MLX80104/5
LIN Slave Controller for Switches
IO4
IO6
SW6
SW7
VS
SW8
27
26
25
24
23
22
GNDA
1
21
AWD
IREF
2
20
SW9
SW5
3
19
IO7
SW4
4
18
IO0
SW3
5
17
GNDD
TO
6
16
GNDL
TI1
7
15
LIN
11
12
13
14
SW1
SW0
IO1
LIN Transceiver according to LIN 2.x and SAE J2602
SW2
TI0
8
o Baud rate up to 19.2 kBaud
o Frame processing
o Low interrupt load to the application
9
LIN Protocol Controller according to LIN 2.x and SAE J2602
MLX80104/5
QFN 5x5 28
10
Byte EEPROM with ECC
IO2
o Internal 12 MHz RC-Oscillator
o 16-bit MULAN MCU with 16kB ROM or OTP, 512 Byte RAM, 192
IO5
Application Controller
IO3
Features
28
Datasheet
o Slew rate control for best EME behaviour
o High EMI immunity
IO Configuration
o
o
o
o
o
o
o
o
o
o
18 fully configurable high current/high voltage inputs/outputs (7mA/26.5V)
Ground shift tolerant I/Os
All IOs configurable pull up or pull down characteristics
Eight PWM outputs (8-bit, 80Hz to 30kHz)
Ten 10-bit ADC channels
Eight Interrupt capable Inputs
Configurable Wake up sources (LIN, IOs, ADC)
Constant current output (2mA) for external low voltage loads via bipolar transistor
IOs fully diagnosable
Integrated window watchdog and additional independent analogue watchdog
Voltage Regulator
o Low standby current consumption of typ 25µA in sleep mode
o Over-temperature shutdown, 45V load dump protected
Other Features
o Automotive Temperature Range of –40°C to 125°C
o Small MLF 5x5 28pin package
o Ready-to-use firmware available (UniROM)
Order Code
Temp. Range Package
Delivery
Remark
MLX80104 KLQ-DAG-000-RE
MLX80104 KLW-DAG-000-RE
MLX80105 KLQ-EAA-000-RE
MLX80105 KLW-EAA-000-RE
-40 - 125 °C
-40 - 125 °C
-40 - 125 °C
-40 - 125 °C
Reel
Reel
Reel
Reel
ROM, See 22 Marking
ROM, See 22 Marking
OTP, See 22 Marking
OTP, See 22 Marking
QFN 5x5
QFN 5x5 WF
QFN 5x5
QFN 5x5 WF
Short Description
This IC is a fully integrated LIN Slave for matrix switch or single switch Applications in automotive environment. It is
suitable for bus systems according to LIN 2.x as well as SAE J2602.
The combination of physical layer LIN transceiver and LIN protocol controller along with easy to configure switch
inputs and PWM outputs make it possible to develop in a short timeframe simple, but powerful and cheap switch
slave nodes for LIN Bus systems.
MLX80104/5 – Datasheet
390108010400
Page 1 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Contents
1.
General Overview .............................................................................................................................................. 7
1.1
2.
3.
4.
Electrical Characteristics .................................................................................................................................... 8
2.1
Absolute Maximum Ratings ............................................................................................................................. 8
2.2
Operating Conditions ....................................................................................................................................... 9
2.3
Static Characteristics ....................................................................................................................................... 9
2.4
Dynamic Characteristics ................................................................................................................................ 12
MULAN – MULtiple CPU with Analog and Network support .............................................................................13
3.1
General .......................................................................................................................................................... 13
3.2
MULAN Block Diagram .................................................................................................................................. 13
3.3
CPU Timing .................................................................................................................................................... 14
3.4
MLX16-8 ......................................................................................................................................................... 14
Address Space ..................................................................................................................................................15
4.1
Memory Mapping .......................................................................................................................................... 15
4.2
RAM Sharing .................................................................................................................................................. 16
4.3
ROM/OTP Sharing .......................................................................................................................................... 16
4.4
EEPROM ......................................................................................................................................................... 17
4.4.1.
4.4.2.
4.4.3.
4.4.4.
4.4.5.
4.5
5.
6.
Block Diagram.................................................................................................................................................. 7
Static/dynamic Characteristics ...............................................................................................................................17
Write Timing ..........................................................................................................................................................17
Read timing ............................................................................................................................................................17
Read .......................................................................................................................................................................18
Write/Erase ............................................................................................................................................................19
OTP (MLX80105 only) .................................................................................................................................... 21
IO Registers ......................................................................................................................................................22
5.1
General .......................................................................................................................................................... 22
5.2
System Protected ports .................................................................................................................................. 22
5.3
Standard ports ............................................................................................................................................... 24
IO Ports ............................................................................................................................................................25
6.1
6.1.1.
6.1.2.
6.1.3.
6.1.4.
6.1.5.
6.1.6.
6.1.7.
6.1.8.
Common Features of Pin SWx and IOx .......................................................................................................... 25
Pin structure ..........................................................................................................................................................26
Configuration Register Central Current Source ......................................................................................................27
Configuration Register SWx ...................................................................................................................................28
Configuration Register IOx .....................................................................................................................................29
Switch current generation .....................................................................................................................................30
The switch detection thresholds ............................................................................................................................31
Switch diagnosis .....................................................................................................................................................33
Switch Configuration in sleep mode ......................................................................................................................36
6.2
Additional Operation Modes SWx Ports ........................................................................................................ 37
6.3
Additional Operation Modes IOx Ports .......................................................................................................... 40
6.4
The IREF pin ................................................................................................................................................... 42
MLX80104/5 – Datasheet
390108010400
Page 2 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
7.
Clock System ....................................................................................................................................................43
7.1
RC-Oscillator .................................................................................................................................................. 43
7.2
Crystal Oscillator ............................................................................................................................................ 43
8.
Watchdog System .............................................................................................................................................44
8.1
Analogue Watchdog ...................................................................................................................................... 44
8.1.1.
8.1.2.
Using the analogue WDOG ....................................................................................................................................45
Timing definition ....................................................................................................................................................45
8.2
Digital Window Watchdog............................................................................................................................. 46
8.3
Watchdog Register ........................................................................................................................................ 47
9.
Analogue to digital converter ...........................................................................................................................48
9.1
General Description ....................................................................................................................................... 48
9.2
Input divider ................................................................................................................................................... 49
9.3
Accuracy of the reference .............................................................................................................................. 49
9.4
ADC Register .................................................................................................................................................. 50
10.
Interrupts .........................................................................................................................................................51
10.1
Interrupt vectors ............................................................................................................................................ 52
10.2
Priority port .................................................................................................................................................... 52
10.3
Interrupt mask and pending ports ................................................................................................................. 52
10.4
High level system interrupts .......................................................................................................................... 53
10.4.1.
10.4.2.
10.4.3.
10.4.4.
10.4.5.
10.4.6.
Reset interrupt and watchdogs ..............................................................................................................................53
Stack error..............................................................................................................................................................53
Exception error ......................................................................................................................................................54
Protection error .....................................................................................................................................................54
Invalid address .......................................................................................................................................................54
Program error ........................................................................................................................................................54
10.5
Debugger interrupt ........................................................................................................................................ 55
10.6
Pin change Interrupt ...................................................................................................................................... 55
10.7
External Watchdog interrupt ......................................................................................................................... 55
10.8
Software interrupt ......................................................................................................................................... 55
11.
PWM Unit.........................................................................................................................................................56
11.1
General .......................................................................................................................................................... 56
11.2
Block Diagram................................................................................................................................................ 56
11.3
PWM frequency calculation ........................................................................................................................... 57
11.4
PWM Control Register ................................................................................................................................... 57
11.5
Available PWM Frequencies .......................................................................................................................... 59
12.
Timer ................................................................................................................................................................60
12.1
13.
Timer Calculation ........................................................................................................................................... 60
LIN Interface .....................................................................................................................................................61
13.1
The Concept ................................................................................................................................................... 61
13.2
LIN Physical Layer .......................................................................................................................................... 62
14.
Sleep Mode and Wake up System ....................................................................................................................65
MLX80104/5 – Datasheet
390108010400
Page 3 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
14.1
Entering Sleep Mode by API ........................................................................................................................... 65
14.2
Wake Up System ............................................................................................................................................ 65
14.2.1.
14.2.2.
14.2.3.
LIN Bus ...................................................................................................................................................................65
Local Wake-up .......................................................................................................................................................65
Internal Wake-up ...................................................................................................................................................65
15.
Thermal Shutdown ...........................................................................................................................................66
16.
System behaviour .............................................................................................................................................67
16.1
Reset behaviour ............................................................................................................................................. 67
16.2
Initialising the System .................................................................................................................................... 67
17.
ROM Patches ....................................................................................................................................................69
17.1
Principle of operation .................................................................................................................................... 69
17.2
Patch start address ........................................................................................................................................ 70
17.3
Patch jump instruction ................................................................................................................................... 70
18.
Application Hints ..............................................................................................................................................72
18.1
Application Examples ..................................................................................................................................... 72
18.1.1.
19.
Software Development ....................................................................................................................................75
19.1
20.
Switch Matrix Hints ................................................................................................................................................73
UniROM (80104 only) .................................................................................................................................... 75
Programming Interface.....................................................................................................................................77
20.1
Characteristics for the interface pins ............................................................................................................. 78
20.2
Melexis Mini E-Mlx emulator ......................................................................................................................... 79
20.3
Melexis Mini E-Mlx emulator and Melexis interface adapter ........................................................................ 81
20.4
Melexis Programmer PTC-04 ......................................................................................................................... 83
20.4.1.
20.5
21.
PTC04 DB 15 Female Connector ............................................................................................................................84
Third party programmer ................................................................................................................................ 86
Operating under Disturbance ...........................................................................................................................87
21.1
Loss of battery ............................................................................................................................................... 87
21.2
Loss of Ground ............................................................................................................................................... 87
21.3
Short circuit to battery ................................................................................................................................... 87
21.4
Short circuit to ground ................................................................................................................................... 87
21.5
Thermal overload ........................................................................................................................................... 87
21.6
Undervoltage Vs ............................................................................................................................................ 87
22.
Marking/Order Code ........................................................................................................................................88
22.1
Marking MLX80104 ....................................................................................................................................... 88
22.2
Order Code MLX80104 ................................................................................................................................... 88
22.3
Marking MLX80105 ....................................................................................................................................... 89
22.4
Order Code MLX80105 ................................................................................................................................... 89
23.
Pin Description .................................................................................................................................................90
24.
Mechanical Specification ..................................................................................................................................92
MLX80104/5 – Datasheet
390108010400
Page 4 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
25.
Land Pattern Recommendations ......................................................................................................................93
26.
ESD/EMC Remarks ............................................................................................................................................94
26.1
ESD/EMC Recommendations for the MLX80104/5 ........................................................................................ 94
26.2
Automotive Qualification Test Pulses ............................................................................................................ 94
26.3
EMC Test pulse definition .............................................................................................................................. 95
27.
References .......................................................................................................................................................96
28.
List of Abbreviations .........................................................................................................................................96
29.
Revision History ...............................................................................................................................................97
30.
Standard information regarding manufacturability of Melexis products with different soldering processes ....99
31.
