MLX72013CDC-AAA-000-TU 数据手册
MLX72013
433MHz
FSK/ASK Transmitter
Features
Drop-in replacement of TH72011 with
reduced phase noise
Frequency range from 425 MHz to 445
MHz
Fully integrated PLL-stabilized VCO
Single-ended RF output
FSK via crystal pulling
Wideband FSK deviation possible
ASK/OOK via power amplifier
modulation
Wide power supply range from 1.95 V
to 5.5 V
Very low standby current
Low voltage detector
High over-all frequency accuracy
FSK deviation and center frequency
independently adjustable
Data rates from DC to 40 kbps
Adjustable output power range from
-10 dBm to +12 dBm
Adjustable current consumption from
2.9 mA to 16.8 mA
Conforms to EN 300 220 and similar
standards
8-pin Small Outline Integrated Circuit
(SOIC)
Application Examples
RF remote controls
Automatic meter reading (AMR)
Tire pressure monitoring systems (TPMS)
Remote keyless entry (RKE)
Alarm and security systems
Garage door openers
Home automation
Pin Description
8 VEE
FSK DTA 1
FSK SW 2
ROI 3
MLX72013
ENTX 4
7 OUT
6 VCC
5 PSEL
Page 1 of 21
REVISION 008 - JUNE 13, 2017
3901072013
MLX72013
433MHz
FSK/ASK Transmitter
Ordering Code
Product Code
MLX72013
MLX72013
MLX72013
MLX72013
Temperature Code
K
K
C
C
Legend:
Temperature Code:
Package Code:
Packing Form:
Ordering example:
Package Code
DC
DC
DC
DC
Option Code
AAA-000
AAA-000
AAA-000
AAA-000
Packing Form Code
RE
TU
RE
TU
K for Temperature Range -40°C to 125°C
C for Temperature Range 0°C to 70°C
DC for SOIC150Mil
RE for Reel, TU for Tube
MLX72013KDC-AAA-000-RE
General Description
The MLX72013 transmitter IC is designed for applications in the European 433 MHz industrial scientific-medical (ISM) band, according to the EN 300 220 telecommunications standard; but it can
also be used in any other country with similar frequency bands.
The transmitter's carrier frequency fc is determined by the frequency of the reference crystal fref. The
integrated PLL synthesizer ensures that each RF value, ranging from 425 MHz to 445 MHz, can be
achieved by using a crystal with a reference frequency according to: fref = fc/N, where N = 16 is the PLL
feedback divider ratio.
Page 2 of 21
REVISION 008 - JUNE 13, 2017
3901072013
MLX72013
433MHz
FSK/ASK Transmitter
Contents
Features ..................................................................................................................................................... 1
Application Examples ................................................................................................................................. 1
Pin Description ........................................................................................................................................... 1
Ordering Code............................................................................................................................................ 2
General Description ................................................................................................................................... 2
1. Theory of Operation ............................................................................................................................... 5
1.1. General................................................................................................................................................ 5
1.2. Block Diagram ..................................................................................................................................... 5
2. Functional Description ........................................................................................................................... 6
2.1. Crystal Oscillator................................................................................................................................. 6
2.2. FSK Modulation .................................................................................................................................. 6
2.3. Crystal Pulling ..................................................................................................................................... 6
2.4. ASK Modulation .................................................................................................................................. 7
2.5. Output Power Selection ..................................................................................................................... 7
2.6. Lock Detection .................................................................................................................................... 7
2.7. Low Voltage Detection ....................................................................................................................... 8
2.8. Mode Control Logic ............................................................................................................................ 8
2.9. Timing Diagrams ................................................................................................................................. 8
3. Pin Definition and Description ................................................................................................................ 9
4. Electrical Characteristics ...................................................................................................................... 10
4.1. Absolute Maximum Ratings ............................................................................................................. 10
