MX29LV128M H/L
128M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
FEATURES
GENERAL FEATURES • Single Power Supply Operation - 2.7 to 3.6 volt for read, erase, and program operations • Configuration - 16,777,216 x 8 / 8,388,608 x 16 switchable • Sector structure - 64KB(32KW) x 256 • Sector Protection/Chip Unprotect - Provides sector group protect function to prevent program or erase operation in the protected sector group - Provides chip unprotect function to allow code changes - Provides temporary sector group unprotect function for code changes in previously protected sector groups • Secured Silicon Sector - Provides a 128-word OTP area for permanent, secure identification - Can be programmed and locked at factory or by customer • Latch-up protected to 250mA from -1V to VCC + 1V • Low VCC write inhibit is equal to or less than 1.5V • Compatible with JEDEC standard - Pin-out and software compatible to single power supply Flash PERFORMANCE • High Performance - Fast access time: 90R/100ns - Page read time: 25ns - Sector erase time: 0.5s (typ.) - 4 word/8 byte page read buffer - 16 word/ 32 byte write buffer: reduces programming time for multiple-word/byte updates • Low Power Consumption - Active read current: 18mA(typ.) - Active write current: 20mA(typ.) - Standby current: 20uA(typ.) • Minimum 100,000 erase/program cycle • 20-years data retention SOFTWARE FEATURES • Support Common Flash Interface (CFI) - Flash device parameters stored on the device and provide the host system to access. • Program Suspend/Program Resume - Suspend program operation to read other sectors • Erase Suspend/ Erase Resume - Suspends sector erase operation to read data/program other sectors • Status Reply - Data# polling & Toggle bits provide detection of program and erase operation completion HARDWARE FEATURES • Ready/Busy (RY/BY#) Output - Provides a hardware method of detecting program and erase operation completion • Hardware Reset (RESET#) Input - Provides a hardware method to reset the internal state machine to read mode • WP#/ACC input - Write protect (WP#) function allows protection highest or lowest sector, regardless of sector protection settings - ACC (high voltage) accelerates programming time for higher throughput during system PACKAGE • 56-pin TSOP • All Pb-free devices are RoHS Compliant
GENERAL DESCRIPTION
The MX29LV128M H/L is a 128-mega bit Flash memory organized as 16M bytes of 8 bits or 8M words of 16 bits. MXIC's Flash memories offer the most cost-effective and reliable read/write non-volatile random access memory. The MX29LV128M H/L is packaged in 56-pin TSOP. It is designed to be reprogrammed and erased in system or in standard EPROM programmers. The standard MX29LV128M H/L offers access time as fast as 90ns, allowing operation of high-speed microprocessors without wait states. To eliminate bus contention, the MX29LV128M H/L has separate chip enable (CE#) and output enable (OE#) controls. MXIC's Flash memories augment EPROM functionality
P/N:PM1134
REV. 1.1, FEB. 08, 2006
1
MX29LV128M H/L
with in-circuit electrical erasure and programming. The MX29LV128M H/L uses a command register to manage this functionality. MXIC Flash technology reliably stores memory contents even after 100,000 erase and program cycles. The MXIC cell is designed to optimize the erase and program mechanisms. In addition, the combination of advanced tunnel oxide processing and low internal electric fields for erase and programming operations produces reliable cycling. The MX29LV128M H/L uses a 2.7V to 3.6V VCC supply to perform the High Reliability Erase and auto Program/Erase algorithms. The highest degree of latch-up protection is achieved with MXIC's proprietary non-epi process. Latch-up protection is proved for stresses up to 100 milliamperes on address and data pin from -1V to VCC + 1V.
AUTOMATIC SECTOR ERASE
The MX29LV128M H/L is sector(s) erasable using MXIC's Auto Sector Erase algorithm. Sector erase modes allow sectors of the array to be erased in one erase cycle. The Automatic Sector Erase algorithm automatically programs the specified sector(s) prior to electrical erase. The timing and verification of electrical erase are controlled internally within the device.
AUTOMATIC ERASE ALGORITHM
MXIC's Automatic Erase algorithm requires the user to write commands to the command register using standard microprocessor write timings. The device will automatically pre-program and verify the entire array. Then the device automatically times the erase pulse width, provides the erase verification, and counts the number of sequences. A status bit toggling between consecutive read cycles provides feedback to the user as to the status of the programming operation. Register contents serve as inputs to an internal statemachine which controls the erase and programming circuitry. During write cycles, the command register internally latches address and data needed for the programming and erase operations. During a system write cycle, addresses are latched on the falling edge, and data are latched on the rising edge of WE# . MXIC's Flash technology combines years of EPROM experience to produce the highest levels of quality, reliability, and cost effectiveness. The MX29LV128M H/L electrically erases all bits simultaneously using FowlerNordheim tunneling. The bytes are programmed by using the EPROM programming mechanism of hot electron injection. During a program cycle, the state-machine will control the program sequences and command register will not respond to any command set. During a Sector Erase cycle, the command register will only respond to Erase Suspend command. After Erase Suspend is completed, the device stays in read mode. After the state machine has completed its task, it will allow the command register to respond to its full command set.
AUTOMATIC PROGRAMMING
The MX29LV128M H/L is byte/word/page programmable using the Automatic Programming algorithm. The Automatic Programming algorithm makes the external system do not need to have time out sequence nor to verify the data programmed.
AUTOMATIC PROGRAMMING ALGORITHM
MXIC's Automatic Programming algorithm require the user to only write program set-up commands (including 2 unlock write cycle and A0H) and a program command (program data and address). The device automatically times the programming pulse width, provides the program verification, and counts the number of sequences. A status bit similar to DATA# polling and a status bit toggling between consecutive read cycles, provide feedback to the user as to the status of the programming operation.
AUTOMATIC CHIP ERASE
The entire chip is bulk erased using 50 ms erase pulses according to MXIC's Automatic Chip Erase algorithm. The Automatic Erase algorithm automatically programs the entire array prior to electrical erase. The timing and verification of electrical erase are controlled internally within the device.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
2
MX29LV128M H/L
PIN CONFIGURATION
56 TSOP
NC A22 A15 A14 A13 A12 A11 A10 A9 A8 A19 A20 WE# RESET# A21 WP#/ACC RY/BY# A18 A17 A7 A6 A5 A4 A3 A2 A1 NC NC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 NC NC A16 BYTE# VSS Q15/A-1 Q7 Q14 Q6 Q13 Q5 Q12 Q4 VCC Q11 Q3 Q10 Q2 Q9 Q1 Q8 Q0 OE# VSS CE# A0 NC VIO
MX29LV128M H/L (Normal Type)
PIN DESCRIPTION
SYMBOL A0~A22 Q0~Q14 Q15/A-1 CE# WE# OE# RESET# PIN NAME Address Input Data Inputs/Outputs Q15(Word Mode)/LSB addr(Byte Mode) Chip Enable Input Write Enable Input Output Enable Input Hardware Reset Pin, Active Low Acceleration input RY/BY# BYTE# VCC VI/O GND NC Read/Busy Output Selects 8 bit or 16 bit mode +3.0V single power supply Output Buffer Power (2.7V~3.6V this input should be tied directly to VCC ) Device Ground Pin Not Connected Internally
LOGIC SYMBOL
23 A0-A22 Q0-Q15 (A-1)
16 or 8
CE# OE# WE# RESET# RY/BY# WP#/ACC BYTE# VI/O
WP#/ACC Hardware Write Protect/Programming
P/N:PM1134
REV. 1.1, FEB. 08, 2006
3
MX29LV128M H/L
BLOCK DIAGRAM
CE# OE# WE# WP# BYTE# RESET#
WRITE CONTROL INPUT LOGIC HIGH VOLTAGE MACHINE (WSM) PROGRAM/ERASE STATE
X-DECODER
STATE FLASH ARRAY ARRAY REGISTER
ADDRESS LATCH A0-A22 AND BUFFER
SENSE AMPLIFIER
Y-DECODER
Y-PASS GATE
SOURCE HV COMMAND DATA DECODER
PGM DATA HV COMMAND DATA LATCH
PROGRAM DATA LATCH
Q0-Q15/A-1
I/O BUFFER
P/N:PM1134
REV. 1.1, FEB. 08, 2006
4
MX29LV128M H/L
MX29LV128M H/L SECTOR ADDRESS TABLE
Sector SA0 SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SA10 SA11 SA12 SA13 SA14 SA15 SA16 SA17 SA18 SA19 SA20 SA21 SA22 SA23 SA24 SA25 SA26 SA27 SA28 SA29 SA30 SA31 SA32 SA33 SA34 SA35 SA36 SA37 SA38 Sector Address A22-A15 00000000 00000001 00000010 00000011 00000100 00000101 00000110 00000111 00001000 00001001 00001010 00001011 00001100 00001101 00001110 00001111 00010000 00010001 00010010 00010011 00010100 00010101 00010110 00010111 00011000 00011001 00011010 00011011 00011100 00011101 00011110 00011111 00100000 00100001 00100010 00100011 00100100 00100101 00100110 Sector Size (Kbytes/Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 (x8) Address Range 000000-0FFFF 010000-1FFFF 020000-2FFFF 030000-3FFFF 040000-4FFFF 050000-5FFFF 060000-6FFFF 070000-7FFFF 080000-8FFFF 090000-9FFFF 0A0000-AFFFF 0B0000-BFFFF 0C0000-CFFFF 0D0000-DFFFF 0E0000-EFFFF 0F0000-FFFFF 100000-0FFFF 110000-1FFFF 120000-2FFFF 130000-3FFFF 140000-4FFFF 150000-5FFFF 160000-6FFFF 170000-7FFFF 180000-8FFFF 190000-9FFFF 1A0000-AFFFF 1B0000-BFFFF 1C0000-CFFFF 1D0000-DFFFF 1E0000-EFFFF 1F0000-FFFFF 200000-0FFFF 210000-1FFFF 220000-2FFFF 230000-3FFFF 240000-4FFFF 250000-5FFFF 260000-6FFFF (x16) Address Range 000000-07FFF 008000-0FFFF 010000-17FFF 018000-1FFFF 020000-27FFF 028000-2FFFF 030000-37FFF 038000-3FFFF 040000-47FFF 048000-4FFFF 050000-57FFF 058000-5FFFF 060000-67FFF 068000-6FFFF 070000-77FFF 078000-7FFFF 080000-87FFF 088000-8FFFF 090000-97FFF 098000-9FFFF 0A0000-A7FFF 0A8000-AFFFF 0B0000-B7FFF 0B8000-BFFFF 0C0000-C7FFF 0C8000-CFFFF 0D0000-D7FFF 0D8000-DFFFF 0E0000-E7FFF 0E8000-EFFFF 0F0000-F7FFF 0F8000-FFFFF 100000-07FFF 108000-0FFFF 110000-17FFF 118000-1FFFF 120000-27FFF 128000-2FFFF 130000-37FFF
P/N:PM1134
REV. 1.1, FEB. 08, 2006
5
MX29LV128M H/L
Sector SA39 SA40 SA41 SA42 SA43 SA44 SA45 SA46 SA47 SA48 SA49 SA50 SA51 SA52 SA53 SA54 SA55 SA56 SA57 SA58 SA59 SA60 SA61 SA62 SA63 SA64 SA65 SA66 SA67 SA68 SA69 SA70 SA71 SA72 SA73 SA74 SA75 SA76 SA77 SA78 SA79 Sector Address A22-A15 00100111 00101000 00101001 00101010 00101011 00101100 00101101 00101110 00101111 00110000 00110001 00110010 00110011 00110100 00110101 00110110 00110111 00111000 00111001 00111010 00111011 00111100 00111101 00111110 00111111 01000000 01000001 01000010 01000011 01000100 01000101 01000110 01000111 01001000 01001001 01001010 01001011 01001100 01001101 01001110 01001111 Sector Size (Kbytes/Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 (x8) Address Range 270000-7FFFF 280000-8FFFF 290000-9FFFF 2A0000-AFFFF 2B0000-BFFFF 2C0000-CFFFF 2D0000-DFFFF 2E0000-EFFFF 2F0000-FFFFF 300000-0FFFF 310000-1FFFF 320000-2FFFF 330000-3FFFF 340000-4FFFF 350000-5FFFF 360000-6FFFF 370000-7FFFF 380000-8FFFF 390000-9FFFF 3A0000-AFFFF 3B0000-BFFFF 3C0000-CFFFF 3D0000-DFFFF 3E0000-EFFFF 3F0000-FFFFF 400000-0FFFF 410000-1FFFF 420000-2FFFF 430000-3FFFF 440000-4FFFF 450000-5FFFF 460000-6FFFF 470000-7FFFF 480000-8FFFF 490000-9FFFF 4A0000-AFFFF 4B0000-BFFFF 4C0000-CFFFF 4D0000-DFFFF 4E0000-EFFFF 4F0000-FFFFF (x16) Address Range 138000-3FFFF 140000-47FFF 148000-4FFFF 150000-57FFF 158000-5FFFF 160000-67FFF 168000-6FFFF 170000-77FFF 178000-7FFFF 180000-87FFF 188000-8FFFF 190000-97FFF 198000-9FFFF 1A0000-A7FFF 1A8000-AFFFF 1B0000-B7FFF 1B8000-BFFFF 1C0000-C7FFF 1C8000-CFFFF 1D0000-D7FFF 1D8000-DFFFF 1E0000-E7FFF 1E8000-EFFFF 1F0000-F7FFF 1F8000-FFFFF 200000-07FFF 208000-0FFFF 210000-17FFF 218000-1FFFF 220000-27FFF 228000-2FFFF 230000-37FFF 238000-3FFFF 240000-47FFF 248000-4FFFF 250000-57FFF 258000-5FFFF 260000-67FFF 268000-6FFFF 270000-77FFF 278000-7FFFF
