0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MLX90333KDC

MLX90333KDC

  • 厂商:

    MELEXIS(迈来芯)

  • 封装:

  • 描述:

    MLX90333KDC - Triaxis 3D-Joystick Position Sensor - Melexis Microelectronic Systems

  • 数据手册
  • 价格&库存
MLX90333KDC 数据手册
MLX90333 Triaxis 3D-Joystick Position Sensor Features and Benefits Absolute 3D Position Sensor Simple & Robust Magnetic Design Tria⊗is™ Hall Technology Programmable Linear Transfer Characteristics (Alpha, Beta) Selectable Analog (Ratiometric), PWM, Serial Protocol 12 bit Angular Resolution - 10 bit Angular Thermal Accuracy 40 bit ID Number Single Die – SO8 Package RoHS Compliant Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant Applications 3D Position Sensor 4-Way Scroll Key Man Machine Interface Device Joystick Joypad Ordering Information1 Part No. MLX90333 MLX90333 Temperature Suffix K (− 40°C to + 125°C) K (− 40°C to + 125°C) Package Code DC [SOIC-8] GO [TSSOP-16] Option code - 1 Example: MLX90333KDC 3901090333 Rev. Preliminary Page 1 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 1. Functional Diagram 3V3 Reg Rev.Pol. & OverVolt. VDD VSS DSP D 12 Tria is™ VX A x1 VY VZ G 14 -1 5 A D μC OUT 1 (Analog/PWM) MUX RAM x1 Figure 1 - Block Diagram (Analog & PWM) ROM - F/W EEP ROM OUT 2 (Analog/PWM) DSP Tria is™ 3V3 Reg Rev.Pol. VDD VX VY VZ G 14 -1 5 A D μC SERIAL PROTOCOL MUX /SS SCLK MOSI/MISO RAM EEP ROM VSS Figure 2 - Block Diagram (Serial Protocol) ROM - F/W 3901090333 Rev. Preliminary Page 2 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 2. Description The MLX90333 is a monolithic sensor IC featuring the Tria⊗is™ Hall technology. Conventional planar Hall technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is™ Hall sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an Integrated Magneto-Concentrator (IMC®) which is deposited on the CMOS die (as an additional back-end step). The MLX90333 is sensitive to the 3 components of the flux density applied to the IC (BX, BY and BZ). This allows the MLX90333 to sense any magnet moving in its surrounding and it enables the design of novel generation of non-contacting joystick position sensors which are often required for both automotive and industrial applications (e.g. man-machine interface). Furthermore, the capability of measuring BX, BY and BZ allows the MLX90333 to be considered as universal non-contacting position sensor i.e. not limited to joystick applications. For instance, a linear travel can be sensed with the MLX90333 once included in a specific magnetic design. In combination with the appropriate signal processing, the magnetic flux density of a small magnet (axial magnetization) moving above the IC can be measured in a non-contacting way (Figure 3). The two (2) angular information are computed from the three (3) vector components of the flux density (i.e. BX, BY and BZ). MLX90333 reports two (2) linear output signals. The output formats are selectable between Analog, PWM and Serial Protocol. Figure 3 - Typical application of MLX90333 3901090333 Rev. Preliminary Page 3 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor TABLE of CONTENTS FEATURES AND BENEFITS ....................................................................................................................... 1 APPLICATIONS............................................................................................................................................ 1 ORDERING INFORMATION......................................................................................................................... 1 1. 2. 3. 4. 5. 6. 7. 8. 9. FUNCTIONAL DIAGRAM...................................................................................................................... 2 DESCRIPTION....................................................................................................................................... 3 GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 6 PINOUT.................................................................................................................................................. 6 ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 7 DETAILED DESCRIPTION.................................................................................................................... 7 MLX90333 ELECTRICAL SPECIFICATION....................................................................................... 13 MLX90333 ISOLATION SPECIFICATION .......................................................................................... 15 MLX90333 TIMING SPECIFICATION ................................................................................................. 15 10. MLX90333 ACCURACY SPECIFICATION ......................................................................................... 16 11. MLX90333 MAGNETIC SPECIFICATION .......................................................................................... 17 12. MLX90333 CPU & MEMORY SPECIFICATION ................................................................................. 17 13. MLX90333 END-USER PROGRAMMABLE ITEMS ........................................................................... 