Disclaimer ......................................................................................................................................................100
List of Figures
FIGURE 1 - BLOCK DIAGRAM ............................................................................................................................................... 7
FIGURE 2 - BLOCK DIAGRAM OF MULAN CPU ................................................................................................................ 13
FIGURE 3 - CPU INTERLEAVING ........................................................................................................................................ 14
FIGURE 4 - EEPROM READ ............................................................................................................................................... 18
FIGURE 5 - COMMON PIN STRUCTURE SWX AND IOX........................................................................................................ 26
FIGURE 6 - VOLTAGE DEPENDENCY OF THE SWITCH CURRENT........................................................................................... 30
FIGURE 7 - VOLTAGE DROPS EXTERNAL LS SWITCH .......................................................................................................... 31
FIGURE 8 - VOLTAGE DROPS SWITCH MATRIX.................................................................................................................... 31
FIGURE 9 - VOLTAGE DROPS EXTERNAL HS SWITCH ......................................................................................................... 32
FIGURE 10 - WAKE UP DETECTION FOR SWITCH INPUTS ..................................................................................................... 37
FIGURE 11 - STRUCTURE OF SWX PINS .............................................................................................................................. 38
FIGURE 12 - STRUCTURE OF IOX PINS ................................................................................................................................ 40
FIGURE 13 - SAMPLE CIRCUITRY FOR IREF PIN ................................................................................................................. 42
FIGURE 14 - ANALOGUE WATCHDOG BEHAVIOUR ............................................................................................................. 44
FIGURE 15 - ADC COMPONENTS ........................................................................................................................................ 48
FIGURE 16 - PWM UNIT..................................................................................................................................................... 56
FIGURE 17 - BLOCK DIAGRAM OF TIMER........................................................................................................................... 60
FIGURE 18 - LIN OSI-REFERENCE MODEL......................................................................................................................... 61
FIGURE 19 - RECEIVER DEBOUNCING & PROPAGATION DELAY .......................................................................................... 62
FIGURE 20 - RESET BEHAVIOUR ......................................................................................................................................... 67
FIGURE 21 - PATCH HARDWARE ........................................................................................................................................ 69
FIGURE 22 - PATCH CODE IN EEPROM ............................................................................................................................. 70
FIGURE 23 - PATCH CODE IN RAM .................................................................................................................................... 70
FIGURE 24 - APPLICATION SCHEMATIC SAMPLE ................................................................................................................. 73
FIGURE 25 - READING THE SWITCH MATRIX ...................................................................................................................... 74
FIGURE 26 - PIN OUT MLX80104/05 – TOP VIEW .............................................................................................................. 77
FIGURE 27 - MLX80104/05 PROGRAMMING INTERFACE WITH THE MELEXIS MINI E-MLX EMULATOR ............................. 80
FIGURE 28 - MELEXIS MLX80104/05 PROGRAMMING INTERFACE ADAPTER ..................................................................... 81
FIGURE 29 - MLX80104/05 PROGRAMMING INTERFACE WITH THE MELEXIS MINI E-MLX EMULATOR AND MELEXIS
INTERFACE ADAPTER ................................................................................................................................................. 82
FIGURE 30 - CONNECTION DIAGRAM BETWEEN PTC-04 AND MLX80104/5 ...................................................................... 83
FIGURE 31 - MLX80104/05 PROGRAMMING INTERFACE WITH THE MELEXIS PTC-04 ....................................................... 85
FIGURE 32 - PIN OUT MLX80104/5 – TOP VIEW ................................................................................................................ 90
FIGURE 33 - QFN28 DRAWING .......................................................................................................................................... 92
MLX80104/5 – Datasheet
390108010400
Page 5 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
List of Tables
TABLE 1 - ABSOLUTE MAXIMUM RATINGS.......................................................................................................................... 8
TABLE 2 - OPERATING CONDITIONS .................................................................................................................................... 9
TABLE 3 - STATIC CHARACTERISTICS ................................................................................................................................ 11
TABLE 4 - DYNAMIC CHARACTERISTICS ............................................................................................................................ 12
TABLE 5 - UNIFIED MEMORY MAPPING .............................................................................................................................. 15
TABLE 6 - MLX16 PRE-DEFINED PAGES ............................................................................................................................ 16
TABLE 7 - SYSTEM PROTECTED PORTS OVERVIEW ............................................................................................................ 23
TABLE 8 - STANDARD PORTS OVERVIEW .......................................................................................................................... 24
TABLE 9 - LOGIC TABLE FOR DETECTION OF LS INPUT SWITCHES ...................................................................................... 33
TABLE 10 - LOGIC TABLE FOR DIAGNOSIS OF LS INPUT SWITCHES SHORT VS. BATTERY .................................................... 33
TABLE 11 - LOGIC TABLE FOR DIAGNOSIS OF ALL INPUT SWITCHES SHORT VS. OTHER SWITCHES BY I1............................. 33
TABLE 12 - LOGIC TABLE FOR DIAGNOSIS OF ALL INPUT SWITCHES SHORT VS. OTHER SWITCHES BY I2............................. 34
TABLE 13 - LOGIC TABLE FOR BREAK DETECTION OF LS INPUT SWITCHES ........................................................................ 34
TABLE 14 - LOGIC TABLE FOR DETECTION OF HS INPUT SWITCHES ................................................................................... 34
TABLE 15 - LOGIC TABLE FOR DIAGNOSIS OF HS INPUT SWITCHES SHORT VS. GND .......................................................... 34
TABLE 16 - LOGIC TABLE FOR BREAK DETECTION OF HS INPUT SWITCHES ........................................................................ 35
TABLE 17 - SLEEP MODE CONFIGURATION OVERVIEW (SWITCH DETECTION) ..................................................................... 37
TABLE 18 - ACTIVE MODE CONFIGURATION OVERVIEW SWX PINS .................................................................................... 39
TABLE 19 - ACTIVE MODE CONFIGURATION OVERVIEW IOX PINS ...................................................................................... 41
TABLE 20 - ADC INPUT DIVIDER ....................................................................................................................................... 49
TABLE 21 - INTERRUPT INPUTS .......................................................................................................................................... 51
TABLE 22 - INTERRUPT VECTORS ....................................................................................................................................... 52
TABLE 23 - PRIO PORT ENCODING .................................................................................................................................... 52
TABLE 24 - CONFIGURABLE PWM FREQUENCIES.............................................................................................................. 59
TABLE 25 - DUTY CYCLE MEASUREMENT AND CALCULATION IN ACCORDANCE TO LIN PHYSICAL LAYER SPECIFICATION
2.X FOR BAUD RATES UP TO 20KBPS .......................................................................................................................... 63
TABLE 26 - DUTY CYCLE MEASUREMENT AND CALCULATION IN ACCORDANCE TO LIN PHYSICAL LAYER SPECIFICATION
2.X FOR BAUD RATES OF 10.4KBPS OR BELOW ........................................................................................................... 64
TABLE 27 - PIN DESCRIPTION 9 PIN MINI CIRCULAR CONNECTOR ....................................................................................... 79
TABLE 28 - PIN DESCRIPTION 10 PIN HEADER CONNECTOR ................................................................................................ 81
TABLE 29 - CONNECTIONS FOR THIRD PARTY PROGRAMMER ............................................................................................. 86
MLX80104/5 – Datasheet
390108010400
Page 6 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
1. General Overview
1.1
Block Diagram
Figure 1 shows the principle block diagram of MLX80104/5.
Power Supply
VS
VDDD
VDDA
ADC_VS
VS
VAUX
8mA
In high
...
SW1
SW2
...
...
Auxiliary Supply +
WakeUp Logic
ADC_MUX
ADC_IO1 In
IO_IN
IO1 In
IO Mux
SW1
...
SW4
SW5
IO Mux IO6
10-bit
ADC
Window
WD
Timer
IREF
ADC_IREF
RC-
GNDA
Oscillator
12 MHz
GNDD
GNDL
Dual Task
MULAN LIN MCU
16kbyte ROM/OTP
512byte RAM
TI0
TO
VS
2mA
IO4
TI1
Test/Debug
Interface
MUX
SW9 In
IO3
IO6
IO7
ADC_IOx
ADC_VS
ADC_IREF
...
SW9
IO2
IO5
IO6 Out
PWMx Out
IO Mux SW9
IO1
IO6 In
IO Mux SW5
SW5 In
IO0
ADC_IO6 In
PWM
SW6
SW7
SW8
IO1 Out
PWMx Out
PWM0
...
PWM7
SW0 In
SW3
WD
WakeUp SWx
8mA
SW2
POR/WD
WakeUp LIN
IO0
IO1
...
In low
SW0
UVLO
LIN
Transceiver
LIN
192byte EEPROM
Figure 1 - Block Diagram
MLX80104/5 – Datasheet
390108010400
Page 7 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
2. Electrical Characteristics
All voltages are referenced to ground (GND). Positive currents flow into the IC.
2.1
Absolute Maximum Ratings
In accordance with the Maximum Rating System (IEC 60134). The absolute maximum ratings given in the table below
are limiting values that do not lead to a permanent damage of the device but exceeding any of these limits may do so.
Long term exposure to limiting values may affect the reliability of the device.
Parameter
Symbol
Battery Supply Voltage
Short term supply voltage
Transients at supply voltage
Transients at supply voltage
Transients at high voltage signal pins
Transients at high voltage signal pins
Transient at high voltage signal and power supply pins
VS
VS_ld
VS_tr1
VS_tr2
VLINx_tr1
VLINx_tr2
VHV_tr3
DC voltage on LIN, SWx, IOx pins
VLIN_DC
DC voltage on IREF, AWD pin
Vlogic_DC
VESDIEC
ESD capability
Maximum latch – up free current at any pin
VESDHBM
VESDCDM
ILATCH
Maximum power dissipation
Ptot
Thermal impedance
JA
Tstg
Tvj
Storage temperature
Junction temperature
Condition
ISO 7637/2 pulse 5; t < 400 ms
ISO 7637/2 pulse 1[1]
ISO 7637/2 pulses 2 [1]
ISO 7637/3 pulse 1 [2]
ISO 7637/3 pulses 2 [2]
ISO 7637/2 pulses 3A, 3B [3]
T2uF blocking capacitor.
ISO 7637/3 test pulses are applied to LIN via a coupling capacitance of 100nF.
ISO 7637/3 test pulses are applied to LIN via a coupling capacitance of 1nF.
ISO 7637/2 test pulses are applied to VS via a reverse polarity diode and >2uF blocking capacitor.
Equivalent to discharging a 100pF capacitor through a 1.5Kohm resistor conforms to AEC-Q100-002
MLX80104/5 – Datasheet
390108010400
Page 8 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
2.2
Operating Conditions
Parameter
Battery supply voltage [1]
Short time battery supply voltage [2]
Operating ambient temperature
Symbol
Min
Max
Unit
VS
VS_S
Tamb
5
18
-40
18
27
+125
V
V
°C
Table 2 - Operating Conditions
[1]
[2]
Vs is the IC supply voltage including voltage drop of reverse battery protection diode, V DROP = 0.4…1V, VBAT_ECU = 6…27V.
Short time: t < 1 min
2.3
Static Characteristics
(VS = 5 to 27V, TA = -40 to +125°C, unless otherwise specified)
Parameter
Symbol
Condition
Min
Typ
Max
Unit
6
20
mA
5
V
50
µA
90
µA
Pin VS
3.00
Supply current, active without
switch current
3.01
Undervoltage lockout
VS_UV
3.02
Supply current, sleep mode
ISsl_typ
VS = 12V
3.03
Supply current, sleep mode
ISsl
VS = 18V
IS
25
PIN LIN
3.10
Short circuit bus current
IBUS_LIM
VLIN= VS = 18V, TxD = 0
40
120
200
mA
3.11
Pull up resistor LIN
RSLAVE
VLIN=0, TxD open
20
30
60
k
3.12
Pull up current LIN, Sleep mode
IBUS_PU_Sleep VLIN=0, VS=12V, sleep mode
-100
-75
3.13
LIN reverse current, recessive
IBUS_PAS_rec
Receiver input leakage current
IBUS_PAS_dom VS = 12V, VLIN=0
3.14
LIN reverse current loss of battery
IBUS_NO_BAT VS=0V, 0V < VLIN < 18V
3.15
LIN current during loss of Ground [3]
IBUS_NO_GND VS=VGND=12V, 0V Vref_h
Figure 7 - Voltage drops external LS switch
These conditions will be met by Vref_h = 0.9*VS
VS
MLX80104
Switch matrix
Vbat 14V
Vbat 7V
Metal wire
resistance
Vdrop_I1
Vref_h
I1
Injection current (calibrated)
8mA
3.5mA
Drop S3(175Ώ)
1.4V
0.6V
8V
3.5V
2.4V
1.05V
1V
0.5V
Drop switch (1kΏ)
Drop S1(300Ώ)
Drop current source I1
Supply voltage Vs
13V
6V
Vin_h
COMP
Swin_PU
ON resistanceS1x
Vdrop_S1
S1x
Rswitch
+
Vin_h
Vdrop_sw
Rprot
Rleak
>500KO
Switch closed: (maximum input low voltage)
(1) Vin_h = Vdrop_S3 + Vdrop_sw + Vdrop_S1
(2) Vin_h < VS – Vdrop_I1 < Vref_h
Matrix row
S3x
Vdrop_S3
ON –
resistanceS3x
Switch open: (minimum input high voltage)
ECU_GND
(3) Vs > Vin_h = I1 * Rleak > Vref_h
These conditions will be met by Vref_h = 0.9*VS
MLX80104/5 – Datasheet
390108010400
Page 31 of 100
Figure 8 - Voltage drops switch matrix
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Vbat_ECU
HS – switch
Vbat 14V
Vbat 7V
Injection current (calibrated)
8mA
3.5mA
Vbat shift(0.1*Vbat)
1.4V
0.7V
Vbat_
chassis
Vbat_shift
Rleak
>500KO
Drop switch (1kΏ)
8V
3.5V
2.4V
1.05V
Rswitch
Drop current source I2
1V
0.5V
Rprot
Supply voltage Vs
13V
6V
Drop S2(300Ώ)
Vin_l
Vdrop_sw
+
VS
S2x
MLX80104
Vdrop_S2
ON resistanceS1x
Switch closed: (minimum input high voltage)
Vin_l
(1) Vbat-Vin_l = Vdrop_S2 + Vdrop_sw + Vbat_shift
(2) Vbat-Vin_l < Vdrop_I2 > Vref_l
COMP
I2
Swin_PD
Vdrop_I2
Switch open: (maximum input low voltage)
Vref_l
Metal wire
resistance
(3) 0< Vbat-Vin_l = Vbat –(I2 * Rleak) < Vref_l
ECU_GND
These conditions will be met by Vref_l = 0.1*VS
Figure 9 - Voltage drops external HS switch
Parameters of input switches
Closed switch threshold resistance (including optional protection resistor)
Rin_max
< 1175Ώ
Rin_max_ext
< 1000Ώ
Protection resistor for external switches
Rprot
>100 Ώ
Protection capacitor for external switches
Cprot
0…10nF
Closed switch threshold resistance (including optional protection resistor
and maximum battery or GND shift)
MLX80104/5 – Datasheet
390108010400
Page 32 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
6.1.7.
Switch diagnosis
If switches are connected via a wiring harness outside the ECU some failure states has to be considered:
Short circuit to battery
Short circuit to GND
Short circuit to other switches
Break of wires in the harness
For diagnosis the current sources I1 as well as I2 can be configured to 10..20% of the normal current value. Assuming
the same worst case conditions as used for the switch detection level calculation, the diagnosis current allows the
detection of up to 7.5kΩ resistance in the switch path.
Low side switch
Table 9 - Logic table for detection of LS input switches
Error
Condition
Closed
Switch
Open
Switch
Broken
Wire
Short to
battery
Short to
GND
Short
to 2nd
switch
SWx_S1
IOx_S1
SWx_S2
IOx_S2
SWIN_PU
1
0
0
0
1
1/0
1
0
0
0
SWIN_PD
0
0
0
0
0
0
1
0
0
0
DIAG_S1 DIAG_S2
As shown in the Table 9, a closed switch cannot be differentiated from a short vs. GND by the logic level of SWIN_PU,
but if the value is stable after a certain number of cycles, a faulty closed or shorted switch can be identified.
A short to battery can be detected by using the complementary diagnosis current 10..20% * I2:
Table 10 - Logic table for diagnosis of LS input switches short vs. battery
Error
Condition
Closed
Switch
Open
Switch
Broken
Wire
Short to
battery
Short to
GND
Short
to 2nd
switch
SWx_S1
IOx_S1
SWx_S2
IOx_S2
SWIN_PU
0
0
0
0
0
0
0
1
0
1
SWIN_PD
0
0
0
1
0
1/0
0
1
0
1
DIAG_S1 DIAG_S2
If a switch Sx is shorted to another switch Sy, a diagnosis is possible by applying the injection current I1 to the first
switch and a sequential scan of the other switches Sy with the diagnosis current 10..20% * I2:
Table 11 - Logic table for diagnosis of all input switches short vs. other switches by I1
Error
Condition
No short
Short to
2nd
Switch
+ Short
to GND
Switch x Switch x Switch y Switch y
+ Short to
SWx_S1/ SWx_S2/ SWy_S1/ SWy_S2/ DIAG_S1 DIAG_S2
Vbat
IOx_S1
IOx_S2 IOy_S1 IOy_S2
SWIN_PU
0
0
1
0
0
1
1
0
0
1
SWIN_PD
0
1
0
1
0
1
1
0
0
1
This diagnosis additionally allows the detection of double fault conditions (short to other switch pin & short to battery
or GND). For separation of double fault condition with short vs. battery the diagnosis scan has to be repeated by the
opposite current configuration applying the injection current I2 to the first switch and a sequential scan of the other
switches Sy with the diagnosis current 10..20% * I1:
MLX80104/5 – Datasheet
390108010400
Page 33 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Table 12 - Logic table for diagnosis of all input switches short vs. other switches by I2
Error
Condition
SWIN_PU
SWIN_PD
No short
Short to
2nd
Switch
+ Short
to GND
+ Short
to Vbat
Switch x
SWx_S1/
IOx_S1
Switch x
SWx_S2/
IOx_S2
Switch y
SWy_S1/
IOy_S1
0
0
1
0
1
0
0
1
0
0
1
1
1
1
Switch y
SWy_S2/ DIAG_S1 DIAG_S2
IOy_S2
0
0
1
1
0
0
The last possible fault condition of the wiring harness is a break(s) of wire(s).This fault cannot be detected by using the
scan methods as described in the above tables.