P/N:PM1134
REV. 1.1, FEB. 08, 2006
6
MX29LV128M H/L
Sector SA80 SA81 SA82 SA83 SA84 SA85 SA86 SA87 SA88 SA89 SA90 SA91 SA92 SA93 SA94 SA95 SA96 SA97 SA98 SA99 SA100 SA101 SA102 SA103 SA104 SA105 SA106 SA107 SA108 SA109 SA110 SA111 SA112 SA113 SA114 SA115 SA116 SA117 SA118 SA119 SA120 Sector Address A22-A15 01010000 01010001 01010010 01010011 01010100 01010101 01010110 01010111 01011000 01011001 01011010 01011011 01011100 01011101 01011110 01011111 01100000 01100001 01100010 01100011 01100100 01100101 01100110 01100111 01101000 01101001 01101010 01101011 01101100 01101101 01101110 01101111 01110000 01110001 01110010 01110011 01110100 01110101 01110110 01110111 01111000 Sector Size (Kbytes/Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 (x8) Address Range 500000-0FFFF 510000-1FFFF 520000-2FFFF 530000-3FFFF 540000-4FFFF 550000-5FFFF 560000-6FFFF 570000-7FFFF 580000-8FFFF 590000-9FFFF 5A0000-AFFFF 5B0000-BFFFF 5C0000-CFFFF 5D0000-DFFFF 5E0000-EFFFF 5F0000-FFFFF 600000-0FFFF 610000-1FFFF 620000-2FFFF 630000-3FFFF 640000-4FFFF 650000-5FFFF 660000-6FFFF 670000-7FFFF 680000-8FFFF 690000-9FFFF 6A0000-AFFFF 6B0000-BFFFF 6C0000-CFFFF 6D0000-DFFFF 6E0000-EFFFF 6F0000-FFFFF 700000-0FFFF 710000-1FFFF 720000-2FFFF 730000-3FFFF 740000-4FFFF 750000-5FFFF 760000-6FFFF 770000-7FFFF 780000-8FFFF (x16) Address Range 280000-87FFF 288000-8FFFF 290000-97FFF 298000-9FFFF 2A0000-A7FFF 2A8000-AFFFF 2B0000-B7FFF 2B8000-BFFFF 2C0000-C7FFF 2C8000-CFFFF 2D0000-D7FFF 2D8000-DFFFF 2E0000-E7FFF 2E8000-EFFFF 2F0000-F7FFF 2F8000-FFFFF 300000-07FFF 308000-0FFFF 310000-17FFF 318000-1FFFF 320000-27FFF 328000-2FFFF 330000-37FFF 338000-3FFFF 340000-47FFF 348000-4FFFF 350000-57FFF 358000-5FFFF 360000-67FFF 368000-6FFFF 370000-77FFF 378000-7FFFF 380000-87FFF 388000-8FFFF 390000-97FFF 398000-9FFFF 3A0000-A7FFF 3A8000-AFFFF 3B0000-B7FFF 3B8000-BFFFF 3C0000-C7FFF
P/N:PM1134
REV. 1.1, FEB. 08, 2006
7
MX29LV128M H/L
Sector SA121 SA122 SA123 SA124 SA125 SA126 SA127 SA128 SA129 SA130 SA131 SA132 SA133 SA134 SA135 SA136 SA137 SA138 SA139 SA140 SA141 SA142 SA143 SA144 SA145 SA146 SA147 SA148 SA149 SA150 SA151 SA152 SA153 SA154 SA155 SA156 SA157 SA158 SA159 SA160 SA161 Sector Address A22-A15 01111001 01111010 01111011 01111100 01111101 01111110 01111111 10000000 10000001 10000010 10000011 10000100 10000101 10000110 10000111 10001000 10001001 10001010 10001011 10001100 10001101 10001110 10001111 10010000 10010001 10010010 10010011 10010100 10010101 10010110 10010111 10011000 10011001 10011010 10011011 10011100 10011101 10011110 10011111 10100000 10100001 Sector Size (Kbytes/Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 (x8) Address Range 790000-9FFFF 7A0000-AFFFF 7B0000-BFFFF 7C0000-CFFFF 7D0000-DFFFF 7E0000-EFFFF 7F0000-FFFFF 800000-0FFFF 810000-1FFFF 820000-2FFFF 830000-3FFFF 840000-4FFFF 850000-5FFFF 860000-6FFFF 870000-7FFFF 880000-8FFFF 890000-9FFFF 8A0000-AFFFF 8B0000-BFFFF 8C0000-CFFFF 8D0000-DFFFF 8E0000-EFFFF 8F0000-FFFFF 900000-0FFFF 910000-1FFFF 920000-2FFFF 930000-3FFFF 940000-4FFFF 950000-5FFFF 960000-6FFFF 970000-7FFFF 980000-8FFFF 990000-9FFFF 9A0000-AFFFF 9B0000-BFFFF 9C0000-CFFFF 9D0000-DFFFF 9E0000-EFFFF 9F0000-FFFFF A00000-0FFFF A10000-1FFFF (x16) Address Range 3C8000-CFFFF 3D0000-D7FFF 3D8000-DFFFF 3E0000-E7FFF 3E8000-EFFFF 3F0000-F7FFF 3F8000-FFFFF 400000-07FFF 408000-0FFFF 410000-17FFF 418000-1FFFF 420000-27FFF 428000-2FFFF 430000-37FFF 438000-3FFFF 440000-47FFF 448000-4FFFF 450000-57FFF 458000-5FFFF 460000-67FFF 468000-6FFFF 470000-77FFF 478000-7FFFF 480000-87FFF 488000-8FFFF 490000-97FFF 498000-9FFFF 4A0000-A7FFF 4A8000-AFFFF 4B0000-B7FFF 4B8000-BFFFF 4C0000-C7FFF 4C8000-CFFFF 4D0000-D7FFF 4D8000-DFFFF 4E0000-E7FFF 4E8000-EFFFF 4F0000-F7FFF 4F8000-FFFFF 500000-07FFF 508000-0FFFF
P/N:PM1134
REV. 1.1, FEB. 08, 2006
8
MX29LV128M H/L
Sector SA162 SA163 SA164 SA165 SA166 SA167 SA168 SA169 SA170 SA171 SA172 SA173 SA174 SA175 SA176 SA177 SA178 SA179 SA180 SA181 SA182 SA183 SA184 SA185 SA186 SA187 SA188 SA189 SA190 SA191 SA192 SA193 SA194 SA195 SA196 SA197 SA198 SA199 SA200 SA201 SA202 Sector Address A22-A15 10100010 10100011 10100100 10100101 10100110 10100111 10101000 10101001 10101010 10101011 10101100 10101101 10101110 10101111 10110000 10110001 10110010 10110011 10110100 10110101 10110110 10110111 10111000 10111001 10111010 10111011 10111100 10111101 10111110 10111111 11000000 11000001 11000010 11000011 11000100 11000101 11000110 11000111 11001000 11001001 11001010 Sector Size (Kbytes/Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 (x8) Address Range A20000-2FFFF A30000-3FFFF A40000-4FFFF A50000-5FFFF A60000-6FFFF A70000-7FFFF A80000-8FFFF A90000-9FFFF AA0000-AFFFF AB0000-BFFFF AC0000-CFFFF AD0000-DFFFF AE0000-EFFFF AF0000-FFFFF B00000-0FFFF B10000-1FFFF B20000-2FFFF B30000-3FFFF B40000-4FFFF B50000-5FFFF B60000-6FFFF B70000-7FFFF B80000-8FFFF B90000-9FFFF BA0000-AFFFF BB0000-BFFFF BC0000-CFFFF BD0000-DFFFF BE0000-EFFFF BF0000-FFFFF C00000-0FFFF C10000-1FFFF C20000-2FFFF C30000-3FFFF C40000-4FFFF C50000-5FFFF C60000-6FFFF C70000-7FFFF C80000-8FFFF C90000-9FFFF CA0000-AFFFF (x16) Address Range 510000-17FFF 518000-1FFFF 520000-27FFF 528000-2FFFF 530000-37FFF 538000-3FFFF 540000-47FFF 548000-4FFFF 550000-57FFF 558000-5FFFF 560000-67FFF 568000-6FFFF 570000-77FFF 578000-7FFFF 580000-87FFF 588000-8FFFF 590000-97FFF 598000-9FFFF 5A0000-A7FFF 5A8000-AFFFF 5B0000-B7FFF 5B8000-BFFFF 5C0000-C7FFF 5C8000-CFFFF 5D0000-D7FFF 5D8000-DFFFF 5E0000-E7FFF 5E8000-EFFFF 5F0000-F7FFF 5F8000-FFFFF 600000-07FFF 608000-0FFFF 610000-17FFF 618000-1FFFF 620000-27FFF 628000-2FFFF 630000-37FFF 638000-3FFFF 640000-47FFF 648000-4FFFF 650000-57FFF
P/N:PM1134
REV. 1.1, FEB. 08, 2006
9
MX29LV128M H/L
Sector SA203 SA204 SA205 SA206 SA207 SA208 SA209 SA210 SA211 SA212 SA213 SA214 SA215 SA216 SA217 SA218 SA219 SA220 SA221 SA222 SA223 SA224 SA225 SA226 SA227 SA228 SA229 SA230 SA231 SA232 SA233 SA234 SA235 SA236 SA237 SA238 SA239 SA240 Sector Address A22-A15 11001011 11001100 11001101 11001110 11001111 11010000 11010001 11010010 11010011 11010100 11010101 11010110 11010111 11011000 11011001 11011010 11011011 11011100 11011101 11011110 11011111 11100000 11100001 11100010 11100011 11100100 11100101 11100110 11100111 11101000 11101001 11101010 11101011 11101100 11101101 11101110 11101111 11110000 Sector Size (Kbytes/Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 (x8) Address Range CB0000-BFFFF CC0000-CFFFF CD0000-DFFFF CE0000-EFFFF CF0000-FFFFF D00000-0FFFF D10000-1FFFF D20000-2FFFF D30000-3FFFF D40000-4FFFF D50000-5FFFF D60000-6FFFF D70000-7FFFF D80000-8FFFF D90000-9FFFF DA0000-AFFFF DB0000-BFFFF DC0000-CFFFF DD0000-DFFFF DE0000-EFFFF DF0000-FFFFF E00000-0FFFF E10000-1FFFF E20000-2FFFF E30000-3FFFF E40000-4FFFF E50000-5FFFF E60000-6FFFF E70000-7FFFF E80000-8FFFF E90000-9FFFF EA0000-AFFFF EB0000-BFFFF EC0000-CFFFF ED0000-DFFFF EE0000-EFFFF EF0000-FFFFF F00000-0FFFF (x16) Address Range 658000-5FFFF 660000-67FFF 668000-6FFFF 670000-77FFF 678000-7FFFF 680000-87FFF 688000-8FFFF 690000-97FFF 698000-9FFFF 6A0000-A7FFF 6A8000-AFFFF 6B0000-B7FFF 6B8000-BFFFF 6C0000-C7FFF 6C8000-CFFFF 6D0000-D7FFF 6D8000-DFFFF 6E0000-E7FFF 6E8000-EFFFF 6F0000-F7FFF 6F8000-FFFFF 700000-07FFF 708000-0FFFF 710000-17FFF 718000-1FFFF 720000-27FFF 728000-2FFFF 730000-37FFF 738000-3FFFF 740000-47FFF 748000-4FFFF 750000-57FFF 758000-5FFFF 760000-67FFF 768000-6FFFF 770000-77FFF 778000-7FFFF 780000-87FFF
P/N:PM1134
REV. 1.1, FEB. 08, 2006
10
MX29LV128M H/L
Sector SA241 SA242 SA243 SA244 SA245 SA246 SA247 SA248 SA249 SA250 SA251 SA252 SA253 SA254 SA255 Sector Address A22-A15 11110001 11110010 11110011 11110100 11110101 11110110 11110111 11111000 11111001 11111010 11111011 11111100 11111101 11111110 11111111 Sector Size (Kbytes/Kwords) 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 64/32 (x8) Address Range F10000-1FFFF F20000-2FFFF F30000-3FFFF F40000-4FFFF F50000-5FFFF F60000-6FFFF F70000-7FFFF F80000-8FFFF F90000-9FFFF FA0000-AFFFF FB0000-BFFFF FC0000-CFFFF FD0000-DFFFF FE0000-EFFFF FF0000-FFFFF (x16) Address Range 788000-8FFFF 790000-97FFF 798000-9FFFF 7A0000-A7FFF 7A8000-AFFFF 7B0000-B7FFF 7B8000-BFFFF 7C0000-C7FFF 7C8000-CFFFF 7D0000-D7FFF 7D8000-DFFFF 7E0000-E7FFF 7E8000-EFFFF 7F0000-F7FFF 7F8000-FFFFF
P/N:PM1134
REV. 1.1, FEB. 08, 2006
11
MX29LV128M H/L
MX29LV128M H/L Sector Group Protection Address Table
Sector Group SA0 SA1 SA2 SA3 SA4-SA7 SA8-SA11 SA12-SA15 SA16-SA19 SA20-SA23 SA24-SA27 SA28-SA31 SA32-SA35 SA36-SA39 SA40-SA43 SA44-SA47 SA48-SA51 SA52-SA55 SA56-SA59 SA60-SA63 SA64-SA67 SA68-SA71 SA72-SA75 SA76-SA79 SA80-SA83 SA84-SA87 SA88-SA91 SA92-SA95 SA96-SA99 SA100-SA103 SA104-SA107 SA108-SA111 SA112-SA115 SA116-SA119 SA120-SA123 SA124-SA127 A22-A15 00000000 00000001 00000010 00000011 000001xx 000010xx 000011xx 000100xx 000101xx 000110xx 000111xx 001000xx 001001xx 001010xx 001011xx 001100xx 001101xx 001110xx 001111xx 010000xx 010001xx 010010xx 010011xx 010100xx 010101xx 010110xx 010111xx 011000xx 011001xx 011010xx 011011xx 011100xx 011101xx 011110xx 011111xx Sector Group SA128-SA131 SA132-SA135 SA136-SA139 SA140-SA143 SA144-SA147 SA148-SA151 SA152-SA155 SA156-SA159 SA160-SA163 SA164-SA167 SA168-SA171 SA172-SA175 SA176-SA179 SA180-SA183 SA184-SA187 SA188-SA191 SA192-SA195 SA196-SA199 SA200-SA203 SA204-SA207 SA208-SA211 SA202-SA215 SA206-SA219 SA220-SA223 SA224-SA227 SA228-SA231 SA232-SA235 SA236-SA239 SA240-SA243 SA244-SA247 SA248-SA251 SA252 SA253 SA254 SA255 A22-A15 100000xx 100001xx 100010xx 100011xx 100100xx 100101xx 100110xx 100111xx 101000xx 101001xx 101010xx 101011xx 101100xx 101101xx 101110xx 101111xx 110000xx 110001xx 110010xx 110011xx 110100xx 110101xx 110110xx 110111xx 111000xx 111001xx 111010xx 111011xx 111100xx 111101xx 111110xx 11111100 11111101 11111110 11111111
P/N:PM1134
REV. 1.1, FEB. 08, 2006
12
MX29LV128M H/L
Table 1. BUS OPERATION (1)
Q8~Q15 Operation CE# OE# WE# RESET# Read L L H H X X AIN DOUT WP# ACC Address Q0~Q7 Word Mode DOUT Byte Mode Q8-Q14= High Z Q15=A-1 Write (Program/Erase) L H L H (Note 3) X AIN (Note 4) (Note 4 Q8-Q14= High Z Q15=A-1 Accelerated Program L H L H (Note 3) VHH AIN (Note 4) (Note 4) Q8-Q14= High Z Q15=A-1 Standby VCC ± 0.3V Output Disable Reset Sector Group Protect (Note 2) L X L H X H H X L X X VCC ± 0.3V H L VID X X H X X X X X High-Z High-Z High-Z High-Z X High-Z High-Z X X H X High-Z High-Z High-Z
Sector Addresses, (Note 4) A6=L,A3=L, A2=L, A1=H,A0=L
Chip unprotect (Note 2)
L
H
L
VID
H
X
Sector Addresses, (Note 4) A6=H, A3=L, A2=L, A1=H, A0=L
X
X
Temporary Sector Group Unprotect
X
X
X
VID
H
X
AIN
(Note 4) (Note 4)
High-Z
Legend: L=Logic LOW=VIL, H=Logic High=VIH, VID=12.0±0.5V, VHH=12.0±0.5V, X=Don't Care, AIN=Address IN, DIN=Data IN, DOUT=Data OUT Notes: 1. Address are A21:A0 in word mode; A21:A-1 in byte mode. Sector addresses are A21:A15 in both modes. 2. The sector group protect and chip unprotect functions may also be implemented via programming equipment. See the "Sector Group Protection and Chip Unprotect" section. 3. If WP#=VIL, the first sectors remain protected. If WP#=VIH, the highest or lowest sector protection depends on whether they were last protected or unprotect using the method described in "Sector/ Sector Block Protection and Unprotect". 4. DIN or DOUT as required by command sequence, Data# polling or sector protect algorithm (see Figure 15).
