (F5h) command is required. After the RSTQIO command is issued, the device
returns from QPI mode (4 I/O interface in command cycles) to SPI mode (1 I/O interface in command cycles).
Note: For EQIO and RSTQIO commands, CS# high width has to follow "From Write/Erase/Program to Read Status
Register" specification of tSHSL (as defined in "Table 20. AC Characteristics") for next instruction.
Figure 5. Reset QPI Mode (Command F5h)
CS#
SCLK
SIO[3:0]
P/N: PM1977
F5
16
Rev. 1.6, July 12, 2017
MX25U3235F
9. COMMAND DESCRIPTION
Table 5. Command Set
Read/Write Array Commands
Mode
SPI
SPI/QPI
SPI
SPI
2READ
(2 x I/O read
command)Note1
BB (hex)
SPI/QPI
SPI
4READ
(4 x I/O read)
W4READ
EB (hex)
E7 (hex)
Command
(byte)
READ
(normal read)
FAST READ
(fast read data)
1st byte
03 (hex)
0B (hex)
DREAD
(1I / 2O read
command)
3B (hex)
2nd byte
ADD1(8)
ADD1(8)
ADD1(8)
ADD1(4)
ADD1(2)
ADD1(2)
3rd byte
ADD2(8)
ADD2(8)
ADD2(8)
ADD2(4)
ADD2(2)
ADD2(2)
4th byte
ADD3(8)
ADD3(8)
ADD3(8)
ADD3(4)
ADD3(2)
ADD3(2)
Action
n bytes read out
until CS# goes
high
Dummy(8)/(4)*
n bytes read out
until CS# goes
high
Dummy(8)
n bytes read out
by Dual Output
until CS# goes
high
Dummy(4)
n bytes read out
by 2 x I/O until
CS# goes high
Dummy(6)
Quad I/O read
with 6 dummy
cycles
Dummy(4)
Quad I/O read
for with 4 dummy
cycles
Mode
SPI
SPI/QPI
SPI
SPI/QPI
SPI/QPI
SPI/QPI
Command
(byte)
QREAD
(1I/4O read)
PP
(page program)
1st byte
6B (hex)
02 (hex)
4PP
(quad page
program)
38 (hex)
20 (hex)
BE 32K
(block erase
32KB)
52 (hex)
BE
(block erase
64KB)
D8 (hex)
2nd byte
ADD1(8)
ADD1
ADD1
ADD1
ADD1
ADD1
5th byte
SE
(sector erase)
3rd byte
ADD2(8)
ADD2
ADD2
ADD2
ADD2
ADD2
4th byte
ADD3(8)
ADD3
ADD3
ADD3
ADD3
ADD3
5th byte
Dummy(8)
n bytes read out
by Quad output
until CS# goes
high
to program the
selected page
quad input to
program the
selected page
to erase the
selected sector
to erase the
selected 32K
block
to erase the
selected block
Action
Mode
SPI/QPI
Command
(byte)
1st byte
CE
(chip erase)
60 or C7 (hex)
Note: The number in parentheses after "ADD" or "Data" stands for how many clock
cycles it has. For example, "Data(8)" represents there are 8 clock cycles for the
data in.
2nd byte
3rd byte
4th byte
5th byte
to erase whole
chip
Action
* The fast read command (0Bh) when under QPI mode, the dummy cycle is 4 clocks.
P/N: PM1977
17
Rev. 1.6, July 12, 2017
MX25U3235F
Register/Setting Commands
SPI/QPI
RDSR
(read status
register)
SPI/QPI
WRSR
(write status
register)
SPI/QPI
WPSEL
(Write Protect
Selection)
SPI/QPI
04 (hex)
05 (hex)
01 (hex)
68 (hex)
35 (hex)
to enter and
enable individal
block protect
mode
Entering the QPI
mode
Command
(byte)
WREN
(write enable)
WRDI
(write disable)
Mode
SPI/QPI
1st byte
06 (hex)
2nd byte
EQIO
(Enable QPI)
SPI
Values
3rd byte
4th byte
5th byte
Action
sets the (WEL) resets the (WEL)
write enable latch write enable latch
bit
bit
Command
(byte)
RSTQIO
(Reset QPI)
Mode
1st byte
QPI
F5 (hex)
PGM/ERS
Suspend
(Suspends
Program/Erase)
SPI/QPI
B0 (hex)
to read out the
values of the
status register
PGM/ERS
Resume
(Resumes
Program/Erase)
SPI/QPI
30 (hex)
to write new
values of the
status register
DP
(Deep power
down)
SPI/QPI
B9 (hex)
2nd byte
RDP
(Release from
deep power
down)
SPI/QPI
AB (hex)
SBL
(Set Burst Length)
SPI/QPI
C0 (hex)
Value
3rd byte
4th byte
5th byte
Action
P/N: PM1977
Exiting the QPI
mode
enters deep
power down
mode
18
release from
to set Burst length
deep power down
mode
Rev. 1.6, July 12, 2017
MX25U3235F
ID/Security Commands
Command
(byte)
Mode
1st byte
RDID
RES (read
(read identificelectronic ID)
ation)
SPI
9F (hex)
SPI/QPI
AB (hex)
REMS (read
electronic
QPIID
manufacturer (QPI ID Read)
& device ID)
SPI
QPI
90 (hex)
AF (hex)
RDSFDP
SPI/QPI
5A (hex)
2nd byte
x
x
ADD1(8)
3rd byte
x
x
ADD2(8)
4th byte
x
ADD (Note 2)
ID in QPI
interface
Dummy(8)
Read SFDP
mode
SBLK
(single block
lock
SPI/QPI
36 (hex)
SBULK
(single block
unlock)
SPI/QPI
39 (hex)
RDBLOCK
(block protect
read)
SPI/QPI
3C (hex)
2nd byte
ADD1
ADD1
ADD1
3rd byte
ADD2
ADD2
ADD2
4th byte
ADD3
ADD3
ADD3
Action
COMMAND
(byte)
Mode
1st byte
RDSCUR
WRSCUR
(read security (write security
register)
register)
SPI/QPI
SPI/QPI
2B (hex)
2F (hex)
SPI/QPI
B1 (hex)
SPI/QPI
C1 (hex)
ADD3(8)
5th byte
outputs JEDEC to read out
output the
ID: 1-byte
1-byte Device Manufacturer
Manufacturer
ID
ID & Device ID
ID & 2-byte
Device ID
ENSO (enter EXSO (exit
secured OTP) secured OTP)
to enter the to exit the 4K4K-bit secured bit secured
OTP mode
OTP mode
GBLK
(gang block
lock)
SPI/QPI
7E (hex)
GBULK
(gang block
unlock)
SPI/QPI
98 (hex)
whole chip
write protect
whole chip
unprotect
5th byte
Action
P/N: PM1977
individual block read individual
to read value to set the lockindividual
down bit as
block (64K(64K-byte) or block or sector
of security
write protect
register
"1" (once lock- byte) or sector sector (4Kstatus
down, cannot (4K-byte) write byte) unprotect
be update)
protect
19
Rev. 1.6, July 12, 2017
MX25U3235F
Reset Commands
Mode
SPI/QPI
SPI/QPI
RST
(Reset
Memory)
SPI/QPI
1st byte
00 (hex)
66 (hex)
99 (hex)
COMMAND
(byte)
NOP
RSTEN
(No Operation) (Reset Enable)
2nd byte
3rd byte
4th byte
5th byte
Action
(Note 4)
Note 1: The count base is 4-bit for ADD(2) and Dummy(2) because of 2 x I/O. And the MSB is on SO/SIO1 which is different from 1 x I/O condition.
Note 2: ADD=00H will output the manufacturer ID first and ADD=01H will output device ID first.
Note 3: It is not recommended to adopt any other code not in the command definition table, which will potentially enter
the hidden mode.
Note 4: The RSTEN command must be executed before executing the RST command. If any other command is issued
in-between RSTEN and RST, the RST command will be ignored.
P/N: PM1977
20
Rev. 1.6, July 12, 2017
MX25U3235F
9-1. Write Enable (WREN)
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, 4PP,
SE, BE32K, BE, CE, and WRSR, which are intended to change the device content WEL bit should be set every time
after the WREN instruction setting the WEL bit.
The sequence of issuing WREN instruction is: CS# goes low→sending WREN instruction code→ CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
Figure 6. Write Enable (WREN) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
Command
SI
06h
High-Z
SO
Figure 7. Write Enable (WREN) Sequence (QPI Mode)
CS#
0
Mode 3
1
SCLK
Mode 0
Command
06h
SIO[3:0]
P/N: PM1977
21
Rev. 1.6, July 12, 2017
MX25U3235F
9-2. Write Disable (WRDI)
The Write Disable (WRDI) instruction is to reset Write Enable Latch (WEL) bit.
The sequence of issuing WRDI instruction is: CS# goes low→sending WRDI instruction code→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The WEL bit is reset by following situations:
- Power-up
- Reset# pin driven low
- Completion of Write Disable (WRDI) instruction
- Completion of Write Status Register (WRSR) instruction
- Completion of Page Program (PP) instruction
- Completion of Quad Page Program (4PP) instruction
- Completion of Sector Erase (SE) instruction
- Completion of Block Erase 32KB (BE32K) instruction
- Completion of Block Erase (BE) instruction
- Completion of Chip Erase (CE) instruction
- Program/Erase Suspend
- Completion of Softreset command
- Completion of Write Security Register (WRSCUR) command
- Completion of Write Protection Selection (WPSEL) command
Figure 8. Write Disable (WRDI) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
Command
SI
04h
High-Z
SO
Figure 9. Write Disable (WRDI) Sequence (QPI Mode)
CS#
0
Mode 3
1
SCLK
Mode 0
Command
04h
SIO[3:0]
P/N: PM1977
22
Rev. 1.6, July 12, 2017
MX25U3235F
9-3. Read Identification (RDID)
The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The Macronix Manufacturer ID and Device ID are listed as "Table 6. ID Definitions".
The sequence of issuing RDID instruction is: CS# goes low→ sending RDID instruction code→24-bits ID data out
on SO→ to end RDID operation can drive CS# to high at any time during data out.
While Program/Erase operation is in progress, it will not decode the RDID instruction, therefore there's no effect on
the cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby
stage.
