0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MLX90333EGO-BCH-100-RE

MLX90333EGO-BCH-100-RE

  • 厂商:

    MELEXIS(迈来芯)

  • 封装:

    TSSOP-16_5X4.4MM

  • 描述:

    IC SENSOR INTERFACE PROG 16TSSOP

  • 数据手册
  • 价格&库存
MLX90333EGO-BCH-100-RE 数据手册
MLX90333 Position Sensor Datasheet   Absolute 3D Position Sensor Simple & Robust Magnetic Design   Tria⊗is® Hall Technology Programmable Linear Transfer Characteristics (Alpha, Beta) Selectable Analog (Ratiometric), PWM, Serial Protocol 12 bit Angular Resolution - 10 bit Angular Thermal Accuracy 40 bit ID Number Single Die – SOIC-8 Package RoHS Compliant Dual Die (Full Redundant) – TSSOP-16 Package RoHS Compliant      SOIC-8 TSSOP-16 Applications       3D Position Sensor Joystick 4-Way Scroll Key Joypad Man Machine Interface Device Linear Position Sensor Description The MLX90333 is a Tria⊗is® Position Sensor able to sense any magnet moving in its surrounding through the measurement and the processing of the 3 spatial components of the magnetic flux density vector (i.e. BX, BY and BZ). The horizontal components (BX and BY) are sensed thanks to an Integrated Magneto-Concentrator (IMC) while the vertical component (BZ) is sensed through conventional Hall plate. The MLX90333 features a contactless position sensor mode suitable for rotary position sensor (through-shaft magnet), linear stroke position sensor (magnet displacement parallel to the device surface) and for 3D/"Joystick" position sensor. The processed position information is ultimately reported as a ratiometric analog output or as PWM (Pulse-Width Modulation) signal. In case of 3D/"Joystick" mode, the device features 2 independent outputs. A 3-pin SPI (serial interface) mode is also available to transfer the position information to a host-controller. The output transfer characteristic is fully programmable (e.g. offset, gain, clamping levels, linearity, thermal drift, filtering, range...) to match any specific requirement through end-of-line calibration. The Melexis programming unit PTC-04 communicates and calibrates the device exclusively through the connector terminals (VDDVSS-OUT). VDD VDIG Prot. 3V3 Reg DSP Triaxis® VX VY VZ RAM MUX Features and Benefits EEPROM Output Stage 12 bit Analog G ADC µC 12 bit PWM SPI ROM - Firmware OUT1 MOSI/MISO OUT2 SCLK Switch Out /SS VSS MLX90333 Position Sensor Datasheet Contents Features and Benefits................................................................................................................................... 1 Applications .................................................................................................................................................. 1 Description ................................................................................................................................................... 1 1. Ordering Information ............................................................................................................................... 5 2. Functional Diagram .................................................................................................................................. 6 3. Glossary of Terms ..................................................................................................................................... 7 4. Pinout ....................................................................................................................................................... 8 5. Absolute Maximum Ratings ...................................................................................................................... 9 6. Electrical Specification ............................................................................................................................ 10 7. Isolation Specification............................................................................................................................. 12 8. Timing Specification................................................................................................................................ 12 9. Accuracy Specification ............................................................................................................................ 13 10. Magnetic Specification ......................................................................................................................... 15 11. CPU & Memory Specification ............................................................................................................... 15 12. End-User Programmable Items ............................................................................................................ 16 13. Description of End-User Programmable Items ..................................................................................... 19 13.1. Output Configuration ................................................................................................................... 19 13.2. Output Mode ............................................................................................................................... 19 13.2.1. Analog Output Mode ............................................................................................................. 19 13.2.2. PWM Output Mode ............................................................................................................... 20 13.2.3. Serial Protocol Output Mode ................................................................................................. 20 13.2.4. Switch Out .............................................................................................................................. 21 13.3. Output Transfer Characteristic .................................................................................................... 21 13.3.1. The Polarity and Modulo Parameters.................................................................................... 22 13.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point) ........................................................ 23 13.3.3. LNR Parameters ..................................................................................................................... 23 13.3.4. CLAMPING Parameters .......................................................................................................... 24 13.3.5. DEADZONE Parameter ........................................................................................................... 24 13.4. Identification ................................................................................................................................ 25 13.5. Sensor Front-End ......................................................................................................................... 25 13.5.1. HIGHSPEED Parameter........................................................................................................... 26 REVISION 008 – SEPTEMBER 26, 2017 Page 2 of 48 MLX90333 Position Sensor Datasheet 13.5.2. GAINMIN and GAINMAX Parameters .................................................................................... 26 13.5.3. FIELDTHRES_LOW and FIELDTHRES_HIGH Parameters ........................................................ 26 13.6. FILTER ........................................................................................................................................... 27 13.6.1. Hysteresis Filter ...................................................................................................................... 27 13.6.2. FIR Filters ................................................................................................................................ 27 13.6.3. IIR Filters ................................................................................................................................. 