0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MLX72013CDC-AAA-000-RE

MLX72013CDC-AAA-000-RE

  • 厂商:

    MELEXIS(迈来芯)

  • 封装:

    SOIC8_150MIL

  • 描述:

    IC TRANSMITTER 433MHZ HP 8SOIC

  • 数据手册
  • 价格&库存
MLX72013CDC-AAA-000-RE 数据手册
MLX72013 433MHz FSK/ASK Transmitter Features          Drop-in replacement of TH72011 with reduced phase noise Frequency range from 425 MHz to 445 MHz Fully integrated PLL-stabilized VCO Single-ended RF output FSK via crystal pulling Wideband FSK deviation possible ASK/OOK via power amplifier modulation Wide power supply range from 1.95 V to 5.5 V Very low standby current         Low voltage detector High over-all frequency accuracy FSK deviation and center frequency independently adjustable Data rates from DC to 40 kbps Adjustable output power range from -10 dBm to +12 dBm Adjustable current consumption from 2.9 mA to 16.8 mA Conforms to EN 300 220 and similar standards 8-pin Small Outline Integrated Circuit (SOIC) Application Examples  RF remote controls  Automatic meter reading (AMR)  Tire pressure monitoring systems (TPMS)  Remote keyless entry (RKE)  Alarm and security systems  Garage door openers  Home automation Pin Description 8 VEE FSK DTA 1 FSK SW 2 ROI 3 MLX72013 ENTX 4 7 OUT 6 VCC 5 PSEL Page 1 of 21 REVISION 008 - JUNE 13, 2017 3901072013 MLX72013 433MHz FSK/ASK Transmitter Ordering Code Product Code MLX72013 MLX72013 MLX72013 MLX72013 Temperature Code K K C C Legend: Temperature Code: Package Code: Packing Form: Ordering example: Package Code DC DC DC DC Option Code AAA-000 AAA-000 AAA-000 AAA-000 Packing Form Code RE TU RE TU K for Temperature Range -40°C to 125°C C for Temperature Range 0°C to 70°C DC for SOIC150Mil RE for Reel, TU for Tube MLX72013KDC-AAA-000-RE General Description The MLX72013 transmitter IC is designed for applications in the European 433 MHz industrial scientific-medical (ISM) band, according to the EN 300 220 telecommunications standard; but it can also be used in any other country with similar frequency bands. The transmitter's carrier frequency fc is determined by the frequency of the reference crystal fref. The integrated PLL synthesizer ensures that each RF value, ranging from 425 MHz to 445 MHz, can be achieved by using a crystal with a reference frequency according to: fref = fc/N, where N = 16 is the PLL feedback divider ratio. Page 2 of 21 REVISION 008 - JUNE 13, 2017 3901072013 MLX72013 433MHz FSK/ASK Transmitter Contents Features ..................................................................................................................................................... 1 Application Examples ................................................................................................................................. 1 Pin Description ........................................................................................................................................... 1 Ordering Code............................................................................................................................................ 2 General Description ................................................................................................................................... 2 1. Theory of Operation ............................................................................................................................... 5 1.1. General................................................................................................................................................ 5 1.2. Block Diagram ..................................................................................................................................... 5 2. Functional Description ........................................................................................................................... 6 2.1. Crystal Oscillator................................................................................................................................. 6 2.2. FSK Modulation .................................................................................................................................. 6 2.3. Crystal Pulling ..................................................................................................................................... 6 2.4. ASK Modulation .................................................................................................................................. 7 2.5. Output Power Selection ..................................................................................................................... 7 2.6. Lock Detection .................................................................................................................................... 7 2.7. Low Voltage Detection ....................................................................................................................... 8 2.8. Mode Control Logic ............................................................................................................................ 8 2.9. Timing Diagrams ................................................................................................................................. 