P/N:PM1134
REV. 1.1, FEB. 08, 2006
13
MX29LV128M H/L
Table 2. AUTOSELECT CODES (High Voltage Method)
A22 A14 Description CE# OE# WE# to to A9 A8 to A7 VID X L A6 A5 to A4 X A3 to A2 L L L L H X X VID X L X H H L L H H L H L H A1 A0 Q8 to Q15 Word Mode 00 22 22 22 Byte Mode X X X X C2h 7Eh 12h 00h 01h (protected), L L H SA X VID X L X L H L X X 00h (unprotected) 98h (factory locked), L L H X X VID X L X L H H X X 18h (not factory locked) 88h (factory locked), L L H X X VID X L X L H H X X 08h (not factory locked) Q7 to Q0
A15 A10 Manufacturer ID
29LV128MH/L
L
L
H
X
X
Cycle 1 Cycle 2 Cycle 3
Sector Group Protection Verification Secured Silicon Sector Indicator Bit (Q7), WP# protects highest address sector Secured Silicon Sector Indicator Bit (Q7), WP# protects lowest address sector
Legend: L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don't care.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
14
MX29LV128M H/L
REQUIREMENTS FOR READING ARRAY DATA
To read array data from the outputs, the system must drive the CE# and OE# pins to VIL. CE# is the power control and selects the device. OE# is the output control and gates array data to the output pins. WE# should remain at VIH. The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no spurious alteration of the memory content occurs during the power transition. No command is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid address on the device address inputs produce valid data on the device data outputs. The device remains enabled for read access until the command register contents are altered. consists of the address bits required to uniquely select a sector. The Writing specific address and data commands or sequences into the command register initiates device operations. Table 1 defines the valid register command sequences. Writing incorrect address and data values or writing them in the improper sequence resets the device to reading array data. Section has details on erasing a sector or the entire chip, or suspending/resuming the erase operation. After the system writes the Automatic Select command sequence, the device enters the Automatic Select mode. The system can then read Automatic Select codes from the internal register (which is separate from the memory array) on Q7-Q0. Standard read cycle timings apply in this mode. Refer to the Automatic Select Mode and Automatic Select Command Sequence section for more information. ICC2 in the DC Characteristics table represents the active current specification for the write mode. The "AC Characteristics" section contains timing specification table and timing diagrams for write operations.
PAGE MODE READ
The MX29LV128M H/L offers "fast page mode read" function. This mode provides faster read access speed for random locations within a page. The page size of the device is 4 words/8 bytes. The appropriate page is selected by the higher address bits A0~A1(Word Mode)/A1~A1(Byte Mode) This is an asynchronous operation; the microprocessor supplies the specific word location. The system performance could be enhanced by initiating 1 normal read and 3 fast page read (for word mode A0A1) or 7 fast page read (for byte mode A-1~A1). When CE# is deasserted and reasserted for a subsequent access, the access time is tACC or tCE. Fast page mode accesses are obtained by keeping the "read-page addresses" constant and changing the "intra-read page" addresses.
WRITE BUFFER
Write Buffer Programming allows the system to write a maximum of 16 words/32 bytes in one programming operation. This results in faster effective programming time than the standard programming algorithms. See "Write Buffer" for more information.
ACCELERATED PROGRAM OPERATION
The device offers accelerated program operations through the ACC function. This is one of two functions provided by the ACC pin. This function is primarily intended to allow faster manufacturing throughput at the factory. If the system asserts VHH on this pin, the device automatically enters the aforementioned Unlock Bypass mode, temporarily unprotects any protected sectors, and uses the higher voltage on the pin to reduce the time required for program operations. The system would use a two-cycle program command sequence as required by the Unlock Bypass mode. Removing VHH from the ACC pin must not be at VHH for operations other than accelerated programming, or device damage may result.
WRITING COMMANDS/COMMAND QUENCES
SE-
To program data to the device or erase sectors of memory, the system must drive WE# and CE# to VIL, and OE# to VIH. An erase operation can erase one sector, multiple sectors, or the entire device. Table indicates the address space that each sector occupies. A "sector address"
P/N:PM1134
REV. 1.1, FEB. 08, 2006
15
MX29LV128M H/L
STANDBY MODE
When using both pins of CE# and RESET#, the device enter CMOS Standby with both pins held at VCC ± 0.3V. If CE# and RESET# are held at VIH, but not within the range of VCC ± 0.3V, the device will still be in the standby mode, but the standby current will be larger. During Auto Algorithm operation, VCC active current (ICC2) is required even CE# = "H" until the operation is completed. The device can be read with standard access time (tCE) from either of these standby modes, before it is ready to read data. but not within VSS±0.3V, the standby current will be greater. The RESET# pin may be tied to system reset circuitry. A system reset would that also reset the Flash memory, enabling the system to read the boot-up firmware from the Flash memory. If RESET# is asserted during a program or erase operation, the RY/BY# pin remains a "0" (busy) until the internal reset operation is complete, which requires a time of tREADY (during Embedded Algorithms). The system can thus monitor RY/BY# to determine whether the reset operation is complete. If RESET# is asserted when a program or erase operation is completed within a time of tREADY (not during Embedded Algorithms). The system can read data tRH after the RESET# pin returns to VIH. Refer to the AC Characteristics tables for RESET# parameters and to Figure 3 for the timing diagram.
AUTOMATIC SLEEP MODE
The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when address remain stable for tACC+30ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals. Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and always available to the system. ICC4 in the DC Characteristics table represents the automatic sleep mode current specification.
SECTOR GROUP PROTECT OPERATION
The MX29LV128M H/L features hardware sector group protection. This feature will disable both program and erase operations for these sector group protected. In this device, a sector group consists of four adjacent sectors which are protected or unprotected at the same time. To activate this mode, the programming equipment must force VID on address pin A9 and control pin OE#, (suggest VID = 12V) A6 = VIL and CE# = VIL. (see Table 2) Programming of the protection circuitry begins on the falling edge of the WE# pulse and is terminated on the rising edge. Please refer to sector group protect algorithm and waveform. MX29LV128M H/L also provides another method. Which requires VID on the RESET# only. This method can be implemented either in-system or via programming equipment. This method uses standard microprocessor bus cycle timing. To verify programming of the protection circuitry, the programming equipment must force VID on address pin A9 ( with CE# and OE# at VIL and WE# at VIH). When A1=1, it will produce a logical "1" code at device output Q0 for a protected sector. Otherwise the device will produce 00H for the unprotected sector. In this mode, the addresses, except for A1, are don't care. Address locations with A1 = VIL are reserved to read manufacturer and device codes. (Read Silicon ID)
OUTPUT DISABLE
With the OE# input at a logic high level (VIH), output from the devices are disabled. This will cause the output pins to be in a high impedance state.
RESET# OPERATION
The RESET# pin provides a hardware method of resetting the device to reading array data. When the RESET# pin is driven low for at least a period of tRP, the device immediately terminates any operation in progress, tristates all output pins, and ignores all read/write commands for the duration of the RESET# pulse. The device also resets the internal state machine to reading array data. The operation that was interrupted should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity Current is reduced for the duration of the RESET# pulse. When RESET# is held at VSS±0.3V, the device draws CMOS standby current (ICC4). If RESET# is held at VIL
P/N:PM1134
REV. 1.1, FEB. 08, 2006
16
MX29LV128M H/L
It is also possible to determine if the group is protected in the system by writing a Read Silicon ID command. Performing a read operation with A1=VIH, it will produce a logical "1" at Q0 for the protected sector. unprotect. That is, sector protection or unprotection for these two sectors depends on whether they were last protected or unprotect using the method described in "Sector/Sector Group Protection and Chip Unprotect". Note that the WP# pin must not be left floating or unconnected; inconsistent behavior of the device may result.
CHIP UNPROTECT OPERATION
The MX29LV128M H/L also features the chip unprotect mode, so that all sectors are unprotected after chip unprotect is completed to incorporate any changes in the code. It is recommended to protect all sectors before activating chip unprotect mode. To activate this mode, the programming equipment must force VID on control pin OE# and address pin A9. The CE# pins must be set at VIL. Pins A6 must be set to VIH. (see Table 2) Refer to chip unprotect algorithm and waveform for the chip unprotect algorithm. The unprotect mechanism begins on the falling edge of the WE# pulse and is terminated on the rising edge. MX29LV128M H/L also provides another method. Which requires VID on the RESET# only. This method can be implemented either in-system or via programming equipment. This method uses standard microprocessor bus cycle timing. It is also possible to determine if the chip is unprotect in the system by writing the Read Silicon ID command. Performing a read operation with A1=VIH, it will produce 00H at data outputs (Q0-Q7) for an unprotect sector. It is noted that all sectors are unprotected after the chip unprotect algorithm is completed.
TEMPORARY SECTOR GROUP UNPROTECT OPERATION
This feature allows temporary unprotect of previously protected sector to change data in-system. The Temporary Sector Unprotect mode is activated by setting the RESET# pin to VID(11.5V-12.5V). During this mode, formerly protected sectors can be programmed or erased as unprotect sector. Once VID is remove from the RESET# pin, all the previously protected sectors are protected again.
SILICON ID READ OPERATION
Flash memories are intended for use in applications where the local CPU alters memory contents. As such, manufacturer and device codes must be accessible while the device resides in the target system. PROM programmers typically access signature codes by raising A9 to a high voltage. However, multiplexing high voltage onto address lines is not generally desired system design practice. MX29LV128M H/L provides hardware method to access the silicon ID read operation. Which method requires VID on A9 pin, VIL on CE#, OE#, A6, and A1 pins. Which apply VIL on A0 pin, the device will output MXIC's manufacture code of which apply VIH on A0 pin, the device will output MX29LV128M H/L device code.