29 13.7. Programmable Enhanced “Joystick’ Angle Correction ............................................................... 30 13.7.1. Enhanced “Joystick” Angle Formula ...................................................................................... 30 13.8. Programmable Diagnostic Settings.............................................................................................. 30 13.8.1. OUTxDIAG Parameter ............................................................................................................ 31 13.8.2. RESONFAULT Parameter ........................................................................................................ 31 13.8.3. EEHAMHOLE Parameter ........................................................................................................ 31 13.9. Lock .............................................................................................................................................. 31 13.9.1. MLXLOCK Parameter .............................................................................................................. 31 13.9.2. LOCK Parameter ..................................................................................................................... 31 14. Self Diagnostic ...................................................................................................................................... 32 15. Serial Protocol ...................................................................................................................................... 35 15.1. Introduction ................................................................................................................................. 35 15.2. SERIAL PROTOCOL Mode ............................................................................................................. 35 15.3. MOSI (Master Out Slave In) ......................................................................................................... 35 15.4. MISO (Master In Slave Out) ......................................................................................................... 35 15.5. /SS (Slave Select) .......................................................................................................................... 35 15.6. Master Start-Up ........................................................................................................................... 35 15.7. Slave Start-Up .............................................................................................................................. 36 15.8. Timing ........................................................................................................................................... 36 15.9. Slave Reset ................................................................................................................................... 37 15.10. Frame Layer ............................................................................................................................... 37 15.10.1. Frame Type Selection .......................................................................................................... 37 15.10.2. Data Frame Structure .......................................................................................................... 37 15.10.3. Timing ................................................................................................................................... 38 15.10.4. Data Structure ...................................................................................................................... 38 15.10.5. Angle Calculation ................................................................................................................. 39 15.10.6. Error Handling ...................................................................................................................... 39 REVISION 008 – SEPTEMBER 26, 2017 Page 3 of 48 MLX90333 Position Sensor Datasheet 16. Recommended Application Diagrams .................................................................................................. 40 16.1. Analog Output Wiring in SOIC-8 Package .................................................................................... 40 16.2. PWM Low Side Output Wiring ..................................................................................................... 40 16.3. Analog Output Wiring in TSSOP-16 Package ............................................................................... 41 16.4. Serial Protocol .............................................................................................................................. 42 17. Standard information regarding manufacturability of Melexis products with different soldering processes ............................................................................................................................................... 43 18. ESD Precautions.................................................................................................................................... 43 19. Package Information............................................................................................................................. 44 19.1. SOIC-8 - Package Dimensions ...................................................................................................... 44 19.2. SOIC-8 - Pinout and Marking ....................................................................................................... 44 19.3. SOIC-8 - IMC Positionning ............................................................................................................ 45 19.4. TSSOP-16 - Package Dimensions ................................................................................................. 46 19.5. TSSOP-16 - Pinout and Marking................................................................................................... 47 19.6. TSSOP-16 - IMC Positionning ....................................................................................................... 47 20. Disclaimer ............................................................................................................................................. 48 21. Contact ................................................................................................................................................. 48 REVISION 008 – SEPTEMBER 26, 2017 Page 4 of 48 MLX90333 Position Sensor Datasheet 1. Ordering Information Product Code Temperature Code Package Code Option Code Packing Form Code MLX90333 S DC BCH-000 RE MLX90333 E DC BCH-000 RE MLX90333 E DC BCH-100 RE MLX90333 E DC BCT-000 RE MLX90333 K DC BCH-000 RE MLX90333 K DC BCH-100 RE MLX90333 K DC BCT-000 RE MLX90333 L DC BCH-000 RE MLX90333 L DC BCH-100 RE MLX90333 L DC BCT-000 RE MLX90333 E GO BCH-000 RE MLX90333 E GO BCH-100 RE MLX90333 E GO BCT-000 RE MLX90333 K GO BCH-000 RE MLX90333 K GO BCH-100 RE MLX90333 K GO BCT-000 RE MLX90333 L GO BCH-000 RE MLX90333 L GO BCH-100 RE MLX90333 L GO BCT-000 RE REVISION 008 – SEPTEMBER 26, 2017 Page 5 of 48 MLX90333 Position Sensor Datasheet Legend: Temperature Code: S: from -20 Deg.C to 85 Deg.C E: from -40 Deg.C to 85 Deg.C K: from -40 Deg.C to 125 Deg.C L: from -40 Deg.C to 150 Deg.C Package Code: “DC” for SOIC-8 package “GO” for TSSOP-16 package (dual die) Option Code: AAA-xxx: die version xxx-000: Standard xxx-100: SPI Packing Form: “RE” for Reel “TU” for Tube Ordering Example: MLX90333LGO-BCH-000-RE Table 1 - Legend 2. Functional Diagram VDD VDIG Prot. 3V3 Reg DSP VX VY VZ RAM MUX Triaxis ® EEPROM Output Stage 12 bit Analog G ADC µC 12 bit PWM SPI ROM - Firmware OUT1 MOSI/MISO OUT2 SCLK