4.2. Normal Operating Conditions .......................................................................................................... 10
4.3. Crystal Parameters ........................................................................................................................... 10
4.4. DC Characteristics ............................................................................................................................ 11
4.5. AC Characteristics............................................................................................................................. 12
4.6. Output Power Steps – FSK Mode .................................................................................................... 12
4.7. Output Power Steps – ASK Mode .................................................................................................... 13
5. Operating Characteristics vs Temperature ........................................................................................... 14
5.1. General.............................................................................................................................................. 14
5.2. DC Characteristics ............................................................................................................................ 14
5.3. AC Characteristics............................................................................................................................. 17
Page 3 of 21
REVISION 008 - JUNE 13, 2017
3901072013
MLX72013
433MHz
FSK/ASK Transmitter
6. Test Circuit for 433.92MHz................................................................................................................... 18
6.1. 433.92 MHz test circuit components .............................................................................................. 18
7. Package Information ............................................................................................................................ 19
7.1. Soldering Information ...................................................................................................................... 19
8. Standard information regarding manufacturability of Melexis products with different
soldering processes ............................................................................................................................. 20
9. ESD Precautions ................................................................................................................................... 20
10. Contact............................................................................................................................................... 21
11. Disclaimer .......................................................................................................................................... 21
Page 4 of 21
REVISION 008 - JUNE 13, 2017
3901072013
MLX72013
433MHz
FSK/ASK Transmitter
1. Theory of Operation
1.1. General
As depicted in Fig.1, the MLX72013 transmitter consists of a fully integrated voltage-controlled oscillator (VCO), a
divide-by-16 divider (div16), a phase-frequency detector (PFD) and a charge pump (CP). An internal loop filter
determines the dynamic behavior of the PLL and suppresses reference spurious signals. A Colpitts crystal oscillator
(XOSC) is used as the reference oscillator of a phase-locked loop (PLL) synthesizer. The VCO’s output signal feeds the
power amplifier (PA). The RF signal power P out can be adjusted in four steps from P out = –14 dBm to +11 dBm, either by
changing the value of resistor RPS or by varying the voltage VPS at pin PSEL. The open-collector output (OUT) can be
used either to directly drive a loop antenna or to be matched to a 50Ohm load. Bandgap biasing ensures stable
operation of the IC at a power supply range of 1.95 V to 5.5 V.
1.2. Block Diagram
RPS
VCC
6
PSEL
5
PLL
ENTX
ROI
4
m ode
control
16
3
PA
7
OUT
ante nna
matc hing
network
PFD
XOSC
XBUF
XTAL
CP
VC O
lo w
voltage
dete ctor
FSKSW 2
CX2
CX1
1
FSKDTA
8
VEE
Fig. 1: Block diagram with external components
Page 5 of 21
REVISION 008 - JUNE 13, 2017
3901072013
MLX72013
433MHz
FSK/ASK Transmitter
2. Functional Description
2.1. Crystal Oscillator
A Colpitts crystal oscillator with integrated functional capacitors is used as the reference oscillator for the PLL
synthesizer. The equivalent input capacitance CRO offered by the crystal oscillator input pin ROI is about 18pF. The
crystal oscillator is provided with an amplitude control loop in order to have a very stable frequency over the specified
supply voltage and temperature range in combination with a short start-up time.
2.2. FSK Modulation
FSK modulation can be achieved by pulling the
crystal oscillator frequency. A CMOS-compatible
data stream applied at the pin FSKDTA digitally
modulates the XOSC via an integrated NMOS
switch. Two external pulling capacitors CX1 and CX2
allow the FSK deviation f and the center frequency
fc to be adjusted independently. At FSKDTA = 0, CX2
is connected in parallel to CX1 leading to the lowfrequency component of the FSK spectrum (fmin);
while at FSKDTA = 1, CX2 is deactivated and the
XOSC is set to its high frequency fmax.
An external reference signal can be directly ACcoupled to the reference oscillator input pin ROI.
Then the transmitter is used without a crystal. Now
the reference signal sets the carrier frequency and
may also contain the FSK (or FM) modulation.