By adding a resistor of 7.5kΩ±1% in parallel to the switch, an open switch can be differentiated from a switch break.
nd
For diagnosis the scan result has to be compared to a 2 scan with the diagnosis injection current 10..20% * I1:
Table 13 - Logic table for break detection of LS input switches
Error
Condition
Short to
SWx_S1/
2nd
IOx_S1
switch
Closed
Open
Break
Short to
Vbat
Short to
GND
SWx_S2/
DIAG_S1 DIAG_S2
IOx_S2
SWIN_PU
1
1
0
0
1
1/0
1
0
1
0
SWIN_PD
0
0
0
0
0
0
1
0
1
0
High side switch
For the diagnosis of the HS – input switches the complementary configuration has to be applied:
Table 14 - Logic table for detection of HS input switches
Short to
SWx_S1/ SWx_S2/
2nd
DIAG_S1 DIAG_S2
IOx_S1
IOx_S2
switch
Error
Condition
Closed
Open
Break
Short to
Vbat
Short to
GND
SWIN_PD
1
0
0
1
0
1/0
0
0
0
0
SWIN_PU
0
0
0
0
0
0
0
0
0
0
As shown in the Table 14, a closed switch cannot be differentiated from a short to battery by the logic level of
SWIN_PD, but if the value is stable after a certain number of cycles, a faulty closed or shorted switch can be identified.
A short to GND can be distinguished from an open switch by using the complementary diagnosis current 10..20% * I1:
Table 15 - Logic table for diagnosis of HS input switches short vs. GND
Error
Condition
Short to
SWx_S1/ SWx_S2/
2nd
DIAG_S1 DIAG_S2
IOx_S1
IOx_S2
switch
Closed
Open
Break
Short to
Vbat
Short to
GND
SWIN_PD
0
0
0
0
0
0
1
0
1
0
SWIN_PU
0
0
0
0
1
1/0
1
0
1
0
By adding a resistor of 7.5kΩ±1% in parallel to the switch, an open switch can be distinguished from a broken wire. For
nd
diagnosis the scan result has to be compared to a 2 scan with the diagnosis injection current 10..20% * I2:
MLX80104/5 – Datasheet
390108010400
Page 34 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Table 16 - Logic table for break detection of HS input switches
Error
Condition
Short to
SWx_S1/ SWx_S2/
2nd
DIAG_S1 DIAG_S2
IOx_S1 IOx_S2
switch
Closed
Open
Break
Short to
Vbat
Short to
GND
SWIN_PD
1
1
0
0
1
1/0
0
1
0
1
SWIN_PU
0
0
0
0
0
0
0
1
0
1
The short circuits vs. other switch input pins are covered by the method described in Table 14 and Table 15.
MLX80104/5 – Datasheet
390108010400
Page 35 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
6.1.8. Switch Configuration in sleep mode
In case of a valid go to sleep condition, the following procedure must be initiated:
All ports requesting a wake up capability will be connected in parallel by the closed switches S1x or S2x to the
shared sleep comparators and the shared pull up/down resistors.
Any permanently closed pushbutton or switch as well as ports with short circuits to battery or GND have to
be excluded from the wake up capability, because a permanent current would be applied in sleep mode and
no wake up edge detection would be possible (OR interconnection). This makes switch diagnosis mandatory
before GO TO SLEEP
Switches with parallel resistor for break diagnosis have to be excluded from the wake up capability because
of a permanent current flow in sleep mode and an undefined shift of the wake up threshold.
After the GO TO SLEEP command any local wake up condition will be suppressed by a sleep counter in order
to insure stable conditions at any port and prevent an invalid wake up.
The status of S1x, S2x as well as S3x (matrix rows) will be stored with the rising edge of the GO TO SLEEP
command.
In case of a changed switch status after the GO TO SLEEP timeout period the system will wake up
immediately and a ‘wake up error flag’ will be set.
A local wake up will be detected after a change of a switch position(s) for longer than the specified wake up
filter time, the local wake up flag will be set.
This described procedure allows a change into power saving modes even in case of failures
MLX80104/5 – Datasheet
390108010400
Page 36 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Vs
MLX80104
Vs
Pin
SW1
nSBY
Rswitch
+
I1
ESD
Rprot
LS-switch
Vrefh
10K
Sleep
COMP
SW_in
COM
P
Falling
edge
detect
SBY
25µs
Wu_error
Vref_CMOS
S1x
EN_GND S3x
config’
18x switch
Vbat
GoToSlee
p
counter
Pad
SW3
HS-switch
Rswitch
Vs
+
SBY
WU
18x switch
config’
Pin
SW2
Rprot
FF
Rising
edge
detect
S2x
ESD
COM
P
SW_in
Vref_CMOS
Sleep
COMP
I2
10K
25µs
Vrefl
EN_GND S3x
nSBY
SBY
Figure 10 - Wake up detection for switch inputs
As shown in Table 17, the following sleep mode configurations are possible:
Table 17 - Sleep mode configuration overview (switch detection)
Mode
6.2
S1x
S2x
S3x
Comment
No wake up required
0
0
0
Port tristate
Wake up for LS switch
1
0
0
Internal wake up
current source to Vs
Wake up fur HS switch
0
1
0
Internal wake up
current source to
GND
Wake up matrix columns
1
0
0
Internal wake up
current source to Vs
Wake up matrix rows
0
0
1
Path to GND
Additional Operation Modes SWx Ports
Open drain output mode
The SWx pins can also be used as normal open drain outputs. This mode can be switched on via the configuration
register bits. In this mode the central current source (S1x and S3x) should not be applied to the open drain configured
pin.
MLX80104/5 – Datasheet
390108010400
Page 37 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Because of the high voltage capability of the pin the current capability can be easy extended via an external pnptransistor.
S1x/S2x
Vs
Pin
SW_x
HV_clamp
ESD
1.25V
+/-2%
EN_GND
LS/
latch
COMP
SW_IN
S3x
SBY
MLX80104
Figure 11 - Structure of SWx pins
MLX80104/5 – Datasheet
390108010400
Page 38 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Table 18 - Active mode configuration overview SWx pins
Register SW_Sxy
Mode
Reg. SW_CONFIG
Central current
source value
Input result
Remark
SWx_S1
SWx_S2
SWx_S3
DIAG_S1
DIAG_S2
I1
I2
Tristate
0
0
0
x
x
x
x
-
Central pull
up current
1
0
0
0
X
100%
X
SWIN_PU
Low side switch
or matrix
columns
Central pull
down
current
0
1
0
x
0
x
100%
SWIN_PD
High side switch
Matrix row
connection
0
0
1
x
x
x
x
SWIN_PU
Diagnosis 1
1/0
1/0
0
1
0
10..20%
100%
SWIN_PU/
SWIN_PD
Switch
Diagnosis
Diagnosis 2
1/0
1/0
0
0
1
100%
10..20%
SWIN_PU/
SWIN_PD
Switch
Diagnosis
Digital Input
0
0
0
x
x
x
x
SW_Inx
Open drain
output
0
0
1/0
x
x
x
x
SW_Inx
MLX80104/5 – Datasheet
390108010400
Page 39 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
6.3
Additional Operation Modes IOx Ports
Open drain output mode
The IOx pin can also be used as normal open drain outputs. This mode can be switched on via the configuration
register bits. In this mode the central current source (S1x and S3x) should not be applied to the open drain configured
pin.
Because of the high voltage capability of the pin the current capability can be easy extended via an external pnptransistor.
ADC input mode
Every IOx pin can also be used as analogue input signal for the integrated 10-bit ADC. Via the ADC_CTL register the IOx
pins can be selected to be used as ADC channel. See chapter 9 Analogue to digital converter for detailed description.
Interrupt capable input
In case external events should generate an interrupt the IOx pins can also be configured as an interrupt source. The
interrupt sensitivity can be configured either for the falling or for the rising or for both edges. See chapter 10
Interrupts for a detailed description.
PWM Output
The eight available PWM channels can be applied to the corresponding IOx pin via the register PWM_AD. For output
of the PWM channels the pin must be configured in open drain configuration. See chapter 11 PWM Unit for a detailed
description.
IO_IN
S1x/S2x
VDDD
Vs
IO_WU
Pin
IO_x
HV_clamp
Level
shift
WU
filter
both edge
detect
ESD
25µs
COMP
1.25V
EN_GND
LS/
latch
S3x
LS/
latch
IO_WAKE_EN
SBY
SBY
ADC_EN
ADC_IN
HV_clamp
MLX80104
Figure 12 - Structure of IOx pins
MLX80104/5 – Datasheet
390108010400
Page 40 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Mode
IOx_S1 1
IOx_S2 1
IOx_S3 2
IOx_EN 3
IOx_IRQ 4
ADCMUXx 5
PWMx_y 6
DIAG_S1 7
DIAG_S2 7
Table 19 - Active mode configuration overview IOx pins
Input
result
Tristate
0
0
0
0
x
0
0
x
x
-
Central pull
up current
1
0
0
0
x
0
0
x
x
SWIN_PU
Low side switch
or matrix
columns
Central pull
down current
0
1
0
0
x
0
0
x
x
SWIN_PD
High side switch
Matrix row
connection
0
0
1
0
x
0
0
x
x
SWIN_PU
Diagnosis 1
1/0
1/0
0
0
x
0
0
1
0
SWIN_PU/
SWIN_PD
Switch
diagnosis
Diagnosis 2
1/0
1/0
0
0
x
0
0
0
1
SWIN_PU/
SWIN_PD
Switch
diagnosis
Digital Input
0
0
0
1
0
0
0
x
x
IO_INx
Interrupt
Input
0
0
0
1
1
0
0
x
x
IO_IRQx
IO_INx
ADC Input
0
0
0
0
x
1
0
x
x
ADC result
Open drain
output
0
0
1
1/0
x
0
0
x
x
IO_INx
Open drain
PWM Output
0
0
1
0
x
0
1
x
x
-
Remark
1
Central current source enable register
Open drain output configuration register IOx
3
Input comparator register IOx
4
Interrupt register IOx
5
ADC channel selection register
6
PWM channel selection register
7
Central current source configuration register
2
MLX80104/5 – Datasheet
390108010400
Page 41 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
6.4
The IREF pin
This pin provides a calibrated pull up current from the VS supply. This output current can be used for generation of an
external reference or supply voltage by using an external bipolar transistor.
An Application Note “External supply regulator using the IREF pin” is available at Softdist.
Vs
IREF_EN
VBat
LS/
latch
SBY
Vs
2mA +/- 5%
ESD
VB
VBE BZV55/
C5V6
PAD
IREF_OUT
MLX80104
V_ext +/- 1%
Figure 13 - Sample circuitry for IREF pin
For increasing the accuracy of the V_ext voltage at higher loads a zener diode can be placed at the base of the
transistor. V_ext = VB - VBE
Via the central current source diagnose register the IREF current can be switched on/off.
The voltage at this pin can be monitored via the internal ADC channel IREF
Central current source configuration register
Address
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0xC01E
SW_CONFIG
-
-
-
-
IREF_EN
DIAG_S2
DIAG_S1
-
IREF_EN
DIAG_S2
DIAG_S1
Switch IREF PIN on/ff (0=off)
Configure central pull down current source to 10..20% of nominal value for switch diagnosis
Configure central pull up current source to 10..20% of nominal value for switch diagnosis
MLX80104/5 – Datasheet
390108010400
Page 42 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
7. Clock System
7.1
RC-Oscillator
The main oscillator is a 12MHz RC oscillator, which will be trimmed under software control according to the stored
calibration value in the EEPROM. The frequency can be trimmed from 8MHz up to 14MHz.
After Reset the RC oscillator is calibrated with the default reset value 0x00. The RC oscillator will be calibrated during
production process to 12MHz 5. The calibration value will be stored in the EEPROM and the software initialisation
routine must set this value in the system configuration register (See 16.2 Initialising the System) after start up.
7.2
Crystal Oscillator
In case an external 12MHz resonator or crystal is connected, it is possible to select this oscillator as system clock by
setting the XTAL_ON bit in the external clock source register. The loading capacitors are not a part of the IC and must
be added externally.
The start-up of the IC will always be done with the internal RC Oscillator. The XTAL oscillator can be switched on and
off via the SEL_XTAL register. The settling time has to be taken into account, before under software control the XTAL
oscillator will be selected as system clock for the IC.
External clock source register – system protected register
Address
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0xE02E
SEL_XTAL
-
-
-
-
-
-
-
XTAL_ON
XTAL_ON
Selection of external clock source
0 = Use internal RC oscillator (reset value)
1 = Use external clock source
The clock switching will be done fully synchronous and therefore the switching doesn’t generate spikes or
disturbances to the CPU.
The external XTAL oscillator must be connected to IO2 and IO5. In this case, the IO2 and IO5 must be configured as
tristate and can’t be used for any other function.
MLX80104/5 – Datasheet
390108010400
Page 43 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
8. Watchdog System
The MLX80104/5 is equipped with two different watchdog systems. One digital programmable window watchdog and
one completely independent operating analogue Watchdog are available.
8.1
Analogue Watchdog
The analogue Watchdog is intended to fulfil application requirements where a completely independent clock source
from the CPU is demanded for the watchdog system. Therefore an analogue system is used for this function.