18 14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS.............................................................. 19 14.1. OUTPUT CONFIGURATION .........................................................................................................................19 14.2. OUTPUT MODE ..........................................................................................................................................19 14.2.1. Analog Output Mode ............................................................................................................................19 14.2.2. PWM Output Mode...............................................................................................................................19 14.2.3. Serial Protocol Output Mode ...............................................................................................................20 14.3. OUTPUT TRANSFER CHARACTERISTIC.......................................................................................................20 14.3.1. The Polarity and Modulo Parameters ..................................................................................................20 14.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point) ......................................................................21 14.3.3. LNR Parameters ...................................................................................................................................21 14.3.4. CLAMPING Parameters ......................................................................................................................22 14.3.5. DEADZONE Parameter .......................................................................................................................22 14.4. IDENTIFICATION ........................................................................................................................................22 14.5. SENSOR FRONT-END .................................................................................................................................23 14.5.1. HIGHSPEED Parameter......................................................................................................................23 14.5.2. GAINMIN and GAINMAX Parameters ................................................................................................23 14.5.3. FIELDTHRES_MIN and FIELDTHRES_MAX Parameters.................................................................23 14.6. FILTER ....................................................................................................................................................24 14.6.1. Hysteresis Filter ...................................................................................................................................24 14.6.2. FIR Filters ............................................................................................................................................24 14.6.3. IIR Filters .............................................................................................................................................25 14.7. PROGRAMMABLE DIAGNOSTIC SETTINGS .................................................................................................27 3901090333 Rev. Preliminary Page 4 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 14.7.1. RESONFAULT Parameter ...................................................................................................................27 14.7.2. EEHAMHOLE Parameter ....................................................................................................................27 14.8. LOCK.........................................................................................................................................................27 14.8.1. MLXLOCK Parameter .........................................................................................................................27 14.8.2. LOCK Parameter .................................................................................................................................27 15. MLX90333 SELF DIAGNOSTIC.......................................................................................................... 28 16. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 30 16.1. 16.2. 16.3. 16.4. ANALOG OUTPUT WIRING WITH THE MLX90333 IN SOIC PACKAGE .......................................................30 PWM LOW SIDE OUTPUT WIRING ............................................................................................................30 ANALOG OUTPUT WIRING WITH THE MLX90333 IN TSSOP PACKAGE ....................................................31 SERIAL PROTOCOL ....................................................................................................................................31 17. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 33 18. ESD PRECAUTIONS........................................................................................................................... 33 19. PACKAGE INFORMATION................................................................................................................. 34 19.1. 19.2. 19.3. 19.4. 19.5. 19.6. SOIC8 - PACKAGE DIMENSIONS ...............................................................................................................34 SOIC8 - PINOUT AND MARKING ...............................................................................................................34 SOIC8 - IMC POSITIONNING .....................................................................................................................35 TSSOP16 - PACKAGE DIMENSIONS...........................................................................................................36 TSSOP16 - PINOUT AND MARKING ..........................................................................................................37 TSSOP16 - IMC POSITIONNING ................................................................................................................37 20. DISCLAIMER ....................................................................................................................................... 