8 3. Pin Definition and Description ................................................................................................................ 9 4. Electrical Characteristics ...................................................................................................................... 10 4.1. Absolute Maximum Ratings ............................................................................................................. 10 4.2. Normal Operating Conditions .......................................................................................................... 10 4.3. Crystal Parameters ........................................................................................................................... 10 4.4. DC Characteristics ............................................................................................................................ 11 4.5. AC Characteristics............................................................................................................................. 12 4.6. Output Power Steps – FSK Mode .................................................................................................... 12 4.7. Output Power Steps – ASK Mode .................................................................................................... 13 5. Operating Characteristics vs Temperature ........................................................................................... 14 5.1. General.............................................................................................................................................. 14 5.2. DC Characteristics ............................................................................................................................ 14 5.3. AC Characteristics............................................................................................................................. 17 Page 3 of 21 REVISION 008 - JUNE 13, 2017 3901072013 MLX72013 433MHz FSK/ASK Transmitter 6. Test Circuit for 433.92MHz................................................................................................................... 18 6.1. 433.92 MHz test circuit components .............................................................................................. 18 7. Package Information ............................................................................................................................ 19 7.1. Soldering Information ...................................................................................................................... 19 8. Standard information regarding manufacturability of Melexis products with different soldering processes ............................................................................................................................. 20 9. ESD Precautions ................................................................................................................................... 20 10. Contact............................................................................................................................................... 21 11. Disclaimer .......................................................................................................................................... 21 Page 4 of 21 REVISION 008 - JUNE 13, 2017 3901072013 MLX72013 433MHz FSK/ASK Transmitter 1. Theory of Operation 1.1. General As depicted in Fig.1, the MLX72013 transmitter consists of a fully integrated voltage-controlled oscillator (VCO), a divide-by-16 divider (div16), a phase-frequency detector (PFD) and a charge pump (CP). An internal loop filter determines the dynamic behavior of the PLL and suppresses reference spurious signals. A Colpitts crystal oscillator (XOSC) is used as the reference oscillator of a phase-locked loop (PLL) synthesizer. The VCO’s output signal feeds the power amplifier (PA). The RF signal power P out can be adjusted in four steps from P out = –14 dBm to +11 dBm, either by changing the value of resistor RPS or by varying the voltage VPS at pin PSEL. The open-collector output (OUT) can be used either to directly drive a loop antenna or to be matched to a 50Ohm load. Bandgap biasing ensures stable operation of the IC at a power supply range of 1.95 V to 5.5 V. 1.2. Block Diagram RPS VCC 6 PSEL 5 PLL ENTX ROI 4 m ode control 16 3 PA 7 OUT ante nna matc hing network PFD XOSC XBUF XTAL CP VC O lo w voltage dete ctor FSKSW 2 CX2 CX1 1 FSKDTA 8 VEE Fig. 1: Block diagram with external components Page 5 of 21 REVISION 008 - JUNE 13, 2017 3901072013 MLX72013 433MHz FSK/ASK Transmitter 2. Functional Description 2.1. Crystal Oscillator A Colpitts crystal oscillator with integrated functional capacitors is used as the reference oscillator for the PLL synthesizer. The equivalent input capacitance CRO offered by the crystal oscillator input pin ROI is about 18pF. The crystal oscillator is provided with an amplitude control loop in order to have a very stable frequency over the specified supply voltage and temperature range in combination with a short start-up time. 2.2. FSK Modulation FSK modulation can be achieved by pulling the crystal oscillator frequency. A CMOS-compatible