This system is based on charging/discharging an external capacity. For definition of the watchdog time an external
capacitor must be connected to the pin AWD. Together with a fixed loading current source inside of the IC, the
Watchdog time can be adjusted to any application needs.
The Watchdog will be started automatically after reset. Once this has been done after the power on, the Watchdog
cannot be stopped anymore. The Watchdog is stopped during sleep mode and is enabled again after every return
from wakeup or power on reset.
Watchdog acknowledge register – system protected register
Address
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0xE028
IO_AWD
-
-
-
-
-
-
AWD_ACK
-
AWD_ACK
Writing “1” Acknowledge the analogue watchdog
Writing a “1” to the AWD_ACK bit loads the external capacitor to the upper threshold and restarts the unloading time.
This bit will be cleared automatically after charging of the watchdog capacity is done. Software cannot read back the
value.
POR
t WDt_R
AWD_IRQ
AWD_ACK
CWD_H
CWD_M
CWD_L
t WD_R
AWD_RST
Figure 14 - Analogue watchdog behaviour
MLX80104/5 – Datasheet
390108010400
Page 44 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
8.1.1. Using the analogue WDOG
If the Watchdog has been started by power on reset, the capacitor voltage on AWD pin ramps up until the upper
voltage level is reached. After that, the current source of WDOG reverts to unload the capacitor. On half of the
Watchdog time it generates precondition status information via an external watchdog interrupt request to the CPU.
This request can be used to store sensitive data into non-volatile memory and to continue without restarting WDOG.
It is not allowed to use this interrupt to trigger the watchdog!
The Watchdog must be acknowledged before the CWD_L voltage is reached, otherwise a system shutdown will be
performed. This system shutdown ends with a POR.
8.1.2. Timing definition
The watchdog time is defined by the external capacitor connected to the AWD pin. The value of this capacitor can be
calculated as follows:
tWDt_R [ms] = WD[nF]
and
tWD_R [ms] = 0.1*WD [nF]
Example:
WD = 10nF -> tWDt_R =10ms und tWD_R = 1ms
The complete watchdog period will be for this example: 10ms+1ms=11ms
MLX80104/5 – Datasheet
390108010400
Page 45 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
8.2
Digital Window Watchdog
The Mulan digital watchdog has 3 possible behaviors and is running on a 12MHz clock. It is described in the next
chapters.
Important:
After reset the intelligent watchdog is disabled. Bootstrap code should enable it as needed.
Timer watchdog description
In this mode, the watchdog is a free-running up counter that can be reset by software. When it reaches a predefined
timeout value, a watchdog reset is generated (RST_WD_IT). Software must therefore periodically clear this counter to
avoid a CPU reset. As interrupt RST_WD_IT is also generated at power on reset, reading bit WD_BOOT of register
CONTROL can be used to find out which source has generated it (WD_BOOT = 1 in case it is the watchdog).
Window watchdog description
In the window mode clearing the counter is only authorized within a time window starting at half the predefined
timeout value. In case a clear is done outside the window (e.g. before half the timeout delay), a RST_WD_IT interrupt
is generated (WD_BOOT = 1). At the end of the window an interrupt is generated (not a reset). That interrupt also
starts a new waiting sequence which is stopped when the software clears the free-running up counter. If the software
has not cleared the counter after a given time, a RST_WD_IT interrupt is generated.
Intelligent watchdog description
This watchdog operates in a completely different way. It supposes the software allocates for a given task a given
provision of time and a tag. This amount of time is programmable and can be changed. The tag can represent a state
of the software. Once this time is elapsed, it generates an interrupt (not a reset). The software must check if the new
state of the program is coherent with the tag saved, and then reload a new couple of time and tag. The interrupt
generated also starts a new waiting sequence that is cleared when the software updates the couple time and tag (i.e.
when the interrupt is serviced). If the software has not updated the couple time and tag after a given time, a
RST_WD_IT interrupt is generated.
MLX80104/5 – Datasheet
390108010400
Page 46 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
8.3
Watchdog Register
Watchdog Tag Register
Address
Name
0xC004
WD_TAG
WD_TAG[7:0]
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
WD_TAG[7:0]
Tag value to be used for intelligent Watchdog mode
Watchdog Control Register
Address
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0xC003
WDCTRL
ERR
WND
MODE1
MODE0
-
-
DIV1
DIV0
Bit3
Bit2
Bit1
Bit0
ERR
WND
MODE[1:0]
DIV[1:0]
Watchdog access error (read only, clear on read)
Window Watchdog Value (read only)
Definition of Watchdog behaviour
00
Disabled
01
Timer Watchdog
10
Window Watchdoog
11
Intelligent Watchdog
Watchdoog clock divider, definition of watchdog clock (OSC=187kHz)
00
OSC/8
01
OSC/32
10
OSC/128
11
OSC/512
Watchdog Timer Register
Address
Name
0xC002
WDT
WDT[7:0]
Bit7
Bit6
Bit5
Bit4
WDT[7:0]
Watchdog timeout value, function depends on selected mode
MLX80104/5 – Datasheet
390108010400
Page 47 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
9. Analogue to digital converter
9.1
General Description
The ADC10 is a 10-bit analogue-to-digital converter, which utilizes successive approximation technique with an
internal sample and hold circuit.
The pins IO0 … IO7 can be used as ADC input. In addition the voltage on pin IREF and VS can be monitored via ADC.
Please have a look to section 9.2 for information about the input divider.
MLX80104
ADC control register
ADC_CTL_L
ADC_CTL_H
VS
Reference voltage
VREFH 0.75V 1.5V 2.5V
0 .. 5V
IO0
ADC interrupt
ADC_INT
ADC result
ADC_IN_L
ADC_IN_H
10-Bit
ADC
MUX
IO7
IREF
VS
Figure 15 - ADC components
The reference voltage VREFH is based on the internal bandgap reference and is applied to the DAC after power on. In
accordance to the linear input voltage range of the analogue input pins the default value of VREFH is 2.5V. To improve
the maximum resolution of the measurement, the reference voltage can be adapted to VREFH=1.5V as well as 750mV.
The maximum theoretical resolution (1LSB) can be calculated by
VREFHmin / 1024 = 0.75V /1024 = 732V.
MLX80104/5 – Datasheet
390108010400
Page 48 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
9.2
Input divider
The following table illustrates the input divider on the pins, the possible maximal input voltage and resolution for the
different ADC reference voltages.
Ref 0.75V
Ref 1.5V
Ref 2.5V
Pin
Divider
Max
input
voltage
Resolution
Max
input
voltage
Resolution
Max
input
voltage
Resolution
IO0..IO7
2
1.5V
732µV
3V
1.46mV
5V
2.44mV
IREF
4
3V
2.93mV
6V
5.86mV
10V
9.77mV
VS
14
10.5V
10.25mV
21V
20.51mV
35V
34.18mV
Table 20 - ADC Input divider
9.3
Accuracy of the reference
The maximum reference voltage VREFH is generated by an amplified bandgap voltage. This voltage is divided by a
resistor divider with a dividing error better than 1% to generate 1.5V or 750mV as reference voltage. The value of the
reference voltage can be selected by the ADC_CTL register.
The best accuracy can be calculated by:
VREFHmin +/- (MinStepsize / divider factor) = 750mV +/- 1mV
This value contains the gain and offset failure of the amplifier chain and the deviation of the resistor network.
The overall deviation of the output voltage is defined by the accuracy at room temperature, the temperature
gradients of the bandgap reference and the offset voltage of the amplifier (approximately +/- 1.5% from –
40…150C.) This results in a total deviation of
VREFHmin +/- (minStepsize + (1.5%*VREFHmax)) / divider factor = 750mV +/- 16mV
The absolute error of the measured input voltage additionally depends on the distance of the maximum input
voltage to VREFHmax.
Example:
VREFH = 750mV
Vin_max = 100mV (e.g. shunt measurement)
Maximum absolute error: Vin_err_max = ((VREFH / Vin_max) x VREFHTol_max ) +/- 1LSB = +/- 2.5mV
MLX80104/5 – Datasheet
390108010400
Page 49 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
9.4
ADC Register
ADC result register
Address
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
0xC00B
ADC_IN_H
-
-
-
-
-
-
0xC00A
ADC_IN_L
ADC_R
Bit1
Bit0
ADC_R [9..8]
ADC_R [7..0]
Result of ADC conversion
ADC selection register
Address
Name
0xC009
ADC_CTL_H
VREF
ADCMUX
Bit7
Bit6
Bit5
VREF
Bit4
Bit3
Bit2
-
ADC reference voltage selection
000b
off
010b
1.5V
001b
2.5V
100b
750V
ADC channel selection
0000b off
0001b IO0, divided by 2, 3µs sampling time
0010b IO1, divided by 2, 3µs sampling time
0011b IO2, divided by 2, 3µs sampling time
0100b IO3, divided by 2, 3µs sampling time
0101b
0110b
0111b
1000b
1001b
1010b
Bit1
Bit0
ADCMUX
IO4, divided by 2, 3µs sampling time
IO5, divided by 2, 3µs sampling time
IO6, divided by 2, 3µs sampling time
IO7, divided by 2, 3µs sampling time
Vs, divided by 14, 10µs sampling time,
500mV error, Switched off during standby
IREF, voltage at IREF pin, divided by 4,
3µs sampling time
ADC configuration register
Address
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0xC008
ADC_CTL_L
BUSY
-
-
-
-
-
FAST
START
START
FAST
BUSY
If set it starts the ADC conversion
Selection of conversion clock
0
slow clock - conversion time 10µs
1
fast clock – conversion time 5µs
ADC conversion in progress
MLX80104/5 – Datasheet
390108010400
Page 50 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
10. Interrupts
Table 21 - shows all available interrupts in the MLX80104/5.
Column “Pos” represents the interrupt input position in the interrupt controller.
Column “Abs” represents the absolute priority of the input.
Column “Rel” represents the relative priority for inputs having an identical absolute priority.
Column “type” defines which instruction will be issued by the interrupt controller in case of interrupt.
Priority
Description
Pos Abs Rel
Reset + Watchdogs Reset
0
0
0
Stack error
1
0
1
Protection error
2
0
2
Invalid address
3
0
3
Program error
4
0
4
Exchange request
5
1
0
Task reset
6
1
1
Watchdog attention
7
1
2
Mutex
8
2
0
Signal, Handshake, Event, [Mutex]
9
5
0
Timer
10 3-6 0
ADC end of conversion
11 3-6 1
End of EEPROM Write/Erase
12 3-6 2
Pin change interrupt IOx
13 3-6 3
External Watchdog interrupt
14 3-6 4
Software interrupt
15 7
0
Notes:
1: Abort current instruction
2: Abort current instruction ►Return is NOT possible
3: No disable possible
4: Priority 0 can only be reached in system mode
5: For conformance test
Type
Jump
Jump
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Notes
1,3,4
1,3,4
2,3,4
2,3,4
2,3,4
3,5
3
PRIO
PRIO[1:0]
PRIO[3:2]
PRIO[5:4]
PRIO[7:6]
PRIO[9:8]
Ports
MASK
PEND
MASK[0]
MASK[1]
MASK[2]
MASK[3]
MASK[4]
MASK[5]
MASK[6]
MASK[7]
MASK[8]
MASK[9]
MASK[10]
PEND[0]
PEND[1]
PEND[2]
PEND[3]
PEND[4]
PEND[5]
PEND[6]
PEND[7]
PEND[8]
PEND[9]
PEND[10]
Table 21 - Interrupt inputs
Reminder:
The highest priority is 0 and the lowest is 7.
The absolute priority is compared to Mlx16 priority to trigger an interrupt
The relative priority is used by interrupt controller to decide between identical absolute priority interrupts fired at
the same time: Lowest is issued first.
Note:
The level 0 of priority is not reachable in user mode. When Mlx16-8 sets priority to 0 in user mode, it is interpreted
as priority 1 by the interrupt controller.
MLX80104/5 – Datasheet
390108010400
Page 51 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
10.1 Interrupt vectors
Table 22 - Interrupt vectors shows the interrupt vectors table as well as the type of interrupt generated (call
or jump). They all use Far Page 0 (e.g. top of the ROM). See example of Fp0 in Table 6.
Priority
Pos Abs Rel
0
0
0
1
0
1
2
0
2
3
0
3
4
0
4
5
1
0
6
1
1
7
1
2
8
2
0
9
5
0
10 3-6 0
11 3-6 1
12 3-6 2
13 3-6 3
14 3-6 4
15
7
0
Description
Reset + Watchdogs Reset
Stack error
Protection error
Invalid address
Program error
Exchange request
Task reset
Watchdog attention
Mutex
Signal, Handshake, Event, [Mutex]
Timer
ADC end of conversion
End of EEPROM Write/Erase
Pin change interrupt
External watchdog interrupt
Software interrupt
Type
Jump
Jump
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Interrupt vector
Addr Name
Fp0:80 RST_WD_IT
Fp0:88 STACK_IT
Fp0:90 PROT_ERR_IT
Fp0:98 INV_AD_IT
Fp0:A0 PROG_ERR_IT
Fp0:A8 EXCHANGE_IT
Fp0:B0 TASK_RST_IT
Fp0:B8 WD_ATT_IT
Fp0:C0 M4_MUTEX_IT
Fp0:C8 M4_SHE_IT
Fp0:D0 TIMER_IT
Fp0:D8 ADC_IT
Fp0:E0 EE_IT
Fp0:E8 EXT0_IT
Fp0:F0 EXT1_IT
Fp0:F8 SOFT_IT
Table 22 - Interrupt vectors
10.2 Priority port
The port PRIO defines the priority level of 4 interrupt inputs. It is divided in 4 be fields of 2 bits. The
correspondence between each field value is shown on Table 23.
Priority Absolute
field
Priority
00
3
01
4
10
5
11
6
Table 23 - PRIO port encoding
10.3 Interrupt mask and pending ports
A mask bit at 0 (value at reset) masks an interrupt input, while a mask bit at 1 makes it visible to the Mlx16.
Note that with a mask at 0 it is still possible to check if the interrupt input is set by reading the corresponding
pending bit.
The interrupt pending bit is set when the interrupt occurs, the Mlx16 cannot write into this port to simulate an
interrupt. Writing in this port is used for clearing the pending bit, which discards the corresponding interrupt.