Figure 10. Read Identification (RDID) Sequence (SPI mode only)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18
28 29 30 31
SCLK
Mode 0
Command
SI
9Fh
Manufacturer Identification
SO
High-Z
7
6
5
3
MSB
P/N: PM1977
2
1
Device Identification
0 15 14 13
3
2
1
0
MSB
23
Rev. 1.6, July 12, 2017
MX25U3235F
9-4. Release from Deep Power-down (RDP), Read Electronic Signature (RES)
The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip
Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the
Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in
the Deep Power-down mode, the transition to the Stand-by Power mode is delayed by tRES1, and Chip Select (CS#)
must remain High for at least tRES1(max), as specified in "Table 20. AC Characteristics". Once in the Stand-by
Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. The RDP instruction is only for releasing from Deep Power Down Mode. RESET# pin goes low will release the Flash from deep
power down mode.
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as "Table 6.
ID Definitions". This is not the same as RDID instruction. It is not recommended to use for new design. For new design, please use RDID instruction.
Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except the device is in
progress of program/erase/write cycle; there's no effect on the current program/erase/write cycle in progress.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously
in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in
Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least
tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and execute
instruction.
Figure 11. Read Electronic Signature (RES) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38
SCLK
Mode 0
Command
SI
ABh
tRES2
3 Dummy Bytes
23 22 21
3
2
1
0
MSB
SO
Electronic Signature Out
High-Z
7
6
5
4
3
2
1
0
MSB
Deep Power-down Mode
P/N: PM1977
24
Stand-by Mode
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 12. Read Electronic Signature (RES) Sequence (QPI Mode)
CS#
MODE 3
0
1
2
3
4
5
6
7
SCLK
MODE 0
3 Dummy Bytes
Command
SIO[3:0]
X
ABh
X
X
X
X
X
H0
L0
MSB LSB
Data In
Data Out
Stand-by Mode
Deep Power-down Mode
Figure 13. Release from Deep Power-down (RDP) Sequence (SPI Mode)
CS#
0
Mode 3
1
2
3
4
5
6
tRES1
7
SCLK
Mode 0
Command
SI
ABh
High-Z
SO
Deep Power-down Mode
Stand-by Mode
Figure 14. Release from Deep Power-down (RDP) Sequence (QPI Mode)
CS#
Mode 3
tRES1
0
1
SCLK
Mode 0
Command
SIO[3:0]
ABh
Deep Power-down Mode
P/N: PM1977
25
Stand-by Mode
Rev. 1.6, July 12, 2017
MX25U3235F
9-5. Read Electronic Manufacturer ID & Device ID (REMS)
The REMS instruction returns both the JEDEC assigned manufacturer ID and the device ID. The Device ID values
are listed in "Table 6. ID Definitions".
The REMS instruction is initiated by driving the CS# pin low and sending the instruction code "90h" followed by two
dummy bytes and one address byte (A7~A0). After which the manufacturer ID for Macronix (C2h) and the device
ID are shifted out on the falling edge of SCLK with the most significant bit (MSB) first. If the address byte is 00h, the
manufacturer ID will be output first, followed by the device ID. If the address byte is 01h, then the device ID will be
output first, followed by the manufacturer ID. While CS# is low, the manufacturer and device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving CS# high.
Figure 15. Read Electronic Manufacturer & Device ID (REMS) Sequence (SPI Mode only)
CS#
SCLK
Mode 3
0
1
2
Mode 0
3
4
5
6
7
8
Command
SI
9 10
2 Dummy Bytes
15 14 13
90h
3
2
1
0
High-Z
SO
CS#
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
ADD (1)
SI
7
6
5
4
3
2
1
0
Manufacturer ID
SO
7
6
5
4
3
2
1
Device ID
0
7
6
5
4
3
2
MSB
MSB
1
0
7
MSB
Notes:
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first.
(2) Instruction is 90(hex).
P/N: PM1977
26
Rev. 1.6, July 12, 2017
MX25U3235F
9-6. QPI ID Read (QPIID)
User can execute this ID Read instruction to identify the Device ID and Manufacturer ID. The sequence of issue
QPIID instruction is CS# goes low→sending QPI ID instruction→Data out on SO→CS# goes high. Most significant
bit (MSB) first.
After the command cycle, the device will immediately output data on the falling edge of SCLK. The manufacturer ID,
memory type, and device ID data byte will be output continuously, until the CS# goes high.
Table 6. ID Definitions
Command Type
Command
RDID / QPIID
9Fh / AFh
RES
ABh
REMS
90h
P/N: PM1977
MX25U3235F
Manufacturer ID
C2
Manufacturer ID
C2
Memory Type
25
Electronic ID
36
Device ID
36
27
Memory Density
36
Rev. 1.6, July 12, 2017
MX25U3235F
9-7. Read Status Register (RDSR)
The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even
in program/erase/write status register condition). It is recommended to check the Write in Progress (WIP) bit before
sending a new instruction when a program, erase, or write status register operation is in progress.
The sequence of issuing RDSR instruction is: CS# goes low→ sending RDSR instruction code→ Status Register data
out on SO.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
Figure 16. Read Status Register (RDSR) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
SCLK
Mode 0
command
05h
SI
SO
Status Register Out
High-Z
7
6
5
4
3
2
Status Register Out
1
0
7
6
5
4
3
2
1
0
7
MSB
MSB
Figure 17. Read Status Register (RDSR) Sequence (QPI Mode)
CS#
Mode 3 0
1
2
3
4
5
6
7
8
N
SCLK
Mode 0
SIO[3:0]
05h H0 L0 H0 L0 H0 L0
H0 L0
MSB LSB
Status Byte Status Byte Status Byte
P/N: PM1977
28
Status Byte
Rev. 1.6, July 12, 2017
MX25U3235F
For user to check if Program/Erase operation is finished or not, RDSR instruction flow are shown as follows:
Figure 18. Program/Erase flow with read array data
start
WREN command
RDSR command*
WEL=1?
No
Yes
Program/erase command
Write program data/address
(Write erase address)
RDSR command
WIP=0?
No
Yes
RDSR command
Read WEL=0, BP[3:0], QE,
and SRWD data
Read array data
(same address of PGM/ERS)
Verify OK?
No
Yes
Program/erase successfully
Program/erase
another block?
No
Program/erase fail
Yes
* Issue RDSR to check BP[3:0].
* If WPSEL = 1, issue RDBLOCK to check the block status.
Program/erase completed
P/N: PM1977
29
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 19. Program/Erase flow without read array data (read P_FAIL/E_FAIL flag)
start
WREN command
RDSR command*
WEL=1?
No
Yes
Program/erase command
Write program data/address
(Write erase address)
RDSR command
WIP=0?
No
Yes
RDSR command
Read WEL=0, BP[3:0], QE,
and SRWD data
RDSCUR command
Yes
P_FAIL/E_FAIL =1 ?
No
Program/erase fail
Program/erase successfully
Program/erase
another block?
No
Yes
* Issue RDSR to check BP[3:0].
* If WPSEL = 1, issue RDBLOCK to check the block status.
Program/erase completed
P/N: PM1977
30
Rev. 1.6, July 12, 2017
MX25U3235F
Status Register
The definition of the status register bits is as below:
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status register
progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status register
cycle.
WEL bit. The Write Enable Latch (WEL) bit is a volatile bit that is set to “1” by the WREN instruction. WEL needs to be
set to “1” before the device can accept program and erase instructions, otherwise the program and erase instructions
are ignored. WEL automatically clears to “0” when a program or erase operation completes. To ensure that both WIP
and WEL are “0” and the device is ready for the next program or erase operation, it is recommended that WIP be confirmed to be “0” before checking that WEL is also “0”. If a program or erase instruction is applied to a protected memory area, the instruction will be ignored and WEL will clear to “0”.
BP3, BP2, BP1, BP0 bits. The Block Protect (BP3, BP2, BP1, BP0) bits, non-volatile bits, indicate the protected area (as
defined in "Table 2. Protected Area Sizes") of the device to against the program/erase instruction without hardware
protection mode being set. To write the Block Protect (BP3, BP2, BP1, BP0) bits requires the Write Status Register (WRSR)
instruction to be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector
Erase (SE), Block Erase 32KB (BE32K), Block Erase (BE) and Chip Erase (CE) instructions (only if Block Protect bits
(BP3:BP0) set to 0, the CE instruction can be executed). The BP3, BP2, BP1, BP0 bits are "0" as default, which is unprotected.
QE bit. The Quad Enable (QE) bit is a non-volatile bit with a factory default of “0”. When QE is “0”, Quad mode commands are ignored; pins WP#/SIO2 and RESET#/SIO3 function as WP# and RESET#, respectively. When QE is
“1”, Quad mode is enabled and Quad mode commands are supported along with Single and Dual mode commands.
Pins WP#/SIO2 and RESET#/SIO3 function as SIO2 and SIO3, respectively, and their alternate pin functions are
disabled. Enabling Quad mode also disables the HPM and RESET feature
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protection
(WP#/SIO2) pin for providing hardware protection mode. The hardware protection mode requires SRWD sets to 1 and
WP#/SIO2 pin signal is low stage. In the hardware protection mode, the Write Status Register (WRSR) instruction is
no longer accepted for execution and the SRWD bit and Block Protect bits (BP3, BP2, BP1, BP0) are read only. The
SRWD bit defaults to be "0".
Table 7. Status Register
bit7
bit6
SRWD (status
register write
protect)
QE
(Quad
Enable)
1=status
register write
1=Quad
disabled
Enable
0=status
0=not Quad
register write
Enable
enabled
bit5
BP3
(level of
protected
block)
(note 1)
bit4
BP2
(level of
protected
block)
bit3
BP1
(level of
protected
block)
(note 1)
(note 1)
Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile
bit
bit
bit
bit
bit
Note 1: Please refer to the "Table 2. Protected Area Sizes".