data stream applied at the pin FSKDTA digitally modulates the XOSC via an integrated NMOS switch. Two external pulling capacitors CX1 and CX2 allow the FSK deviation f and the center frequency fc to be adjusted independently. At FSKDTA = 0, CX2 is connected in parallel to CX1 leading to the lowfrequency component of the FSK spectrum (fmin); while at FSKDTA = 1, CX2 is deactivated and the XOSC is set to its high frequency fmax. An external reference signal can be directly ACcoupled to the reference oscillator input pin ROI. Then the transmitter is used without a crystal. Now the reference signal sets the carrier frequency and may also contain the FSK (or FM) modulation. VCC Fig. 2: Crystal pulling circuitry ROI XTAL FSKSW CX2 CX1 VEE FSKDTA Description 0 fmin= fc - f (FSK switch is closed) 1 fmax= fc + f (FSK switch is open) 2.3. Crystal Pulling A crystal is tuned by the manufacturer to the required oscillation frequency f0 at a given load capacitance CL and within the specified calibration tolerance. The only way to pull the oscillation frequency is to vary the effective load capacitance CLeff seen by the crystal. Figure 3 shows the oscillation frequency of a crystal as a function of the effective load capacitance. This capacitance changes in accordance with the logic level of FSKDTA around the specified load capacitance. The figure illustrates the relationship between the external pulling capacitors and the frequency deviation. It can also be seen that the pulling sensitivity increases with the reduction of CL. Therefore, applications with a high frequency deviation require a low load capacitance. For narrow band FSK applications, a higher load capacitance could be chosen in order to reduce the frequency drift caused by the tolerances of the chip and the external pulling capacitors. f XTAL L1 f max C1 C0 CL eff R1 fc f min CX1 CRO CX1+CRO CL (CX1+CX2) CRO CX1+CX2+CRO CL eff Fig. 3: Crystal pulling characteristic Page 6 of 21 REVISION 008 - JUNE 13, 2017 3901072013 MLX72013 433MHz FSK/ASK Transmitter 2.4. ASK Modulation The MLX72013 can be ASK-modulated by applying data directly at pin PSEL. This turns the PA on and off and therefore leads to an ASK signal at the output. 2.5. Output Power Selection The transmitter is provided with an output power selection feature. There are four predefined output power steps and one off-step accessible via the power selection pin PSEL. A digital power step adjustment was chosen because of its high accuracy and stability. The number of steps and the step sizes as well as the corresponding power levels are selected to cover a wide spectrum of different applications. The implementation of the output power control logic is shown in figure 4. There are two matched current sources with an amount of about 8 µA. One current source is directly applied to the PSEL pin. The other current source is used for the generation of reference voltages with a resistor ladder. These reference voltages are defining the thresholds between the power steps. The four comparators deliver thermometer-coded control signals depending on the voltage level at the pin PSEL. In order to have a certain amount of ripple tolerance in a noisy environment the comparators are provided with a little hysteresis of about 20 mV. With these control signals, weighted current sources of the power amplifier are switched on or off to set the desired output power level (Digitally Controlled Current Source). The LOCK signal and the output of the low voltage detector are gating this current source. RPS PSEL & & & & & OUT Fig. 4: Block diagram of output power control circuitry There are two ways to select the desired output power step. First by applying a DC voltage at the pin PSEL, then this voltage directly selects the desired output power step. This kind of power selection can be used if the transmission power must be changed during operation. For a fixed-power application a resistor can be used which is connected from the PSEL pin to ground. The voltage drop across this resistor selects the desired output power level. For fixedpower applications at the highest power step this resistor can be omitted. The pin PSEL is in a high impedance state during the “TX standby” mode. 2.6. Lock Detection The lock detection circuitry turns on the power amplifier only after PLL lock. This prevents from unwanted emission of the transmitter if the PLL is unlocked. Page 7 of 21 REVISION 008 - JUNE 13, 2017 3901072013 MLX72013 433MHz FSK/ASK Transmitter 2.7. Low Voltage Detection The supply voltage is sensed by a low voltage detect circuitry. The power amplifier is turned off if the supply voltage drops below a value of about 1.85 V. This is done in order to prevent unwanted emission of the transmitter if the supply voltage is too low. 2.8. Mode Control Logic The mode control logic allows two different modes of operation as listed in the following table. The mode control pin ENTX is pulled-down internally. This guarantees that the whole circuit is shut down if this pin is left floating. ENTX Mode Description 0 TX standby TX disabled 1 TX active TX enable 2.9. Timing Diagrams After enabling the transmitter by the ENTX signal, the power amplifier remains inactive