As writing a 1 in any pending bit clears it while writing a 0 does nothing, you can clear one or more interrupt
bits in one shot, by example writing 0x0001 in PEND port clear the interrupt 5, while writing 0x7FF clear all
interrupts from 5 to 15.
MLX80104/5 – Datasheet
390108010400
Page 52 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Pending interrupt register
Address
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0xE009
PEND_H
-
-
-
-
-
SOFT_IT
EXT1_IT
EXT0_IT
0xE008
PEND_L
EE_IT
ADC_IT
TIMER_IT
M4_SHE_IT
M4_MUTEX_
IT
WD_ATT_IT
TASK_RST_ EXCHANGE_
IT
IT
For abbreviation please see Table 22.
Interrupt mask register
Address
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0xE007
MASK_H
-
-
-
-
-
SOFT_IT
EXT1_IT
EXT0_IT
0xE006
MASK_L
EE_IT
ADC_IT
TIMER_IT
M4_SHE_IT
M4_MUTEX_
IT
WD_ATT_IT
TASK_RST_ EXCHANGE_
IT
IT
For abbreviation please see Table 22.
Interrupt priority register
Address
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0xE005
PRIO_H
-
-
-
-
-
-
EXT1[1]
EXT1[0]
0xE004
PRIO_L
EXT0[1]
EXT0[0]
EE[1]
EE[0]
ADC[1]
ADC[0]
TMR[1]
TMR[0]
Further information can be found in Table 21.
EXT1[1:0]
Priority of external watchdog interrupt
EXT0[7:0]
Priority of pin change interrupt
EE[1:0]
Priority of end of EEPROM Write/Erase interrupt
ADC[1:0]
Priority of ADC end of conversion interrupt
TMR[1:0]
Priority of Timer interrupt
10.4 High level system interrupts
10.4.1. Reset interrupt and watchdogs
This interrupt is generated at power on reset or if the intelligent watchdog asks for a reset. Take care that the
priority is not reset in the Mlx16, so this interrupt routine must start with instruction “MOV UPR, #0”.
10.4.2. Stack error
A stack error occurs when the Mlx16 uses the stack pointer to access an invalid or an unauthorized area. No
protection error or invalid address interrupt is generated. Obviously this interrupt uses a jump and does not
push the program counter into the stack.
MLX80104/5 – Datasheet
390108010400
Page 53 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
10.4.3. Exception error
There are 3 interrupts due to software errors on the Mlx16: a protection error, an invalid address or a
program error. These interrupts are at level 0, therefore you cannot return to the interrupted program. The
program counter value pushed on the stack can only be used for debugging purpose. The device reaction
after this failure condition must be done in the ISR and depends on the application requirements. It is
possible to release a RESET, switch to sleep mode or program and endless loop to keep stable behaviour of
the device.
10.4.4. Protection error
A protection error interrupt happens when the Mlx16 attempts an unauthorized access or to clear the user bit
(Mlx16 M register). Here is an exhaustive list of possible causes:
Write in user mode in the EEPROM.
Access to EEPROM while it is busy (EE_BUSY=1).
Write in port EEPROM while it is busy (EE_BUSY=1).
Write in system mode in EEPROM while EN_EEPROM_WE is 0
ADC conversion request while ADC is busy (ADC_BUSY=1)
Write in ANA_OUTx ports while corresponding OUTx_WE bit of port CONTROL is 0.
Write in the Mlx4 RAM private area.
Write in user mode into a system port.
Access error in the Intelligent Watchdog
Clear the user bit (try to enter system mode) not after a jump or call far page.
10.4.5. Invalid address
An invalid address interrupt occurs when the Mlx16 does an invalid memory access. Here is an exhaustive
list of possible causes:
Read, write or fetch a word at an odd address
Read, write or fetch into an unused area
Write a byte or a bit in EEPROM
Write a bit in a digital port supporting only word or byte.
Fetch into port area
10.4.6. Program error
A program error occurs when the Mlx16 tries to execute an invalid Mlx16 instruction. Typically, it means that
Mlx16 has an invalid value in its program counter (PC).
MLX80104/5 – Datasheet
390108010400
Page 54 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
10.5 Debugger interrupt
This interrupt is intended to be used together with the Emulator.
10.6 Pin change Interrupt
This interrupt will be used to react on change pin IOx status. The edge sensitivity can be programmed in the
interrupt register (See 6.1.4 Configuration Register IOx). For the interrupt generation, the IOx will be
debounced with 3us. After the debouncing the interrupt will be generated and the interrupt request is stored
for every channel in the IRQ register.
10.7 External Watchdog interrupt
This interrupt is requested if the analogue watchdog has reached half of the Watchdog time period. See chapter 8
Watchdog System for details.
10.8 Software interrupt
It is possible to trigger a low priority interrupt by software setting bit SWI of port SWI to 1 the port bit is
automatically reset after one clock period, so it will always be re-read as a 0.
MLX80104/5 – Datasheet
390108010400
Page 55 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
11. PWM Unit
11.1 General
There are 8 PWM channels available. They share a common 8 bits free running counter with an input clock being
either a 750kHz clock or a 12MHz divided by a programmable divider from 1 to 64. The duty cycle for each PWM
channel can be set separately via PWM data register. The available PWM channels can be output to an IOx pin in low
side configuration. The selection must be done via the PWM_AD register.
To calculate the correct initialisation value for the PWM control register Equation 1 to Equation 4 are valid.
Additionally, in Table 24 you will find all possible PWM frequencies and the corresponding parameters for the PWM
control register.
Every IOx pin has its own PWM duty cycle register. To address this register 1st the channel must be selected via PWM
channel register (0xC011). After this selection the duty cycle can be written to the PWM duty cycle register (0xC012).
After this procedure, the programmed cycle will be output on IOx pin if the pin is configured as open drain output and
the PWM block is enabled (Bit PWM_EN in the PWM control register 0xC010).
Because the PWM is running with the CPU frequency, the accuracy is better than ±5% of the nominal PWM frequency.
11.2 Block Diagram
750 k Hz
Programmable
prescaler
by 1 to 64
1 2 MHz
PWM _ FSB
PWM _ EN
1
8 bits
counter
PWM _ DIV
1
6
Zero
Port PWM _ CFG
8
Load
8
8
>
IO0
Duty cycle
IO0
3
Port
PWM_AD
Port
PWM_DATA
64 bits
Buffer
...
8
>
8
Duty cycle
IO7
8
>
IO7
PWM _ EN
Figure 16 - PWM unit
MLX80104/5 – Datasheet
390108010400
Page 56 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
11.3 PWM frequency calculation
Depending on the needed PWM frequency you have to choose the right equation. In case the frequency is in the
range of 45Hz to 2.9kHz, Equation 3 is valid. And in case the frequency is in the range of 0.72kHz to 46kHz, Equation 4
is the right one.
FPWM kHz
FPWM MHz
750kHz
PWM _ DIV 1 256
Equation 1 - PWM frequency for PWM_FSB=0
PWM _ DIV
12MHz
PWM _ DIV 1 256
Equation 2 - PWM frequency for PWM_FSB=1
750kHz
1
FPWM kHz 256
PWM _ DIV
Equation 3 - Parameter PWM_DIV for frequencies in the
range of 45.1 .. 2929.7Hz (PWM_FSB=0)
12MHz
1
FPWM MHz 256
Equation 4 - Parameter PWM_DIV for frequencies in the
range of 721.2 .. 46875Hz (PWM_FSB=1)
11.4 PWM Control Register
PWM channel selection
Address
Name
Bit7
Bit6
Bit5
Bit4
0xC011
PWM_AD
-
-
-
-
Bit5
Bit4
PWMSEL
000b
001b
010b
011b
100b
101b
110b
111b
Bit3
Bit2
Bit1
Bit0
PWMSEL
Address duty cycle register for IO0
Address duty cycle register for IO1
Address duty cycle register for IO2
Address duty cycle register for IO3
Address duty cycle register for IO4
Address duty cycle register for IO5
Address duty cycle register for IO6
Address duty cycle register for IO7
Duty cycle register
Address
Name
0xC012
PWM_DATA_
WRITE
PWM_DATA_WRITE
0xC013
PWM_DATA_
READ
PWM_DATA_READ
PWM_DATA_WRITE
PWM_DATA_READ
MLX80104/5 – Datasheet
390108010400
Bit7
Bit6
Bit3
Bit2
Bit1
Bit0
8-bit duty cycle value for selected PWM channel (for writing new duty cycle value)
For reading the current duty cycle
Page 57 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
PWM control register
Address
Name
0xC010
PWM_CTL
PWM_EN
PWM_FSB
PWM_DIV
Bit7
Bit6
Bit5
PWM_EN PWM_FSB
Bit4
Bit3
Bit2
Bit1
Bit0
PWM_DIV
Enable/Disable PWM generation
1 = Enable
0 = Disable
Selection between input clock of 750kHz or 12MHz
0 = 750kHz
1 = 12MHz
Programmable pre-divider 1 to 64
MLX80104/5 – Datasheet
390108010400
Page 58 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
11.5 Available PWM Frequencies
Following PWM frequencies are configurable via the PWM Control Register PWM_CTL on page 58.
PWM
Frequency
in Hz
PWM_CTL
[5:0]
FSB
DIV
PWM
Frequency
in Hz
PWM_CTL
[5:0]
FSB
DIV
PWM
Frequency
in Hz
PWM_CTL
[5:0]
FSB
DIV
45.8
0x3F
0
63
139.5
0x14
0
20
1171.9
0x28
1
39
46.5
0x3E
0
62
146.5
0x13
0
19
1201.9
0x27
1
38
47.3
0x3D
0
61
154.2
0x12
0
18
1233.6
0x26
1
37
48.0
0x3C
0
60
162.8
0x11
0
17
1266.9
0x25
1
36
48.8
0x3B
0
59
172.3
0x10
0
16
1302.1
0x24
1
35
49.7
0x3A
0
58
183.1
0x0F
0
15
1339.3
0x23
1
34
50.5
0x39
0
57
195.3
0x0E
0
14
1378.7
0x22
1
33
51.4
0x38
0
56
209.3
0x0D
0
13
1420.5
0x21
1
32
52.3
0x37
0
55
225.4
0x0C
0
12
1464.8
0x01
0
1
53.3
0x36
0
54
244.1
0x0B
0
11
1464.8
0x20
1
31
54.3
0x35
0
53
266.3
0x0A
0
10
1512.1
0x1F
1
30
55.3
0x34
0
52
293.0
0x09
0
9
1562.5
0x1E
1
29
56.3
0x33
0
51
325.5
0x08
0
8
1616.4
0x1D
1
28
57.4
0x32
0
50
366.2
0x07
0
7
1674.1
0x1C
1
27
58.6
0x31
0
49
418.5
0x06
0
6
1736.1
0x1B
1
26
59.8
0x30
0
48
488.3
0x05
0
5
1802.9
0x1A
1
25
61.0
0x2F
0
47
585.9
0x04
0
4
1875.0
0x19
1
24
62.3
0x2E
0
46
732.4
0x03
0
3
1953.1
0x18
1
23
63.7
0x2D
0
45
732.4
0x40
1
63
2038.0
0x17
1
22
65.1
0x2C
0
44
744.0
0x3F
1
62
2130.7
0x16
1
21
66.6
0x2B
0
43
756.0
0x3E
1
61
2232.1
0x15
1
20
68.1
0x2A
0
42
768.4
0x3D
1
60
2343.8
0x14
1
19
69.8
0x29
0
41
781.3
0x3C
1
59
2467.1
0x13
1
18
71.5
0x28
0
40
794.5
0x3B
1
58
2604.2
0x12
1
17
73.2
0x27
0
39
808.2
0x3A
1
57
2757.4
0x11
1
16
75.1
0x26
0
38
822.4
0x39
1
56
2929.7
0x00
0
0
77.1
0x25
0
37
837.1
0x38
1
55
2929.7
0x10
1
15
79.2
0x24
0
36
852.3
0x37
1
54
3125.0
0x0F
1
14
81.4
0x23
0
35
868.1
0x36
1
53
3348.2
0x0E
1
13
83.7
0x22
0
34
884.4
0x35
1
52
3605.8
0x0D
1
12
86.2
0x21
0
33
901.4
0x34
1
51
3906.3
0x0C
1
11
88.8
0x20
0
32
919.1
0x33
1
50
4261.4
0x0B
1
10
91.6
0x1F
0
31
937.5
0x32
1
49
4687.5
0x0A
1
9
94.5
0x1E
0
30
956.6
0x31
1
48
5208.3
0x09
1
8
97.7
0x1D
0
29
976.6
0x02
0
2
5859.4
0x08
1
7
101.0
0x1C
0
28
976.6
0x30
1
47
6696.4
0x07
1
6
104.6
0x1B
0
27
997.3
0x2F
1
46
7812.5
0x06
1
5
108.5
0x1A
0
26
1019.0
0x2E
1
45
9375.0
0x05
1
4
112.7
0x19
0
25
1041.7
0x2D
1
44
11718.8
0x04
1
3
117.2
0x18
0
24
1065.3
0x2C
1
43
15625.0
0x03
1
2
122.1
0x17
0
23
1090.1
0x2B
1
42
23437.5
0x02
1
1
127.4
133.2
0x16
0x15
0
0
22
21
1116.1
1143.3
0x2A
0x29
1
1
41
40
46875.0
0x01
1
0
Table 24 - Configurable PWM Frequencies
MLX80104/5 – Datasheet
390108010400
Page 59 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
12. Timer
The timing generation principle is shown on Figure 17.
12MHz
Div by 16
Programmable
Divider
1 to 32767
750kHz
TIMER_IT
Interrupt
1
15
TMR Register
Figure 17 - Block Diagram of Timer
A 15 bits free running counter clocked by 750kHz is available to generate TIMER_IT interrupt at a rate varying from
1.33µs (TIMER [14:0] = 0) to 43.689ms (TIMER [14:0] = 32767). The timer is made of a down counting loadable binary
counter. It is enabled by TMR_EN (bit 15) of TMR register. Once enabled each time it reaches 0x0000; it is reloaded by
the value of TMR register TMR [14:0] and generates a TIMER_IT interrupt. Reading register TMR reads the current
value of the counter when TMR_EN = 1 or an unknown value when TMR_EN = 0.
Because the timer is running with the CPU frequency, the accuracy is better than ±5% of the nominal value.