P/N: PM1977
31
bit2
BP0
(level of
protected
block)
(note 1)
Non-volatile
bit
bit1
bit0
WEL
WIP
(write enable
(write in
latch)
progress bit)
1=write
1=write
enable
operation
0=not write 0=not in write
enable
operation
volatile bit
volatile bit
Rev. 1.6, July 12, 2017
MX25U3235F
9-8. Write Status Register (WRSR)
The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the
Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP3, BP2, BP1, BP0) bits to define the protected area of memory (as shown in "Table 2. Protected Area Sizes"). The WRSR also can set or reset the Quad
enable (QE) bit and set or reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection (WP#/
SIO2) pin signal, but has no effect on bit1(WEL) and bit0 (WIP) of the status register. The WRSR instruction cannot
be executed once the Hardware Protected Mode (HPM) is entered.
The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Register
data on SI→CS# goes high.
The CS# must go high exactly at the 8 bites or 16 bits data boundary; otherwise, the instruction will be rejected and
not executed. The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes
high. The Write in Progress (WIP) bit still can be checked during the Write Status Register cycle is in progress. The
WIP sets 1 during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable
Latch (WEL) bit is reset.
Figure 20. Write Status Register (WRSR) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
SCLK
Mode 0
command
SI
Status
Register In
01h
7
4
5
3
2
1
0
MSB
High-Z
SO
6
Note : The CS# must go high exactly at 8 bits or 16 bits data boundary to completed the write register command.
Figure 21. Write Status Register (WRSR) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
Mode 3
SCLK
Mode 0
Mode 0
Command
SIO[3:0]
P/N: PM1977
01h
32
SR in
H0
L0
Rev. 1.6, July 12, 2017
MX25U3235F
Software Protected Mode (SPM):
- When SRWD bit=0, no matter WP#/SIO2 is low or high, the WREN instruction may set the WEL bit and can
change the values of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1,
BP0, is at software protected mode (SPM).
- When SRWD bit=1 and WP#/SIO2 is high, the WREN instruction may set the WEL bit can change the values of
SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0, is at software protected mode (SPM)
Note:
If SRWD bit=1 but WP#/SIO2 is low, it is impossible to write the Status Register even if the WEL bit has previously
been set. It is rejected to write the Status Register and not be executed.
Hardware Protected Mode (HPM):
- When SRWD bit=1, and then WP#/SIO2 is low (or WP#/SIO2 is low before SRWD bit=1), it enters the hardware
protected mode (HPM). The data of the protected area is protected by software protected mode by BP3, BP2,
BP1, BP0 and hardware protected mode by the WP#/SIO2 to against data modification.
Note:
To exit the hardware protected mode requires WP#/SIO2 driving high once the hardware protected mode is entered.
If the WP#/SIO2 pin is permanently connected to high, the hardware protected mode can never be entered; only can
use software protected mode via BP3, BP2, BP1, BP0.
If the system enter QPI or set QE=1, the feature of HPM will be disabled.
Table 8. Protection Modes
Mode
Software protection
mode (SPM)
Hardware protection
mode (HPM)
Status register condition
WP# and SRWD bit status
Memory
Status register can be written
in (WEL bit is set to "1") and
the SRWD, BP0-BP3
bits can be changed
WP#=1 and SRWD bit=0, or
WP#=0 and SRWD bit=0, or
WP#=1 and SRWD=1
The protected area
cannot
be program or erase.
The SRWD, BP0-BP3 of
status register bits cannot be
changed
WP#=0, SRWD bit=1
The protected area
cannot
be program or erase.
Note: As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown in
"Table 2. Protected Area Sizes".
P/N: PM1977
33
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 22. WRSR flow
start
WREN command
RDSR command
WEL=1?
No
Yes
WRSR command
Write status register
data
RDSR command
WIP=0?
No
Yes
RDSR command
Read WEL=0, BP[3:0], QE,
and SRWD data
Verify OK?
No
Yes
WRSR successfully
P/N: PM1977
WRSR fail
34
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 23. WP# Setup Timing and Hold Timing during WRSR when SRWD=1
WP#
tSHWL
tWHSL
CS#
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
SCLK
01h
SI
SO
P/N: PM1977
High-Z
35
Rev. 1.6, July 12, 2017
MX25U3235F
9-9. Read Data Bytes (READ)
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on
the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address
is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can
be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been
reached.
The sequence of issuing READ instruction is: CS# goes low→sending READ instruction code→ 3-byte address on
SI→ data out on SO→to end READ operation can use CS# to high at any time during data out.
Figure 24. Read Data Bytes (READ) Sequence (SPI Mode only)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
Mode 0
SI
command
03h
24-Bit Address
23 22 21
3
2
1
0
MSB
SO
Data Out 1
High-Z
7
6
5
4
3
2
Data Out 2
1
0
7
MSB
P/N: PM1977
36
Rev. 1.6, July 12, 2017
MX25U3235F
9-10. Read Data Bytes at Higher Speed (FAST_READ)
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and
data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at
any location. The address is automatically increased to the next higher address after each byte data is shifted out,
so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when
the highest address has been reached.
Read on SPI Mode The sequence of issuing FAST_READ instruction is: CS# goes low→ sending FAST_READ
instruction code→ 3-byte address on SI→1-dummy byte (default) address on SI→ data out on SO→ to end FAST_
READ operation can use CS# to high at any time during data out.
Read on QPI Mode The sequence of issuing FAST_READ instruction in QPI mode is: CS# goes low→ sending
FAST_READ instruction, 2 cycles→ 24-bit address interleave on SIO3, SIO2, SIO1 & SIO0→4 dummy cycles→data
out interleave on SIO3, SIO2, SIO1 & SIO0→ to end QPI FAST_READ operation can use CS# to high at any time
during data out.
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.
P/N: PM1977
37
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 25. Read at Higher Speed (FAST_READ) Sequence (SPI Mode)
CS#
SCLK
Mode 3
0
1
2
Mode 0
3
4
5
6
7
8
9 10
Command
SI
28 29 30 31
24-Bit Address
23 22 21
0Bh
3
2
1
0
High-Z
SO
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Cycle
7
SI
6
5
4
3
2
0
1
DATA OUT 2
DATA OUT 1
7
SO
6
5
4
3
2
1
7
0
6
5
4
3
2
1
MSB
MSB
0
7
MSB
Figure 26. Read at Higher Speed (FAST_READ) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
A5
A4
A3
A2
A1
A0
8
9
10
11
12
13
14
15
H1
L1
SCLK
Mode 0
Command
SIO(3:0)
0Bh
Data In
P/N: PM1977
X
X
X
X
H0
L0
MSB LSB MSB LSB
24-Bit Address
Data Out 1 Data Out 2
38
Rev. 1.6, July 12, 2017
MX25U3235F
9-11. Dual Read Mode (DREAD)
The DREAD instruction enable double throughput of Serial NOR Flash in read mode. The address is latched on
rising edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a
maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the
next higher address after each byte data is shifted out, so the whole memory can be read out at a single DREAD
instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing DREAD
instruction, the following data out will perform as 2-bit instead of previous 1-bit.
The sequence of issuing DREAD instruction is: CS# goes low → sending DREAD instruction → 3-byte address on
SI → 8-bit dummy cycle → data out interleave on SIO1 & SIO0 → to end DREAD operation can use CS# to high
at any time during data out.
While Program/Erase/Write Status Register cycle is in progress, DREAD instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
Figure 27. Dual Read Mode Sequence (Command 3Bh)
CS#
0
1
2
3
4
5
6
7
8
SCLK
…
Command
SI/SIO0
SO/SIO1
P/N: PM1977
30 31 32
9
3B
…
24 ADD Cycle
A23 A22
…
High Impedance
39 40 41 42 43 44 45
A1 A0
8 dummy
cycle
Data Out
1
Data Out
2
D6 D4 D2 D0 D6 D4
D7 D5 D3 D1 D7 D5
39
Rev. 1.6, July 12, 2017
MX25U3235F
9-12. 2 x I/O Read Mode (2READ)
The 2READ instruction enable double throughput of Serial NOR Flash in read mode. The address is latched on rising edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a
maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the
next higher address after each byte data is shifted out, so the whole memory can be read out at a single 2READ
instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing 2READ
instruction, the following address/dummy/data out will perform as 2-bit instead of previous 1-bit.
The sequence of issuing 2READ instruction is: CS# goes low→ sending 2READ instruction→ 24-bit address interleave on SIO1 & SIO0→ 4 dummy cycles on SIO1 & SIO0→ data out interleave on SIO1 & SIO0→ to end 2READ
operation can use CS# to high at any time during data out.
While Program/Erase/Write Status Register cycle is in progress, 2READ instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
Figure 28. 2 x I/O Read Mode Sequence (SPI Mode only)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
17 18 19 20 21 22 23 24 25 26 27 28 29 30
Mode 3
SCLK
Mode 0
Command
SI/SIO0
SO/SIO1
P/N: PM1977
BBh
12 ADD Cycles
4 Dummy
cycle
Data
Out 1
Data
Out 2
A22 A20 A18
A4 A2 A0
D6 D4 D2 D0 D6 D4 D2 D0
A23 A21 A19
A5 A3 A1
D7 D5 D3 D1 D7 D5 D3 D1
40
Mode 0
Rev. 1.6, July 12, 2017
MX25U3235F
9-13. Quad Read Mode (QREAD)
The QREAD instruction enable quad throughput of Serial NOR Flash in read mode. A Quad Enable (QE) bit of
status Register must be set to "1" before sending the QREAD instruction. The address is latched on rising edge
of SCLK, and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum
frequency fQ. The first address byte can be at any location. The address is automatically increased to the next
higher address after each byte data is shifted out, so the whole memory can be read out at a single QREAD instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing QREAD
instruction, the following data out will perform as 4-bit instead of previous 1-bit.
The sequence of issuing QREAD instruction is: CS# goes low→ sending QREAD instruction → 3-byte address
on SI → 8-bit dummy cycle → data out interleave on SIO3, SIO2, SIO1 & SIO0→ to end QREAD operation can
use CS# to high at any time during data out.
While Program/Erase/Write Status Register cycle is in progress, QREAD instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.