for the time t on, the transmitter start-up time. The crystal oscillator starts oscillation and the PLL locks to the desired output frequency within the time duration ton. After successful PLL lock, the LOCK signal turns on the power amplifier, and then the RF carrier can be FSK or ASK modulated. high high EN EN low low high high LOCK LOCK low low high high FSKDTA PSEL low low RF carrier t t t on t on Fig. 5: Timing diagram for FSK and ASK modulation Rev. 2.0 Preliminary Datasheet February 2000 8 MLX72013 433MHz FSK/ASK Transmitter 3. Pin Definition and Description Pin No. 1 Name FSKDTA I/O Type Functional Schematic 0 :E N T X = 1 1 :E N T X = 0 input 1 .5 k F S K D T A 1 2 FSKSW Description FSK data input, CMOS compatible with operation mode dependent pull-up circuit TX standby: no pull-up TX active: pull-up analog I/O XOSC FSK pulling pin, MOS switch FSKSW 2 3 ROI analog I/O XOSC connection to XTAL, Colpitts type crystal oscillator 25k ROI 3 36p 36p 4 ENTX input E N T X mode control input, CMOScompatible with internal pulldown circuit 1 .5 k 4 5 PSEL analog I/O IPSEL PSEL 1.5k TX standby: IPSEL = 0 TX active: IPSEL = 8µA 5 6 VCC supply 7 OUT output power select input, highimpedance comparator logic positive power supply OUT VCC power amplifier output, open collector 7 VEE 8 VEE ground VEE negative power supply Page 9 of 21 REVISION 008 - JUNE 13, 2017 3901072013 MLX72013 433MHz FSK/ASK Transmitter 4. Electrical Characteristics 4.1. Absolute Maximum Ratings Parameter Symbol Condition Min Max Unit Supply voltage VCC 0 7.0 V Input voltage VIN -0.3 VCC+0.3 V Storage temperature TSTG -65 150 °C Junction temperature TJ 150 °C Thermal Resistance RthJA 163 K/W Power dissipation Pdiss 0.15 W Electrostatic discharge VESD human body model (HBM) according to CDF-AEC-Q100002 2.0 Condition Min Max Unit 1.95 5.5 V MLX72013 C -10 70 °C MLX72013 K -40 125 kV 4.2. Normal Operating Conditions Parameter Symbol Supply voltage VCC Operating temperature TA Input low voltage CMOS VIL ENTX, FSKDTA pins 0.3*VCC Input high voltage CMOS VIH ENTX, FSKDTA pins XOSC frequency fref set by the crystal 26.5 27.8 MHz VCO frequency fc fc = 16  fref 425 445 MHz FSK deviation f depending on CX1, CX2 and crystal parameters 5 25 kHz Data rate R NRZ code 40 kbit/s 0.7*VCC V V 4.3. Crystal Parameters Parameter Symbol Condition Min Max Unit Crystal frequency f0 fundamental mode, AT 26.5 27.8 MHz Load capacitance CL 10 15 pF Static capacitance C0 7 pF Series resistance R1 50  aspur -10 dB Spurious response Page 10 of 21 REVISION 008 - JUNE 13, 2017 3901072013 MLX72013 433MHz FSK/ASK Transmitter 4.4. DC Characteristics all parameters under normal operating conditions, unless otherwise stated; typical values at TA = 23 °C and VCC = 3.3 V Parameter Symbol Condition Min Typ Max Unit 10 200 nA Operating Currents ISBY Standby current MLX72013 C, ENTX=0 MLX72013 K, ENTX=0 Supply current in power step 0 ICC0 4000 MLX72013 C, ENTX=1 2.9 MLX72013 K, ENTX=1 Supply current in power step 1 ICC1 ICC2 MLX72013 C, ENTX=1 3.8 ICC3 MLX72013 C, ENTX=1 6.6 ICC4 mA 8.5 mA 8.8 MLX72013 C, ENTX=1 10.7 MLX72013 K, ENTX=1 Supply current in power step 4 5.5 5.8 MLX72013 K, ENTX=1 Supply current in power step 3 mA 4.6 MLX72013 K, ENTX=1 Supply current in power step 2 4.3 13.1 mA 13.4 MLX72013 C, ENTX=1 16.8 MLX72013 K, ENTX=1 19.7 mA 20.0 Digital Pin Characteristics Input low voltage CMOS VIL ENTX, FSKDTA pins -0.3 0.3*Vcc V Input high voltage CMOS VIH ENTX, FSKDTA pins 0.7*VCC VCC+0.3 V Pull down current ENTX pin IPDEN ENTX=1 20 µA Low level input current ENTX IINLEN ENTX=0 0.02 µA High level input current FSKDTA IINHDTA FSKDTA=1 0.02 µA Pull up current FSKDTA active IPUDTAa FSKDTA=0, ENTX=1 12 µA Pull up current FSKDTA standby IPUDTAs FSKDTA=0, ENTX=0 0.02 µA MOS switch On resistance RON FSKDTA=0, ENTX=1 70  MOS switch Off resistance ROFF FSKDTA=1, ENTX=1 Power select current IPSEL ENTX=1 Power select voltage step 0 VPS0 ENTX=1 Power select voltage step 1 VPS1 ENTX=1 Power select voltage step 2 VPS2 Power select voltage step 3 Power select voltage step 4 0.2 0.1 2.0 1.5 FSK Switch Resistance 20 1 M Power Select Characteristics 7.0 8.6 9.9 µA 0.035 V 0.14 0.24 V ENTX=1 0.37 0.60 V VPS3 ENTX=1 0.78 1.29 V VPS4 ENTX=1 1.55 V Low Voltage Detection Characteristic Page 11 of 21 REVISION 008 - JUNE 13, 2017 3901072013 MLX72013 433MHz FSK/ASK Transmitter Low voltage detect threshold VLVD ENTX=1 1.75 1.85 1.95 V Typ Max Unit -70 dBm 4.5. AC Characteristics all parameters under normal operating conditions, unless otherwise stated; typical values at TA = 23 °C and VCC = 3.3 V; test circuit shown in Fig. 12, fc = 433.92 MHz Parameter Symbol Condition Min CW Spectrum Characteristics Output power in step 0 (Isolation in off-state) Poff ENTX=1 Output power in step 1 P1 ENTX=1 -10 -9 -8 dBm Output power in step 2 P2 ENTX=1 2.5 3 4 dBm Output power in step 3 P3 ENTX=1 6 7 8 dBm Output power in step 4 P4 ENTX=1 10 11 12 dBm Phase noise at 5kHz offset L(fm)5 Phase noise at 200kHz offset L(fm)200 Spurious emissions according to EN 300 220-1 (2000.09) table 13 Pspur @ 5kHz offset -98 dBc/Hz @ 200kHz offset -97 dBc/Hz 47MHz< f
MLX72013CDC-AAA-000-RE 价格&库存

很抱歉,暂时无法提供与“MLX72013CDC-AAA-000-RE”相匹配的价格&库存,您可以联系我们找货

免费人工找货