Switch Out /SS VSS Figure 1 – Block Diagram REVISION 008 – SEPTEMBER 26, 2017 Page 6 of 48 MLX90333 Position Sensor Datasheet 3. Glossary of Terms Gauss (G), Tesla (T) TC NC PWM %DC ADC DAC LSB MSB DNL INL RISC ASP DSP ATAN IMC CoRDiC EMC Units for the magnetic flux density - 1 mT = 10 G Temperature Coefficient (in ppm/Deg.C.) Not Connected Pulse Width Modulation Duty Cycle of the output signal i.e. TON /(TON + TOFF) Analog-to-Digital Converter Digital-to-Analog Converter Least Significant Bit Most Significant Bit Differential Non-Linearity Integral Non-Linearity Reduced Instruction Set Computer Analog Signal Processing Digital Signal Processing Trigonometric function: arctangent (or inverse tangent) Integrated Magneto-Concentrator (IMC®) Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform) Electro-Magnetic Compatibility Table 2 – Glossary of Terms REVISION 008 – SEPTEMBER 26, 2017 Page 7 of 48 MLX90333 Position Sensor Datasheet 4. Pinout (1) PIN SOIC-8 TSSOP-16 Analog / PWM Serial Protocol Analog / PWM Serial Protocol 1 VDD VDD VDIG1 VDIG1 2 Test 0 Test 0 VSS1 (Ground1) VSS1 (Ground1) 3 Not Used /SS VDD1 VDD1 4 OUT2 SCLK Test 01 Test 01 5 OUT1 MOSI / MISO Not Used /SS2 6 Test 1 Test 1 OUT22 SCLK2 7 VDIG VDIG OUT12 MOSI2 / MISO2 8 VSS (Ground) VSS (Ground) Test 12 Test 12 9 VDIG2 VDIG2 10 VSS2 (Ground2) VSS2 (Ground2) 11 VDD2 VDD2 12 Test 02 Test 02 13 Not Used /SS1 14 OUT21 SCLK1 15 OUT11 MOSI1 / MISO1 16 Test 11 Test 11 For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see section 16). 1 See Section 13.1 for OUT1 and OUT2 configuration REVISION 008 – SEPTEMBER 26, 2017 Page 8 of 48 MLX90333 Position Sensor Datasheet 5. Absolute Maximum Ratings Parameter Value Supply Voltage, VDD (overvoltage) + 20 V Reverse Voltage Protection - 10 V Positive Output Voltage (Analog or PWM) + 10 V Both Outputs OUT1 and OUT2 + 14 V (200 s max – TA = + 25 Deg.C) Output Current (IOUT) ± 30 mA Reverse Output Voltage Both Outputs OUT1 and OUT2 Reverse Output Current Both Outputs OUT1 and OUT2 - 0.3 V - 50 mA Operating Ambient Temperature Range, TA - 40 Deg.C … + 150 Deg.C Storage Temperature Range, TS - 40 Deg.C … + 150 Deg.C Magnetic Flux Density ±4T Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximumrated conditions for extended periods may affect device reliability. REVISION 008 – SEPTEMBER 26, 2017 Page 9 of 48 MLX90333 Position Sensor Datasheet 6. Electrical Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Parameter Symbol Nominal Supply Voltage Supply Current (2) POR Level Output Current Both Outputs OUT1 and OUT2 Output Short Circuit Current Both Outputs OUT1 and OUT2 Output Load Both Outputs OUT1 and OUT2 Test Conditions Min Typ Max Units 4.5 5 5.5 V Slow mode (3) 8.5 11 mA Fast mode (3) 13.5 16 mA 2.7 3 V VDD IDD VDD POR IOUT Ishort RL Supply Under Voltage 2 Analog Output mode -8 8 mA PWM Output mode -20 20 mA VOUT = 0 V 12 15 mA VOUT = 5 V 12 15 mA VOUT = 14 V (TA = 25 Deg.C) 24 45 mA 10 ∞ (5) kΩ 10 (5) kΩ Pull-down to Ground Pull-up to 5V (4) Analog Saturation Output Level Vsat_lo Pull-up load RL ≥ 10 kΩ Both Outputs OUT1 and OUT2 Vsat_hi Pull-down load RL ≥ 5 kΩ Digital Saturation Output Level Both Outputs OUT1 and OUT2 Active Diagnostic Output Level Both Outputs OUT1 and OUT2 Passive Diagnostic Output Level VsatD_lo VsatD_hi Diag_lo Diag_hi BVSSPD 1 1 3 %VDD 96 Pull-up Low Side RL ≥ 10 kΩ %VDD 1.5 Push-Pull (IOUT = -20mA) Push-Pull (IOUT = 20mA) ∞ 97 Pull-down load RL ≥ 5 kΩ Pull-up load RL ≥ 10 kΩ %VDD %VDD 1 %VDD 1.5 %VDD Pull-down load RL ≥ 5 kΩ 96 %VDD Pull-up load RL ≥ 5 kΩ 98 %VDD Broken VSS & Pull-down load RL ≤ 10 kΩ 4(6) %VDD 2 Supply current per silicon die. Dual die version will consume twice the current See section 13.5.1 for details concerning Slow and Fast mode 4 Applicable for output in Analog and PWM (Open-Drain) mode 3 5 RL < ∞ for output in PWM mode REVISION 008 – SEPTEMBER 26, 2017 Page 10 of 48 MLX90333 Position Sensor Datasheet Parameter Symbol Both Outputs OUT1 and OUT2 (Broken Track Diagnostic) (6) BVSSPU BVDDPD BVDDPU Test Conditions Broken VSS & Pull-up load RL ≥ 1 kΩ Min Typ 99 100 Broken VDD & Max %VDD 0 Pull-down load RL ≥ 1 kΩ Broken VDD & 1 %VDD No Broken Track diagnostic Pull-up load to 5 V Units %VDD Clamped Output Level (7) Clamp_lo Programmable 0 100 %VDD Both Outputs OUT1 and OUT2 Clamp_hi Programmable 0 100 %VDD As an illustration of the previous table, the MLX90333 fits the typical classification of the output span described on the Figure 2. 100 % 90 % 96 % 92 % 88 % Diagnostic Band (High) Clamping High 80 % Output Level 70 % 60 % Linear Range 50 % 40 % 30 % 20 % 10 % 0% 12 % 8% 4% Clamping Low Diagnostic Band (Low) Figure 2 – Output Span Classification 6 7 For detailed information, see also section 14 Clamping levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi) REVISION 008 – SEPTEMBER 26, 2017 Page 11 of 48 MLX90333 Position Sensor Datasheet 7. Isolation Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Only valid for the package code GO i.e. dual die version. Parameter Symbol Isolation Resistance Test Conditions Min Between dice Typ Max 4 Units MΩ 8. Timing Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Parameter Main Clock Frequency Symbol Ck Sampling Rate Test Conditions Min Typ Max Units Slow mode (8) 7 MHz Fast mode (8) 20 MHz Slow mode (8) 600 1000 μs 200 330 μs 4 ms 600 μs Fast mode (8) Slow mode (8), Filter = 5 (9) Step Response Time Ts Watchdog Wd See section 14 5 ms Start-up Cycle Tsu Slow and Fast mode (8) 15 ms Analog Output Slew Rate PWM Frequency FPWM (8) Fast mode , Filter = 0 (9) 400 COUT = 42 nF 200 V/ms COUT = 100 nF 100 V/ms PWM Output Enabled 100 1000 Hz Digital Output Rise Time Mode 5 – 10 nF, RL = 10 kΩ 120 μs Both Outputs OUT1 and OUT2 Mode 7 – 10 nF, RL = 10 kΩ 2.2 μs Digital Output Fall Time Mode 5 – 10 nF, RL = 10 kΩ 1.8 μs Both Outputs OUT1 and OUT2 Mode 7 – 10 nF, RL = 10 kΩ 1.9 μs 8 9 See section 13.5.1 for details concerning Slow and Fast mode See section 13.6 for details concerning Filter parameter REVISION 008 – SEPTEMBER 26, 2017 Page 12 of 48 MLX90333 Position Sensor Datasheet Parameter Symbol Test Conditions Min Typ Max Units AGC 90% (11) Slow mode (8) Field Freq > 40Hz -10 10 % Field Freq = 20Hz -30 30 % Field Freq > 150Hz -12 12 % Field Freq = 50Hz -30 30 % Field Freq > 80Hz -22 22 % Field Freq = 50Hz -30 30 % Field Freq > 250Hz -30 30 % Field Freq = 50Hz -60 60 % Fast mode Maximum Field amplitude Change (10) (%) vs. Field Frequency (Hz) (8) AGC 64% (MLX90333BCT only) Slow mode (8) Fast mode (8) 9. Accuracy Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Parameter Symbol ADC Resolution on the raw signals X, Y and Z RADC Offset on the Raw Signals X, Y and Z X0, Y0, Z0 Test Conditions Min Slow Mode (12) Fast Mode (12) TA = 25 Deg.C Typ Max Units 15 bits 14 bits -60 60 LSB15 TA = 25 Deg.C Mismatch on the Raw Signals X, Y and Z SMISMXY SMISMXZ SMISMYZ Between X and Y -1 1 % Between X and Z (13) -30 30 % Between Y and Z (13) -30 30 % 10 Ex.: Magnetic field amplitude change in case of vibration Automatic Gain Control – see Section 13.5.2 for more information 12 15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to 0.005Deg./LSB15 in Low Speed Mode and 0.01Deg./LSB14 in High Speed. 13 The mismatch between X and Z (Y and Z) can be reduced through the calibration of the 2 parameters kZ and kt as described in the formulas page 32 in order to take into account the IC mismatch and system tolerances (magnetic and mechanical). 