Figure 29. Quad Read Mode Sequence (Command 6Bh)
CS#
0
1
2
3
4
5
6
7
8
SCLK
…
Command
SI/SIO0
SO/SIO1
SIO2
SIO3
P/N: PM1977
29 30 31 32 33
9
6B
…
24 ADD Cycles
A23 A22
…
High Impedance
38 39 40 41 42
A2 A1 A0
8 dummy cycles
Data Data
Out 1 Out 2
Data
Out 3
D4 D0 D4 D0 D4
D5 D1 D5 D1 D5
High Impedance
D6 D2 D6 D2 D6
High Impedance
D7 D3 D7 D3 D7
41
Rev. 1.6, July 12, 2017
MX25U3235F
9-14. 4 x I/O Read Mode (4READ)
The 4READ instruction enable quad throughput of Serial NOR Flash in read mode. A Quad Enable (QE) bit of status
Register must be set to "1" before sending the 4READ instruction. The address is latched on rising edge of SCLK,
and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum frequency
fQ. The first address byte can be at any location. The address is automatically increased to the next higher address
after each byte data is shifted out, so the whole memory can be read out at a single 4READ instruction. The address
counter rolls over to 0 when the highest address has been reached. Once writing 4READ instruction, the following
address/dummy/data out will perform as 4-bit instead of previous 1-bit.
4 x I/O Read on SPI Mode (4READ) The sequence of issuing 4READ instruction is: CS# goes low→ sending
4READ instruction→ 24-bit address interleave on SIO3, SIO2, SIO1 & SIO0→2+4 dummy cycles→data out interleave on SIO3, SIO2, SIO1 & SIO0→ to end 4READ operation can use CS# to high at any time during data out.
4 x I/O Read on QPI Mode (4READ) The 4READ instruction also support on QPI command mode. The sequence of
issuing 4READ instruction QPI mode is: CS# goes low→ sending 4READ instruction→ 24-bit address interleave on
SIO3, SIO2, SIO1 & SIO0→2+4 dummy cycles→data out interleave on SIO3, SIO2, SIO1 & SIO0→ to end 4READ
operation can use CS# to high at any time during data out.
Another sequence of issuing 4READ instruction especially useful in random access is: CS# goes low→send 4READ
instruction→3-bytes address interleave on SIO3, SIO2, SIO1 & SIO0 →performance enhance toggling bit P[7:0]→
4 dummy cycles →data out until CS# goes high→ CS# goes low (The following 4READ instruction is not allowed,
hence 8 cycles of 4READ can be saved comparing to normal 4READ mode) →24-bit random access address.
In the performance-enhancing mode, P[7:4] must be toggling with P[3:0] ; likewise P[7:0]=A5h, 5Ah, F0h or 0Fh can
make this mode continue and reduce the next 4READ instruction. Once P[7:4] is no longer toggling with P[3:0]; likewise P[7:0]=FFh,00h,AAh or 55h and afterwards CS# is raised and then lowered, the system then will escape from
performance enhance mode and return to normal operation.
While Program/Erase/Write Status Register cycle is in progress, 4READ instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
P/N: PM1977
42
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 30. 4 x I/O Read Mode Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Mode 3
SCLK
Mode 0
Command
6 ADD Cycles
EBh
Performance
enhance
indicator (Note)
Data
Out 1
4 Dummy
Cycles
Data
Out 2
Data
Out 3
A20 A16 A12 A8 A4 A0 P4 P0
D4 D0 D4 D0 D4 D0
SIO1
A21 A17 A13 A9 A5 A1 P5 P1
D5 D1 D5 D1 D5 D1
SIO2
A22 A18 A14 A10 A6 A2 P6 P2
D6 D2 D6 D2 D6 D2
SIO3
A23 A19 A15 A11 A7 A3 P7 P3
D7 D3 D7 D3 D7 D3
SIO0
Mode 0
Note:
1. Hi-impedance is inhibited for the two clock cycles.
2. P7≠P3, P6≠P2, P5≠P1 & P4≠P0 (Toggling) is inhibited.
Figure 31. 4 x I/O Read Mode Sequence (QPI Mode)
CS#
MODE 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
MODE 3
SCLK
MODE 0
SIO[3:0]
P/N: PM1977
MODE 0
EB
A5 A4 A3 A2 A1 A0
Data In
24-bit Address
X
X
X
X
X
X
H0 L0 H1 L1 H2 L2 H3 L3
MSB
Data Out
43
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 32. W4READ (Quad Read with 4 dummy cycles) Sequence
CS#
Mode 3
SCLK
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Mode 0
4 Dummy
Cycles
Data
Out 2
Data
Out 3
A20 A16 A12 A8 A4 A0
D4 D0 D4 D0
D4 D0
D4
SIO1
A21 A17 A13 A9 A5 A1
D5 D1 D5 D1
D5 D1
D5
SIO2
A22 A18 A14 A10 A6 A2
D6 D2 D6 D2
D6 D2
D6
SIO3
A23 A19 A15 A11 A7 A3
D7 D3 D7 D3
D7 D3
D7
Command
SIO0
P/N: PM1977
E7h
6 ADD Cycles
44
Data
Out 1
Rev. 1.6, July 12, 2017
MX25U3235F
9-15. Burst Read
This device supports Burst Read in both SPI and QPI mode.
To set the Burst length, following command operation is required
Issuing command: “C0h” in the first Byte (8-clocks), following 4 clocks defining wrap around enable with “0h” and
disable with“1h”.
Next 4 clocks is to define wrap around depth. Definition as following table:
Data
00h
01h
02h
03h
1xh
Wrap Around
Yes
Yes
Yes
Yes
No
Wrap Depth
8-byte
16-byte
32-byte
64-byte
X
The wrap around unit is defined within the 256Byte page, with random initial address. It’s defined as “wrap-around
mode disable” for the default state of the device. To exit wrap around, it is required to issue another “C0h” command
in which data=‘1xh”. Otherwise, wrap around status will be retained until power down or reset command. To change
wrap around depth, it is requried to issue another “C0h” command in which data=“0xh”. QPI “0Bh” “EBh” and SPI “EBh”
“E7h” support wrap around feature after wrap around enable. Burst read is supported in both SPI and QPI mode.
The device is default without Burst read.
Figure 33. Burst Read - SPI Mode
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9
D7
D6
10
11
12
13
14
15
SCLK
Mode 0
SIO
C0h
D5
D4
D3
D2
D1
D0
Figure 34. Burst Read - QPI Mode
CS#
Mode 3
0
1
2
3
H0
L0
SCLK
Mode 0
SIO[3:0]
C0h
MSB
LSB
Note: MSB=Most Significant Bit
LSB=Least Significant Bit
P/N: PM1977
45
Rev. 1.6, July 12, 2017
MX25U3235F
9-16. Performance Enhance Mode
The device could waive the command cycle bits if the two cycle bits after address cycle toggles.
Performance enhance mode is supported in both SPI and QPI mode.
In QPI mode, “EBh” “0Bh” and SPI “EBh” “E7h” commands support enhance mode. The performance enhance
mode is not supported in dual I/O mode.
After entering enhance mode, following CS# go high, the device will stay in the read mode and treat CS# go low of
the first clock as address instead of command cycle.
To exit enhance mode, a new fast read command whose first two dummy cycles is not toggle then exit. Or issue
”FFh” data cycle to exit enhance mode.
P/N: PM1977
46
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 35. 4 x I/O Read Performance Enhance Mode Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22
n
SCLK
Mode 0
Data
Out 2
Data
Out n
A20 A16 A12 A8 A4 A0 P4 P0
D4 D0 D4 D0
D4 D0
SIO1
A21 A17 A13 A9 A5 A1 P5 P1
D5 D1 D5 D1
D5 D1
SIO2
A22 A18 A14 A10 A6 A2 P6 P2
D6 D2 D6 D2
D6 D2
SIO3
A23 A19 A15 A11 A7 A3 P7 P3
D7 D3 D7 D3
D7 D3
Command
EBh
SIO0
6 ADD Cycles
Performance
enhance
indicator (Note)
4 Dummy
Cycles
Data
Out 1
CS#
n+1
...........
n+7 ...... n+9
........... n+13
...........
Mode 3
SCLK
6 ADD Cycles
Performance
enhance
indicator (Note)
4 Dummy
Cycles
Data
Out 1
Data
Out 2
Data
Out n
SIO0
A20 A16 A12 A8 A4 A0 P4 P0
D4 D0 D4 D0
D4 D0
SIO1
A21 A17 A13 A9 A5 A1 P5 P1
D5 D1 D5 D1
D5 D1
SIO2
A22 A18 A14 A10 A6 A2 P6 P2
D6 D2 D6 D2
D6 D2
SIO3
A23 A19 A15 A11 A7 A3 P7 P3
D7 D3 D7 D3
D7 D3
Mode 0
Note:
1. Performance enhance mode, if P7≠P3 & P6≠P2 & P5≠P1 & P4≠P0 (Toggling), ex: A5, 5A, 0F, if not using
performance enhance recommend to keep 1 or 0 in performance enhance indicator.
2. Reset the performance enhance mode, if P7=P3 or P6=P2 or P5=P1 or P4=P0, ex: AA, 00, FF.
P/N: PM1977
47
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 36. 4 x I/O Read Performance Enhance Mode Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
A1
A0
8
9
10
11
12
13
14
15
16
17
H0
L0
H1
L1
SCLK
Mode 0
SIO[3:0]
EBh
A5
A4
A3
A2
X
X
X
X
MSB LSB MSB LSB
P(7:4) P(3:0)
Data In
4 dummy
cycles
performance
enhance
indicator
Data Out
CS#
n+1
.............
SCLK
Mode 0
SIO[3:0]
A5
A4
A3
A2
A1
X
A0
X
X
H0
L0
H1
L1
MSB LSB MSB LSB
P(7:4) P(3:0)
6 Address cycles
X
4 dummy
cycles
performance
enhance
indicator
Data Out
Note:
1. Performance enhance mode, if P7≠P3 & P6≠P2 & P5≠P1 & P4≠P0 (Toggling), ex: A5, 5A, 0F, if not using
performance enhance recommend to keep 1 or 0 in performance enhance indicator.
2. Reset the performance enhance mode, if P7=P3 or P6=P2 or P5=P1 or P4=P0, ex: AA, 00, FF.
P/N: PM1977
48
Rev. 1.6, July 12, 2017
MX25U3235F
9-17. Sector Erase (SE)
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". The instruction is used for
any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before
sending the Sector Erase (SE). Any address of the sector (as shown in "Table 4. Memory Organization") is a valid
address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of
address byte been latched-in); otherwise, the instruction will be rejected and not executed.