WRITE PROTECT (WP#)
The write protect function provides a hardware method to protect sector without using VID. If the system asserts VIL on the WP# pin, the device disables program and erase functions in the first (MX29LV128MH) or last (MX29LV128ML) sector independently of whether those sectors were protected or unprotect using the method described in Sector/Sector Group Protection and Chip Unprotect". If the system asserts VIH on the WP# pin, the device reverts to whether the first (MX29LV128MH) or last (MX29LV128ML) sector were last set to be protected or
VERIFY SECTOR GROUP PROTECT STATUS OPERATION
MX29LV128M H/L provides hardware method for sector group protect status verify. Which method requires VID on A9 pin, VIH on WE# and A1 pins, VIL on CE#, OE#, A6, and A0 pins, and sector address on A16 to A21 pins. Which the identified sector is protected, the device will output 01H. Which the identified sector is not protect, the device will output 00H.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
17
MX29LV128M H/L
DATA PROTECTION
The MX29LV128M H/L is designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transition. During power up the device automatically resets the state machine in the Read mode. In addition, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific command sequences. The device also incorporates several features to prevent inadvertent write cycles resulting from VCC power-up and power-down transition or system noise. of main sectors is as normally. This mode of operation continues until the system issues the Exit Secured Silicon Sector command sequence, or until power is removed from the device. On power-up, or following a hardware reset, the device reverts to sending command to sector SA0. Secured Silicon Sector address range 000000h-000007h 000008h-00007Fh ESN Unavailable Determined by Customer ESN factory locked Customer lockable
SECURED SILICON SECTOR
The MX29LV128M H/L features a OTP memory region where the system may access through a command sequence to create a permanent part identification as so called Electronic Serial Number (ESN) in the device. Once this region is programmed, any further modification on the region is impossible. The secured silicon sector is a 128 words in length, and uses a Secured Silicon Sector Indicator Bit (Q7) to indicate whether or not the Secured Silicon Sector is locked when shipped from the factory. This bit is permanently set at the factory and cannot be changed, which prevent duplication of a factory locked part. This ensures the security of the ESN once the product is shipped to the field. The MX29LV128M H/L offers the device with Secured Silicon Sector either factory locked or customer lockable. The factory-locked version is always protected when shipped from the factory , and has the Secured Silicon Sector Indicator Bit permanently set to a "1". The customer-lockable version is shipped with the Secured Silicon Sector unprotected, allowing customers to utilize that sector in any form they prefer. The customer-lockable version has the secured sector Indicator Bit permanently set to a "0". Therefore, the Secured Silicon Sector Indicator Bit prevents customer, lockable device from being used to replace devices that are factory locked. The system access the Secured Silicon Sector through a command sequence (refer to "Enter Secured Silicon/ Exit Secured Silicon Sector command Sequence). After the system has written the Enter Secured Silicon Sector command sequence, it may read the Secured Silicon Sector by using the address normally occupied by the first sector SA0. Once entry the Secured Silicon Sector the operation of boot sectors is disabled but the operation
FACTORY LOCKED:Secured Silicon Sector Programmed and Protected At the Factory
In device with an ESN, the Secured Silicon Sector is protected when the device is shipped from the factory. The Secured Silicon Sector cannot be modified in any way. A factory locked device has an 8-word random ESN at address 000000h-000007h.
CUSTOMER LOCKABLE:Secured Silicon Sector NOT Programmed or Protected At the Factory
As an alternative to the factory-locked version, the device may be ordered such that the customer may program and protect the 128-word Secured Silicon Sector. Programming and protecting the Secured Silicon Sector must be used with caution since, once protected, there is no procedure available for unprotected the Secured Silicon Sector area and none of the bits in the Secured Silicon Sector memory space can be modified in any way. The Secured Silicon Sector area can be protected using one of the following procedures: Write the three-cycle Enter Secured Silicon Sector Region command sequence, and then follow the in-system sector protect algorithm as shown in Figure 15, except that RESET# may be at either VIH or VID. This allows insystem protection of the Secured Silicon Sector without raising any device pin to a high voltage. Note that method is only applicable to the Secured Silicon Sector.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
18
MX29LV128M H/L
Write the three-cycle Enter Secured Silicon Sector Region command sequence, and then alternate method of sector protection described in the :Sector Group Protection and Unprotect" section. Once the Secured Silicon Sector is programmed, locked and verified, the system must write the Exit Secured Silicon Sector Region command sequence to return to reading and writing the remainder of the array.
POWER SUPPLY DE COUPLING
In order to reduce power switching effect, each device should have a 0.1uF ceramic capacitor connected between its VCC and GND.
LOW VCC WRITE INHIBIT
When VCC is less than VLKO the device does not accept any write cycles. This protects data during VCC power-up and power-down. The command register and all internal program/erase circuits are disabled, and the device resets. Subsequent writes are ignored until VCC is greater than VLKO. The system must provide the proper signals to the control pins to prevent unintentional write when VCC is greater than VLKO.
WRITE PULSE "GLITCH" PROTECTION
Noise pulses of less than 5ns (typical) on CE# or WE# will not initiate a write cycle.
LOGICAL INHIBIT
Writing is inhibited by holding any one of OE# = VIL, CE# = VIH or WE# = VIH. To initiate a write cycle CE# and WE# must be a logical zero while OE# is a logical one.
POWER-UP SEQUENCE
The MX29LV128M H/L powers up in the Read only mode. In addition, the memory contents may only be altered after successful completion of the predefined command sequences.
POWER-UP WRITE INHIBIT
If WE#=CE#=VIL and OE#=VIH during power up, the device does not accept commands on the rising edge of WE#. The internal state machine is automatically reset to the read mode on power-up.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
19
MX29LV128M H/L
SOFTWARE COMMAND DEFINITIONS
Device operations are selected by writing specific address and data sequences into the command register. Writing incorrect address and data values or writing them in the improper sequence will reset the device to the read mode. Table 3 defines the valid register command sequences. Note that the Erase Suspend (B0H) and Erase Resume (30H) commands are valid only while the Sector Erase operation is in progress. Either of the two reset command sequences will reset the device (when applicable). All addresses are latched on the falling edge of WE# or CE#, whichever happens later. All data are latched on rising edge of WE# or CE#, whichever happens first.
TABLE 3. MX29LV128M H/L COMMAND DEFINITIONS
First Bus Command Read (Note 5) Reset (Note 6) Automatic Select (Note 7) Manufacturer ID Device ID (Note 8) Secured Sector Factory Protect (Note 9) Sector Group Protect Verify (Note 10) Enter Secured Silicon Sector Exit Secured Silicon Sector Program Write to Buffer (Note 11) Program Buffer to Flash Write to Buffer Abort Reset (Note 12) Chip Erase Sector Erase Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte
Program/Erase Suspend (Note 13) Program/Erase Resume (Note 14)
Second Bus Third Bus Cycle Cycle
Fourth Bus Cycle Data
Fifth Bus Cycle
Sixth Bus Cycle
Bus 1 1 4 4 4 4 4 4 4 4 3 3 4 4 4 4 6 6 1 1 3 3 6 6 6 6 1 1 1 1
Cycle RA XXX 555 AAA 555 AAA 555 AAA 555 AAA 555 AAA 555 AAA 555 AAA 555 AAA SA SA 555 AAA 555 AAA 555 AAA XXX XXX 55 AA RD F0 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA 29 29 AA AA AA AA AA AA B0 30 98 98
Cycles Addr Data Addr
Data Addr Data Addr
Addr Data Addr Data
2AA 555 2AA 555 2AA 555 2AA 555 2AA 555 2AA 555 2AA 555 2AA 555
55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
555 555 555 555 555 555 555 SA SA
90 90 90 90 88 90 A0 25 25
X00 X00 X01 X02 X03 X06
C2H C2H ID1 ID1 see note 9 X0E ID2 X1C ID2 X0F ID3 X1E ID3
AAA 90 AAA 90 AAA 90 AAA 90 AAA 88
(SA)X02 XX00/ (SA)X04 XX01
XXX XXX PA PA SA SA
00 00 PD PD WC BC PA PA PD PD WBL PD WBL PD
AAA 90 AAA A0
2AA 555 2AA 555 2AA 555
55 55 55 55 55 55
555 555 555
F0 80 80 555 AAA 555 AAA AA AA AA AA 2AA 55 555 55 2AA 55 555 55 555 10 AAA 10 SA SA 30 30
AAA F0 AAA 80 AAA 80
CFI Query (Note 15)
Word Byte
P/N:PM1134
REV. 1.1, FEB. 08, 2006
20
MX29LV128M H/L
Legend: X=Don't care RA=Address of the memory location to be read. RD=Data read from location RA during read operation. PA=Address of the memory location to be programmed. Addresses are latched on the falling edge of the WE# or CE# pulse, whichever happen later. DDI=Data of device identifier C2H for manufacture code
PD=Data to be programmed at location PA. Data is latched on the rising edge of WE# or CE# pulse. SA=Address of the sector to be erase or verified (in autoselect mode). Address bits A21-A12 uniquely select any sector. WBL=Write Buffer Location. Address must be within the same write buffer page as PA. WC=Word Count. Number of write buffer locations to load minus 1. BC=Byte Count. Number of write buffer locations to load minus 1.
Notes: 1. See Table 1 for descriptions of bus operations. 2. All values are in hexadecimal. 3. Except when reading array or automatic select data, all bus cycles are write operation. 4. Address bits are don't care for unlock and command cycles, except when PA or SA is required. 5. No unlock or command cycles required when device is in read mode. 6. The Reset command is required to return to the read mode when the device is in the automatic select mode or if Q5 goes high. 7. The fourth cycle of the automatic select command sequence is a read cycle. 8. The device ID must be read in three cycles. The data is 01h for top boot and 00h for bottom boot. 9. If WP# protects the highest address sectors, the data is 98h for factory locked and 18h for not factory locked. If WP# protects the lowest address sectors, the data is 88h for factory locked and 08h for not factor locked. 10. The data is 00h for an unprotected sector/sector block and 01h for a protected sector/sector block. 11. The total number of cycles in the command sequence is determined by the number of words written to the write buffer. The maximum number of cycles in the command sequence is 21(Word Mode) / 37(Byte Mode). 12. Command sequence resets device for next command after aborted write-to-buffer operation. 13. The system may read and program functions in non-erasing sectors, or enter the automatic select mode, when in the erase Suspend mode. The Erase Suspend command is valid only during a sector erase operation. 14. The Erase Resume command is valid only during the Erase Suspend mode. 15. Command is valid when device is ready to read array data or when device is in automatic select mode.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
21
MX29LV128M H/L
READING ARRAY DATA
The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. The device is also ready to read array data after completing an Automatic Program or Automatic Erase algorithm. After the device accepts an Erase Suspend command, the device enters the Erase Suspend mode. The system can read array data using the standard read timings, except that if it reads at an address within erasesuspended sectors, the device outputs status data. After completing a programming operation in the Erase Suspend mode, the system may once again read array data with the same exception. See Erase Suspend/Erase Resume Commands for more information on this mode. The system must issue the reset command to re-enable the device for reading array data if Q5 goes high, or while in the automatic select mode. See the "Reset Command" section, next. array data (also applies during Erase Suspend).
SILICON ID READ COMMAND SEQUENCE
The SILICON ID READ command sequence allows the host system to access the manufacturer and devices codes, and determine whether or not a sector is protected. Table 2 shows the address and data requirements. This method is an alternative to that shown in Table 1, which is intended for PROM programmers and requires VID on address bit A9. The SILICON ID READ command sequence is initiated by writing two unlock cycles, followed by the SILICON ID READ command. The device then enters the SILICON ID READ mode, and the system may read at any address any number of times, without initiating another command sequence. A read cycle at address XX00h retrieves the manufacturer code. A read cycle at address XX01h returns the device code. A read cycle containing a sector address (SA) and the address 02h returns 01h if that sector is protected, or 00h if it is unprotected. Refer to Table for valid sector addresses. The system must write the reset command to exit the automatic select mode and return to reading array data.
RESET COMMAND
Writing the reset command to the device resets the device to reading array data. Address bits are don't care for this command. The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This resets the device to reading array data. Once erasure begins, however, the device ignores reset commands until the operation is complete. The reset command may be written between the sequence cycles in a program command sequence before programming begins. This resets the device to reading array data (also applies to programming in Erase Suspend mode). Once programming begins, however, the device ignores reset commands until the operation is complete. The reset command may be written between the sequence cycles in an SILICON ID READ command sequence. Once in the SILICON ID READ mode, the reset command must be written to return to reading array data (also applies to SILICON ID READ during Erase Suspend). If Q5 goes high during a program or erase operation, writing the reset command returns the device to reading
BYTE/WORD PROGRAM COMMAND SEQUENCE
The command sequence requires four bus cycles, and is initiated by writing two unlock write cycles, followed by the program set-up command. The program address and data are written next, which in turn initiate the Embedded Program algorithm. The system is not required to provide further controls or timings. The device automatically generates the program pulses and verifies the programmed cell margin. Table 3 shows the address and data requirements for the byte program command sequence. When the Embedded Program algorithm is complete, the device then returns to reading array data and addresses are no longer latched. The system can determine the status of the program operation by using Q7, Q6, or RY/ BY#. See "Write Operation Status" for information on these status bits. Any commands written to the device during the Embedded Program Algorithm are ignored. Note that a hardREV. 1.1, FEB. 08, 2006
P/N:PM1134
22
MX29LV128M H/L
ware reset immediately terminates the programming operation. The Byte/Word Program command sequence should be reinitiated once the device has reset to reading array data, to ensure data integrity. Programming is allowed in any sequence and across sector boundaries. A bit cannot be programmed from a "0" back to a "1". Attempting to do so may halt the operation and set Q5 to "1", or cause the Data# Polling algorithm to indicate the operation was successful. However, a succeeding read will show that the data is still "0". Only erase operations can convert a "0" to a "1". multiple times, the address/data pair counter will be decremented for every data load operation. The host system must therefore account for loading a write-buffer location more than once. The counter decrements for each data load operation, not for each unique write-buffer-address location. Note also that if an address location is loaded more than once into the buffer, the final data loaded for that address will be programmed. Once the specified number of write buffer locations have been loaded, the system must then write the Program Buffer to Flash command at the sector address. Any other address and data combination aborts the Write Buffer Programming operation. The device then begins programming. Data polling should be used while monitoring the last address location loaded into the write buffer. Q7, Q6, Q5, and Q1 should be monitored to determine the device status during Write Buffer Programming. The write-buffer programming operation can be suspended using the standard program suspend/resume commands. Upon successful completion of the Write Buffer Programming operation, the device is ready to execute the next command. The Write Buffer Programming Sequence can be aborted in the following ways: • Load a value that is greater than the page buffer size during the Number of Locations to Program step. • Write to an address in a sector different than the one specified during the Write-Buffer-Load command. • Write an Address/Data pair to a different write-bufferpage than the one selected by the Starting Address during the write buffer data loading stage of the operation. • Write data other than the Confirm Command after the specified number of data load cycles. The abort condition is indicated by Q1 = 1, Q7 = DATA# (for the last address location loaded), Q6 = toggle, and Q5=0. A Write-to-Buffer-Abort Reset command sequence must be written to reset the device for the next operation. Note that the full 3-cycle Write-to-Buffer-Abort Reset command sequence is required when using WriteBuffer-Programming features in Unlock Bypass mode.