11 REVISION 008 – SEPTEMBER 26, 2017 Page 13 of 48 MLX90333 Position Sensor Datasheet Parameter Symbol Test Conditions Min Typ Max Units TA = 25 Deg.C Magnetic Angle Phase Error ORTHXY Between X and Y -0.3 0.3 Deg. ORTHXZ Between X and Z -10 10 Deg. ORTHYZ Between Y and Z -10 10 Deg. Temperature suffix S, E and K -60 60 Temperature suffix L -90 90 LSB15 LSB15 Temperature suffix S, E and K -0.3 0.3 %VDD Temperature suffix L -0.4 0.4 %VDD Temperature suffix S, E and K -0.3 0.3 % Temperature suffix L -0.5 0.5 % -1 1 % -1.5 1.5 % Thermal Offset Drift at the DSP input Thermal Offset Drift #1 on the Raw Signals X, Y and Z (14) (excl. DAC and output stage) Thermal Offset Drift of the DAC and Output Stage Thermal Offset Drift #2 (to be considered only for the analog output mode) Thermal Drift of Sensitivity Mismatch (15) ΔSMISMXY ΔSMISMXZ Temperature suffix S, E and K ΔSMISMYZ Temperature suffix L 12 bits DAC Analog Output Resolution RDAC Output stage Noise INL -4 4 LSB DNL -1 1 LSB 0.05 %VDD Gain = 14, Slow mode, Filter = 5 5 10 LSB15 Gain = 14, Fast mode, Filter = 0 10 20 LSB15 0 0.1 %VDD Ratiometry Error -0.1 RPWM %VDD /LSB (Theoretical – Noise free) Clamped Output Noise pk-pk (16) PWM Output Resolution 0.025 12 bits (Theoretical – Jitter free) 0.025 %DC/ LSB 14 For instance, Thermal Offset Drift #1 equal ± 60LSB15 yields to max. ± 0.3 Deg. angular error for the computed angular information (output of the DSP). See Front End Application Note for more details. This is only valid if automatic gain is set (See section 13.5.2) 15 For instance, Thermal Drift of Sensitivity Mismatch equal ± 0.4% yields to max. ± 0.1 Deg. angular error for the computed angular information (output of the DSP). See Front End Application Note for more details. 16 The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in application mode (Section 13.6). REVISION 008 – SEPTEMBER 26, 2017 Page 14 of 48 MLX90333 Position Sensor Datasheet Parameter PWM Jitter (17) Serial Protocol Output Resolution Symbol JPWM RSP Test Conditions Min Typ Gain = 11, FPWM = 250 Hz – 800Hz Theoretical – Jitter free Max Units 5 LSB12 16 bits 10. Magnetic Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E, K or L). Parameter Symbol Magnetic Flux Density Min Typ Max Units BX, BY (18) 20 50 70 (19) mT Magnetic Flux Density BZ (18) 24 140 mT IMC Gain in X and Y (20) GainIMCXY 1.2 IMC Gain in Z (20) GainIMCZ 1.1 k factor Magnet Temperature Coefficient k Test Conditions GainIMCXY / GainIMCZ TCm 1 1.4 1.8 1.3 1.2 -2400 1.5 ppm/ 0 Deg.C 11. CPU & Memory Specification The DSP is based on a 16 bit RISC µController. This CPU provides 5 MIPS while running at 20 MHz. Parameter Symbol Test Conditions Min Typ Max Units ROM 10 KB RAM 256 B EEPROM 128 B 17 Jitter is defined by ± 3 σ for 1000 successive acquisitions and the slope of the transfer curve is 100%DC/360 Deg. The condition must be fulfilled for at least one field BX, BY or BZ 19 Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error. 20 This is the magnetic gain linked to the Integrated Magneto Concentrator structure. This is the overall variation. Within one lot, the part to part variation is typically ± 10% versus the average value of the IMC gain of that lot. 18 REVISION 008 – SEPTEMBER 26, 2017 Page 15 of 48 MLX90333 Position Sensor Datasheet 12. End-User Programmable Items Default Values Parameter Comments BCH STD/IP1 BCH SPI BCT STD/IP1 # bit MAINMODE Select Outputs Configuration 0 0 0 2 Outputs Mode Output stages mode 2 N/A 2 3 PWMPOL1 PWM Polarity (OUT1) 0 N/A 0 1 PWMPOL2 PWM Polarity (OUT2) 0 N/A 0 1 PWM_Freq PWM Frequency 1000h N/A 1000h 16 3-Points 4 segments transfer curve for single angle output 0 0 0 1 ALPHA_POL Revert the Sign of Alpha 0 0 0 1 ALPHA_MOD180 Modulo Operation (180 Deg) on Alpha 1 1 1 1 ALPHA_DP Alpha Discontinuity Point 0 0 0 8 ALPHA_DEADZONE Alpha Dead Zone 0 0 0 6 ALPHA_S0 Alpha Initial Slope 4000h 4000h 4000h 16 ALPHA_X Alpha X Coordinate 4000h 4000h 4000h 16 ALPHA_Y Alpha Y Coordinate 8000h 8000h 8000h 16 ALPHA_S1 Alpha S1 Slope 4000h 4000h 4000h 16 BETA_POL Revert the Sign of Beta 0 0 0 1 BETA_MOD180 Modulo Operation (180 Deg) on Beta 1 1 1 1 BETA_DP Beta Discontinuity Point 0 0 0 6 BETA_DEADZONE Beta Dead Zone 0 0 0 8 BETA_S0 Beta Initial Slope 4000h 4000h 4000h 16 BETA_X Beta X Coordinate 4000h 4000h 4000h 16 BETA_Y Beta Y Coordinate 8000h 8000h 8000h 16 BETA_S1 Beta S1 Slope 4000h 4000h 4000h 16 CLAMP_LOW Clamping Low 0% 0% 0% 16 CLAMP_HIGH Clamping High 100% 100% 100% 16 REVISION 008 – SEPTEMBER 26, 2017 Page 16 of 48 MLX90333 Position Sensor Datasheet Default Values Parameter Comments BCH STD/IP1 BCH SPI BCT STD/IP1 # bit 0 0 0 1 0 0 0 1 KZ B3h B3h KT (21) 80h 80h N/A 8 FIELDTHRES_LOW 0h 0h 0h 8 FIELDTHRES_HIGH 0h 0h 0h 8 DERIVGAIN 40h 40h 40h 8 3 0 3 8 2D XYZ SPI Only FILTER 8 FILTER A1 Filter coefficient A1 for FILTER=6 6600h 6600h 6600h 16 FILTER A2 Filter coefficient A2 for FILTER=6 2A00h 2A00h 2A00h 16 FILTERFIRST 0 0 0 1 FHYST 0 0 0 8 MLX MLX MLX 16 CUSTID1 1 1 1 16 CUSTID2 17d (23) 37d 38d 16 CUSTD3 MLX MLX MLX 16 HIGHSPEED 0 0 0 1 GAINMIN 0 0 0 8 GAINMAX 41d 41d 41d 8 3131h 0h 3131h 16 1h N/A 0h 2 0h 0h 0h 1 MLXID1 / MLXID2 / MLXID3 22 EEHAMHOLE RESONFAULT Diagnostic mode MLXLOCK 21 Only applicable for MLX90333BCH MLXIDs parameters contain unique ID programmed by Melexis to guarantee full part traceability 23 CUSTID2 might also be 29d for MLX90333SDC–BCH–000 22 REVISION 008 – SEPTEMBER 26, 2017 Page 17 of 48 MLX90333 Position Sensor Datasheet Default Values Parameter Comments BCH STD/IP1 BCH SPI BCT STD/IP1 # bit 0h 1h 0h 1 AGCRADIUSTARGET (24) Define Gain target 64% / 90% ADC N/A N/A 0 1 SWTHRES Angle Trigger level for switch on OUT2 N/A N/A FFFFh 16 SWLOW Switch Low level output on OUT2 N/A N/A 40h 8 SWHIGH Switch High level output on OUT2 N/A N/A FFh 8 SWHYST Switch hysteresis N/A N/A 0 8 CodePWMLATCH Enable synchronized % DC update N/A N/A 1 1 OUT1DIAG Active Diagnostic Output 1 behavior N/A N/A 0 1 OUT2DIAG Active Diagnostic Output 2 behavior N/A N/A 0 1 CodeKTALPHA “Joystick” ALPHA angle correction parameter N/A N/A 80h 8 CodeKTBETA “Joystick” BETA angle correction parameter N/A N/A 80h 8 CodeORTHZXALPHA Front-end “Joystick” angle correction parameter N/A N/A 0 8 CodeORTHZYALPHA Front-end “Joystick” angle correction parameter N/A N/A 0 8 CodeORTHZXBETA Front-end “Joystick” angle correction parameter N/A N/A 0 8 CodeORTHZYBETA Front-end “Joystick” angle correction parameter N/A N/A 0 8 CodeENHORTH Enable enhanced Front-end “Joystick” angle correction N/A N/A 0 1 LOCK Parameters for MLX90333xxx-BCT only 24 Option to use the same ADC target as MLX90333BCH. Default value equals lowered % ADC target REVISION 008 – SEPTEMBER 26, 2017 Page 18 of 48 MLX90333 Position Sensor Datasheet 13. Description of End-User Programmable Items 13.1. Output Configuration The parameter MAINMODE defines the output stages configuration MAINMODE OUT1 OUT2 0 ALPHA BETA 1 BETA ALPHA 2 ALPHA ALPHA DERIVATE / SWITCH (25) 3 BETA BETA DERIVATE / SWITCH (25) 13.2. Output Mode The MLX90333 output type is defined by the Output Mode parameter. Parameter Analog Output Mode PWM Output Mode Serial Protocol Output Mode Value Description 2 Analog Rail-to-Rail 5 Low Side (NMOS) 7 Push-Pull N/A Low Side (NMOS) 13.2.1. Analog Output Mode The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration allows the use of a pull-up or pull-down resistor. 25 Derivate = MLX90333BCH, Switch = MLX90333BCT REVISION 008 – SEPTEMBER 26, 2017 Page 19 of 48 MLX90333 Position Sensor Datasheet 13.2.2. PWM Output Mode If one of the PWM Output mode is selected, the output signal is a digital signal with Pulse Width Modulation (PWM). In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor to VDD. In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up resistor to VDD. The PWM polarity of the OUT1 (OUT2) is selected by the PWMPOL1 (PWMPOL2) parameter:  PWMPOL1 (PWMPOL2) = 0 for a low level at 100%  PWMPOL1 (PWMPOL2) = 1 for a high level at 100% The PWM frequency is selected by the PWM_Freq parameter. Oscillator Mode Pulse-Width Modulation Frequency (Hz) 100 200 500 1000 Low Speed ~35000 ~17500 ~7000 ~3500 High Speed - ~50000 ~20000 ~10000 Table 3 – PWM Frequency Code (based on typical main clock frequency) For instance, in Low Speed Mode, set PWM_Freq=7000 (decimal) to set the PWM frequency around 500Hz (26). 