Address bits [Am-A12] (Am is the most significant address) select the sector address.
The sequence of issuing SE instruction is: CS# goes low→ sending SE instruction code→ 3-byte address on SI→
CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked during the Sector Erase cycle is in progress. The WIP sets 1 during the
tSE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If
the sector is protected by BP3, BP2, BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the
sector.
Figure 37. Sector Erase (SE) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Mode 0
24-Bit Address
Command
SI
23 22
20h
2
1
0
MSB
Figure 38. Sector Erase (SE) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
24-Bit Address
Command
SIO[3:0]
20h A5 A4 A3 A2 A1 A0
MSB LSB
P/N: PM1977
49
Rev. 1.6, July 12, 2017
MX25U3235F
9-18. Block Erase (BE32K)
The Block Erase (BE32K) instruction is for erasing the data of the chosen block to be "1". The instruction is used for
32K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL)
bit before sending the Block Erase (BE32K). Any address of the block (as shown in "Table 4. Memory Organization") is a valid address for Block Erase (BE32K) instruction. The CS# must go high exactly at the byte boundary (the
latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing BE32K instruction is: CS# goes low→ sending BE32K instruction code→ 3-byte address
on SI→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The self-timed Block Erase Cycle time (tBE32K) is initiated as soon as Chip Select (CS#) goes high. The Write
in Progress (WIP) bit still can be checked during the Block Erase cycle is in progress. The WIP sets 1 during the
tBE32K timing, and sets 0 when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If
the block is protected by BP3, BP2, BP1, BP0 bits, the Block Erase (BE32K) instruction will not be executed on the
block.
Figure 39. Block Erase 32KB (BE32K) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Mode 0
Command
SI
24-Bit Address
23 22
52h
2
1
0
MSB
Figure 40. Block Erase 32KB (BE32K) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
24-Bit Address
Command
SIO[3:0]
52h
A5 A4 A3 A2 A1 A0
MSB
P/N: PM1977
50
Rev. 1.6, July 12, 2017
MX25U3235F
9-19. Block Erase (BE)
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used for
64K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL)
bit before sending the Block Erase (BE). Any address of the block (Please refer to "Table 4. Memory Organization")
is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the latest
eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing BE instruction is: CS# goes low→ sending BE instruction code→ 3-byte address on SI→
CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked during the Block Erase cycle is in progress. The WIP sets 1 during the tBE
timing, and sets 0 when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the block
is protected by BP3, BP2, BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the block.
Figure 41. Block Erase (BE) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Mode 0
Command
SI
24-Bit Address
23 22
D8h
2
1
0
MSB
Figure 42. Block Erase (BE) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
24-Bit Address
Command
SIO[3:0]
D8h
A5 A4 A3 A2 A1 A0
MSB
P/N: PM1977
51
Rev. 1.6, July 12, 2017
MX25U3235F
9-20. Chip Erase (CE)
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS# must go
high exactly at the byte boundary, otherwise the instruction will be rejected and not executed.
The sequence of issuing CE instruction is: CS# goes low→sending CE instruction code→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE
timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip is
protected by BP3, BP2, BP1, BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed when BP3, BP2, BP1, BP0 all set to "0".
Figure 43. Chip Erase (CE) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
Command
SI
60h or C7h
Figure 44. Chip Erase (CE) Sequence (QPI Mode)
CS#
Mode 3
0
1
SCLK
Mode 0
SIO[3:0]
P/N: PM1977
Command
60h or C7h
52
Rev. 1.6, July 12, 2017
MX25U3235F
9-21. Page Program (PP)
The Page Program (PP) instruction is for programming memory bits to "0". One to 256 bytes can be sent to the device to be programmed. A Write Enable (WREN) instruction must be executed to set the Write Enable Latch (WEL)
bit before sending the Page Program (PP). If more than 256 data bytes are sent to the device, only the last 256
data bytes will be accepted and the previous data bytes will be disregarded. The Page Program instruction requires
that all the data bytes fall within the same 256-byte page. The low order address byte A[7:0] specifies the starting
address within the selected page. Bytes that will cross a page boundary will wrap to the beginning of the selected
page. The device can accept (256 minus A[7:0]) data bytes without wrapping. If 256 data bytes are going to be programmed, A[7:0] should be set to 0.
The sequence of issuing PP instruction is: CS# goes low→ sending PP instruction code→ 3-byte address on SI→ at
least 1-byte on data on SI→ CS# goes high.
The CS# must be kept low during the whole Page Program cycle; The CS# must go high exactly at the byte boundary (the
latest eighth bit of data being latched in), otherwise the instruction will be rejected and will not be executed.
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked during the Page Program cycle is in progress. The WIP sets 1 during the
tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the
page is protected by BP3, BP2, BP1, BP0 bits, the Page Program (PP) instruction will not be executed.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
P/N: PM1977
53
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 45. Page Program (PP) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
1
0
7
6
5
3
2
1
0
2079
2
2078
3
2077
23 22 21
02h
SI
Data Byte 1
24-Bit Address
2076
Command
2075
Mode 0
4
1
0
MSB
MSB
2074
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
2073
2072
CS#
SCLK
Data Byte 2
7
SI
6
5
4
3
2
Data Byte 3
1
MSB
0
7
6
5
4
3
2
Data Byte 256
1
7
0
MSB
6
5
4
3
2
MSB
Figure 46. Page Program (PP) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
SCLK
Mode 0
Command
SIO[3:0]
02h
Data In
P/N: PM1977
24-Bit Address
A5
A4
A3
A2
A1
A0
H0
L0
H1
L1
H2
L2
H3
L3
Data Byte Data Byte Data Byte Data Byte
1
2
3
4
54
H255 L255
......
Data Byte
256
Rev. 1.6, July 12, 2017
MX25U3235F
9-22. 4 x I/O Page Program (4PP)
The Quad Page Program (4PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit and Quad Enable (QE) bit must be set to "1" before
sending the Quad Page Program (4PP). The Quad Page Programming takes four pins: SIO0, SIO1, SIO2, and
SIO3 as address and data input, which can improve programmer performance and the effectiveness of application. The 4PP operation frequency supports as fast as Max. fSCLK. The other function descriptions are as same as
standard page program.
The sequence of issuing 4PP instruction is: CS# goes low→ sending 4PP instruction code→ 3-byte address on
SIO[3:0]→ at least 1-byte on data on SIO[3:0]→CS# goes high.
Figure 47. 4 x I/O Page Program (4PP) Sequence (SPI Mode only)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21
SCLK
Mode 0
SIO0
P/N: PM1977
Command
38h
6 ADD cycles
Data Data Data Data
Byte 1 Byte 2 Byte 3 Byte 4
A20 A16 A12 A8 A4 A0 D4 D0 D4 D0 D4 D0 D4 D0
SIO1
A21 A17 A13 A9 A5 A1 D5 D1 D5 D1 D5 D1 D5 D1
SIO2
A22 A18 A14 A10 A6 A2 D6 D2 D6 D2 D6 D2 D6 D2
SIO3
A23 A19 A15 A11 A7 A3
55
D7 D3 D7 D3
D7 D3 D7 D3
Rev. 1.6, July 12, 2017
MX25U3235F
9-23. Deep Power-down (DP)
The Deep Power-down (DP) instruction places the device into a minimum power consumption state, Deep Powerdown mode, in which the quiescent current is reduced from ISB1 to ISB2.
The sequence of issuing DP instruction: CS# goes low→ send DP instruction code→ CS# goes high. The CS# must
go high at the byte boundary (after exactly eighth bits of the instruction code have been latched-in); otherwise the
instruction will not be executed. Both SPI (8 clocks) and QPI (2 clocks) command cycle can be accepted by this instruction. SIO[3:1] are "don't care".
After CS# goes high there is a delay of tDP before the device transitions from Stand-by mode to Deep Power-down
mode and before the current reduces from ISB1 to ISB2. Once in Deep Power-down mode, all instructions will be
ignored except Release from Deep Power-down (RDP).
The device exits Deep Power-down mode and returns to Stand-by mode if it receives a Release from Deep Powerdown (RDP) instruction, power-cycle, or reset.
Figure 48. Deep Power-down (DP) Sequence (SPI Mode)
CS#
0
Mode 3
1
2
3
4
5
6
tDP
7
SCLK
Mode 0
Command
B9h
SI
Stand-by Mode
Deep Power-down Mode
Figure 49. Deep Power-down (DP) Sequence (QPI Mode)
CS#
Mode 3
0
1
tDP
SCLK
Mode 0
Command
SIO[3:0]
B9h
Stand-by Mode
P/N: PM1977
56
Deep Power-down Mode
Rev. 1.6, July 12, 2017
MX25U3235F
9-24. Enter Secured OTP (ENSO)
The ENSO instruction is for entering the additional 4K-bit secured OTP mode. The additional 4K-bit secured OTP is
independent from main array, which may use to store unique serial number for system identifier. After entering the
Secured OTP mode, and then follow standard read or program procedure to read out the data or update data. The
Secured OTP data cannot be updated again once it is lock-down.
The sequence of issuing ENSO instruction is: CS# goes low→ sending ENSO instruction to enter Secured OTP
mode→ CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
Please note that WRSR/WRSCUR commands are not acceptable during the access of secure OTP region, once security OTP is lock down, only read related commands are valid.
9-25. Exit Secured OTP (EXSO)
The EXSO instruction is for exiting the additional 4K-bit secured OTP mode.
The sequence of issuing EXSO instruction is: CS# goes low→ sending EXSO instruction to exit Secured OTP
mode→ CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
9-26. Read Security Register (RDSCUR)
The RDSCUR instruction is for reading the value of Security Register bits. The Read Security Register can be read
at any time (even in program/erase/write status register/write security register condition) and continuously.
The sequence of issuing RDSCUR instruction is : CS# goes low→sending RDSCUR instruction→Security Register
data out on SO→ CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The definition of the Security Register bits is as below:
Secured OTP Indicator bit. The Secured OTP indicator bit shows the Secured OTP area is locked by factory before ex- factory or not. When it is "0", it indicates non-factory lock; "1" indicates factory-lock.