Timer Register
Address
Name
Bit7
0xC007
TIMER_H
TMR_EN
0xC006
TIMER_L
TMR_EN
TMR
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
TMR [14:8]
TMR[7:0]
Enable/Disable Timer
1 = Enable
0 = Disable
15-bit Timer value
12.1 Timer Calculation
The TMR value for the TIMER register can be calculated with Equation 5, where Timer_Period is the time between the
timer interrupts in µs.
TMR14 : 0
Timer_Period μs 12MHz
16
Equation 5 - Calculation of the TMR parameter
MLX80104/5 – Datasheet
390108010400
Page 60 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
13. LIN Interface
13.1 The Concept
The LIN protocol is implemented on a MULAN core on the MLX4 part. The complete MLX16 part is free for the
application. With this dual core architecture the bus communication is decoupled from the application. The complete
LIN driver running on the MLX4 is part of the software development system and will be supported by Melexis. The
communication between both CPUs is done via an API. This API uses the common RAM area for data exchange. The
application task (running on MLX16) transmits all necessary LIN configuration data via the API to the LIN task (running
on MLX4) during the initialization process. Further information can be found in the document “MelexCM LIN Firmware
API - Programmer’s Reference Manual”.
Supervisor
Task 1
Task 0
LIN SBIF
Application
software
Fault
confinement
Bus failure
management
Data Link Layer
Api
Mlx4- Dual
Inter-task port of the Mlx4
System
synchronization
Lin
software
Timer
(Compare/
Capture)
Bit level
bus
interface
(digital)
Logical Link Layer
Acceptance filtering
Recovery Management
Message validation
Time- base synchronozation
Medium Acces Control
Data Encapsulation/Decapsul.
Error detection/Signaling
Serialization/De serialization
OSI Model
Physical Layer
Bit timing
Bit synchronization
Line driver/receiver
Bus interface
Figure 18 - LIN OSI-Reference model
MLX80104/5 – Datasheet
390108010400
Page 61 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
13.2 LIN Physical Layer
The MLX80104/5 contains an integrated physical layer for applications of low speed vehicle serial data network
communication using the Local Interconnect Network (LIN) protocol. The device is designed in accordance to the
physical layer definition of the LIN Protocol Specification Package 2.x and the SAE J2602 standard. The corresponding
baudrate and slew rate can be set via API commands.
The sleep mode capability allows a shutdown of the whole application. The included wake-up function detects
incoming dominant bus messages and wakes up the IC.
Because of the good symmetry parameter of the transceiver the communication with RC based synchronization
accuracy is possible under all worst case conditions in Vbat - or Ground shift, even in case of recessive bus voltages
down to 5V.
RxD debounce
The RxD debouncing circuit and the integrated low pass filter in the receiver path prevent RxD spikes in case of RF
interferences and schaffner pulses to guarantee a correct sampling of the master request.
TxD timeout
A special feature is the TxD timeout. In case of a faulty blocked TxD (MLX or LIN controller crash) the Bus output is
switched off automatically after the specified TxD timeout reaction time to prevent a dominant bus. The transmission
is continued by next TxD L to H transition without delay.
Undervoltage lockout
An undervoltage lockout comparator detects an unspecified decrease of the regulated supply voltage VAUX. This
measurement covers both, unspecified overload on VAUX and unspecified decrease of VS. It’s an additional factor of
safety against undefined bus behaviour. To prevent a transmission interrupt due to Schaffner or RF modulation a
debounce filter is used for spike suppression.
t < trec_deb
t < trec_deb
VLINx
t
tREC_PDF
tREC_PDR
VRxDx
50%
t
Figure 19 - Receiver debouncing & propagation delay
MLX80104/5 – Datasheet
390108010400
Page 62 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Duty cycle calculation LIN 2.x
With the timing parameters shown in the picture below two duty cycles , based on trec(min) and trec(max) can be
calculated as follows : tBit =50µs D1 = trec(min) / (2 x tBit)
D2 = trec(max) / (2 x tBit)
Table 25 - Duty cycle measurement and calculation in accordance to LIN physical layer specification 2.x for baud rates
up to 20Kbps
Duty cycle calculation J2602:
With the timing parameters shown in the table below two duty cycles , based on trec(min) and trec(max) can be calculated
as follows : tBit =96µs
D3 = trec(min) / (2 x tBit)
D4 = trec(max) / (2 x tBit)
MLX80104/5 – Datasheet
390108010400
Page 63 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Table 26 - Duty cycle measurement and calculation in accordance to LIN physical layer specification 2.x for baud rates
of 10.4Kbps or below
MLX80104/5 – Datasheet
390108010400
Page 64 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
14. Sleep Mode and Wake up System
14.1 Entering Sleep Mode by API
A valid MLX80104/5 sleep command is used to switch into the most power saving mode under software control. In
this mode all unnecessary function blocks are switched off to save the maximum possible current, keeping only some
minimum parts alive, which will watch events or conditions for possible wakeup requests.
To enter Sleep Mode the following sequence has to be performed: Application software first takes care of saving any
needed data into non-volatile memory, because Sleep Mode will force the system to switch off power supplies. Any
register content of the CPU, the content of volatile memories, etc. will be lost.
Finally a HALTED command (set “EN_HALTED” bit) has to be performed, which gives a signal to enter the sleep mode.
Make sure that MLX4 is already halted otherwise the system cannot finish the power down procedure. This request
starts the system shutdown process. This has to be the last action from the CPU. After sending this request the CPU
has to stay in an infinite loop, waiting for system shutdown. This shutdown will be performed, even if incoming
wakeup conditions should occur – which will be ignored as long as the system is not in sleep mode. This ensures that
the system first shuts down and clears all CPU registers completely, to secure a defined restart into Power On state.
By receiving a HALTED Signal from the CPU the following sequence is performed from the MLX80104/5 itself:
Analogue Watchdog is disabled
All registers not required in sleep mode are cleared and contain their reset values.
All registers containing configuration needed in sleep mode (i.e. enable bits for Wake Up sources etc.) keep
their values
The internal auxiliary supply is switched on to supply the wake-up comparators as well as the wake-up enable
register
Any trimming value gets lost and must be restored within the software initialisation routine after wake-up.
The digital supply as well as the analogue supply is switched off.
In Sleep Mode all IOs will be switched to tri-state (high-impedance).
14.2 Wake Up System
There are three possible ways to wake-up the MLX80104/5:
14.2.1. LIN Bus
The LIN standby receiver detects any changing edge on the bus exceeding the wake up debouncing time of minimum
50us. The integrated filter prevents a wake up via EMC interferences.
14.2.2. Local Wake-up
The second way to wake up the slave node is a local wake up condition. The input comparators detect any changing
edge exceeding the wake up thresholds and the local wake up debouncing time of minimum 20us.
Every wake up detection set a wake up flag, the bandgap reference and the voltage regulators are switched on and
the power on procedure starts. The information about a local wake up is stored in the status register.
14.2.3. Internal Wake-up
The third way to wake-up is the configurable internal wake timer. After a configured time the MLX80104/5 is switched
on. This mode is foreseen for observing applications with a very slow current consumption in user mode.
If local wake up capabilities are used, the leakage currents of the connected switches will increase the current
consumption of the whole slave node.
MLX80104/5 – Datasheet
390108010400
Page 65 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
15. Thermal Shutdown
A thermal overload of the MLX80104/5 may occur due to an increased power dissipation and high ambient
temperature. Causes for the unspecific power dissipation may be:
-
Short LIN to Vbat/Vs
Shorted load at IO Pins
IO loads too high
In case the chip temperature exceeds the specified limit, the THERMAL bit in the XIN register (see below) will be set to
1. This bit can be used for triggering the software to find the reason of the thermal problem. This can be done by
disable SWx/IOx pins to check if the external circuitry causes the problem.
Thermal Error Bit
Address
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0xC005
XIN
-
-
-
-
-
-
-
THERMAL
THERMAL
Thermal error bit
0 = no thermal error
1 = Thermal error
MLX80104/5 – Datasheet
390108010400
Page 66 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
16. System behaviour
16.1 Reset behaviour
After connecting power to the VS pin the system will start operation. The on-chip supplies start after the defined
minimum voltage level is reached on the VS pin. The system is in the RESET state as long as the supply voltage is below
its minimum voltage level.
VS
VAUX
VDDA
VDDD
VAUX_PORN
VDDD_PORN
VDDA_PORN
RESETN
Figure 20 - Reset behaviour
The reset signal keeps the complete IC in reset state if the supply voltage is below the specified value. After reaching
the minimum voltage level of the supply, the reset signal becomes inactive and the initialisation sequence is started.
The RC-Oscillator is switched on with the lowest frequency and the CPU starts the initialisation.
16.2 Initialising the System
For correct system start-up some registers in the IO part must be restored after every RESET or WAKEUP by writing
the values from reserved EEPROM addresses. These trim values have been stored during chip test. Overwriting these
EEPROM memory addresses is prohibited otherwise the data for application needs is lost and the correct IC behaviour
cannot be guaranteed in the specified range.
Start-up steps:
1.
Trim the bandgap to the expected value (3bit),
2.
Trim the RC to the expected frequency (7bit),
3.
Trim the internal biasing to the expected current,
4.
Trim the ADC reference to the expected voltage for every input range (7bit),
5.
Trim the switch current (4bit),
6.
Set the EEPROM delay time (4bit).
MLX80104/5 – Datasheet
390108010400
Page 67 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
System configuration register
Address
Name
Bit7
0xE021
ANA_OUTC_H
reserved
ADC-REF *
0xE020
ANA_OUTC_L EN_XTAL
RC_CALI *
0xE01F
ANA_OUTB_H
CU_TRIM *
0xE01E
ANA_OUTB_L
reserved
SW_TRIM *
0xE01D
ANA_OUTA_H
EE_DELAY *
reserved
0xE01C
ANA_OUTA_L
EE_DELAY
INT_WAKE
BG_TRIM
CU_TRIM
SW_TRIM
ADC_REF
RC-CALI
EN_XTAL
Bit6
Bit5
Bit4
Bit3
reserved
reserved
Bit2
Bit1
Bit0
BG_TRIM *
INT_WAKE
Set the EEPROM programming time
Control of internal timer controlled wake up
00
off
01
wake up after 0.5s
02
wake up after 1s
03
wake up after 2s
Adjust bandgap
Adjust current references
Adjust switch current source
Adjust reference voltage of ADC VREFH
RC-Oscillator calibration
Enable use of external Quartz or Resonator as clock source for the MCU
0
internal RC-Clock is used
1
Switch from RC to external
Attention: All values marked with “*” are trimming values for analogue IC parameter. Those values must be kept after initialisation of
the IC! Otherwise the IC will not operate correctly.
MLX80104/5 – Datasheet
390108010400
Page 68 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
17. ROM Patches
In order to rapidly correct minor bugs in ROM a specific hardware has been added to replace up to four ROM spaces
by EEPROM code. The principle is shown on Figure 21.
Address
16
=
{ 0, AD_CMP0}
E
PATCH0_A
=
{ 0, AD_CMP1}
E
PATCH1_A
=
=
AD_CMP2
Decoder
CPUs
{ 0, AD_CMP3}
E
PATCH3_A
AD_CMP1
{ 0, AD_CMP1}
E
PATCH2_A
AD_CMP0
AD_CMP3
Patch ports
ROM
DATA ROM
EEPROM / RAM
PATCH0_I
INSTR0 (*)
PATCH1_I
INSTR1 (*)
PATCH2_I
INSTR2 (*)
PATCH3_I
INSTR3 (*)
MUX
Data
(*): JUMP FPx instructions
Figure 21 - Patch hardware
17.1 Principle of operation
There are 4 possible patch start addresses PATCHx_A (x=0..3) available. In case the program counter (PC) of the CPU
points to an address, which is equal to one of the PATCHx_A ports (and the patch is enabled) the PC will be redirected
to the address defined by the PATCHx_I port.
The patch instruction can be located in the EEPROM or the RAM.
MLX80104/5 – Datasheet
390108010400
Page 69 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
17.2 Patch start address
Initially the patches are disabled (Bit E=0). The Mlx16 ROM startup code must be written in a way that an EEPROM
byte decides if patches must be applied. If yes, patch ports must be loaded. This operation must be done prior to any
other to allow patch of any code.
PATCHi_A
At reset
15
E
0
14
13
12
11
10
x
x
x
x
x
9
x
8
7
6
5
AD_CMP0[14:0]
x
x
x
x
4
3
x
2
x
1
x
0
x
x
Port PATCHx_A (x = 0 to 3) must be loaded with the address where the patch should start.
Note: This address is only 15 bits, but ROM is less than 32Kbytes.
17.3 Patch jump instruction
PATCHx_I must be loaded with a special instruction (a jump into far page) and the address into the far page. Figure 22
shows a how to execute the patch in EEPROM while Figure 23 shows a how to execute the patch from RAM (it
supposes RAM has been loaded before).
PATCHx_I
At reset
15
0
x
14
1
x
13
0
x
12
0
x
11
0
x
10
0
x
9
0
x
8
0
x
7
1
x
6
1
x
5
1
x
4
x
3
2
1
FPAD[4:0]
x
x
x
0
3
1
0
0
0
2
1
FPAD[4:0]
x
x
x
0
3
0
0
x
Fp7
15
1
14
0
13
0
12
0
11
0
10
0
Resulting patch start address
9
8
7
6
5
4
0
0
FPAD[4:0]
2
0
Fp7 value (Defined on Table 6)
Figure 22 - Patch code in EEPROM
PATCHx_I
At reset
15
0
x
14
1
x
13
0
x
12
0
x
11
0
x
10
0
x
9
0
x
8
0
x
7
1
x
6
0
x
5
1
x
4
x
3
x
Fp5
15
1
14
0
13
1
12
0
11
0
Resulting patch start address
10
9
8
7
6
5
4
0
0
1
FPAD[4:0]
2
0
1
0
Fp5 value (Defined on Table 6)
Figure 23 - Patch code in RAM
MLX80104/5 – Datasheet
390108010400
Page 70 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Notes:
- A patch can only start on an 8 bytes boundary.
- The last instruction of the patch must be a far jump back to the first correct ROM instruction.
Important:
The access time to EEPROM is longer than for ROM; therefore the execution time of the patched code will be a bit
slower than the same code in executed from ROM.