13.2.3. Serial Protocol Output Mode The MLX90333 features a digital Serial Protocol mode. The MLX90333 is configured as a Slave node. The frame layer type is defined by the parameter XYZ as described in the next table. Parameter XYZ Value Description 0 Regular SPI Frame Alpha, Beta 1 X, Y, Z Frame See the dedicated Serial Protocol section for a full description (Section 15). 26 In order to compensate the lot to lot variation of the main clock frequency (Ck), Melexis strongly recommends trimming the PWM frequency during EOL programming (see the PTC-04 documentation). REVISION 008 – SEPTEMBER 26, 2017 Page 20 of 48 MLX90333 Position Sensor Datasheet 13.2.4. Switch Out Parameter Value Unit SWTHRES 0 … 100 % SWHYST 0 … 0.39 % SWLOW 0 … 100 % SWHIGH 0 … 100 % The output level on OUT2 is changed from SWLOW to SWHIGH when the output value is greater than the value stored in the SWTHRES parameter. The SWHYST defines the hysteresis amplitude around the Switch point. The switch is actually activated if the digital output value is greater than SWTHRES+SWHYST. It is deactivated if the digital output value is less than SWTHRES-SWHYST. If the Switch feature is not used in the application, the output pin needs to be connected to the ground and disabled in EEPROM. 13.3. Output Transfer Characteristic Parameter 3-Points Value Description 0 Regular Alpha, Beta Output (2 times 2 segments) 1 Alpha (or Beta) Single Output (1 time 4 segments) The 3-Points parameters allow the user to use the 3-points mapping (4 segments). This mode can only be used for Mainmode equals 2 and 3.  3-Points = 0, the parameters list is described as bellow (Angle Alpha and Beta): Parameter ALPHA_POL BETA_POL ALPHA_MOD180 BETA_MOD180 ALPHA_DP BETA_DP ALPHA_X BETA_X ALPHA_Y BETA_Y REVISION 008 – SEPTEMBER 26, 2017 Value Unit 0, 1 0, 1 0 … 359.9999 Deg 0 … 359.9999 Deg 0 … 100 % Page 21 of 48 MLX90333 Position Sensor Datasheet Parameter Value Unit 0 … 17 %/Deg CLAMP_LOW 0 … 100 % CLAMP_HIGH 0 … 100 % 0 … 359.9999 Deg ALPHA_S0 ALPHA_S1 BETA_S0 BETA_S1 ALPHA_DEADZONE BETA_DEADZONE  3-Points = 1, the parameters list is described as bellow (Angle Alpha or Beta): Parameter ALPHA_POL DP Value Unit 0  CCW 1  CW 0 … 359.9999 Deg 0 … 359.9999 Deg 0 … 100 % 0 … 17 %/Deg -17 … 0 … 17 %/Deg CLAMP_LOW 0 … 100 % CLAMP_HIGH 0 … 100 % 0 … 359.9999 Deg LNR_A_X LNR_B_X LNR_C_X LNR_A_Y LNR_B_Y LNR_C_Y LNR_S0 LNR_A_S LNR_B_S LNR_C_S DEADZONE 13.3.1. The Polarity and Modulo Parameters The angle Alpha is defined as the arctangent of Z/X and Beta as the arctangent of Z/Y. It is possible to invert the polarity of these angles via the parameters ALPHA_POL and BETA_POL set to “1”. The MLX90333 can also be insensitive to the field polarity by setting the ALPHA_MOD180/BETA_MOD180 to “1”. REVISION 008 – SEPTEMBER 26, 2017 Page 22 of 48 MLX90333 Position Sensor Datasheet z β y α x 13.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point) The Discontinuity Point (DP) defines the zero point of the circle (Alpha or Beta). The discontinuity point places the origin at any location of the trigonometric circle (see Figure 5). For a Joystick Application, Melexis recommends to set the DP to zero. 13.3.3. LNR Parameters The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angles (Alpha and Beta) and the output signals. The shape of the MLX90333 transfer function from the digital angle values to the output voltages is described by the drawing below (see Figure 3 ). Four segments can be programmed but the clamping levels are necessarily flat (3-Points = 0). 100% CLAMPHIGH C Clamping High B ALPHA_Y A CLAMPLOW 0% 0 (Deg.) ALPHA_S0 ALPHA_S1 Clamping Low ALPHA_X 360 (Deg.) Figure 3 – Digital Angle (Alpha) Transfer Characteristic (Idem ditto for Beta) REVISION 008 – SEPTEMBER 26, 2017 Page 23 of 48 MLX90333 Position Sensor Datasheet In the case of one single angle output (3-Points = 1), the shape of the MLX90333 transfer function from the digital angle values to the output voltage is described by the drawing below (See Figure 4). Six segments can be programmed but the clamping levels are necessarily flat. 100% CLAMPHIGH Clamping High C Slope LNR_C_S LNR_C_Y LNR_B_Y LNR_A_Y CLAMPLOW 0% 0 (Deg.) Slope LNR_B_S B Slope LNR_A_S A Slope LNR_S0 LNR_A_X Clamping Low LNR_B_X LNR_C_X 360 (Deg.) Figure 4 – Digital Angle (Alpha) Transfer Characteristic for Single Angle Output 13.3.4. CLAMPING Parameters The clamping levels are two independent values to limit the output voltage range in normal operation. The CLAMP_LOW parameter sets the minimum output voltage level while the CLAMP_HIGH parameter sets the maximum output voltage level. Both parameters have 16 bits of adjustment. In analog mode the resolution will be limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode the resolution will be 0.024%DC. In SPI mode the resolution is 14 bits or 0.022 Deg. over 360 Deg. 13.3.5. DEADZONE Parameter The dead zone is defined as the angle window between 0 and 359.9999 Deg. (See Figure 5). When the digital angle (Alpha or Beta) lies in this zone, the IC is in fault mode (RESONFAULT must be set to “1” – See 13.8.2). In case of ALPHA_MOD180 (or BETA_MOD180) is not set, the angle between 180 Deg. and 360 Deg. will generate a “deadzone” fault, unless DEADZONE = 0. REVISION 008 – SEPTEMBER 26, 2017 Page 24 of 48 MLX90333 Position Sensor Datasheet Z 90 Deg. Programmable 0 Deg. Point α 0 Deg. 180 Deg. Programmable Forbidden Zone Figure 5 – Discontinuity Point and Dead Zone (Alpha - Idem ditto for Beta) 13.4. Identification Parameter Value MLXID1 0 … 65535 MLXID2 0 … 65535 MLXID3 0 … 65535 CUSTID1 0 … 65535 CUSTID2 0 … 65535 CUSTID3 0 … 65535 Unit Identification number: 48 bits freely useable by Customer for traceability purpose. 13.5. Sensor Front-End Parameter HIGHSPEED Value Unit Slow mode = 0 Fast mode = 1 GAINMIN 0 … 41 GAINMAX 0 … 41 FIELDTHRES_LOW 0 … 100 % FIELDTHRES_HIGH 0 … 100 % REVISION 008 – SEPTEMBER 26, 2017 Page 25 of 48 MLX90333 Position Sensor Datasheet 13.5.1. HIGHSPEED Parameter The HIGHSPEED parameter defines the main frequency for the DSP:  HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock.  HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock. For better noise performance, the Slow Mode must be enabled. 13.5.2. GAINMIN and GAINMAX Parameters The MLX90333 features an automatic gain control (AGC) of the analog chain. The AGC loop is based on Max(|VX|, |VY|, |VZ|) = |Amplitude| = Radius and it targets an amplitude of 90% of the ADC input span. In MLX90333BCT, this default target is changed to 64% but can be set to 90% by enabling the parameter AGCRADIUSTARGET. The current gain can be read out with the programming unit PTC-04 and gives a rough indication of the applied magnetic flux density (Amplitude). GAINMIN & GAINMAX define the boundaries within the gain setting is allowed to vary. Outside this range, the outputs are set in diagnostic low. 13.5.3. FIELDTHRES_LOW and FIELDTHRES_HIGH Parameters The strength of the applied field is constantly calculated in a background process. The value of this field can be read out with the PTC-04 and gives a rough indication of the applied magnetic flux density (Amplitude). FIELDTHRES_LOW & FIELDTHRES_HIGH define the boundaries within the actual field strength (Radius) is allowed to vary. Outside this range, the outputs are set in diagnostic low. REVISION 008 – SEPTEMBER 26, 2017 Page 26 of 48 MLX90333 Position Sensor Datasheet 13.6. FILTER Parameter Value Unit FHYST 0 … 11; step 0.04 Deg. FILTER 0…6 FILTERFIRST 0, 1 The MLX90333 includes 3 types of filters:  Hysteresis Filter: programmable by the FHYST parameter  Low Pass FIR Filters controlled with the Filter parameter  Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and FILTER A2 Note: if the parameter FILTERFIRST is set to “1”, the filtering is active on the digital angle. If set to “0”, the filtering is active on the output transfer function. 