Lock-down Secured OTP (LDSO) bit. By writing WRSCUR instruction, the LDSO bit may be set to "1" for customer lock-down purpose. However, once the bit is set to "1" (lock-down), the LDSO bit and the 4K-bit Secured OTP
area cannot be update any more. While it is in 4K-bit secured OTP mode, main array access is not allowed.
P/N: PM1977
57
Rev. 1.6, July 12, 2017
MX25U3235F
Table 9. Security Register Definition
bit7
bit6
bit5
bit4
bit3
WPSEL
E_FAIL
P_FAIL
Reserved
0=BP
protection
mode
1=Individual
Block
Protection
mode
(default=0)
0=normal
Erase
succeed
1=indicate
Erase failed
(default=0)
0=normal
Program
succeed
1=indicate
Program
failed
(default=0)
-
0=Erase
is not
suspended
1= Erase
suspended
(default=0)
Non-volatile
bit (OTP)
Volatile bit
Volatile bit
Volatile bit
Volatile bit
bit2
ESB
PSB
(Erase
(Program
Suspend bit) Suspend bit)
bit1
bit0
LDSO
Secured OTP
(indicate if
indicator bit
lock-down)
0 = not lock0=Program
down
0 = nonis not
1 = lock-down
factory
suspended
lock
(cannot
1= Program
1 = factory
program/
suspended
lock
erase
(default=0)
OTP)
Volatile bit
Non-volatile
bit
(OTP)
Non-volatile
bit (OTP)
9-27. Write Security Register (WRSCUR)
The WRSCUR instruction is for changing the values of Security Register Bits. The WREN (Write Enable) instruction
is required before issuing WRSCUR instruction. The WRSCUR instruction may change the values of bit1 (LDSO
bit) for customer to lock-down the 4K-bit Secured OTP area. Once the LDSO bit is set to "1", the Secured OTP area
cannot be updated any more.
The sequence of issuing WRSCUR instruction is: CS# goes low→ sending WRSCUR instruction → CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The CS# must go high exactly at the boundary; otherwise, the instruction will be rejected and not executed.
P/N: PM1977
58
Rev. 1.6, July 12, 2017
MX25U3235F
9-28. Write Protection Selection (WPSEL)
There are two write protection methods provided on this device, (1) Block Protection (BP) mode or (2) Individual
Block Protection mode. The protection modes are mutually exclusive. The WPSEL bit selects which protection mode
is enabled. If WPSEL=0 (factory default), BP mode is enabled and Individual block protection mode is disabled. If
WPSEL=1, Individual Block Protection mode is enabled and BP mode is disabled. The WPSEL command is used
to set WPSEL=1. A WREN command must be executed to set the WEL bit before sending the WPSEL command.
Please note that the WPSEL bit is an OTP bit. Once WPSEL is set to “1”, it cannot be programmed back to “0”.
When WPSEL = 0: Block Lock (BP) Protection mode,
The memory array is write protected by the BP3~BP0 bits.
When WPSEL =1: Individual Block Protection mode,
Blocks are individually protected by their own SRAM lock bits. On power-up, SBULK and SBLK command can set
SRAM lock bit to “0” and “1”. The Individual Block Protection instructions SBLK, SBULK, RDBLOCK, GBLK, and
GBULK are activated. The BP3~BP0 bits of the Status Register are disabled and have no effect. Hardware protection is performed by driving WP#=0. Once WP#=0 all blocks and sectors are write protected regardless of the state
of each SRAM lock bit.
The sequence of issuing WPSEL instruction is: CS# goes low → send WPSEL instruction to enable the Individual
block Protect mode → CS# goes high.
WPSEL instruction function flow is as follows:
Figure 50. BP and SRWD if WPSEL=0
WP# pin
BP3
BP2
BP1
BP0
SRWD
64KB
64KB
64KB
.
.
.
(1) BP3~BP0 is used to define the protection group region.
(The protected area size is shown in "Table 2. Protected
Area Sizes")
(2) “SRWD=1 and WP#=0” is used to protect BP3~BP0. In this
case, SRWD and BP3~BP0 of status register bits can not
be changed by WRSR
64KB
P/N: PM1977
59
Rev. 1.6, July 12, 2017
MX25U3235F
The individual block lock mode is effective after setting WPSEL=1
SRAM
SRAM
…
…
TOP 4KBx16
Sectors
4KB
4KB
4KB
SRAM
SRAM
…
64KB
SRAM
…
……
Uniform
64KB blocks
64KB
4KB
SRAM
…
…
Bottom
4KBx16
Sectors
4KB
SRAM
• Power-Up: All SRAM bits=1 (all blocks are default protected).
All array cannot be programmed/erased
• SBLK/SBULK(36h/39h):
- SBLK(36h): Set SRAM bit=1 (protect) : array can not be
programmed/erased
- SBULK(39h): Set SRAM bit=0 (unprotect): array can be
programmed/erased
- All top 4KBx16 sectors and bottom 4KBx16 sectors
and other 64KB uniform blocks can be protected and
unprotected by SRAM bits individually by SBLK/SBULK
command set.
• GBLK/GBULK(7Eh/98h):
- GBLK(7Eh): Set all SRAM bits=1,whole chip is protected
and cannot be programmed/erased.
- GBULK(98h): Set all SRAM bits=0,whole chip is
unprotected and can be programmed/erased.
- All sectors and blocks SRAM bits of whole chip can be
protected and unprotected at one time by GBLK/GBULK
command set.
• RDBLOCK(3Ch):
- use RDBLOCK mode to check the SRAM bits status after
SBULK /SBLK/GBULK/GBLK command set.
SBULK / SBLK / GBULK / GBLK / RDBLOCK
P/N: PM1977
60
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 51. WPSEL Flow
start
WREN command
RDSCUR(2Bh) command
Yes
WPSEL=1?
No
WPSEL disable,
block protected by BP[3:0]
WPSEL(68h) command
RDSR command
WIP=0?
No
Yes
RDSCUR(2Bh) command
WPSEL=1?
No
Yes
WPSEL set successfully
WPSEL set fail
WPSEL enable.
Block protected by individual lock
(SBLK, SBULK,
… etc).
P/N: PM1977
61
Rev. 1.6, July 12, 2017
MX25U3235F
9-29. Single Block Lock/Unlock Protection (SBLK/SBULK)
These instructions are only effective after WPSEL was executed. The SBLK instruction is for write protection a specified block (or sector) of memory, using AMAX-A16 or (AMAX-A12) address bits to assign a 64Kbyte block (or 4K bytes
sector) to be protected as read only. The SBULK instruction will cancel the block (or sector) write protection state.
This feature allows user to stop protecting the entire block (or sector) through the chip unprotect command (GBULK).
The WREN (Write Enable) instruction is required before issuing SBLK/SBULK instruction.
The sequence of issuing SBLK/SBULK instruction is: CS# goes low → send SBLK/SBULK (36h/39h)
instruction→send 3-byte address assign one block (or sector) to be protected on SI pin → CS# goes high. The CS#
must go high exactly at the byte boundary, otherwise the instruction will be rejected and not be executed.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
SBLK/SBULK instruction function flow is as follows:
Figure 52. Block Lock Flow
Start
RDSCUR(2Bh) command
WPSEL=1?
No
WPSEL command
Yes
WREN command
SBLK command
( 36h + 24bit address )
RDSR command
WIP=0?
No
Yes
RDBLOCK command
( 3Ch + 24bit address )
Data = FFh ?
No
Yes
Block lock successfully
Lock another block?
Block lock fail
Yes
No
Block lock
P/N: PM1977
completed
62
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 53. Block Unlock Flow
start
RDSCUR(2Bh) command
WPSEL=1?
No
WPSEL command
Yes
WREN command
SBULK command
( 39h + 24bit address )
RDSR command
No
WIP=0?
Yes
RDBLOCK command to verify
( 3Ch + 24bit address )
Data = FF ?
Yes
No
Block unlock successfully
Unlock another block?
Block unlock fail
Yes
Unlock block completed?
P/N: PM1977
63
Rev. 1.6, July 12, 2017
MX25U3235F
9-30. Read Block Lock Status (RDBLOCK)
This instruction is only effective after WPSEL was executed. The RDBLOCK instruction is for reading the status of
protection lock of a specified block (or sector), using AMAX-A16 (or AMAX-A12) address bits to assign a 64K bytes block (4K
bytes sector) and read protection lock status bit which the first byte of Read-out cycle. The status bit is"1" to indicate
that this block has be protected, that user can read only but cannot write/program /erase this block. The status bit is
"0" to indicate that this block hasn't be protected, and user can read and write this block.
The sequence of issuing RDBLOCK instruction is: CS# goes low → send RDBLOCK (3Ch) instruction → send
3-byte address to assign one block on SI pin → read block's protection lock status bit on SO pin → CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
9-31. Gang Block Lock/Unlock (GBLK/GBULK)
These instructions are only effective after WPSEL was executed. The GBLK/GBULK instruction is for enable/disable
the lock protection block of the whole chip.
The WREN (Write Enable) instruction is required before issuing GBLK/GBULK instruction.
The sequence of issuing GBLK/GBULK instruction is: CS# goes low → send GBLK/GBULK (7Eh/98h) instruction
→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The CS# must go high exactly at the byte boundary, otherwise, the instruction will be rejected and not be executed.
P/N: PM1977
64
Rev. 1.6, July 12, 2017
MX25U3235F
9-32. Program Suspend and Erase Suspend
The Suspend instruction interrupts a Page Program, Sector Erase, or Block Erase operation to allow access to the
memory array. After the program or erase operation has entered the suspended state, the memory array can be
read except for the page being programmed or the sector or block being erased ("Table 10. Readable Area of Memory While a Program or Erase Operation is Suspended").
Table 10. Readable Area of Memory While a Program or Erase Operation is Suspended
Suspended Operation
Readable Region of Memory Array
Page Program
All but the Page being programmed
Sector Erase (4KB)
All but the 4KB Sector being erased
Block Erase (32KB)
All but the 32KB Block being erased
Block Erase (64KB)
All but the 64KB Block being erased
When the Serial NOR Flash receives the Suspend instruction, there is a latency of tPSL or tESL ("Figure 54.