VCC
Fig. 2: Crystal
pulling circuitry
ROI
XTAL
FSKSW
CX2
CX1
VEE
FSKDTA
Description
0
fmin= fc - f (FSK switch is closed)
1
fmax= fc + f (FSK switch is open)
2.3. Crystal Pulling
A crystal is tuned by the manufacturer to the
required oscillation frequency f0 at a given load
capacitance CL and within the specified calibration
tolerance. The only way to pull the oscillation
frequency is to vary the effective load capacitance
CLeff seen by the crystal.
Figure 3 shows the oscillation frequency of a crystal
as a function of the effective load capacitance. This
capacitance changes in accordance with the logic
level of FSKDTA around the specified load
capacitance. The figure illustrates the relationship
between the external pulling capacitors and the
frequency deviation.
It can also be seen that the pulling sensitivity
increases with the reduction of CL. Therefore,
applications with a high frequency deviation require
a low load capacitance. For narrow band FSK
applications, a higher load capacitance could be
chosen in order to reduce the frequency drift
caused by the tolerances of the chip and the
external pulling capacitors.
f
XTAL
L1
f max
C1
C0
CL eff
R1
fc
f min
CX1 CRO
CX1+CRO
CL
(CX1+CX2) CRO
CX1+CX2+CRO
CL eff
Fig. 3: Crystal pulling characteristic
Page 6 of 21
REVISION 008 - JUNE 13, 2017
3901072013
MLX72013
433MHz
FSK/ASK Transmitter
2.4. ASK Modulation
The MLX72013 can be ASK-modulated by applying data directly at pin PSEL. This turns the PA on and off and therefore
leads to an ASK signal at the output.
2.5. Output Power Selection
The transmitter is provided with an output power selection feature. There are four predefined output power steps
and one off-step accessible via the power selection pin PSEL. A digital power step adjustment was chosen because of
its high accuracy and stability. The number of steps and the step sizes as well as the corresponding power levels are
selected to cover a wide spectrum of different applications.
The implementation of the output power control
logic is shown in figure 4. There are two matched
current sources with an amount of about 8 µA. One
current source is directly applied to the PSEL pin.
The other current source is used for the generation
of reference voltages with a resistor ladder. These
reference voltages are defining the thresholds
between the power steps. The four comparators
deliver
thermometer-coded
control
signals
depending on the voltage level at the pin PSEL. In
order to have a certain amount of ripple tolerance
in a noisy environment the comparators are
provided with a little hysteresis of about 20 mV.
With these control signals, weighted current
sources of the power amplifier are switched on or
off to set the desired output power level (Digitally
Controlled Current Source). The LOCK signal and the
output of the low voltage detector are gating this
current source.
RPS
PSEL
&
&
&
&
&
OUT
Fig. 4: Block diagram of output power control circuitry
There are two ways to select the desired output power step. First by applying a DC voltage at the pin PSEL, then this
voltage directly selects the desired output power step. This kind of power selection can be used if the transmission
power must be changed during operation. For a fixed-power application a resistor can be used which is connected
from the PSEL pin to ground. The voltage drop across this resistor selects the desired output power level. For fixedpower applications at the highest power step this resistor can be omitted. The pin PSEL is in a high impedance state
during the “TX standby” mode.
2.6. Lock Detection
The lock detection circuitry turns on the power amplifier only after PLL lock. This prevents from unwanted emission of
the transmitter if the PLL is unlocked.
Page 7 of 21
REVISION 008 - JUNE 13, 2017
3901072013
MLX72013
433MHz
FSK/ASK Transmitter
2.7. Low Voltage Detection
The supply voltage is sensed by a low voltage detect circuitry. The power amplifier is turned off if the supply voltage
drops below a value of about 1.85 V. This is done in order to prevent unwanted emission of the transmitter if the
supply voltage is too low.