13.6.1. Hysteresis Filter The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step is smaller than the programmed FHYST parameter value. The output value is modified when the increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the noise level. 13.6.2. FIR Filters The MLX90333 features 6 FIR filter modes controlled with Filter = 0 … 5. The transfer function is described below: yn = j 1 j ∑a i =0 ∑a x i =0 i n −i i The characteristics of the filters no 0 to 5 is given in the Table 4. Filter No (j) Type 0 2 Disable Coefficients a0… a5 Title 1 N/A 3 4 5 111100 122210 Finite Impulse Response 110000 No Filter 121000 133100 Extra Light Light 90% Response Time 1 2 3 4 4 5 99% Response Time 1 2 3 4 4 5 REVISION 008 – SEPTEMBER 26, 2017 Page 27 of 48 MLX90333 Position Sensor Datasheet Filter No (j) 0 1 2 3 4 5 Efficiency RMS (dB) 0 2.9 4 4.7 5.6 6.2 Efficiency P2P (dB) 0 2.9 3.6 5.0 6.1 7.0 Table 4 – FIR Filters Selection Table FIR and HYST Filters: Step Response Comparative Plot 40000 x(n) fir(n) hyst(n) [0..65535] Scale 38000 36000 34000 32000 30000 0 5 10 15 Milliseconds 20 25 30 FIR and HYST Filter : Gaussian white noise response 40200 x(n) fir(n) hyst(n) 40150 [0..65535] Scale 40100 40050 40000 39950 39900 39850 39800 0 20 40 60 80 100 120 140 Milliseconds Figure 6 – Step Response and Noise Response for FIR (No 3) and FHYST = 10 REVISION 008 – SEPTEMBER 26, 2017 Page 28 of 48 MLX90333 Position Sensor Datasheet 13.6.3. IIR Filters The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90333 is given in Figure 7. Only the parameters A1 and A2 are configurable (See Table 5). b0 = 1 x(n) y(n) Z-1 Z-1 -a1 b1 = 2 Z-1 Z-1 b2 = 1 -a2 Figure 7 - IIR Diagram Filter No 6 Type 2nd Order Infinite Impulse Response (IIR) Title Medium & Strong 90% Response Time 11 16 26 40 52 100 Efficiency RMS (dB) 9.9 11.4 13.6 15.3 16.2 > 20 Efficiency P2P (dB) 12.9 14.6 17.1 18.8 20.0 > 20 Coefficient A1 26112 28160 29120 30208 31296 31784 Coefficient A2 10752 12288 12992 13952 14976 15412 Table 5 – IIR Filter Selection Table The Figure 8 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2. IIR Filter - Gaussian White Noise Response 40200 40150 x(n) 40100 y(n) 40050 40000 39950 39900 39850 39800 0 50 100 150 Figure 8 – Noise Response for the IIR Filter REVISION 008 – SEPTEMBER 26, 2017 Page 29 of 48 MLX90333 Position Sensor Datasheet 13.7. Programmable Enhanced “Joystick’ Angle Correction 27 Parameter KTALPHA KTBETA Value Unit [0 … 200] / 128 LSB [-128 … 127] / 256 LSB ORTHZXALPHA ORTHZYALPHA ORTHZXBETA ORTHZYBETA Disable = 0 ENHORTH Enable = 1 13.7.1. Enhanced “Joystick” Angle Formula  (k V ) 2 + (k (V − ORTHzy * V )) 2 Z Z t Y z  VX − ORTHzx * Vz       (k V ) 2 + (k (Vx − ORTHzx *V )) 2 Z Z t z  V y − ORTHzy *Vz      α = ATAN  β = ATAN  The enhanced “joystick” angle function is enabled by parameter ENORTH. Parameters are automatically calculated when using the MLX90333BCT/ 9 points solver to optimize the shape of Betaout vs Alphaout in accordance to the mechanical boundaries of the Joystick. 13.8. Programmable Diagnostic Settings Parameter Value OUT1DIAG DIAGLOW = 0 OUT2DIAG DIAGHIGH = 1 RESONFAULT EEHAMHOLE 27 Unit Disable = 0 Enable = 1 Enable = 0 Disable = 3131h Only Applicable for MLX90333BCT REVISION 008 – SEPTEMBER 26, 2017 Page 30 of 48 MLX90333 Position Sensor Datasheet 13.8.1. OUTxDIAG Parameter This OUT1DIAG, OUT2DIAG parameters define the behavior of the output in case of a diagnostic situation. 13.8.2. RESONFAULT Parameter The RESONFAULT parameter enables the soft reset when a fault is detected by the CPU when the parameter is set to “1”. It is recommended to set it to “1” to activate the self diagnostic modes (See section 14). Note that in the User Interface (MLX90333UI), the RESONFAULT is a cluster of the following two bits, i.e. the 2 bits are both disabled or both enabled:  DRESONFAULT: disable the reset in case of a fault.  DOUTINFAULT: disable output in diagnostic low in case of fault. It is recommended to set both EEPROM parameters to “0” to activate the self diagnostic modes. 13.8.3. EEHAMHOLE Parameter The EEHAMHOLE parameter disables the CRC check and the memory recovery (Hamming code) when it is equal to 3131h. Melexis strongly recommends setting the parameter to “0” (enable memory recovery). The parameter is set automatically to “0” by the solver function “MemLock”. 13.9. Lock Parameter Value MLXLOCK 0, 1 LOCK 0, 1 Unit 13.9.1. MLXLOCK Parameter MLXLOCK locks all the parameters set by Melexis. 13.9.2. LOCK Parameter LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the EEPROM values. However it is still possible to read back the memory contents with the PTC-04 programmer. Note that the lock bit should be set by the solver function “MemLock”. REVISION 008 – SEPTEMBER 26, 2017 Page 31 of 48 MLX90333 Position Sensor Datasheet 14. Self Diagnostic The MLX90333 provides numerous self-diagnostic features. Those features increase the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure modes (“fail-safe”). Fault Mode Action Effect on Outputs Remark ROM CRC Error at start up (64 words including Intelligent Watch Dog - IWD) CPU Reset (28) Diagnostic low (29) All the outputs are already in Diagnostic low - (start-up) Enter Endless Loop: ROM CRC Error (Operation - Background task) RAM Test Fail (Start up) - Progress (watchdog Acknowledge) Immediate Diagnostic low - Set Outputs in Diagnostic low CPU Reset Diagnostic low Start-Up Time is increased by 3 ms if successful recovery Calibration Data CRC Error (Start-Up) Hamming Code Recovery Hamming Code Recovery Error (Start-Up) CPU Reset Immediate Diagnostic low CPU Reset Immediate Diagnostic low Set Outputs in Diagnostic low. Normal Operation until the “dead zone” is left. Immediate Diagnostic low Set Outputs in Diagnostic low. Normal mode and CPU Reset If recovery Immediate Diagnostic low Calibration Data CRC Error (Operation - Background) Dead Zone Alpha Dead Zone Beta ADC Clipping (ADC Output is 0000h or 7FFFh) All the outputs are already in Diagnostic low (start-up) See section 13.8.3 Immediate recovery if the “dead zone” is left 28 CPU reset means 1. Core Reset (same as Power-On-Reset). It induces a typical start up time. 2. Periphery Reset (same as Power-On-Reset) 3. Fault Flag/Status Lost 4. The reset can be disabled by clearing the RESONFAULT bit (See 13.8.1) 29 Refer to section 6 for the Diagnostic Output Level specifications REVISION 008 – SEPTEMBER 26, 2017 Page 32 of 48 MLX90333 Position Sensor Datasheet Fault Mode Action Radius Overflow (> 100%) or Radius Underflow (< 50 %) Set Outputs in Diagnostic low. Normal mode and CPU Reset If recovery Immediate Diagnostic low Field Clipping (Radius < FIELDTHRES_LOW or Radius > FIELDTHRES_HIGH) Set Outputs in Diagnostic low. Normal mode, and CPU Reset If recovery Immediate Diagnostic low Rough Offset Clipping Set Outputs in Diagnostic low. Normal mode, and CPU Reset If recovery Immediate Diagnostic low Set Outputs in Diagnostic low. Normal mode, and CPU Reset If recovery Immediate Diagnostic low DAC Monitor (Digital to Analog converter) Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset Immediate Diagnostic low ADC Monitor (Analog to Digital Converter) Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset Immediate Diagnostic low (RO is < 0d or > 127d) Gain Clipping (GAIN < GAINMIN or GAIN > GAINMAX) At Start-Up, wait Until VDD > 3V. Effect on Outputs Remark (50 % - 100 %) No