Abnormal cases where two patches are at the same address but have different instruction is solved by giving priority
to the lowest patch id. See examples below.
Examples:
If PATCH0_A = PATCH1_A, PATCH0_I is used
If PATCH0_A = PATCH3_A, PATCH0_I is used
If PATCH1_A = PATCH2_A = PATCH3_A, PATCH1_I is used
MLX80104/5 – Datasheet
390108010400
Page 71 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
18. Application Hints
Further information regarding the use of the IO and SW pins can be found in the Application note “Standard
input/output pin configurations”.
18.1 Application Examples
The SWx are used for connection to a switch matrix as well as for single switches to GND or VS
The IOx pins can be used for different purposes:
1. Single switch input connected to GND or VS incl. switch diagnostics
2. Rotating encoder input
3. General purpose digital input
4. Open drain high voltage capable output
5. ADC Input
The pin IREF, via an external bipolar transistor, is used to generate a 5V voltage to supply external pull up resistors.
MLX80104/5 – Datasheet
390108010400
Page 72 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
VBat
22µF
AWD
VS
100nF
VS
optional
IREF
IO4
VDD_pu
SW0
SW1
SW2
SW3
SW4
VS
SW5
IO5
SW6
MLX80104
VS
SW7
VS
Diagnostic 7.5k
SW8
IO6
SW9
Diagnostic 7.5k
VDD_pu
VDD_pu
IO7
IO0
Encoder 1
IO1
IO2
Encoder 2
IO3
TI0
TI1
LIN
TO
180p
GND
Figure 24 - Application schematic sample
18.1.1. Switch Matrix Hints
If more than two switches are closed at the same time, it can happen that reading the switches gives a wrong result. A
“ghost” switch is detected, that means it will read out a certain switch is pressed, but this switch is not really pressed
(See Figure 25). To avoid this effect, diodes can be used for decoupling the switches. The diodes prevent the fault
current by a closed switch in another row.
Note: This wiring with diodes is only necessary if it is possible to press more than three switches at the same time.
Example: In a matrix without diodes (left example) the open switch 2b (“ghost” switch from left example) is
recognized as closed. The closed switches 1b, 1c and 2c setup a wrong current path. This wrong path is prevented in
the protected wiring (right example) by the diode 1c.
MLX80104/5 – Datasheet
390108010400
Page 73 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
a
b
c
a
1
1
2
2
3
3
b
c
correct realization
wrong realization
Figure 25 - Reading the switch matrix
MLX80104/5 – Datasheet
390108010400
Page 74 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
19. Software Development
For software development a software development environment consisting of
Compiler
Linker
Debugger
User library
LIN2.x / J2602 API
and a hardware development kit consisting of
Evaluation board
Emulator
Application board
are available at Melexis. The kit description can be found in [4].
19.1 UniROM (80104 only)
Beside the software development at customer side a ready-to-use firmware, so called uniROM, is available. The
uniROM firmware offers a ready to use application software which removes the need for new software development
for new LIN applications. This Software can be configured to the need of different applications. Further information
can be found in [1].
The main features are:
LIN protocol specification according to LIN 2.x and J2602
19.2kBaud and 10.4kBaud transmission speed
Up to 5 LIN configurable LIN frames:
o
Configurable data byte length
o
Configurable LIN identifier
o
Configurable communication direction (slave to master, master to slave)
o
Configurable data byte content on byte level
Event triggered frame
Go to sleep command
Node configuration services
o
Assign NAD
o
Assign frame ID range
o
Assign frame ID (according LIN2.0)
o
Read by identifier
o
J2602 target reset
o
J2602 broadcast reset
MLX80104/5 – Datasheet
390108010400
Page 75 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Error detection (Communication error (according LIN2.x), EEPROM error, Thermal overload error, under
voltage error, over voltage error etc.)
EEPROM user area for production data
Hardware CRC to protect EEPROM data
Internal 12MHz RC-oscillator. For higher accuracy an external resonator can be applied. But this is only
necessary for slave to slave communication)
Window watchdog and additional independent analog watchdog
18 configurable high voltage I/O pins which are ground shift tolerant and can be used as following:
o
Up to 18 switch inputs (low side or low side can be configured for each pin separately) ) incl. broken
line detection
o
Switch matrix inputs (5x5, 5x4, 4x4, 4x3, 3x3, 3x2) incl. broken line detection
o
Up to 18 configurable open drain outputs
o
Up to eight 10bit ADC inputs
o
Up to 8 PWM outputs with common frequency between 45Hz … 46,9kHz and different duty cycles
for each output
o
Support of SMART Fets with current sense
o
Up to two rotary encoders supported
Configurable debouncing times for switches
Internal supply voltage measurement
Configurable Wake up sources (LIN, switches, ADC)
Software SPI and I C-interface supported for controlling IO extension
Constant current source output IREF (2mA) for building an external help supply
2
MLX80104/5 – Datasheet
390108010400
Page 76 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
20. Programming Interface
The MLX80104/05 programming interface consists of the pins:
Pin 6 - TO => output
Pin 8 - TI0 => input 0
Pin 7 - TI1 => input 1
TO is an open drain output. In case a third party programmer is used, an external pull-up resistor of 500Ohm against
3.3V to this pin is necessary. In case the Melexis Mini E-Mlx emulator with Melexis interface adapter or the PTC-04 is
used, no extra pull-up resistor is needed.
IO3
IO4
IO6
SW6
SW7
VS
SW8
28
27
26
25
24
23
22
Additionally it is necessary to connect the MLX80104/05 with the supply voltage Vs and to stop the analog watchdog
by connecting AWD (Pin 21) with GND.
GNDA
1
21
AWD
IREF
2
20
SW9
SW5
3
19
IO7
SW4
4
18
IO0
SW3
5
17
GNDD
TO
6
16
GNDL
TI1
7
15
LIN
8
9
10
11
12
13
14
TI0
IO5
IO2
SW2
SW1
SW0
IO1
MLX80104/05
QFN 5x5 28
Figure 26 - Pin out MLX80104/05 – Top view
MLX80104/5 – Datasheet
390108010400
Page 77 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
20.1 Characteristics for the interface pins
Parameter
Symbol
Condition
Min
Typ
Max
Unit
7
18
V
7.8
8.2
V
10
mA
2
4.5
V
0
3.4
V
Pin VS
Supply voltage
VS
Supply voltage during OTP
programming
VS
Supply current, active without
switch current
Undervoltage lockout
IS
6
VS_UV
PIN AWD
Input voltage range
Pull down current
VAWD
IPD_AWD
2
µA
PIN TO
Input voltage range
Pull up resistor (only necessary in
case third party programmer is
used)
Input frequency
VTO
0
RTO_PULLUP
FTI
3.4
500
max output load 20pF
V
Ω
20
MHz
3.4
V
PIN TI0,TI1
Input voltage range
VTI
0
Input threshold rising edge
VTI_RISE
1.7
V
Input threshold falling edge
VTI_FALL
1.5
V
Input frequency
MLX80104/5 – Datasheet
390108010400
FTI
Page 78 of 100
20
MHz
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
20.2 Melexis Mini E-Mlx emulator
To use the MLX80104/05 programming interface directly with the Melexis Mini E-Mlx connector it is necessary to put
external components (see Figure 27) and a 9 pin mini circular connector with shield on the PCB. The connector could
be a MD-90SM from CUI INC. This part can be ordered for instance from Digi-Key (CP-2290-ND).
The Melexis emulator does not provide the supply voltage for the MLX80104/05. Because of this the module has to be
powered by an external power supply.
To disable the analog watchdog during programming and debugging it is necessary to connect pin 21 AWD to GND via
a Jumper JP1.
Pin No
Name
Function
1
TI0
Test input 0
2
GND
Ground
3
VS
VS output
4
TI1
Test input 1
5
LIN/MUST
Open (not used)
6
V0
Open (not used)
7
V2
3.3V input
8
TO
Test output
9
V1
Open (not used)
Shield
GND
Ground
Table 27 - Pin description 9 pin mini circular connector
MLX80104/5 – Datasheet
390108010400
Page 79 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Figure 27 - MLX80104/05 programming interface with the Melexis Mini E-Mlx emulator
MLX80104/5 – Datasheet
390108010400
Page 80 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
20.3 Melexis Mini E-Mlx emulator and Melexis interface adapter
In case there is not enough space to put all necessary components on the PCB as described in chapter 20.1 it is
possible to use the Melexis interface adapter. This connector includes the 9 pin mini circular connector as well as all
necessary components.
Figure 28 - Melexis MLX80104/05 programming interface adapter
The interface adapter provides an 10 pin header on top side as well as an 10 pin female header on the bottom side to
connect the adapter to the MLX80104/05 module.
The Melexis emulator does not provide the supply voltage for the MLX80104/05. Because of this the module has to be
powered by an external power supply.
Pin No
Name
Function
1
GND
Ground
2
TO
Test output
3
TI1
Test input 1
4
TI0
Test input 0
5
VS
VS input
6
n.c.
not used
7
AWD
Analog watchdog
8
LIN/MUST
not used
9
V1
not used
10
TM_ENABLE
not used
Table 28 - Pin description 10 pin header connector
MLX80104/5 – Datasheet
390108010400
Page 81 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Figure 29 - MLX80104/05 programming interface with the Melexis Mini E-Mlx emulator and Melexis interface adapter
MLX80104/5 – Datasheet
390108010400
Page 82 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
20.4 Melexis Programmer PTC-04
The PTC-04 can be used for programming OTP & EEPROM via Melexis Test Interface. 3 test pins must be accessible by
the PTC-04 programmer. These pins are TO (Test Interface output), TI0 and TI1 (both Test Interface inputs are used for
data and clock).
Additionally, the analog Watchdog pin AWD must be connected to GND to disable it. Otherwise, the IC will be reset via
the analog Watchdog which makes it impossible to execute any operation via the Melexis Test Interface.
A more detailed schematic can be found in Figure 31.
Customer EOL
Programming
System with Melexis
MLX80104/05 PSF
Library DLL
(using Microsoft
Windows XP or 7)
Melexis PTC-04
USB
Melexis PTC-04
Power Supply
Shielded wire
(length max 50cm for
max. programming speed)
GND
VS
USB
DB15
Female
Connector
AWD
TO
TI0
TI1
Customer Module
MLX80104
MLX80105
EOL (OTP, EEPROM)
via Melexis
Test Interface
Power
supply
Figure 30 - Connection diagram between PTC-04 and MLX80104/5
There is no additional power supply for the MLX80104/5 necessary. It will be powered via the PTC-04.
Melexis suggests to keep the cable length between the PTC-04 and the MLX80105 as short as possible to allow a
maximum programming speed (in the range of 0.5m maximum). Shielded wires must be used.
The most critical connections regarding the used cable and the cable length are TO, TI0 and TI1.
In case the cable length is longer than 0.5m the customer has to be secure that the shape of the signals for TO (at the
PTC-04), TI0 and TI1 (at the MLX80104/05) are still correct. Otherwise the test interface speed has to be reduced by
using the Melexis PSF DLL function SetSetting().
MLX80104/5 – Datasheet
390108010400
Page 83 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
20.4.1. PTC04 DB 15 Female Connector
All unused pins of the connector have to be left open.
PTC05 DB15 Female Connector
7
8
15
Pins
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
MLX80104/5 – Datasheet
390108010400
6
14
5
13
Name
VBAT
N.C.
DGND
MUST
TXD0
VOUT_PPS2
MUST0 / TI0
MICE / TO
LIN_OUT
+5V_DIG_CON
DGND
RXD0
XCK0
N.C.
MUST1 / TI1
12
2
3
4
11
10
1
9
Description
Power Supply (output)
Not connected
Digital Ground
Analog test pin
USART Transmit Data
VOUT_PPS2
Digital test pin TI0
Digital test pin TO
LIN BUS
+5V DC Supply
Digital Ground
USART Receive Data
USART Clock
Not connected
Digital test pin TI1
Page 84 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Figure 31 - MLX80104/05 programming interface with the Melexis PTC-04
MLX80104/5 – Datasheet
390108010400
Page 85 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
20.5 Third party programmer
In case a third party programmer tool is used, the MLX80104/05 based module has to provide at least following
connections.
MLX80104/05
Pin No
Name
Function
1,17,16
GND
Ground
6
TO
Test output
7
TI1
Test input 1
8
TI0
Test input 0
21
AWD
Analog watchdog
Table 29 - Connections for third party programmer
MLX80104/5 – Datasheet
390108010400
Page 86 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
21. Operating under Disturbance
21.1 Loss of battery
If the MLX80104/5 is disconnected from the battery, the bus pin is in high Impedance State. There is no impact to the
bus traffic and to the ECU itself.
The IC will be reverse powered if switches are placed outside and via wiring harness a short circuit to battery or a
faulty blocked switch is connected to the MLX80104/5.To prevent undefined failure currents the ports for connections
to external switches or loads have to be protected by a serial resistor of at least 100Ώ.
21.2 Loss of Ground
In case of an interrupted ECU ground connection there is no influence to the bus line.
21.3 Short circuit to battery
The LIN transmitter output current is limited to the specified value in case of short circuit to battery in order to protect
the MLX80104/5 itself.
21.4 Short circuit to ground
If the bus line is shorted to negative shifted ground levels, there is no current flow from the ECU ground to the bus
and no distortion of the bus traffic.
If the controller detects a short circuit of the bus to ground (RxD timeout) the transceiver can be set into sleep mode.
The internal slave termination resistor is switched off and only a high impedance termination is applied to the bus.
The failure current of the whole system can be reduced by at least ten times to prevent a fast discharge of the car
battery. If the failure disappears, the bus level will become recessive again and will wake up the system even if no
local wake up is present or possible.
21.5 Thermal overload
The MLX80104/5 is protected against thermal overloads. If the chip temperature exceeds the specified value, the
transmitter is switched off until thermal recovery. The receiver is still working during thermal shutdown.
21.6 Undervoltage Vs
If the ECU battery supply voltage is missing or decreases under the specified value, the LIN pin functions as passive.