2.8. Mode Control Logic
The mode control logic allows two different modes
of operation as listed in the following table. The
mode control pin ENTX is pulled-down internally.
This guarantees that the whole circuit is shut down
if this pin is left floating.
ENTX
Mode
Description
0
TX standby
TX disabled
1
TX active
TX enable
2.9. Timing Diagrams
After enabling the transmitter by the ENTX signal, the power amplifier remains inactive for the time t on, the
transmitter start-up time. The crystal oscillator starts oscillation and the PLL locks to the desired output frequency
within the time duration ton. After successful PLL lock, the LOCK signal turns on the power amplifier, and then the RF
carrier can be FSK or ASK modulated.
high
high
EN
EN
low
low
high
high
LOCK
LOCK
low
low
high
high
FSKDTA
PSEL
low
low
RF carrier
t
t
t on
t on
Fig. 5: Timing diagram for FSK and ASK modulation
Rev. 2.0
Preliminary Datasheet
February 2000
8
MLX72013
433MHz
FSK/ASK Transmitter
3. Pin Definition and Description
Pin No.
1
Name
FSKDTA
I/O Type
Functional Schematic
0
:E
N
T
X
=
1
1
:E
N
T
X
=
0
input
1
.5
k
F
S
K
D
T
A
1
2
FSKSW
Description
FSK data input,
CMOS compatible with
operation mode dependent
pull-up circuit
TX standby: no pull-up
TX active: pull-up
analog I/O
XOSC FSK pulling pin, MOS
switch
FSKSW
2
3
ROI
analog I/O
XOSC connection to XTAL,
Colpitts type crystal oscillator
25k
ROI
3
36p
36p
4
ENTX
input
E
N
T
X
mode control input, CMOScompatible with internal pulldown circuit
1
.5
k
4
5
PSEL
analog I/O
IPSEL
PSEL
1.5k
TX standby: IPSEL = 0
TX active: IPSEL = 8µA
5
6
VCC
supply
7
OUT
output
power select input, highimpedance comparator logic
positive power supply
OUT
VCC
power amplifier output, open
collector
7
VEE
8
VEE
ground
VEE
negative power supply
Page 9 of 21
REVISION 008 - JUNE 13, 2017
3901072013
MLX72013
433MHz
FSK/ASK Transmitter
4. Electrical Characteristics
4.1. Absolute Maximum Ratings
Parameter
Symbol
Condition
Min
Max
Unit
Supply voltage
VCC
0
7.0
V
Input voltage
VIN
-0.3
VCC+0.3
V
Storage temperature
TSTG
-65
150
°C
Junction temperature
TJ
150
°C
Thermal Resistance
RthJA
163
K/W
Power dissipation
Pdiss
0.15
W
Electrostatic discharge
VESD
human body model (HBM)
according to CDF-AEC-Q100002
2.0
Condition
Min
Max
Unit
1.95
5.5
V
MLX72013 C
-10
70
°C
MLX72013 K
-40
125
kV
4.2. Normal Operating Conditions
Parameter
Symbol
Supply voltage
VCC
Operating temperature
TA
Input low voltage CMOS
VIL
ENTX, FSKDTA pins
0.3*VCC
Input high voltage CMOS
VIH
ENTX, FSKDTA pins
XOSC frequency
fref
set by the crystal
26.5
27.8
MHz
VCO frequency
fc
fc = 16 fref
425
445
MHz
FSK deviation
f
depending on CX1, CX2 and
crystal parameters
5
25
kHz
Data rate
R
NRZ code
40
kbit/s
0.7*VCC
V
V
4.3. Crystal Parameters
Parameter
Symbol
Condition
Min
Max
Unit