magnet / field too high See also section 13.5.2 See also section 13.5.3 See also section 13.5.2 ADC Inputs are Shorted - VDD < POR level => Outputs high impedance Undervoltage Mode During operation, CPU Reset after 3 ms debouncing Firmware Flow Error CPU Reset Immediate Diagnostic low Intelligent Watchdog (Observer) Read/Write Access out of physical memory CPU Reset Immediate Diagnostic low 100% Hardware detection Write Access to protected area (IO and RAM Words) CPU Reset Immediate Diagnostic low 100% Hardware detection Unauthorized entry in “SYSTEM” Mode CPU Reset Immediate Diagnostic low 100% Hardware detection VDD > 7 V Set Output High Impedance (Analog) REVISION 008 – SEPTEMBER 26, 2017 - POR level < VDD < 3 V => Outputs in Diagnostic low Pull down resistive load => Diag. Low Pull up resistive load => Diag. High (29) 100% Hardware detection Page 33 of 48 MLX90333 Position Sensor Datasheet Fault Mode Action VDD > 9.4 V IC is switched off (internal supply) CPU Reset on recovery Effect on Outputs Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Remark 100% Hardware detection 100% Hardware detection. Broken VSS CPU Reset on recovery Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Pull down load ≤ 10 kΩ to meet Diag Low spec: - < 2% VDD (temperature suffix S and E) - < 4% VDD ( temperature suffix K) - contact Melexis for temperature suffix L Broken VDD CPU Reset on recovery REVISION 008 – SEPTEMBER 26, 2017 Pull down resistive load => Diag. Low Pull up resistive load => Diag. High No valid diagnostic for VPULLUP = VDD. Pull up load (≤ 10kΩ) to VPULLUP > 8 V to meet Diag Hi spec > 96% VDD. Page 34 of 48 MLX90333 Position Sensor Datasheet 15. Serial Protocol 15.1. Introduction The MLX90333 features a digital Serial Protocol mode. The MLX90333 is configured as a Slave node. The serial protocol of the MLX90333 is a three wires protocol (/SS, SCLK, MOSI-MISO):  /SS pin is a 5 V tolerant digital input  SCLK pin is a 5 V tolerant digital input  MOSI-MISO pin is a 5 V tolerant open drain digital input/output The basic knowledge of the standard SPI specification is required for the good understanding of the present section. 15.2. SERIAL PROTOCOL Mode  CPHA = 1  even clock changes are used to sample the data  CPOL = 0  active-Hi clock The positive going edge shifts a bit to the Slave’s output stage and the negative going edge samples the bit at the Master’s input stage. 15.3. MOSI (Master Out Slave In) The Master sends a command to the Slave to get the angle information. 15.4. MISO (Master In Slave Out) The MISO of the slave is an open-collector stage. Due to the capacitive load, a >1 kΩ pull-up is used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of the MLX90333. 15.5. /SS (Slave Select) The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronization between Slave and Master in case of communication error. 15.6. Master Start-Up /SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized before the first frame transfer. REVISION 008 – SEPTEMBER 26, 2017 Page 35 of 48 MLX90333 Position Sensor Datasheet 15.7. Slave Start-Up The slave start-up (after power-up or an internal failure) takes 16 ms. Within this time /SS and SCLK is ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-Impedance) until the Slave is selected by its /SS input. MLX90333 will cope with any signal from the Master while starting up. 15.8. Timing To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle of a byte transfer. Note: Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not have seen /SS inactive. t6 t1 t1 t7 t1 t1 t1 t4 t2 t9 t5 SCLK MOSI/ MISO /SS 1 Startbyte Timings Min (30) Byte 0 Byte 1 Max Byte 2 Byte 7 Remarks No capacitive load on MISO. 30 t1 2.3 μs / 6.9 μs - t1 is the minimum clock period for any bits within a byte. t2 12.5 μs / 37.5 μs - t2 the minimum time between any other byte t4 2.3 μs / 6.9 μs - Time between last clock and /SS = high = chip deselection t5 300 μs / 1500 μs - Minimum /SS = Hi time where it’s guaranteed that a frame re-synchronizations will be started. t5 0 μs - Maximum /SS = Hi time where it’s guaranteed that NO frame re-synchronizations will be started. Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7 MHz (Slow Mode) REVISION 008 – SEPTEMBER 26, 2017 Page 36 of 48 MLX90333 Position Sensor Datasheet Timings Min (30) Max t6 2.3 μs / 6.9 μs - The time t6 defines the minimum time between /SS = Lo and the first clock edge t7 15 μs / 45 μs - t7 is the minimum time between the StartByte and the Byte0 t9 - < 1 μs Maximum time between /SS = Hi and MISO Bus High-Impedance TStartUp - < 10 ms / 16 ms Minimum time between reset-inactive and any master signal change Remarks 15.9. Slave Reset On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is enabled only after the completion of the first synchronization (the Master deactivates /SS for at least t5). 15.10. Frame Layer 15.10.1. Frame Type Selection See the programmable parameter XYZ in section 13.2.3 to select between the Alpha, Beta Frame and the X, Y, Z Frame. 15.10.2. Data Frame Structure The Figure 9 gives the timing diagram for the SPI Frame. The latch point for the angle measurement is at the last clock before the first data frame byte. Latch Point /SS SCLK MOSI F F F F F F F F F F F F F F F F F F F F F F MISO F F D A T A D A T A D A T A S U M F F D A T A XYZ = 0 Alpha Beta Error XYZ = 1 X Y Z Figure 9 – Timing Diagram for the SPI Frame REVISION 008 – SEPTEMBER 26, 2017 Page 37 of 48 MLX90333 Position Sensor Datasheet A data frame consists of 8 bytes: Data Frame XYZ = 0 XYZ = 1 1 start byte FFh 2 data bytes (LSByte first) Alpha X 2 data bytes (LSByte first) Beta Y 2 data bytes (LSByte first) Error Code Z 1 SUM byte 8 LSB of the sum of the transmitted bytes 15.10.3. Timing There are no timing limits for frames: a frame transmission could be initiated at any time. There is no interframe time defined. 15.10.4. Data Structure The DATA could be a valid angle/field component or an error condition. DATA: Angle/Field Component A[15:0] with (Span)/216 Least Significant Byte Most Significant Byte MSB A7 A6 A5 A4 A3 A2 A1 LSB MSB A0 A15 LSB A14 A13 A12 A11 A10 A9 A8 DATA: Error Least Significant Byte Most Significant Byte MSB E7 E6 E5 E4 E3 E2 E1 LSB MSB E0 E15 LSB E14 E13 E12 BIT NAME E0 - E1 - E2 F_ADCMONITOR ADC Failure E3 F_ADCSATURA ADC Saturation (Electrical failure or field too strong) E4 F_GAINTOOLOW The gain code is strictly less than EE_GAINMIN REVISION 008 – SEPTEMBER 26, 2017 E11 E10 E9 E8 Description Page 38 of 48 MLX90333 Position Sensor Datasheet BIT NAME Description E5 F_GAINTOOHIGH The gain code is strictly greater than EE_GAINMAX E6 F_NORMTOOLOW Goes high when the fast norm (the max of absolute X,Y,Z) is below 30% E7 F_FIELDTOOLOW The norm (Square root) is strictly less than EE_FIELDLOW E8 F_FIELDTOOHIGH The norm (Square root) is strictly greater than EE_FIELDHIGH E9 F_ROCLAMP Analog Chain Rough Offset Compensation: Clipping E10 - E11 F_DEADZONEALPHA E12 - E13 - E14 - E15 F_DEADZONEBETA The angle ALPHA lies in the deadzone The angle BETA lies in the deadzone 15.10.5. Angle Calculation All communication timing is independent (asynchronous) of the angle data processing. The angle is calculated continuously by the Slave:  Slow Mode: every 1.5 ms at most.  Fast Mode: every 350 μs at most. The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by the Slave, because any internal failure of the Slave will lead to a soft reset. 