Write Buffer Programming
Write Buffer Programming allows the system write to a maximum of 16 words/32 bytes in one programming operation. This results in faster effective programming time than the standard programming algorithms. The Write Buffer Programming command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the Write Buffer Load command written at the Sector Address in which programming will occur. The fourth cycle writes the sector address and the number of word locations, minus one, to be programmed. For example, if the system will program 6 unique address locations, then 05h should be written to the device. This tells the device how many write buffer addresses will be loaded with data and therefore when to expect the Program Buffer to Flash command. The number of locations to program cannot exceed the size of the write buffer or the operation will abort. The fifth cycle writes the first address location and data to be programmed. The write-buffer-page is selected by address bits AMAX-4. All subsequent address/data pairs must fall within the selected-write-buffer-page. The system then writes the remaining address/data pairs into the write buffer. Write buffer locations may be loaded in any order. The write-buffer-page address must be the same for all address/data pairs loaded into the write buffer. (This means Write Buffer Programming cannot be performed across multiple write-buffer pages. This also means that Write Buffer Programming cannot be performed across multiple sectors. If the system attempts to load programming data outside of the selected write-buffer page, the operation will abort. Note that if a Write Buffer address location is loaded
Program Suspend/Program Resume Command Sequence
The Program Suspend command allows the system to interrupt a programming operation or a Write to Buffer
P/N:PM1134
REV. 1.1, FEB. 08, 2006
23
MX29LV128M H/L
programming operation so that data can be read from any non-suspended sector. When the Program Suspend command is written during a programming process, the device halts the program operation within 15us maximum (5 us typical) and updates the status bits. Addresses are not required when writing the Program Suspend command. After the programming operation has been suspended, the system can read array data from any non-suspended sector. The Program Suspend command may also be issued during a programming operation while an erase is suspended. In this case, data may be read from any addresses not in Erase Suspend or Program Suspend. If a read is needed from the Secured Silicon Sector area (One-time Program area), then user must use the proper command sequences to enter and exit this region. The system may also write the autoselect command sequence when the device is in the Program Suspend mode. The system can read as many autoselect codes as required. When the device exits the autoselect mode, the device reverts to the Program Suspend mode, and is ready for another valid operation. See Autoselect Command Sequence for more information. After the Program Resume command is written, the device reverts to programming. The system can determine the status of the program operation using the Q7 or Q6 status bits, just as in the standard program operation. See Write Operation Status for more information.
AUTOMATIC CHIP/SECTOR ERASE COMMAND
The device does not require the system to preprogram prior to erase. The Automatic Erase algorithm automatically pre-program and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. Table 3 shows the address and data requirements for the chip erase command sequence. Any commands written to the chip during the Automatic Erase algorithm are ignored. Note that a hardware reset during the chip erase operation immediately terminates the operation. The Chip Erase command sequence should be reinitiated once the device has returned to reading array data, to ensure data integrity. The system can determine the status of the erase operation by using Q7, Q6, Q2, or RY/BY#. See "Write Operation Status" for information on these status bits. When the Automatic Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched. Figure 10 illustrates the algorithm for the erase operation. See the Erase/Program Operations tables in "AC Characteristics" for parameters, and to Figure 9 for timing diagrams.
SETUP AUTOMATIC CHIP/SECTOR ERASE
Chip erase is a six-bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command 80H. Two more "unlock" write cycles are then followed by the chip erase command 10H, or the sector erase command 30H. The MX29LV128M H/L contains a Silicon-ID-Read operation to supplement traditional PROM programming methodology. The operation is initiated by writing the read silicon ID command sequence into the command register. Following the command write, a read cycle with A1=VIL,A0=VIL retrieves the manufacturer code. A read cycle with A1=VIL, A0=VIH returns the device code.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
24
MX29LV128M H/L
SECTOR ERASE COMMANDS
The Automatic Sector Erase does not require the device to be entirely pre-programmed prior to executing the Automatic Set-up Sector Erase command and Automatic Sector Erase command. Upon executing the Automatic Sector Erase command, the device will automatically program and verify the sector(s) memory for an all-zero data pattern. The system is not required to provide any control or timing during these operations. When the sector(s) is automatically verified to contain an all-zero pattern, a self-timed sector erase and verify begin. The erase and verify operations are complete when the data on Q7 is "1" and the data on Q6 stops toggling for two consecutive read cycles, at which time the device returns to the Read mode. The system is not required to provide any control or timing during these operations. When using the Automatic Sector Erase algorithm, note that the erase automatically terminates when adequate erase margin has been achieved for the memory array (no erase verification command is required). Sector erase is a six-bus cycle operation. There are two "unlock" write cycles. These are followed by writing the set-up command 80H. Two more "unlock" write cycles are then followed by the sector erase command 30H. The sector address is latched on the falling edge of WE# or CE#, whichever happens later , while the command (data) is latched on the rising edge of WE# or CE#, whichever happens first. Sector addresses selected are loaded into internal register on the sixth falling edge of WE# or CE#, whichever happens later. Each successive sector load cycle started by the falling edge of WE# or CE#, whichever happens later must begin within 50us from the rising edge of the preceding WE# or CE#, whichever happens first. Otherwise, the loading period ends and internal auto sector erase cycle starts. (Monitor Q3 to determine if the sector erase timer window is still open, see section Q3, Sector Erase Timer.) Any command other than Sector Erase(30H) or Erase Suspend(B0H) during the time-out period resets the device to read mode. device requires a maximum 20us to suspend the sector erase operation. However, When the Erase Suspend command is written during the sector erase time-out, the device immediately terminates the time-out period and suspends the erase operation. After this command has been executed, the command register will initiate erase suspend mode. The state machine will return to read mode automatically after suspend is ready. At this time, state machine only allows the command register to respond to the Erase Resume, program data to, or read data from any sector not selected for erasure. The system can determine the status of the program operation using the Q7 or Q6 status bits, just as in the standard program operation. After an erase-suspend program operation is complete, the system can once again read array data within non-suspended blocks.
ERASE RESUME
This command will cause the command register to clear the suspend state and return back to Sector Erase mode but only if an Erase Suspend command was previously issued. Erase Resume will not have any effect in all other conditions. Another Erase Suspend command can be written after the chip has resumed erasing.
ERASE SUSPEND
This command only has meaning while the state machine is executing Automatic Sector Erase operation, and therefore will only be responded during Automatic Sector Erase operation. When the Erase Suspend command is issued during the sector erase operation, the
P/N:PM1134
REV. 1.1, FEB. 08, 2006
25
MX29LV128M H/L
QUERY COMMAND AND COMMON FLASH INTERFACE (CFI) MODE
MX29LV128M H/L is capable of operating in the CFI mode. This mode all the host system to determine the manufacturer of the device such as operating parameters and configuration. Two commands are required in CFI mode. Query command of CFI mode is placed first, then the Reset command exits CFI mode. These are described in Table 4. The single cycle Query command is valid only when the device is in the Read mode, including Erase Suspend, Standby mode, and Read ID mode; however, it is ignored otherwise. The Reset command exits from the CFI mode to the Read mode, or Erase Suspend mode, or read ID mode. The command is valid only when the device is in the CFI mode.
Table 4-1. CFI mode: Identification Data Values
(All values in these tables are in hexadecimal) Description Query-unique ASCII string "QRY" Address h Address h (x16) (x8) 10 20 11 22 12 24 13 26 14 28 15 2A 16 2C 17 2E 18 30 19 32 1A 34 Data h 0051 0052 0059 0002 0000 0040 0000 0000 0000 0000 0000
Primary vendor command set and control interface ID code Address for primary algorithm extended query table Alternate vendor command set and control interface ID code (none) Address for secondary algorithm extended query table (none)
Table 4-2. CFI Mode: System Interface Data Values
Description VCC supply, minimum (2.7V) VCC supply, maximum (3.6V) VPP supply, minimum (none) VPP supply, maximum (none) Typical timeout for single word/byte write (2N us) Typical timeout for maximum size buffer write (2N us) Typical timeout for individual block erase (2N ms) Typical timeout for full chip erase (2N ms) Maximum timeout for single word/byte write times (2N X Typ) Maximum timeout for maximum size buffer write times (2N X Typ) Maximum timeout for individual block erase times (2N X Typ) Maximum timeout for full chip erase times (not supported)
P/N:PM1134
Address h Address h (x16) (x8) 1B 36 1C 38 1D 3A 1E 3C 1F 3E 20 40 21 42 22 44 23 46 24 48 25 4A 26 4C
Data h 0027 0036 0000 0000 0007 0007 000A 0000 0001 0005 0004 0000
REV. 1.1, FEB. 08, 2006
26
MX29LV128M H/L
Table 4-3. CFI Mode: Device Geometry Data Values
Description Device size (2n bytes) Flash device interface code Address h Address h (x16) (x8) 27 4E 28 50 29 52 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 54 56 58 5A 5C 5E 60 62 64 66 68 6A 6C 6E 70 72 74 76 78 Data h 0018 0002 0000 0005 0000 0001 00FF 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Maximum number of bytes in multi-byte write = 2n Number of erase block regions Erase block region 1 information [2E,2D] = # of blocks in region -1 [30, 2F] = size in multiples of 256-bytes
Erase Block Region 2 Information (refer to CFI publication 100)
Erase Block Region 3 Information (refer to CFI publication 100)
Erase Block Region 4 Information (refer to CFI publication 100)
P/N:PM1134
REV. 1.1, FEB. 08, 2006
27
MX29LV128M H/L
Table 4-4. CFI Mode: Primary Vendor-Specific Extended Query Data Values
Description Query-unique ASCII string "PRI" Address h Address h (x16) 40 41 42 Major version number, ASCII Minor version number, ASCII Address sensitive unlock (0=required, 1= not required) Erase suspend (2= to read and write) Sector protect (N= # of sectors/group) Temporary sector unprotect (1=supported) Sector protect/unprotect scheme Simultaneous R/W operation (0=not supported) Burst mode type (0=not supported) Page mode type (0=not supported) ACC (Acceleration) Supply Minimum 00h=Not Supported, D7-D4: Volt, D3-D0:100mV ACC (Acceleration) Supply Maximum 00h=Not Supported, D7-D4: Volt, D3-D0:100mV Top/Bottom Boot Sector Flag 02h=Bottom Boot Device, 03h=Top Boot Device 04h=uniform sectors bottom WP# protect, 05h=uniform sectors top WP# protect Program Suspend 00h=Not Supported, 01h=Supported 50 A0 0001 4F 9E 0004/ 0005 4E 9C 00C5 43 44 45 46 47 48 49 4A 4B 4C 4D (x8) 80 82 84 86 88 8A 8C 8E 90 92 94 96 98 9A 0050 0052 0049 0031 0033 0000 0002 0001 0001 0004 0000 0000 0001 00B5 Data h
P/N:PM1134
REV. 1.1, FEB. 08, 2006
28
MX29LV128M H/L
WRITE OPERATION STATUS
The device provides several bits to determine the status of a write operation: Q2, Q3, Q5, Q6, Q7, and RY/BY#. Table 5 and the following subsections describe the functions of these bits. Q7, RY/BY#, and Q6 each offer a method for determining whether a program or erase operation is complete or in progress. These three bits are discussed first.