Crystal frequency
f0
fundamental mode, AT
26.5
27.8
MHz
Load capacitance
CL
10
15
pF
Static capacitance
C0
7
pF
Series resistance
R1
50
aspur
-10
dB
Spurious response
Page 10 of 21
REVISION 008 - JUNE 13, 2017
3901072013
MLX72013
433MHz
FSK/ASK Transmitter
4.4. DC Characteristics
all parameters under normal operating conditions, unless otherwise stated;
typical values at TA = 23 °C and VCC = 3.3 V
Parameter
Symbol
Condition
Min
Typ
Max
Unit
10
200
nA
Operating Currents
ISBY
Standby current
MLX72013 C, ENTX=0
MLX72013 K, ENTX=0
Supply current in power step 0
ICC0
4000
MLX72013 C, ENTX=1
2.9
MLX72013 K, ENTX=1
Supply current in power step 1
ICC1
ICC2
MLX72013 C, ENTX=1
3.8
ICC3
MLX72013 C, ENTX=1
6.6
ICC4
mA
8.5
mA
8.8
MLX72013 C, ENTX=1
10.7
MLX72013 K, ENTX=1
Supply current in power step 4
5.5
5.8
MLX72013 K, ENTX=1
Supply current in power step 3
mA
4.6
MLX72013 K, ENTX=1
Supply current in power step 2
4.3
13.1
mA
13.4
MLX72013 C, ENTX=1
16.8
MLX72013 K, ENTX=1
19.7
mA
20.0
Digital Pin Characteristics
Input low voltage CMOS
VIL
ENTX, FSKDTA pins
-0.3
0.3*Vcc
V
Input high voltage CMOS
VIH
ENTX, FSKDTA pins
0.7*VCC
VCC+0.3
V
Pull down current
ENTX pin
IPDEN
ENTX=1
20
µA
Low level input current ENTX
IINLEN
ENTX=0
0.02
µA
High level input current FSKDTA
IINHDTA
FSKDTA=1
0.02
µA
Pull up current FSKDTA active
IPUDTAa
FSKDTA=0, ENTX=1
12
µA
Pull up current FSKDTA standby
IPUDTAs
FSKDTA=0, ENTX=0
0.02
µA
MOS switch On resistance
RON
FSKDTA=0, ENTX=1
70
MOS switch Off resistance
ROFF
FSKDTA=1, ENTX=1
Power select current
IPSEL
ENTX=1
Power select voltage step 0
VPS0
ENTX=1
Power select voltage step 1
VPS1
ENTX=1
Power select voltage step 2
VPS2
Power select voltage step 3
Power select voltage step 4
0.2
0.1
2.0
1.5
FSK Switch Resistance
20
1
M
Power Select Characteristics
7.0
8.6
9.9
µA
0.035
V
0.14
0.24
V
ENTX=1
0.37
0.60
V
VPS3
ENTX=1
0.78
1.29
V
VPS4
ENTX=1
1.55
V
Low Voltage Detection Characteristic
Page 11 of 21
REVISION 008 - JUNE 13, 2017
3901072013
MLX72013
433MHz
FSK/ASK Transmitter
Low voltage detect threshold
VLVD
ENTX=1
1.75
1.85
1.95
V
Typ
Max
Unit
-70
dBm
4.5. AC Characteristics
all parameters under normal operating conditions, unless otherwise stated;
typical values at TA = 23 °C and VCC = 3.3 V; test circuit shown in Fig. 12, fc = 433.92 MHz
Parameter
Symbol
Condition
Min
CW Spectrum Characteristics
Output power in step 0
(Isolation in off-state)
Poff
ENTX=1
Output power in step 1
P1
ENTX=1
-10
-9
-8
dBm
Output power in step 2
P2
ENTX=1
2.5
3
4
dBm
Output power in step 3
P3
ENTX=1
6
7
8
dBm
Output power in step 4
P4
ENTX=1
10
11
12
dBm
Phase noise at 5kHz offset
L(fm)5
Phase noise at 200kHz offset
L(fm)200
Spurious emissions according
to EN 300 220-1 (2000.09)
table 13
Pspur
@ 5kHz offset
-98
dBc/Hz
@ 200kHz offset
-97
dBc/Hz
47MHz< f