Suspend to Read Latency") before the Write Enable Latch (WEL) bit clears to “0” and the PSB or ESB sets to “1”,
after which the device is ready to accept one of the commands listed in "Table 11. Acceptable Commands During
Suspend after tPSL/tESL" (e.g. FAST READ). Refer to "Table 20. AC Characteristics" for tPSL and tESL timings.
"Table 12. Acceptable Commands During Suspend (tPSL/tESL not required)" lists the commands for which the tPSL
and tESL latencies do not apply. For example, RDSR, RDSCUR, RSTEN, and RST can be issued at any time after
the Suspend instruction.
Security Register bit 2 (PSB) and bit 3 (ESB) can be read to check the suspend status. The PSB (Program Suspend
Bit) sets to “1” when a program operation is suspended. The ESB (Erase Suspend Bit) sets to “1” when an erase
operation is suspended. The PSB or ESB clears to “0” when the program or erase operation is resumed.
Figure 54. Suspend to Read Latency
CS#
Suspend Command
tPSL / tESL
Read Command
tPSL: Program Latency
tESL: Erase Latency
P/N: PM1977
65
Rev. 1.6, July 12, 2017
MX25U3235F
Table 11. Acceptable Commands During Suspend after tPSL/tESL
Command Name
Command Code
READ
03h
FAST READ
0Bh
DREAD
3Bh
QREAD
6Bh
2READ
BBh
4READ
EBh
W4READ
E7h
RDSFDP
5Ah
RDID
9Fh
RDBLOCK
3Ch
REMS
90h
ENSO
B1h
EXSO
C1h
SBL
C0h
WREN
06h
RESUME
30h
EQIO
35h
RSTQIO
F5h
QPIID
AFh
PP
02h
4PP
38h
Suspend Type
Program Suspend
Erase Suspend
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Table 12. Acceptable Commands During Suspend (tPSL/tESL not required)
Command Name
Command Code
WRDI
04h
RDSR
05h
RDSCUR
2Bh
RES
ABh
RSTEN
66h
RST
99h
NOP
00h
P/N: PM1977
Suspend Type
Program Suspend
Erase Suspend
•
•
•
•
•
•
•
•
•
•
•
•
•
•
66
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 55. Resume to Suspend Latency
tPRS / tERS
Resume
Command
CS#
Suspend
Command
tPRS: Program Resume to another Suspend
tERS: Erase Resume to another Suspend
9-32-1. Suspend to Program
The “Erase Suspend to Program” feature allows Page Programming while an erase operation is suspended. Page
Programming is permitted in any unprotected memory except within the sector of a suspended Sector Erase
operation or within the block of a suspended Block Erase operation. The Write Enable (WREN) instruction must be
issued before any Page Program instruction.
A Page Program operation initiated within a suspended erase cannot itself be suspended and must be allowed to
finish before the suspended erase can be resumed. The Status Register can be polled to determine the status of
the Page Program operation. The WEL and WIP bits of the Status Register will remain “1” while the Page Program
operation is in progress and will both clear to “0” when the Page Program operation completes.
Figure 56. Suspend to Program Latency
CS#
Suspend Command
tPSL / tESL
Program Command
tPSL: Program Latency
tESL: Erase Latency
P/N: PM1977
67
Rev. 1.6, July 12, 2017
MX25U3235F
9-33. Program Resume and Erase Resume
The Resume instruction resumes a suspended Page Program, Sector Erase, or Block Erase operation. Before
issuing the Resume instruction to restart a suspended erase operation, make sure that there is no Page Program
operation in progress.
Immediately after the Serial NOR Flash receives the Resume instruction, the WEL and WIP bits are set to “1” and
the PSB or ESB is cleared to “0”. The program or erase operation will continue until finished ("Figure 57. Resume to
Read Latency") or until another Suspend instruction is received. A resume-to-suspend latency of tPRS or tERS must
be observed before issuing another Suspend instruction ("Figure 55. Resume to Suspend Latency").
Please note that the Resume instruction will be ignored if the Serial NOR Flash is in “Performance Enhance Mode”.
Make sure the Serial NOR Flash is not in “Performance Enhance Mode” before issuing the Resume instruction.
Figure 57. Resume to Read Latency
CS#
P/N: PM1977
Resume Command
tSE/tBE/tBE32K/tPP
Read Command
68
Rev. 1.6, July 12, 2017
MX25U3235F
9-34. No Operation (NOP)
The "No Operation" command is only able to terminate the Reset Enable (RSTEN) command and will not affect any
other command.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
9-35. Software Reset (Reset-Enable (RSTEN) and Reset (RST))
The Software Reset operation combines two instructions: Reset-Enable (RSTEN) command and Reset (RST)
command. It returns the device to a standby mode. All the volatile bits and settings will be cleared then, which
makes the device return to the default status as power on.
To execute Reset command (RST), the Reset-Enable (RSTEN) command must be executed first to perform the
Reset operation. If there is any other command to interrupt after the Reset-Enable command, the Reset-Enable will
be invalid.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
If the Reset command is executed during program or erase operation, the operation will be disabled, the data under
processing could be damaged or lost.
The reset time is different depending on the last operation. Longer latency time is required to recover from a program operation than from other operations.
P/N: PM1977
69
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 58. Software Reset Recovery
Stand-by Mode
66
CS#
99
tRCR
tRCP
tRCE
Mode
Figure 59. Reset Sequence (SPI mode)
tSHSL
CS#
SCLK
Mode 3
Mode 3
Mode 0
Mode 0
Command
Command
99h
66h
SIO0
Figure 60. Reset Sequence (QPI mode)
tSHSL
CS#
MODE 3
MODE 3
MODE 3
SCLK
MODE 0
SIO[3:0]
P/N: PM1977
Command
MODE 0
66h
Command
MODE 0
99h
70
Rev. 1.6, July 12, 2017
MX25U3235F
9-36. Read SFDP Mode (RDSFDP)
The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the functional
and feature capabilities of serial flash devices in a standard set of internal parameter tables. These parameter tables
can be interrogated by host system software to enable adjustments needed to accommodate divergent features
from multiple vendors. The concept is similar to the one found in the Introduction of JEDEC Standard, JESD68 on
CFI.
The sequence of issuing RDSFDP instruction is same as FAST_READ: CS# goes low→send RDSFDP instruction
(5Ah)→send 3 address bytes on SI pin→send 1 dummy byte on SI pin→read SFDP code on SO→to end RDSFDP
operation can use CS# to high at any time during data out.
SFDP is a JEDEC Standard, JESD216.
Figure 61. Read Serial Flash Discoverable Parameter (RDSFDP) Sequence
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
SO
24 BIT ADDRESS
23 22 21
5Ah
3
2
1
0
High-Z
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Cycle
SI
7
6
5
4
3
2
1
0
DATA OUT 2
DATA OUT 1
SO
7
6
5
3
2
1
0
7
MSB
MSB
P/N: PM1977
4
71
6
5
4
3
2
1
0
7
MSB
Rev. 1.6, July 12, 2017
MX25U3235F
Table 13. Signature and Parameter Identification Data Values
SFDP Table below is for MX25U3235FBAI-10G, MX25U3235FM2I-10G, MX25U3235FZNI-10G,
MX25U3235FZBI-10G and MX25U3235FZCI-10G
Description
SFDP Signature
Comment
Fixed: 50444653h
Add (h) DW Add Data (h/b) Data
(Byte)
(Bit)
(Note1)
(h)
00h
07:00
53h
53h
01h
15:08
46h
46h
02h
23:16
44h
44h
03h
31:24
50h
50h
SFDP Minor Revision Number
Start from 00h
04h
07:00
00h
00h
SFDP Major Revision Number
Start from 01h
This number is 0-based. Therefore,
0 indicates 1 parameter header.
05h
15:08
01h
01h
06h
23:16
01h
01h
07h
31:24
FFh
FFh
00h: it indicates a JEDEC specified
header.
08h
07:00
00h
00h
Start from 00h
09h
15:08
00h
00h
Start from 01h
0Ah
23:16
01h
01h
How many DWORDs in the
Parameter table
0Bh
31:24
09h
09h
0Ch
07:00
30h
30h
0Dh
15:08
00h
00h
0Eh
23:16
00h
00h
0Fh
31:24
FFh
FFh
it indicates Macronix manufacturer
ID
10h
07:00
C2h
C2h
Start from 00h
11h
15:08
00h
00h
Start from 01h
12h
23:16
01h
01h
How many DWORDs in the
Parameter table
13h
31:24
04h
04h
14h
07:00
60h
60h
15h
15:08
00h
00h
16h
23:16
00h
00h
17h
31:24
FFh
FFh
Number of Parameter Headers
Unused
ID number (JEDEC)
Parameter Table Minor Revision
Number
Parameter Table Major Revision
Number
Parameter Table Length
(in double word)
Parameter Table Pointer (PTP)
First address of JEDEC Flash
Parameter table
Unused
ID number
(Macronix manufacturer ID)
Parameter Table Minor Revision
Number
Parameter Table Major Revision
Number
Parameter Table Length
(in double word)
Parameter Table Pointer (PTP)
First address of Macronix Flash
Parameter table
Unused
P/N: PM1977
72
Rev. 1.6, July 12, 2017
MX25U3235F
Table 14. Parameter Table (0): JEDEC Flash Parameter Tables
SFDP Table below is for MX25U3235FBAI-10G, MX25U3235FM2I-10G, MX25U3235FZNI-10G,
MX25U3235FZBI-10G and MX25U3235FZCI-10G
Description
Comment
Block/Sector Erase sizes
00: Reserved, 01: 4KB erase,
10: Reserved,
11: not support 4KB erase
Write Granularity
0: 1Byte, 1: 64Byte or larger
Write Enable Instruction Required 0: not required
1: required 00h to be written to the
for Writing to Volatile Status
status register
Registers
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
01b
02
1b
03
0b
30h
0: use 50h opcode,
1: use 06h opcode
Write Enable Opcode Select for
Note: If target flash status register is
Writing to Volatile Status Registers
nonvolatile, then bits 3 and 4 must
be set to 00b.