Table 5. Write Operation Status
Status Byte/Word Program in Auto Program Algorithm Auto Erase Algorithm Erase Suspend Read Erase Suspended Mode (Erase Suspended Sector) Erase Suspend Read (Non-Erase Suspended Sector) Erase Suspend Program Program-Suspended Read Program Suspend Write-to-Buffer (Program-Suspended Sector) Program-Suspended Read (Non-Program-Suspended Sector) Busy Abort Q7# Q7# Toggle Toggle 0 0 N/A N/A N/A N/A 0 1 0 0 Data 1 Q7# Toggle 0 N/A N/A N/A 0 1 Invalid (not allowed) Data Q7 Q7# 0 1 Q6 Toggle Toggle No Toggle Data Data Data Data Data 1 Q5 0 0 0 Q3 N/A 1 N/A Q2 No Toggle Toggle Toggle N/A N/A 0 1 Q1 0 RY/BY# 0
Notes: 1. Q5 switches to "1" when an Word/Byte Program, Erase, or Write-to-Buffer operation has exceeded the maximum timing limits. Refer to the section on Q5 for more information. 2. Q7 and Q2 require a valid address when reading status information. Refer to the appropriate subsection for further details. 3. The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location. 4. Q1 switches to "1" when the device has aborted the write-to-buffer operation.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
29
MX29LV128M H/L
Q7: Data# Polling
The Data# Polling bit, Q7, indicates to the host system whether an Automatic Algorithm is in progress or completed, or whether the device is in Erase Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the program or erase command sequence. During the Automatic Program algorithm, the device outputs on Q7 the complement of the datum programmed to Q7. This Q7 status also applies to programming during Erase Suspend. When the Automatic Program algorithm is complete, the device outputs the datum programmed to Q7. The system must provide the program address to read valid status information on Q7. If a program address falls within a protected sector, Data# Polling on Q7 is active for approximately 1 us, then the device returns to reading array data. During the Automatic Erase algorithm, Data# Polling produces a "0" on Q7. When the Automatic Erase algorithm is complete, or if the device enters the Erase Suspend mode, Data# Polling produces a "1" on Q7. This is analogous to the complement/true datum output described for the Automatic Program algorithm: the erase function changes all the bits in a sector to "1" prior to this, the device outputs the "complement," or "0". The system must provide an address within any of the sectors selected for erasure to read valid status information on Q7. After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling on Q7 is active for approximately 100 us, then the device returns to reading array data. If not all selected sectors are protected, the Automatic Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. When the system detects Q7 has changed from the complement to true data, it can read valid data at Q7-Q0 on the following read cycles. This is because Q7 may change asynchronously with Q0-Q6 while Output Enable (OE#) is asserted low. happens first pulse in the command sequence (prior to the program or erase operation), and during the sector time-out. During an Automatic Program or Erase algorithm operation, successive read cycles to any address cause Q6 to toggle. The system may use either OE# or CE# to control the read cycles. When the operation is complete, Q6 stops toggling. After an erase command sequence is written, if all sectors selected for erasing are protected, Q6 toggles for 100us and returns to reading array data. If not all selected sectors are protected, the Automatic Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. The system can use Q6 and Q2 together to determine whether a sector is actively erasing or is erase suspended. When the device is actively erasing (that is, the Automatic Erase algorithm is in progress), Q6 toggling. When the device enters the Erase Suspend mode, Q6 stops toggling. However, the system must also use Q2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use Q7. If a program address falls within a protected sector, Q6 toggles for approximately 2us after the program command sequence is written, then returns to reading array data. Q6 also toggles during the erase-suspend-program mode, and stops toggling once the Automatic Program algorithm is complete. Table 5 shows the outputs for Toggle Bit I on Q6.
Q2:Toggle Bit II
The "Toggle Bit II" on Q2, when used with Q6, indicates whether a particular sector is actively erasing (that is, the Automatic Erase algorithm is in process), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE# or CE#, whichever happens first pulse in the command sequence. Q2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use either OE# or CE# to control the read cycles.) But Q2 cannot distinguish whether the sector is actively erasing or is erase-suspended. Q6, by com-
Q6:Toggle BIT I
Toggle Bit I on Q6 indicates whether an Automatic Program or Erase algorithm is in progress or complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is valid after the rising edge of the final WE# or CE#, whichever
P/N:PM1134
REV. 1.1, FEB. 08, 2006
30
MX29LV128M H/L
parison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sectors and mode information. Refer to Table 5 to compare outputs for Q2 and Q6. If this time-out condition occurs during sector erase operation, it specifies that a particular sector is bad and it may not be reused. However, other sectors are still functional and may be used for the program or erase operation. The device must be reset to use other sectors. Write the Reset command sequence to the device, and then execute program or erase command sequence. This allows the system to continue to use the other active sectors in the device. If this time-out condition occurs during the chip erase operation, it specifies that the entire chip is bad or combination of sectors are bad. If this time-out condition occurs during the byte/word programming operation, it specifies that the entire sector containing that byte is bad and this sector may not be reused, (other sectors are still functional and can be reused). The time-out condition may also appear if a user tries to program a non blank location without erasing. In this case the device locks out and never completes the Automatic Algorithm operation. Hence, the system never reads a valid data on Q7 bit and Q6 never stops toggling. Once the Device has exceeded timing limits, the Q5 bit will indicate a "1". Please note that this is not a device failure condition since the device was incorrectly used. The Q5 failure condition may appear if the system tries to program a to a "1" location that is previously programmed to "0". Only an erase operation can change a "0" back to a "1". Under this condition, the device halts the operation, and when the operation has exceeded the timing limits, Q5 produces a "1".
Reading Toggle Bits Q6/ Q2
Whenever the system initially begins reading toggle bit status, it must read Q7-Q0 at least twice in a row to determine whether a toggle bit is toggling. Typically, the system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on Q7-Q0 on the following read cycle. However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note whether the value of Q5 is high (see the section on Q5). If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as Q5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or erase operation. If it is still toggling, the device did not complete the operation successfully, and the system must write the reset command to return to reading array data. The remaining scenario is that system initially determines that the toggle bit is toggling and Q5 has not gone high. The system may continue to monitor the toggle bit and Q5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation.
Q3:Sector Erase Timer
After the completion of the initial sector erase command sequence, the sector erase time-out will begin. Q3 will remain low until the time-out is complete. Data# Polling and Toggle Bit are valid after the initial sector erase command sequence. If Data# Polling or the Toggle Bit indicates the device has been written with a valid erase command, Q3 may be used to determine if the sector erase timer window is still open. If Q3 is high ("1") the internally controlled erase cycle has begun; attempts to write subsequent commands to the device will be ignored until the erase operation is completed as indicated by Data# Polling or
Q5:Program/Erase Timing
Q5 will indicate if the program or erase time has exceeded the specified limits (internal pulse count). Under these conditions Q5 will produce a "1". This time-out condition indicates that the program or erase cycle was not successfully completed. Data# Polling and Toggle Bit are the only operating functions of the device under this condition.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
31
MX29LV128M H/L
Toggle Bit. If Q3 is low ("0"), the device will accept additional sector erase commands. To insure the command has been accepted, the system software should check the status of Q3 prior to and following each subsequent sector erase command. If Q3 were high on the second status check, the command may not have been accepted. If the time between additional erase commands from the system can be less than 50us, the system need not to monitor Q3.
Q1: Write-to-Buffer Abort
Q1 indicates whether a Write-to-Buffer operation was aborted. Under these conditions Q1 produces a "1". The system must issue the Write-to-Buffer-Abort-Reset command sequence to return the device to reading array data. See Write Buffer section for more details.
RY/BY#:READY/BUSY OUTPUT
The RY/BY# is a dedicated, open-drain output pin that indicates whether an Embedded Algorithm is in progress or complete. The RY/BY# status is valid after the rising edge of the final WE# pulse in the command sequence. Since RY/BY# is an open-drain output, several RY/BY# pins can be tied together in parallel with a pull-up resistor to VCC . If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the Erase Suspend mode.) If the output is high (Ready), the device is ready to read array data (including during the Erase Suspend mode), or is in the standby mode.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
32
MX29LV128M H/L
ABSOLUTE MAXIMUM RATINGS
Storage Temperature Plastic Packages . . . . . . . . . . . . . ..... -65oC to +150oC Ambient Temperature with Power Applied. . . . . . . . . . . . . .... -65oC to +125oC Voltage with Respect to Ground VCC (Note 1) . . . . . . . . . . . . . . . . . -0.5 V to +4.0 V A9, OE#, and RESET# (Note 2) . . . . . . . . . . . ....-0.5 V to +12.5 V All other pins (Note 1) . . . . . . . -0.5 V to VCC +0.5 V Output Short Circuit Current (Note 3) . . . . . . 200 mA Notes: 1. Minimum DC voltage on input or I/O pins is -0.5 V. During voltage transitions, input or I/O pins may overshoot VSS to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input or I/O pins is VCC +0.5 V. During voltage transitions, input or I/O pins may overshoot to VCC +2.0 V for periods up to 20ns. 2. Minimum DC input voltage on pins A9, OE#, and RESET# is -0.5 V. During voltage transitions, A9, OE#, and RESET# may overshoot VSS to -2.0 V for periods of up to 20 ns. Maximum DC input voltage on pin A9 is +12.5 V which may overshoot to 14.0 V for periods up to 20 ns. 3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.
OPERATING RATINGS
Commercial (C) Devices Ambient Temperature (TA ). . . . . . . . . . . . 0° C to +70° C Industrial (I) Devices Ambient Temperature (TA ). . . . . . . . . . -40° C to +85° C VCC Supply Voltages VCC for full voltage range. . . . . . . . . . . +2.7 V to 3.6 V VCC for regulated voltage range. . . . . . +3.0 V to 3.6 V
Operating ranges define those limits between which the functionality of the device is guaranteed.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
33
MX29LV128M H/L
TA=-40° C to 85° C, VCC=2.7V~3.6V (VCC=3.0V~3.6V for 90R)
Test Conditions VIN = VSS to VCC , VCC = VCC max VCC=VCC max; A9 = 12.5V VOUT = VSS to VCC , VCC = VCC max CE# = VIL, 10 MHz OE# = VIH 5 MHz 1 MHz CE# = VIL , 10 MHz OE# = VIH 40 MHz CE# = VIL , OE# = VIH CE#, RESET# = VCC ± 0.3V WP# = VIH RESET# =VSS ± 0.3V WP# = VIH VIL = VSS ± 0.3V, VIH = VCC ± 0.3V, WP# = VIH -0.5 0.7xVCC 11.5 11.5 Min. Typ. Max. ±1.0 35 ±1.0 35 18 5 5 10 50 20 20 20 50 25 20 20 40 60 50 50 50 Unit uA uA uA mA mA mA mA mA mA uA uA uA
DC CHARACTERISTICS
Parameter Description I LI Input Load Current (Note 1) I LIT I LO A9 Input Leakage Current Output Leakage Current
ICC1 VCC Initial Read Current (Notes 2,3) ICC2 VCC Intra-Page Read Current (Notes 2,3) ICC3 VCC Active Write Current (Notes 2,4,6) ICC4 VCC Standby Current (Note 2) ICC5 VCC Reset Current (Note 2) ICC6 Automatic Sleep Mode (Notes 2,5) VIL VIH VHH Input Low Voltage Input High Voltage Voltage for ACC Program Acceleration VID Voltage for Autoselect and Temporary Sector Unprotect VOL Output Low Voltage VOH1 Output High Voltage VOH2 VLKO Low VCC Lock-Out Voltage (Note 4)
VCC = 2.7V ~ 3.6V VCC = 3.0 V ± 10%
12.0 12.0
0.8 VCC+0.5 12.5 12.5 0.45
V V V V V V V V
IOL= 4.0mA,VCC=VCC min IOH=-2.0mA,VCC=VCC min 0.85VCC IOH=-100uA,VCC=VCC min VCC-0.4 2.3
2.5
Notes: 1. On the WP#/ACC pin only, the maximum input load current when WP# = VIL is ± 5.0uA. 2. Maximum ICC specifications are tested with VCC = VCC max. 3. The ICC current listed is typically is less than 2 mA/MHz, with OE# at VIH. Typical specifications are for VCC = 3.0V. 4. ICC active while Embedded Erase or Embedded Program is in progress. 5. Automatic sleep mode enables the low power mode when addresses remain stable for t ACC + 30 ns. 6. Not 100% tested. 7. A9=12.5V when TA=0° C to 85° C, A9=12V when when TA=-40° C to 0° C.