15.10.6. Error Handling In case of any errors listed in section 15.10.4, the Serial protocol will be initialized and the error condition can be read by the master. In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog error…) the Slave’s serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error frames are sent). REVISION 008 – SEPTEMBER 26, 2017 Page 39 of 48 MLX90333 Position Sensor Datasheet 16. Recommended Application Diagrams 16.1. Analog Output Wiring in SOIC-8 Package ECU 5V VDD 8 1 VDD VSS MLX90333 Test 0 Not Used C1 100 nF C2 100 nF VDIG Test 1 GND R1 10k C3 100 nF ADC R2 10k 5 4 Output 1 OUT1 OUT2 C6 4.7 nF C4 100 nF Output 2 C5 4.7 nF Figure 10 – Recommended wiring in SOIC-8 package 16.2. PWM Low Side Output Wiring ECU 5V VDD 8 1 VDD VSS MLX90333 Test 0 Not Used C2 100 nF VDIG Test 1 5 4 OUT2 OUT1 C1 100 nF GND C4 4.7 nF C6 4.7 nF 5V C3 4.7 nF PWM 1 R1 1k ADC R2 1k PWM 2 C5 4.7 nF Figure 11 – Recommended wiring for a PWM Low Side Output configuration REVISION 008 – SEPTEMBER 26, 2017 Page 40 of 48 MLX90333 Position Sensor Datasheet 16.3. Analog Output Wiring in TSSOP-16 Package ECU VDD1 VDD1 GND1 C31 100 nF GND1 16 VDIG1 C62 100 nF VSS1 OUT11 VDD1 OUT21 OUT11 OUT21 C4 100 nF MLX90333 VDD2 OUT12 VSS2 VDIG2 GND2 VDD2 VDD2 GND2 4.7nF ADC GND2 9 8 OUT22 C61 100 nF GND1 C32 100 nF 10 k 1 C1 100nF C2 100 nF C5 100 nF OUT12 OUT22 Figure 12 – Recommended wiring in TSSOP-16 package (dual die) REVISION 008 – SEPTEMBER 26, 2017 Page 41 of 48 MLX90333 Position Sensor Datasheet 16.4. Serial Protocol Generic schematics for single slave and dual slave applications are described. SPI Master C1 100 nF GND VDD _SS _SS VSS Test 0 R5 VDIG /SS Test 1 SCLK MOSI R1 MOSI 5 4 MISO R3 C2 100 nF MLX90333 R4 SCLK 8 1 VDD 5V MOSI R2 3.3V/5V Figure 13 – SPI Version – Single Die – Application Diagram Application Type μCtrl Supply (V) Pull-up 90316 Supply (V) Supply (V) R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω) R5 (Ω) MOS Type 5V μCtrl w/o O.D. w/o 3.3V 5V 5V 5V 100 1000 20,000 1000 20,000 BS170 5V μCtrl w/o O.D. w/ 3.3V 5V 3.3V 5V 150 1000 N/A 1000 20,000 BS170 3.3V 3.3V 5V 150 1000 N/A N/A N/A BS170 5V 5V 5V 100 1000 20,000 1000 20,000 N/A 3.3V 3.3V 5V 150 1000 N/A N/A N/A N/A 3.3V μCtrl w/o O.D. (31) 5V μCtrl w/ O.D. w/o 3.3V (32) 3.3V μCtrl w/ O.D. Table 6 – Resistor Values for Common Specific Applications 31 32 μCtrl w/ O.D. : Micro-controller with open-drain capability (for instance NEC V850ES series) μCtrl w/o O.D. : Micro-controller without open-drain capability (like TI TMS320 series or ATMEL AVR) REVISION 008 – SEPTEMBER 26, 2017 Page 42 of 48 MLX90333 Position Sensor Datasheet 17. Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to standards in place in Semiconductor industry. For further details about test method references and for compliance verification of selected soldering method for product integration, Melexis recommends reviewing on our web site the General Guidelines soldering recommendation (http://www.melexis.com/en/quality-environment/soldering). For all soldering technologies deviating from the one mentioned in above document (regarding peak temperature, temperature gradient, temperature profile etc), additional classification and qualification tests have to be agreed upon with Melexis. For package technology embedding trim and form post-delivery capability, Melexis recommends consulting the dedicated trim&forming recommendation application note: lead trimming and forming recommendations (http://www.melexis.com/en/documents/documentation/application-notes/leadtrimming-and-forming-recommendations). Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/en/quality-environment. 18. ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. REVISION 008 – SEPTEMBER 26, 2017 Page 43 of 48 MLX90333 Position Sensor Datasheet 19. Package Information 19.1. SOIC-8 - Package Dimensions 1.27 TYP NOTES: 3.81 5.80 3.99** 6.20 4.80 4.98* All dimensions are in millimeters (angles in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 1.37 1.57 1.52 1.72 0.36 0.46*** 0.19 0.25 0.100 0.250 0.41 1.27 0° 8° 8 OUT1 MOSI/MISO Test 1 VDIG VSS 19.2. SOIC-8 - Pinout and Marking 5 Marking : Part Number MLX90333 (3 digits) Die Version (3 digits) Top 333Bxx M12345 Xy-E M12345 Xy-E REVISION 008 – SEPTEMBER 26, 2017 OUT2 SCLK /SS Switch Test 0 4 VDD 1 Bxx 333 Bottom YY Lot number: “M” + 5 digits Split lot number + “-E” (Optional ) WW Week Date code (2 digits) Year Date code (2 digits) Page 44 of 48 MLX90333 Position Sensor Datasheet 19.3. SOIC-8 - IMC Positionning CW 8 7 6 5 CCW COS 1.25 1.65 1 2 1.96 2.26 REVISION 008 – SEPTEMBER 26, 2017 3 0.46 +/- 0.06 4 SIN Page 45 of 48 MLX90333 Position Sensor Datasheet 19.4. TSSOP-16 - Package Dimensions 0.65 TYP 12O TYP 0.20 TYP 0.09 MIN 1.0 DIA 4.30 4.50** 6.4 TYP 0.09 MIN 1.0 12O TYP 1.0 0.50 0.75 0O 8O 1.0 TYP 0.85 0.95 4.90 5.10* 1.1 MAX 0.19 0.30*** 0.09 0.20 0.05 0.15 NOTES: All dimensions are in millimeters (angles in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. REVISION 008 – SEPTEMBER 26, 2017 Page 46 of 48 MLX90333 Position Sensor Datasheet 19.5. TSSOP-16 - Pinout and Marking 16 1 VDIG1 Test 11 OUT11/MOSI/MISO1 OUT21/SCLK1 333Bxx M12345 Xy-E VSS1 VDD1 Test 01 /SS2 OUT22/SCLK2 /SS1 Test 02 VDD2 Marking : VSS2 OUT12/MOSI/MISO2 9 8 Test 12 Part Number MLX90333 (3 digits) Die Version (3 digits) VDIG2 Top 333 Bxx Standard SPI Version M12345 Lot number: “M” + 5 digits Xy-E Bottom YY Split lot number + “-E” (Optional) WW Week Date code (2 digits) Year Date code (2 digits) 19.6. TSSOP-16 - IMC Positionning CW COS 2 16 9 Die 1 Die 2 SIN 2 SIN 1 0.30 +/- 0.06 CCW 1.95 2.45 1 8 1.84 2.04 COS 1 2.76 2.96 REVISION 008 – SEPTEMBER 26, 2017 Page 47 of 48 MLX90333 Position Sensor Datasheet 20. Disclaimer The information furnished by Melexis herein is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product as described herein, (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis’ rendering of technical or other services. The information contained herein is provided "as is” and Melexis reserves the right to change specifications and/or any other information contained herein at any time and without notice. Therefore, before placing orders and/or prior to designing this product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. This document supersedes and replaces all prior information regarding the product(s) as described herein and/or previous versions of this document. Users or any third party must further determine the suitability of the Melexis’ product(s) described herein for its application, including the level of reliability required and determine whether it is fit for a particular purpose. The information contained herein is proprietary and/or confidential information of Melexis. The information contained herein or any use thereof does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. This document as well as the product(s) described herein may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The product(s) as described herein is/are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the product(s) described herein are not designed, authorized or warranted to be suitable in applications requiring extended temperature range, unusual environmental requirements. High reliability applications, such as medical life-support or lifesustaining equipment are specifically not recommended by Melexis. The product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation. Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and-conditions. Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2017) ISO/TS 16949 and ISO14001 Certified 21. Contact For the latest version of this document, go to our website at www.melexis.com. For additional information, please contact our Direct Sales team and get help for your specific needs: Europe, Africa Telephone: +32 13 67 04 95 Email : sales_europe@melexis.com Americas Telephone: +1 603 223 2362 Email : sales_usa@melexis.com Asia Email : sales_asia@melexis.com REVISION 008 – SEPTEMBER 26, 2017 Page 48 of 48
MLX90333EGO-BCH-100-RE 价格&库存

很抱歉,暂时无法提供与“MLX90333EGO-BCH-100-RE”相匹配的价格&库存,您可以联系我们找货

免费人工找货