Contains 111b and can never be
Unused
changed
4KB Erase Opcode
01:00
31h
Data
(h)
E5h
04
0b
07:05
111b
15:08
20h
16
1b
18:17
00b
19
0b
20
1b
20h
(1-1-2) Fast Read (Note2)
0=not support 1=support
Address Bytes Number used in
addressing flash array
Double Transfer Rate (DTR)
Clocking
00: 3Byte only, 01: 3 or 4Byte,
10: 4Byte only, 11: Reserved
(1-2-2) Fast Read
0=not support 1=support
(1-4-4) Fast Read
0=not support 1=support
21
1b
(1-1-4) Fast Read
0=not support 1=support
22
1b
23
1b
33h
31:24
FFh
37h:34h
31:00
01FF FFFFh
0=not support 1=support
32h
Unused
Unused
Flash Memory Density
(1-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states (Note3)
Clocks) not support
(1-4-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits (Note4)
38h
(1-4-4) Fast Read Opcode
39h
(1-1-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(1-1-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits
3Ah
(1-1-4) Fast Read Opcode
3Bh
P/N: PM1977
73
F1h
04:00
0 0100b
07:05
010b
15:08
EBh
20:16
0 1000b
23:21
000b
31:24
6Bh
FFh
44h
EBh
08h
6Bh
Rev. 1.6, July 12, 2017
MX25U3235F
SFDP Table below is for MX25U3235FBAI-10G, MX25U3235FM2I-10G, MX25U3235FZNI-10G,
MX25U3235FZBI-10G and MX25U3235FZCI-10G
Description
Comment
(1-1-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(1-1-2) Fast Read Number of
000b: Mode Bits not support
Mode Bits
(1-1-2) Fast Read Opcode
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
3Ch
3Dh
(1-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(1-2-2) Fast Read Number of
000b: Mode Bits not support
Mode Bits
3Eh
(1-2-2) Fast Read Opcode
3Fh
(2-2-2) Fast Read
0=not support 1=support
Unused
(4-4-4) Fast Read
0=not support 1=support
40h
Unused
04:00
0 1000b
07:05
000b
15:08
3Bh
20:16
0 0100b
23:21
000b
31:24
BBh
00
0b
03:01
111b
04
1b
07:05
111b
Data
(h)
08h
3Bh
04h
BBh
FEh
Unused
43h:41h
31:08
FFh
FFh
Unused
45h:44h
15:00
FFh
FFh
20:16
0 0000b
23:21
000b
(2-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(2-2-2) Fast Read Number of
000b: Mode Bits not support
Mode Bits
46h
(2-2-2) Fast Read Opcode
47h
31:24
FFh
FFh
49h:48h
15:00
FFh
FFh
20:16
0 0100b
23:21
010b
Unused
00h
(4-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(4-4-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits
4Ah
(4-4-4) Fast Read Opcode
4Bh
31:24
EBh
EBh
4Ch
07:00
0Ch
0Ch
4Dh
15:08
20h
20h
4Eh
23:16
0Fh
0Fh
4Fh
31:24
52h
52h
50h
07:00
10h
10h
51h
15:08
D8h
D8h
52h
23:16
00h
00h
53h
31:24
FFh
FFh
Sector Type 1 Size
Sector/block size = 2^N bytes (Note5)
0x00b: this sector type doesn't exist
Sector Type 1 erase Opcode
Sector Type 2 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 2 erase Opcode
Sector Type 3 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 3 erase Opcode
Sector Type 4 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 4 erase Opcode
P/N: PM1977
74
44h
Rev. 1.6, July 12, 2017
MX25U3235F
Table 15. Parameter Table (1): Macronix Flash Parameter Tables
SFDP Table below is for MX25U3235FBAI-10G, MX25U3235FM2I-10G, MX25U3235FZNI-10G,
MX25U3235FZBI-10G and MX25U3235FZCI-10G
Description
Comment
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
Data
(h)
Vcc Supply Maximum Voltage
2000h=2.000V
2700h=2.700V
3600h=3.600V
61h:60h
07:00
15:08
00h
20h
00h
20h
Vcc Supply Minimum Voltage
1650h=1.650V
2250h=2.250V
2350h=2.350V
2700h=2.700V
63h:62h
23:16
31:24
50h
16h
50h
16h
H/W Reset# pin
0=not support 1=support
00
1b
H/W Hold# pin
0=not support 1=support
01
0b
Deep Power Down Mode
0=not support 1=support
02
1b
S/W Reset
0=not support 1=support
03
1b
S/W Reset Opcode
Reset Enable (66h) should be
issued before Reset Opcode
Program Suspend/Resume
0=not support 1=support
12
1b
Erase Suspend/Resume
0=not support 1=support
13
1b
14
1b
15
1b
66h
23:16
C0h
C0h
67h
31:24
64h
64h
65h:64h
Unused
Wrap-Around Read mode
0=not support 1=support
Wrap-Around Read mode Opcode
11:04
1001 1001b F99Dh
(99h)
Wrap-Around Read data length
08h:support 8B wrap-around read
16h:8B&16B
32h:8B&16B&32B
64h:8B&16B&32B&64B
Individual block lock
0=not support 1=support
00
1b
Individual block lock bit
(Volatile/Nonvolatile)
0=Volatile 1=Nonvolatile
01
0b
09:02
0011 0110b
(36h)
10
0b
11
1b
Individual block lock Opcode
Individual block lock Volatile
protect bit default protect status
0=protect 1=unprotect
Secured OTP
0=not support 1=support
Read Lock
0=not support 1=support
12
0b
Permanent Lock
0=not support 1=support
13
0b
Unused
15:14
11b
Unused
31:16
FFh
FFh
31:00
FFh
FFh
Unused
6Bh:68h
6Fh:6Ch
C8D9h
MX25U3235FBAI-10G-SFDP_2014-04-17
P/N: PM1977
75
Rev. 1.6, July 12, 2017
MX25U3235F
Note 1: h/b is hexadecimal or binary.
Note 2: (x-y-z) means I/O mode nomenclature used to indicate the number of active pins used for the opcode (x),
address (y), and data (z). At the present time, the only valid Read SFDP instruction modes are: (1-1-1), (2-2-2),
and (4-4-4)
Note 3: Wait States is required dummy clock cycles after the address bits or optional mode bits.
Note 4: Mode Bits is optional control bits that follow the address bits. These bits are driven by the system controller
if they are specified. (eg,read performance enhance toggling bits)
Note 5: 4KB=2^0Ch,32KB=2^0Fh,64KB=2^10h
Note 6: All unused and undefined area data is blank FFh for SFDP Tables that are defined in Parameter
Identification Header. All other areas beyond defined SFDP Table are reserved by Macronix.
P/N: PM1977
76
Rev. 1.6, July 12, 2017
MX25U3235F
10. RESET
Driving the RESET# pin low for a period of tRLRH or longer will reset the device. After reset cycle, the device is at
the following states:
- Standby mode
- All the volatile bits such as WEL/WIP/SRAM lock bit will return to the default status as power on.
If the device is under programming or erasing, driving the RESET# pin low will also terminate the operation and data
could be lost. During the resetting cycle, the SO data becomes high impedance and the current will be reduced to
minimum.
Figure 62. RESET Timing
CS#
tRHRL
SCLK
tRH tRS
RESET#
tRLRH
Table 16. Reset Timing
Symbol Alt. Parameter
tRLRH
Reset Pulse Width
tRS
Reset Setup Time
tRH
Reset Hold Time
Reset Recovery Time (During instruction decoding)
tRCR
Read
Erase
tRHRL tRCE Reset Recovery Time
tRCP
Program
Reset Recovery Time (for WRSR operation)
P/N: PM1977
77
Min.
1
15
15
Typ.
Max.
20
20
12
20
20
Unit
us
ns
ns
us
us
ms
us
us
Rev. 1.6, July 12, 2017
MX25U3235F
11. POWER-ON STATE
The device is at the following states after power-up:
- Standby mode (please note it is not deep power-down mode)
- Write Enable Latch (WEL) bit is reset
The device must not be selected during power-up and power-down stage until the VCC reaches the following levels:
- VCC minimum at power-up stage and then after a delay of tVSL
- GND at power-down
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.
An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change
during power up state. When VCC is lower than VWI (POR threshold voltage value), the internal logic is reset and
the flash device has no response to any command.
For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is not
guaranteed. The write, erase, and program command should be sent after the below time delay:
- tVSL after VCC reached VCC minimum level
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL.
Please refer to the "Figure 70. Power-up Timing".
Note:
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommended. (generally around 0.1uF)
- At power-down stage, the VCC drops below VWI level, all operations are disable and device has no response
to any command. The data corruption might occur during this stage if a write, program, erase cycle is in progress.
P/N: PM1977
78
Rev. 1.6, July 12, 2017
MX25U3235F
12. ELECTRICAL SPECIFICATIONS
Table 17. Absolute Maximum Ratings
Rating
Value
Ambient Operating Temperature
Industrial grade
-40°C to 85°C
Storage Temperature
-65°C to 150°C
Applied Input Voltage
-0.5V to VCC+0.5V
Applied Output Voltage
-0.5V to VCC+0.5V
VCC to Ground Potential
-0.5V to 2.5V
NOTICE:
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to
the device. This is stress rating only and functional operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended period may affect reliability.
2. Specifications contained within the following tables are subject to change.
3. During voltage transitions, all pins may overshoot to VCC+1.0V or -1.0V for period up to 20ns.
Figure 64. Maximum Positive Overshoot Waveform
Figure 63. Maximum Negative Overshoot Waveform
20ns
0V
VCC+1.0V
-1.0V
2.0V
20ns
Table 18. Capacitance
TA = 25°C, f = 1.0 MHz
Symbol Parameter
CIN
COUT
P/N: PM1977
Min.
Typ.
Max.
Unit
Input Capacitance
6
pF
VIN = 0V
Output Capacitance
8
pF
VOUT = 0V
79
Conditions
Rev. 1.6, July 12, 2017
MX25U3235F
Figure 65. Input Test Waveforms and Measurement Level
Input timing reference level
0.8VCC
Output timing reference level
0.7VCC
AC
Measurement
Level
0.3VCC
0.2VCC
0.5VCC
Note: Input pulse rise and fall time are