P/N:PM1134 REV. 1.1, FEB. 08, 2006
34
MX29LV128M H/L
SWITCHING TEST CIRCUITS TEST SPECIFICATIONS
Test Condition Output Load Output Load Capacitance, CL (including jig capacitance) Input Rise and Fall Times Input Pulse Levels Input timing measurement reference levels Output timing measurement reference levels All Speeds 1 TTL gate 30 5 0.0-3.0 1.5 1.5 Unit pF ns V V V
DEVICE UNDER TEST
2.7K ohm 3.3V
CL
6.2K ohm
DIODES=IN3064 OR EQUIVALENT
KEY TO SWITCHING WAVEFORMS
WAVEFORM INPUTS Steady Changing from H to L Changing from L to H Don't Care, Any Change Permitted Does Not Apply Changing, State Unknown Center Line is High Impedance State(High Z) OUTPUTS
SWITCHING TEST WAVEFORMS
3.0V
1.5V
Measurement Level
1.5V OUTPUT
0.0V INPUT
P/N:PM1134
REV. 1.1, FEB. 08, 2006
35
MX29LV128M H/L
AC CHARACTERISTICS Read-Only Operations
Parameter Std. tRC tACC tCE tPACC tOE tDF tDF tOH Description Read Cycle Time (Note 1) Address to Output Delay Chip Enable to Output Delay Page Access Time Output Enable to Output Delay Chip Enable to Output High Z (Note 1) Output Enable to Output High Z (Note 1) Output Hold Time From Address, CE# or OE#, whichever Occurs First Read tOEH Output Enable Hold Time (Note 1) Toggle and Data# Polling Min Min 35 10 ns ns CE#, OE#=VIL OE#=VIL Test Setup Min Max Max Max Max Max Max Min
TA=-40° C to 85° C, VCC=2.7V~3.6V (VCC=3.0V~3.6V for 90R)
Speed Options 90R 90 90 90 25 35 16 16 0 100 100 100 100 25 35 Unit ns ns ns ns ns ns ns ns
Notes: 1. Not 100% tested. 2. See SWITCHING TEST CIRCUITS and TEST SPECIFICATIONS TABLE for test specifications.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
36
MX29LV128M H/L
Figure 1. READ TIMING WAVEFORMS
tRC VIH
Addresses
VIL
ADD Valid
tCE VIH
CE#
VIL tRH tRH VIH
WE#
VIL VIH VIL tOH tOEH tOE tDF
OE#
tACC
Outputs
VOH VOL VIH
HIGH Z
DATA Valid
HIGH Z
RESET#
VIL
RY/BY#
0V
Figure 2. PAGE READ TIMING WAVEFORMS
A2-A21
Same Page
(A-1), A0~A2
tACC
CE#
tPACC
OE#
tPACC
tPACC
Output
Qa
Qb
Qc
Qd
P/N:PM1134
REV. 1.1, FEB. 08, 2006
37
MX29LV128M H/L
AC CHARACTERISTICS
Parameter tREADY1 tREADY2 tRP tRH tRB tRPD Description RESET# PIN Low (During Automatic Algorithms) to Read or Write (See Note) RESET# PIN Low (NOT During Automatic Algorithms) to Read or Write (See Note) RESET# Pulse Width (NOT During Automatic Algorithms) RESET# High Time Before Read (See Note) RY/BY# Recovery Time(to CE#, OE# go low) RESET# Low to Standby Mode MIN MIN MIN MIN 500 50 0 20 ns ns ns us MAX 500 ns Test Setup All Speed Options Unit MAX 20 us
Note:Not 100% tested
Figure 3. RESET# TIMING WAVEFORM
RY/BY#
CE#, OE#
tRH
RESET#
tRP tReady2
Reset Timing NOT during Automatic Algorithms
tReady1
RY/BY#
tRB
CE#, OE#
RESET#
tRP
Reset Timing during Automatic Algorithms
P/N:PM1134
REV. 1.1, FEB. 08, 2006
38
MX29LV128M H/L
AC CHARACTERISTICS Erase and Program Operations
Parameter Std. tWC tAS tASO tAH tAHT tDS tDH tCEPH tOEPH tGHWL tGHEL tCS tCH tWP tWPH
TA=-40° C to 85° C, VCC=2.7V~3.6V (VCC=3.0V~3.6V for 90R)
Speed Options 90R 100 90 100 0 15 45 0 35 0 20 20 0 0 0 0 35 30 240 60 60 54 54 0.5 50 0 90 250 4 100 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns us us us us us sec us ns ns ns us
tWHWH1
tWHWH2 tVCS tRB tBUSY tVHH tPOLL
Description Write Cycle Time (Note 1) Address Setup Time Address Setup Time to OE# low during toggle bit polling Address Hold Time Address Hold Time From CE# or OE# high during toggle bit polling Data Setup Time Data Hold Time CE# High During Toggle Bit Polling Output Enable High during toggle bit polling Read Recovery Time Before Write (OE# High to WE# Low) Read Recovery Time Before Write CE# Setup Time CE# Hold Time Write Pulse Width Write Pulse Width High Write Buffer Program Operation (Notes 2,3) Single Word/Byte Program Byte Operation (Notes 2,5) Word Accelerated Single Word/Byte Byte Programming Operation (Notes 2,5) Word Sector Erase Operation (Note 2) VCC Setup Time (Note 1) Write Recovery Time from RY/BY# Program/Erase Valid to RY/BY# Delay VHH Rise and Fall Time (Note 1) Program Valid Before Status Polling (Note 6)
Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Typ Typ Typ Typ Typ Typ Min Min Min Min Max
Notes: 1. Not 100% tested. 2. See the "Erase And Programming Performance" section for more information. 3. For 1-16 words/1-32 bytes programmed. 4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation. 5. Word/Byte programming specification is based upon a single word/byte programming operation not utilizing the write buffer. 6. When using the program suspend/resume feature, if the suspend command is issued within tPOLL, tPOLL must be fully re-applied upon resuming the programming operation. If the suspend command is issued after tPOLL, tPOLL is not required again prior to reading the status bits upon resuming.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
39
MX29LV128M H/L
ERASE/PROGRAM OPERATION Figure 4. AUTOMATIC PROGRAM TIMING WAVEFORMS
Program Command Sequence(last two cycle)
tWC tAS
Read Status Data (last two cycle)
Address
XXXh
PA
tAH
PA
PA
CE#
tCH
OE#
tWP
tWHWH1
WE#
tCS tDS tDH
tWPH
A0h Data
PD
Status
DOUT
tBUSY
tRB
RY/BY#
tVCS
VCC
Note : 1.PA=Program Address, PD=Program Data, DOUT is the true data the program address
Figure 5. ACCELERATED PROGRAM TIMING DIAGRAM
VHH
ACC
VIL or VIH VIL or VIH
tVHH
tVHH
P/N:PM1134
REV. 1.1, FEB. 08, 2006
40
MX29LV128M H/L
Figure 6. AUTOMATIC PROGRAMMING ALGORITHM FLOWCHART
START
Write Data AAH Address 555H
Write Data 55H Address 2AAH
Write Data A0H Address 555H
Write Program Data/Address
Increment Address
Data Poll from system
No Verify Word Ok ?
YES
No Last Address ?
YES
Auto Program Completed
P/N:PM1134
REV. 1.1, FEB. 08, 2006
41
MX29LV128M H/L
Figure 7. WRITE BUFFER PROGRAMMING ALGORITHM FLOWCHART
Write "Write to Buffer" command and Sector Address
Write number of addresses to program minus 1(WC) and Sector Address
Part of "Write to Buffer" Command Sequence
Write first address/data
Yes WC = 0 ?
No Yes Write to a different sector address
Abort Write to Buffer Operation ? No (Note 1) Write next address/data pair
Write to buffer ABORTED. Must write "Write-to-buffer Abort Reset" command sequence to return to read mode.
WC = WC - 1
Write program buffer to flash sector address
Read Q7~Q0 at Last Loaded Address
Yes Q7 = Data ? No
No No
Q1 = 1 ?
Q5 = 1 ?
Yes Yes Read Q7~Q0 with address = Last Loaded Address
Notes: 1. When Sector Address is specified, any address in the selected sector is acceptable. However, when loading Write-Buffer address locations with data, all addresses must fall within the selected Write-Buffer Page. 2. Q7 may change simultaneously with Q5. Therefore, Q7 should be verified. 3. If this flowchart location was reached because Q5= "1" then the device FAILED. If this flowchart location was reached because Q1="1", then the Write to Buffer operation was ABORTED. In either case, the proper reset command must be written before the device can begin another operation. If Q1=1, write the Write-Buffer-Programming-Abort-Reset command. If Q5=1, write the Reset command. 4. See Table 3 for command sequences required for write buffer programming.
(Note 2)
Q7 and Q15 = Data ?
Yes
No (Note 3) FAIL or ABORT PASS
P/N:PM1134
REV. 1.1, FEB. 08, 2006
42
MX29LV128M H/L
Figure 8. PROGRAM SUSPEND/RESUME FLOWCHART
Program Operation or Write-to-Buffer Sequence in Progress Write Program Suspend Command Sequence Command is also valid for Erase-suspended-program operations
Write address/data XXXh/B0h
Wait 15us
Read data as required
Autoselect and Secured Sector read operations are also allowed Data cannot be read from erase-or program-suspended sectors
No Done reading ? Yes Write address/data XXXh/30h Write Program Resume Command Sequence
Device reverts to operation prior to Program Suspend
P/N:PM1134
REV. 1.1, FEB. 08, 2006
43
MX29LV128M H/L
Figure 9. AUTOMATIC CHIP/SECTOR ERASE TIMING WAVEFORM
Erase Command Sequence(last two cycle)
tWC tAS
Read Status Data
Address
2AAh
SA
555h for chip erase tAH
VA
VA
CE#
tCH
OE#
tWP
tWHWH2
WE#
tCS tDS tDH
tWPH
55h Data
30h
10 for Chip Erase
In Progress Complete
tBUSY
tRB
RY/BY#
tVCS
VCC
Note : 1.SA=sector address(for Sector Erase), VA=Valid Address for reading status data(see "Write Operation Status").
P/N:PM1134
REV. 1.1, FEB. 08, 2006
44
MX29LV128M H/L
Figure 10. AUTOMATIC CHIP ERASE ALGORITHM FLOWCHART
START
Write Data AAH Address 555H
Write Data 55H Address 2AAH
Write Data 80H Address 555H
Write Data AAH Address 555H
Write Data 55H Address 2AAH
Write Data 10H Address 555H
Data Poll from system YES
No
DATA = FFh ?
YES
Auto Erase Completed
P/N:PM1134
REV. 1.1, FEB. 08, 2006
45
MX29LV128M H/L
Figure 11. AUTOMATIC SECTOR ERASE ALGORITHM FLOWCHART
START
Write Data AAH Address 555H
Write Data 55H Address 2AAH
Write Data 80H Address 555H
Write Data AAH Address 555H
Write Data 55H Address 2AAH
Write Data 30H Sector Address
Last Sector to Erase ?
NO
YES Data Poll from System
NO Data=FFh? YES
Auto Sector Erase Completed
P/N:PM1134
REV. 1.1, FEB. 08, 2006
46
MX29LV128M H/L
Figure 12. ERASE SUSPEND/RESUME FLOWCHART
START
Write Data B0H
NO Toggle Bit checking Q6 not toggled YES Read Array or Program
ERASE SUSPEND
Reading or Programming End YES Write Data 30H
NO
ERASE RESUME Continue Erase
Another Erase Suspend ? YES
NO
P/N:PM1134
REV. 1.1, FEB. 08, 2006
47
MX29LV128M H/L
AC CHARACTERISTICS Alternate CE# Controlled Erase and Program Operations TA=-40° C to 85° C, VCC=2.7V~3.6V (VCC=3.0V~3.6V for 90R)
Parameter Std. tWC tAS tAH tDS tDH tGHEL tWS tWH tCP tCPH Description Write Cycle Time (Note 1) Address Setup Time Address Hold Time Data Setup Time Data Hold Time Read Recovery Time Before Write (OE# High to WE# Low) WE# Setup Time WE# Hold Time CE# Pulse Width CE# Pulse Width High Write Buffer Program Operation (Notes 2,3) Single Word/Byte Program tWHWH1 Operation (Notes 2,5) Accelerated Single Word/Byte Programming Operation (Notes 2,5) tWHWH2 tRH tPOLL Sector Erase Operation (Note 2) RESET HIGH Time Before Write (Note 1) Program Valid Before Status Polling (Note 6) Byte Word Byte Word Min Min Min Min Typ Typ Typ Typ Typ Typ Min Max 0 0 35 25 240 60 60 54 54 0.5 50 4 ns ns ns ns us us us us us sec ns us Min Min Min Min Min Min Speed Options 90R 90 0 45 35 0 0 100 100 Unit ns ns ns ns ns ns
Notes: 1. Not 100% tested. 2. See the "Erase And Programming Performance" section for more information. 3. For 1-16 words/1-32 bytes programmed. 4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation. 5. Word/Byte programming specification is based upon a single word/byte programming operation not utilizing the write buffer. 6. When using the program suspend/resume feature, if the suspend command is issued within tPOLL, tPOLL must be fully re-applied upon resuming the programming operation. If the suspend command is issued after tPOLL, tPOLL is not required again prior to reading the status bits upon resuming.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
48
MX29LV128M H/L
Figure 13. CE# CONTROLLED PROGRAM TIMING WAVEFORM
555 for program 2AA for erase PA for program SA for sector erase 555 for chip erase
Data# Polling Address
tWC tWH tAS tAH
PA
WE#
tGHEL
OE#
tCP tWHWH1 or 2
CE#
tWS tDS tDH
tCPH tBUSY
Q7 Data
tRH A0 for program 55 for erase PD for program 30 for sector erase 10 for chip erase
DOUT
RESET#
RY/BY#
NOTES: 1.PA=Program Address, PD=Program Data, DOUT=Data Out, Q7=complement of data written to device. 2.Figure indicates the last two bus cycles of the command sequence.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
49
MX29LV128M H/L
SECTOR GROUP PROTECT/CHIP UNPROTECT Figure 14. Sector Group Protect / Chip Unprotect Waveform (RESET# Control)
VID VIH
RESET#
SA, A6 A1, A0
Valid*
Valid*
Valid*
Sector Group Protect or Chip Unprotect Data
1us
Verify 40h Status
60h
60h
Sector Group Protect:150us Chip Unprotect:15ms
CE#
WE#
OE#
Note: For sector group protect A6=0, A1=1, A0=0. For chip unprotect A6=1, A1=1, A0=0
P/N:PM1134
REV. 1.1, FEB. 08, 2006
50
MX29LV128M H/L
Figure 15. IN-SYSTEM SECTOR GROUP PROTECT/CHIP UNPROTECT ALGORITHMS WITH RESET#=VID
START START PLSCNT=1 Protect all sectors: The indicated portion of the sector protect algorithm must be performed for all unprotected sectors prior to issuing the first sector unprotect address
PLSCNT=1
RESET#=VID
RESET#=VID
Wait 1us
Wait 1us
Temporary Sector Unprotect Mode
No
First Write Cycle=60h? Yes Set up sector address No Sector Protect: Write 60h to sector address with A6=0, A1=1, A0=0
First Write Cycle=60h? Yes
No
Temporary Sector Unprotect Mode
All sectors protected? Yes Set up first sector address
Wait 150us
Verify Sector Protect: Write 40h to sector address with A6=0, A1=1, A0=0 Increment PLSCNT Read from sector address with A6=0, A1=1, A0=0 No
Reset PLSCNT=1
Sector Unprotect: Write 60h to sector address with A6=1, A1=1, A0=0
Wait 15 ms
Increment PLSCNT No PLSCNT=25? Data=01h?
Verify Sector Unprotect: Write 40h to sector address with A6=1, A1=1, A0=0 Read from sector address with A6=1, A1=1, A0=0
Yes Device failed
Yes No Protect another sector? Yes No PLSCNT=1000?
Reset PLSCNT=1 Data=00h?