MLX80104/5 – Datasheet
390108010400
Page 87 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
22. Marking/Order Code
22.1 Marking MLX80104
80104D
Silicon Revision
M27237
Lot Number
Assembly Date Code – week number
1
1110AG
Firmware Revision
Assembly Date Code – Year
22.2 Order Code MLX80104
MLX80104 KLQ DAG 000 RE
Delivery Form (RE = Reel)
Option Code (000 = Standard)
Firmware Version AG
Silicon Version D
Package Code (LQ=QFN,
LW=QFN with wettable flanks)
Temperature Code (K=-40 to 125°C)
Product Name
MLX80104/5 – Datasheet
390108010400
Page 88 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
22.3 Marking MLX80105
80105E
M25574
1
1110
Silicon Revision
Lot Number
Assembly Date Code – week number
Assembly Date Code – Year
22.4 Order Code MLX80105
MLX80105 KLQ EAA 000 RE
Delivery Form (RE = Reel)
Option Code (000 = Standard)
Firmware Version (AA=no Firmware)
Silicon Version E
Package Code (LQ=QFN,
LW=QFN with wettable flanks)
Temperature Code (K=-40 to 125°C)
Product Name
MLX80104/5 – Datasheet
390108010400
Page 89 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
IO3
IO4
IO6
SW6
SW7
VS
SW8
28
27
26
25
24
23
22
23. Pin Description
GNDA
1
21
AWD
IREF
2
20
SW9
SW5
3
19
IO7
SW4
4
18
IO0
SW3
5
17
GNDD
TO
6
16
GNDL
TI1
7
15
LIN
9
10
11
12
13
14
IO5
IO2
SW2
SW1
SW0
IO1
TI0
8
MLX80104/5
QFN 5x5 28
Figure 32 - Pin out MLX80104/5 – Top view
MLX80104/5 – Datasheet
390108010400
Page 90 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Table 1 – Pin Description MLX80104 QFN 5x5 28
Pin No
Name
Function
1
GNDA
Analogue ground and ADC ground
2
IREF
IREF output
O
3
SW5
Switch matrix I/O, single switch input, open drain output, wake up capable
I/O
4
SW4
Switch matrix I/O, single switch input, open drain output, wake up capable
I/O
5
SW3
Switch matrix I/O, single switch input, open drain output, wake up capable
I/O
6
TO
Test output, unconnected in application mode
O
7
TI1
Test input - connect to GND in application mode
I
8
TI0
Test input - connect to GND in application mode
I
9
IO5
SWx functionality and ADC input, wake up capable, PWM output
I/O
10
IO2
SWx functionality and ADC input, wake up capable, PWM output
I/O
11
SW2
Switch matrix I/O, single switch input, open drain output, wake up capable
I/O
12
SW1
Switch matrix I/O, single switch input, open drain output, wake up capable
I/O
13
SW0
Switch matrix I/O, single switch input, open drain output, wake up capable
I/O
14
IO1
SWx functionality and ADC input, wake up capable, PWM output
I/O
15
LIN
Connection to LIN bus
IO
16
GNDL
LIN driver ground
GND
17
GNDD
Digital ground
GND
18
IO0
SWx functionality and ADC input, wake up capable, PWM output
I/O
19
IO7
SWx functionality and ADC input, wake up capable, PWM output
I/O
20
SW9
Switch matrix I/O, single switch input, open drain output, wake up capable
I/O
21
AWD
Watch dog load capacitor
I/O
22
SW8
Switch matrix I/O, single switch input, open drain output, wake up capable
I/O
23
VS
High voltage supply, battery voltage
P
24
SW7
Switch matrix I/O, single switch input, open drain output, wake up capable
I/O
25
SW6
Switch matrix I/O, single switch input, open drain output, wake up capable
I/O
26
IO6
SWx functionality and ADC input, wake up capable, PWM output
I/O
27
IO4
SWx functionality and ADC input, wake up capable, PWM output
I/O
28
IO3
SWx functionality and ADC input, wake up capable, PWM output
I/O
MLX80104/5 – Datasheet
390108010400
I/O Type
Page 91 of 100
GND
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
24. Mechanical Specification
1
2
N
E2
L
K
E
Bottom
Exposed Pad
D
A
A3
D2
e
A1
b
Figure 33 - QFN28 Drawing
Table 2 – QFN28 Package Dimensions
Symbol
min
QFN28 nom
max
[1]
[2]
[3]
[4]
[5]
[6]
A
A1
0.80
0
0.90
0.02
1.00
0.05
A3
b
D
0.18
0.20
0.25
0.30
D2
E
3.00
5.00
3.10
3.25
E2
e
K
3.00
5.00
3.10
3.25
L
N [6][3]
ND [5]
NE [5]
0.45
0.50
0.20
0.55
[1]
28
7
7
[2]
0.65
Dimensions and tolerances conform to ASME Y14.5M-1994
All dimensions are in Millimeters. All angels are in degrees
N is the total number of terminals
Dimension b applies to metalized terminal and is measured between 0.25 and 0.30mm from terminal tip
ND and NE refer to the number of terminals on each D and E side respectively
Depopulation is possible in a symmetrical fashion
MLX80104/5 – Datasheet
390108010400
Page 92 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
25. Land Pattern Recommendations
This recommendation is provided as a guideline for board layout.
Table 3 – QFN28 Land Pattern Dimensions
Symbol
Land
X1
Land
Y1
Tab Land
X2
Tab Land
Y2
Land Space
C1
Land Space
C2
(in mm)
0.30
1.00
3.25
3.25
4.70
4.70
MLX80104/5 – Datasheet
390108010400
Page 93 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
26. ESD/EMC Remarks
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
26.1 ESD/EMC Recommendations for the MLX80104/5
In order to minimize EMC influences, the PCB has to be designed according to EMC guidelines. The MLX80104/5 is an
ESD sensitive device and has to be handled according to the rules in IEC61340-5-2. MLX80104/5 will apply the
requirements in the application according to the specification and to ISO7637-2
26.2 Automotive Qualification Test Pulses
The following chapter is valid for a complete assembled module. That means that automotive test pulses are applied
to the complete module and not to the single IC. Therefore attention must be taken, that only protected pins
(protection done the IC itself or by external components) are wired to a module connector. In the recommended
application diagrams, the reverse polarity diode together with the capacitors on supply pins, the protection resistors
in several lines and the load dump protected IC itself will protect the module against the below listed automotive test
pulses. The exact values of the capacitors for the application have to be chosen in dependence of the automotive
requirements of the module.
For the LIN pin the specification “LIN Physical Layer Spec 2.x” is valid.
Supply Pin VS is protected via the reverse polarity diode and the supply capacitors. No damage will occur for defined
test pulses. A deviation of characteristics is allowed during pulse 1 and 2; but the module will recover to the normal
function after the pulse without any additional action. During test pulse 3a, 3b, 5 the module will work within
characteristic limits.
Test pulses on supply lines
Parameter
Symbol
Us
Dim
Test Condition
Transient test pulses in accordance to ISO7637-2 (supply lines)
Test pulses are defined with the 12V DC voltage shift on the supply lines. Application schematics are according
application notes.
Test pulse #1
vpulse1
-100
V
5000 pulses, t1 = 5s, td = 2ms,
Ri = 10Ω
Test pulse #2a
vpulse2
75
V
5000 pulses, t1 = 0.5s, td = 0.05ms,
Ri = 2Ω
Test pulse #3a
vpulse3a
-200
V
1h, t1 = 0.1ms, t4 = 10ms,
t5 = 90ms, Ri = 50Ω
Test pulse #3b
vpulse3b
200
V
1h, t1 = 0.1ms, t4 = 10ms,
t5 = 90ms, Ri = 50Ω
Test pulse #5b
vpulse5
45
V
10 pulses, td = 400ms, Ri = 0.5Ω
MLX80104/5 – Datasheet
390108010400
Page 94 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
Test pulses on LIN line
Parameter
Symbol
Us
Dim
Test Condition
Transient test pulses in accordance to ISO7637-3 (signal lines)
Test pulses are defined with the 12V DC voltage shift on the signal lines. Application schematics are according
application notes.
vpulse1
-100
V
5000 pulses, t1 = 5s, td = 2ms,
Ri = 10Ω
vpulse2
75
V
5000 pulses, t1 = 0.5s, td = 0.05ms,
Ri = 2Ω
Test pulse #3a
vpulse3a
-200
V
1000 bursts, t1 = 0.1ms, t4 = 10ms,
t5 = 90ms, Ri = 50Ω
Test pulse #3b
vpulse3b
200
V
1000 bursts, t1 = 0.1ms, t4 = 10ms,
t5 = 90ms, Ri = 50Ω
Test pulse #1
8
Test pulse #2a
9
26.3 EMC Test pulse definition
EMC Test Pulse shapes
Test Pulse 1
Test pulse 2
200 ms
V
0.5...5s
< 100 µs
50 µs
V
12 V
0V
10%
t
1 µs
90%
vpulse1
vpulse2
90%
10%
12V
1 µs
2 ms
0V
t
200 ms
0.5...5s
Test Pulse 3a
Test Pulse 3b
100 ns
5 ns
V
90%
V
12V
vpulse3b
10%
0V
t
vpulse3b
vpulse3a
vpulse3a
10%
12V
0V
100 µs
10 ms
90 ms
100 µs
90%
10 ms
t
90 ms
5 ns
100 ns
Test Pulse 5 (Load Dump)
V
Pulse 5
90%
Pulse 5 at
device
vpulse5
40V
10%
12V
t
tr = 0.1...10ms
td = 40...400ms
8
9
Test pulse 1 is not part of ISO 7637-3 for signal lines, this test is made additional.
Test pulse 2 is not part of ISO 7637-3 for signal lines, this test is made additional.
MLX80104/5 – Datasheet
390108010400
Page 95 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
27. References
[1]
[2]
Software Functional Specification for MLX80104 UniROM
LIN Specification Package 2.1
[3]
GM LIN/J2602 Implementation Specification
[4]
MLX80104/08 – Software Development Kit
November 24,
2006
Issue
1.4
December 19,
2006
28. List of Abbreviations
Dp
Ep
Fp
GCC
MLX80104/5 – Datasheet
390108010400
Direct page
EEPROM
Far page
GNU Compiler Collection
Page 96 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
29. Revision History
Version
Changes
0.1
Remark
First preliminary
release
Date
March 2008
0.11
Updated application schematic
March 2008
001
Update of block diagram of MLX80104
Increase RAM size to 512byte
Update absolute maximum ratings
Update static characteristics
Definition of pull up/down resistance on SWx and IOx in sleep mode
Chapter ADC
Add additional channel IREF
Chapter PWM unit
Increase number of PWM channels on IOx to eight
Change the access to duty cycle register
Chapter mechanical specification
Update package dimensions
Update chapter automotive test pulses
December
2008
002
Correct test pin description in chapter Pin description
Chapter Timer added
Application example modified
ADC chapter updated
Chapter Patches added
February
2010
003
Update absolute maximum ratings
July 2010
004
Chapter PWM Unit
Equation for PWM_DIV register added
Frequency table added
Chapter Timer
Equation for Timer register added
Chapter ADC
Description for input divider added
September
2010
005
Chapter Programming Interface added
September
2010
006
Small layout changes done
007
Chapter Application Examples
Application Schematic modified, capacitor value at VS pin increased to
fulfil the performance status A
Chapter PWM unit
Block Diagram PWM unit modified
Chapter Automotive Qualification Test Pulses
Voltage levels updated
008
Order Information updated
Marking MLX80104/5 updated
Disclaimer updated
Chapter Software Development added
009
Package drawing corrected
MLX80104/5 – Datasheet
390108010400
January
2011
August 2011
January
2012
March 2012
Page 97 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
010
Chapter “Memory Mapping” updated
Chapter “Programming Interface”
New sub-chapter “Melexis programmer PTC-04” added
New chapter “Land Pattern Recommendations” added
Chapter “Operating Conditions” updated
Chapter “Melexis Programmer PTC-04” updated
June 2012
011
Chapter “List of Abbreviations” added
Chapter “EEPROM” updated
April 2013
012
Chapter “Programming Interface” updated
July 2013
013
Chapter “Order Code” updated
014
Chapter “Order Code” updated
Chapter “Melexis Mini E-Mlx emulator and Melexis interface adapter” updated
Chapter “Entering Sleep Mode by API” updated
015
Chapter “Order Code” updated
Chapter “Static Characteristics” updated
May 2014
016
Chapter “Operating Conditions” updated
Chapter “Switch diagnosis” updated
Chapter “Order Code” updated (wettable flanks)
Chapter “Reserved EEPROM Segments” added
Chapter “The IREF pin” updated
Parameter “LIN current during loss of Ground” updated in chapter “Static
Characteristics”
April 2015
017
Chapter “Characteristics for the interface pins” Parameter “Supply voltage during
OTP programming” updated
MLX80104/5 – Datasheet
390108010400
January
2014
Page 98 of 100
March 2014
Only MLX80105
affected
June 2016
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
30. Standard information regarding manufacturability of
Melexis products with different soldering processes
Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level
according to following test methods:
Reflow Soldering SMD’s (Surface Mount Devices)
IPC/JEDEC J-STD-020
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
(classification reflow profiles according to table 5-2)
EIA/JEDEC JESD22-A113
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
(reflow profiles according to table 2)
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
EN60749-20
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat
EIA/JEDEC JESD22-B106 and EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Iron Soldering THD’s (Through Hole Devices)
EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
EIA/JEDEC JESD22-B102 and EN60749-21
Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature,
temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon
with Melexis.
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive
strength between device and board.
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information
on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain
Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx
MLX80104/5 – Datasheet
390108010400
Page 99 of 100
June 2016
Rev 017
MLX80104/5
LIN Slave Controller for Switches
Datasheet
31. Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of
Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth
herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to
change specifications and prices at any time and without notice. Therefore, prior to designing this product into a
system, it is necessary to check with Melexis for current information. This product is intended for use in normal
commercial applications. Applications requiring extended temperature range, unusual environmental requirements,
or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not
recommended without additional processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to
recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of
profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in
connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or
liability to recipient or any third party shall arise or flow out of Melexis’ rendering of technical or other services.
© 2012 Melexis NV. All rights reserved.
For the latest version of this document, go to our website at
www.melexis.com
Or for additional information contact Melexis Direct:
Europe, Africa, Asia:
America:
Phone: +32 1367 0495
Phone: +1 248 306 5400
E-mail: sales_europe@melexis.com E-mail: sales_usa@melexis.com
ISO/TS 16949 and ISO14001 Certified
MLX80104/5 – Datasheet
390108010400
Page 100 of 100
June 2016
Rev 017