Sector Protect Algorithm
No Remove VID from RESET# Yes Device failed Write reset command Last sector verified? No Yes
Sector Protect complete
Chip Unprotect Algorithm
Yes Remove VID from RESET#
Write reset command
Sector Unprotect complete
P/N:PM1134
REV. 1.1, FEB. 08, 2006
51
MX29LV128M H/L
AC CHARACTERISTICS
Parameter tVLHT tWPP1 tOESP Description Voltage transition time Write pulse width for sector group protect OE# setup time to WE# active Test Setup Min. Min. Min. All Speed Options 4 100 4 Unit us ns us
Figure 16. SECTOR GROUP PROTECT TIMING WAVEFORM (A9, OE# Control)
A1
A6
12V 3V A9
tVLHT Verify
12V 3V OE#
tVLHT tWPP 1 tVLHT
WE#
tOESP
CE#
Data
tOE
01H
F0H
A21-A16
Sector Address
P/N:PM1134
REV. 1.1, FEB. 08, 2006
52
MX29LV128M H/L
Figure 17. SECTOR GROUP PROTECTION ALGORITHM (A9, OE# Control)
START
Set Up Sector Addr
PLSCNT=1
OE#=VID, A9=VID, CE#=VIL A6=VIL
Activate WE# Pulse
Time Out 150us
Set WE#=VIH, CE#=OE#=VIL A9 should remain VID
.
No
Read from Sector Addr=SA, A1=1
PLSCNT=32?
No
Data=01H?
Yes Device Failed
Protect Another Sector?
Yes
Remove VID from A9 Write Reset Command
Sector Protection Complete
P/N:PM1134
REV. 1.1, FEB. 08, 2006
53
MX29LV128M H/L
Figure 18. CHIP UNPROTECT TIMING WAVEFORM (A9, OE# Control)
A1
12V 3V A9
tVLHT
A6
Verify
12V 3V OE#
tVLHT tWPP 2 tVLHT
WE#
tOESP
CE#
Data
tOE
00H
F0H
P/N:PM1134
REV. 1.1, FEB. 08, 2006
54
MX29LV128M H/L
Figure 19. CHIP UNPROTECT FLOWCHART (A9, OE# Control)
START
Protect All Sectors
PLSCNT=1
Set OE#=A9=VID CE#=VIL, A6=1
Activate WE# Pulse
Time Out 15ms
Increment PLSCNT
Set OE#=CE#=VIL A9=VID, A1=1
Set Up First Sector Addr
Read Data from Device No
Increment Sector Addr
Data=00H?
No
PLSCNT=1000?
Yes No
Yes Device Failed
All sectors have been verified? Yes Remove VID from A9 Write Reset Command
Chip Unprotect Complete
* It is recommended before unprotect whole chip, all sectors should be protected in advance.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
55
MX29LV128M H/L
AC CHARACTERISTICS
Parameter tVIDR tRSP tRRB Description VID Rise and Fall Time (see Note) RESET# Setup Time for Temporary Sector Unprotect RESET# Hold Time from RY/BY# High for Temporary Sector Group Unprotect Test Setup Min Min Min 500 4 4 ns us us All Speed Options Unit
Figure 20. TEMPORARY SECTOR GROUP UNPROTECT WAVEFORMS
12V
RESET#
0 or 3V VIL or VIH
tVIDR
tVIDR
Program or Erase Command Sequence
CE#
WE#
tRSP tRRB
RY/BY#
P/N:PM1134
REV. 1.1, FEB. 08, 2006
56
MX29LV128M H/L
Figure 21. TEMPORARY SECTOR GROUP UNPROTECT FLOWCHART
Start
RESET# = VID (Note 1) Perform Erase or Program Operation Operation Completed RESET# = VIH Temporary Sector Unprotect Completed(Note 2)
Notes : 1. All protected sectors are temporary unprotected. VID=11.5V~12.5V 2. All previously protected sectors are protected again.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
57
MX29LV128M H/L
Figure 22. SECURED SILICON SECTOR PROTECTED ALGORITHMS FLOWCHART
START
Enter Secured Silicon Sector
Wait 1us
First Wait Cycle Data=60h
Second Wait Cycle Data=60h A6=0, A1=1, A0=0
Wait 300us
No
Data = 01h ?
Yes
Device Failed Write Reset Command
Secured Sector Protect Complete
P/N:PM1134
REV. 1.1, FEB. 08, 2006
58
MX29LV128M H/L
Figure 23. SILICON ID READ TIMING WAVEFORM
VCC
3V VID VIH VIL
VIH VIL tACC VIH VIL tACC tACC tACC
ADD A9
ADD A0
A1
A2
VIH VIL
ADD
VIH VIL
CE#
VIH VIL tCE
WE#
VIH VIL
OE#
VIH VIL
tOE tDF tOH tOH tOH tOH
VIH
DATA Q0-Q15
VIL
DATA OUT Manufacturer ID
DATA OUT Device ID Cycle 1
DATA OUT Device ID Cycle 2
DATA OUT Device ID Cycle 3
P/N:PM1134
REV. 1.1, FEB. 08, 2006
59
MX29LV128M H/L
WRITE OPERATION STATUS Figure 24. DATA# POLLING TIMING WAVEFORMS (DURING AUTOMATIC ALGORITHMS)
tRC
Address
VA
tACC tCE
VA
VA
CE#
tCH tOE
OE#
tOEH tDF
WE#
tOH
Q7 Q0-Q6
tBUSY
Status Data
Complement
True
Valid Data
High Z
Status Data
Status Data
True
Valid Data
High Z
RY/BY#
Note : VA=Valid address. Figure shows are first status cycle after command sequence, last status read cycle, and array data raed cycle.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
60
MX29LV128M H/L
Figure 25. DATA# POLLING ALGORITHM
Start
Read Q7~Q0 Add.=VA(1)
Q7 = Data ?
Yes
No No
Q5 = 1 ?
Yes Read Q7~Q0 Add.=VA
Q7 = Data ? (2) No FAIL
Yes
Pass
Notes: 1.VA=valid address for programming. 2.Q7 should be rechecked even Q5="1" because Q7 may change simultaneously with Q5.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
61
MX29LV128M H/L
Figure 26. TOGGLE BIT TIMING WAVEFORMS (DURING AUTOMATIC ALGORITHMS)
tRC
Address
VA
tACC tCE
VA
VA
VA
CE#
tCH tOE
OE#
tOEH tDF
WE#
tDH tOH
Q6/Q2
Valid Status
Valid Status (first read)
Valid Status (second read)
Valid Data (stops toggling)
Valid Data
RY/BY#
Note : VA=Valid address; not required for Q6. Figure shows first two status cycle after command sequence, last status read cycle, and array data read cycle.
P/N:PM1134
REV. 1.1, FEB. 08, 2006
62
MX29LV128M H/L
Figure 27. TOGGLE BIT ALGORITHM
START
Read Q7~Q0
Read Q7~Q0
(Note 1)
Toggle Bit Q6 =Toggle? YES
NO
NO Q5=1?
YES Read Q7~Q0 Twice (Note 1,2)
Toggle Bit Q6= Toggle? YES Program/Erase Operation Not Complete, Write Reset Command
Program/Erase Operation Complete
Notes : 1. Read toggle bit twice to determine whether or not it is toggling. 2. Recheck toggle bit because it may stop toggling as Q5 changes to "1".
P/N:PM1134
REV. 1.1, FEB. 08, 2006
63
MX29LV128M H/L
Figure 28. Q6 versus Q2
Enter Embedded Erasing
Erase Suspend Erase Erase Suspend Read
Enter Erase Suspend Program Erase Suspend Program Erase Suspend Read
Erase Resume Erase Erase Complete
WE#
Q6
Q2
Note : The system can use OE# or CE# to toggle Q2/Q6, Q2 toggles only when read at an address within an erase-suspended
P/N:PM1134
REV. 1.1, FEB. 08, 2006
64
MX29LV128M H/L
ERASE AND PROGRAMMING PERFORMANCE (1)
PARAMETER Sector Erase Time Typ (Note 1) 0.5 Max (Note 2) 2 Unit sec Comments Excludes 00h programming Chip Erase Time 128 256 sec prior to erasure Note 6 Total Write Buffer Program Time (Note 4) Total Accelerated Effective Write Buffer Program Time (Note 4) Chip Program Time 126 sec 240 200 us us Excludes system level overhead Note 7
Notes: 1. Typical program and erase times assume the following conditions: 25° C, 3.0V VCC. Programming specifications assume checkboard data pattern. 2. Maximum values are measured at VCC = 3.0 V, worst case temperature. Maximum values are valid up to and including 100,000 program/erase cycles. 3. Word/Byte programming specification is based upon a single word/byte programming operation not utilizing the write buffer. 4. For 1-16 words or 1-32 bytes programmed in a single write buffer programming operation. 5. Effective write buffer specification is calculated on a per-word/per-byte basis for a 16-word/32-byte write buffer operation. 6. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before erasure. 7. System-level overhead is the time required to execute the command sequence(s) for the program command. See Tables 3 for further information on command definitions. 8. The device has a minimum erase and program cycle endurance of 100,000 cycles.
LATCH-UP CHARACTERISTICS
MIN. Input Voltage with respect to GND on all pins except I/O pins Input Voltage with respect to GND on all I/O pins Current Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time. -1.0V -1.0V -100mA MAX. 13.5V VCC + 1.0V +100mA
DATA RETENTION
Parameter Minimum Pattern Data Retention Time Min 20 Unit Years
P/N:PM1134
REV. 1.1, FEB. 08, 2006
65
MX29LV128M H/L
TSOP PACKAGE CAPACITANCE
Parameter Symbol CIN COUT CIN2 Parameter Description Input Capacitance Output Capacitance Control Pin Capacitance Test Set VIN=0 VOUT=0 VIN=0 TSOP TSOP TSOP TYP 6 8.5 7.5 MAX 7.5 12 9 UNIT pF pF pF
Notes: 1. Sampled, not 100% tested. 2. Test conditions TA=25° C, f=1.0MHz
P/N:PM1134
REV. 1.1, FEB. 08, 2006
66
MX29LV128M H/L
ORDERING INFORMATION
PART NO. MX29LV128MHTC-90R MX29LV128MHTC-10 MX29LV128MLTC-90R MX29LV128MLTC-10 MX29LV128MHTI-90R MX29LV128MHTI-10 MX29LV128MLTI-90R MX29LV128MLTI-10 MX29LV128MHTC-90Q MX29LV128MLTC-90Q MX29LV128MHTI-90Q MX29LV128MLTI-90Q VCC OPERATION (V) 3.0~3.6 2.7~3.6 3.0~3.6 2.7~3.6 3.0~3.6 2.7~3.6 3.0~3.6 2.7~3.6 3.0~3.6 3.0~3.6 3.0~3.6 3.0~3.6 ACCESS TIME (ns) 90 100 90 100 90 100 90 100 90 90 90 90 PACKAGE 56 Pin TSOP (Normal Type) 56 Pin TSOP (Normal Type) 56 Pin TSOP (Normal Type) 56 Pin TSOP (Normal Type) 56 Pin TSOP (Normal Type) 56 Pin TSOP (Normal Type) 56 Pin TSOP (Normal Type) 56 Pin TSOP (Normal Type) 56 Pin TSOP (Normal Type) 56 Pin TSOP (Normal Type) 56 Pin TSOP (Normal Type) 56 Pin TSOP (Normal Type) Remark
Pb-free Pb-free Pb-free Pb-free
P/N:PM1134
REV. 1.1, FEB. 08, 2006
67
MX29LV128M H/L
PART NAME DESCRIPTION
MX 29 LV 640 M T T C 90 G
OPTION: G: Lead-free package R: Restricted VCC (3.0V~3.6V) Q: Restricted VCC (3.0V~3.6V) with Lead-free package blank: normal SPEED: 70: 70ns 90: 90ns 10:100ns TEMPERATURE RANGE: C: Commercial (0˚C to 70˚C) I: Industrial (-40˚C to 85˚C) PACKAGE: M: SOP T: TSOP X: FBGA (CSP) XB - 0.3mm Ball XE - 0.4mm Ball XC - 1.0mm Ball BOOT BLOCK TYPE: T: Top Boot B: Bottom Boot H: Uniform with Highest Sector H/W Protect L: Uniform with Lowest Sector H/W Protect U: Uniform Sector REVISION: M: NBit Technology DENSITY & MODE: 033/320/321: 32Mb, Page Mode Flash Device 065/640/641: 64Mb, Page Mode Flash Device 128/129: 128Mb, Page Mode Flash Device TYPE: LV/GL: 3V standard LA: 3V Security DEVICE: 29:Flash
P/N:PM1134
REV. 1.1, FEB. 08, 2006
68
MX29LV128M H/L
PACKAGE INFORMATION
P/N:PM1134
REV. 1.1, FEB. 08, 2006
69
MX29LV128M H/L
REVISION HISTORY
Revision No. Description 1.0 1. Removed "Preliminary" wording 2. Added description about Pb-free device is RoHS compliant 2. Added note 7 for ILIT parameter in DC Characteristics table 3. Added comments into performance table 4. Added Part Name Description 1.1 1. Correct "Package Capacitance" table Page P1 P1 P34 P65 P68 P66 Date AUG/11/2005
FEB/08/2006
P/N:PM1134
REV. 1.1, FEB. 08, 2006
70
MX29LV128M H/L
MACRONIX INTERNATIONAL CO., LTD.
Headquarters:
TEL:+886-3-578-6688 FAX:+886-3-563-2888
Europe Office :
TEL:+32-2-456-8020 FAX:+32-2-456-8021
Hong Kong Office :
TEL:+86-755-834-335-79 FAX:+86-755-834-380-78
Japan Office :
Kawasaki Office :
TEL:+81-44-246-9100 FAX:+81-44-246-9105
Osaka Office :
TEL:+81-6-4807-5460 FAX:+81-6-4807-5461
Singapore Office :
TEL:+65-6346-5505 FAX:+65-6348-8096
Taipei Office :
TEL:+886-2-2509-3300 FAX:+886-2-2509-2200
MACRONIX AMERICA, INC.
TEL:+1-408-262-8887 FAX:+1-408-262-8810
http : //www.macronix.com
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.