38 3901090333 Rev. Preliminary Page 5 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 3. Glossary of Terms − Abbreviations − Acronyms Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G TC: Temperature Coefficient (in ppm/Deg.C.) NC: Not Connected PWM: Pulse Width Modulation %DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF) ADC: Analog-to-Digital Converter DAC: Digital-to-Analog Converter LSB: Least Significant Bit MSB: Most Significant Bit DNL: Differential Non-Linearity INL: Integral Non-Linearity RISC: Reduced Instruction Set Computer ASP: Analog Signal Processing DSP: Digital Signal Processing ATAN: trigonometric function: arctangent (or inverse tangent) IMC: Integrated Magneto-Concentrator (IMC®) CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform) EMC: Electro-Magnetic Compatibility 4. Pinout2 Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SOIC-8 Analog / PWM VDD Test 0 Not Used Out 2 Out 1 Test 1 VDIG VSS (Ground) Serial Protocol VDD Test 0 /SS SCLK MOSI / MISO Test 1 VDIG VSS (Ground) Analog / PWM VDIG1 VSS1 (Ground1) VDD1 Test 01 Not Used Out 22 Out 12 Test 12 VDIG2 VSS2 (Ground2) VDD2 Test 02 Not Used Out 21 Out 11 Test 11 TSSOP-16 Serial Protocol VDIG1 VSS1 (Ground1) VDD1 Test 01 /SS2 SCLK2 MOSI2 / MISO2 Test 12 VDIG2 VSS2 (Ground2) VDD2 Test 02 /SS1 SCLK1 MOSI1 / MISO1 Test 11 For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see section 16). 2 See Section 14.1 for the Out 1 and Out 2 configuration Page 6 of 38 Data Sheet May 07 3901090333 Rev. Preliminary MLX90333 Triaxis 3D-Joystick Position Sensor 5. Absolute Maximum Ratings Parameter Supply Voltage, VDD (overvoltage) Reverse Voltage Protection Positive Output Voltage (Analog or PWM) Both outputs OUT 1 & OUT 2 Output Current (IOUT) Reverse Output Voltage Both outputs OUT 1 & OUT 2 Reverse Output Current Both outputs OUT 1 & OUT 2 Operating Ambient Temperature Range, TA Storage Temperature Range, TS Magnetic Flux Density − 40°C … + 150°C − 40°C … + 150°C ± 700 mT − 50 mA ± 30 mA − 0.3 V + 20 V − 10 V + 10 V + 14 V (200 s max − TA = + 25°C) Value Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability. 6. Detailed Description As described on the block diagram (Figure 1 and Figure 2), the magnetic flux density applied to the IC is sensed through the Tria⊗is™ sensor front-end. This front-end consists into two orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (sensitive element – blue area on Figure 4) and an Integrated Magneto-Concentrator (IMC® yellow disk on Figure 4). Bz Bz Bz Bz Figure 4 - Tria⊗is™ sensor front-end (4 Hall plates + IMC® disk) Two orthogonal components (respectively BX⊥ and BY⊥) proportional to the parallel components (respectively BX// and BY//) are induced through the IMC and can be measured by both respective pairs of conventional planar Hall plates as those are sensitive to the flux density applied orthogonally to them and the IC surface. The third component BZ is also sensed by those four (4) conventional Hall plates as shown above. 3901090333 Rev. Preliminary Page 7 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor In summary, along X-axis, the left Hall plate measures “BX⊥ - BZ” while the right Hall plate measures “-BX⊥ - BZ”. Similarly, along the Y-axis, the left Hall plate measures “BY⊥ - BZ” while the right Hall plate measures “-BY⊥ - BZ”. Through an appropriate signal processing, the Tria⊗is™ sensor front-end reports the three (3) components of the applied magnetic flux density B i.e. BX, BY and BZ. Indeed, by subtracting the signals from the two (2) Hall plates in each pair, the components BX⊥ and BY⊥ are measured while BZ is cancelled. To the contrary, by adding the signals from the two (2) Hall plates in each pair, the component BZ is measured while BX⊥ and BY⊥ are cancelled In a joystick based on a “gimbal” mechanism as shown on Figure 3 (left), the magnet (axial magnetization) moves on a hemisphere centered at the IC. The flux density is described through the following relationships: B X = SIN (α ) ⋅ COS ( β ) BY = COS (α ) ⋅ SIN ( β ) BZ = COS (α ) ⋅ COS ( β ) Those components are plotted on the Figure 5, Figure 6 and Figure 7. Figure 5 – Magnetic Flux Density – BX, BY, BZ 3901090333 Rev. Preliminary Page 8 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 400 300 200 Magnetic Flux Density (G) 100 0 -100 -200 -300 -400 -90 BX -45 0 Alpha α (Deg) BY 45 BZ 90 Figure 6 – Magnetic Flux Density – β = 0 Deg – BX ∝ sin(α), BY = 0 & BZ ∝ cos(α) 400 300 200 Magnetic Flux Density (G) 100 0 -100 -200 -300 -400 -90 BX -45 0 Beta β (Deg) BY 45 BZ 90 Figure 7 – Magnetic Flux Density – α = 0 Deg – BX = 0, BY ∝ sin(β) & BZ ∝ cos(β) Three (3) differential voltages corresponding to the three (3) components of the applied flux density are provided to the ADC (Analog-to-Digital Converter – Figure 8 and Figure 9). The Hall signals are processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier). The amplitude of VZ is smaller than the other two (2) components VX and VY due to fact that the magnetic gain of the IMC only affects the components parallel to the IC surface. 3901090333 Rev. Preliminary Page 9 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 2000 1500 ADC Input Voltages VX, VY & VZ (mV) 1000 500 0 -500 -1000 -1500 -2000 -90 VX -45 0 Alpha α (Deg) VY 45 VZ 90 Figure 8 – ADC Input Signals – β = 0 Deg – VX ∝ BX ∝ sin(α),VY = BY = 0 & VZ ∝ BZ ∝ cos(α) 2000 1500 ADC Input Voltages VX, VY & VZ (mV) 1000 500 0 -500 -1000 -1500 -2000 -90 VX -45 0 Beta β (Deg) VY 45 VZ 90 Figure 9 – ADC Input Signals – α = 0 Deg – VX = BX = 0, VY ∝ BY ∝ sin(β) & VZ ∝ BZ ∝ cos(β) 3901090333 Rev. Preliminary Page 10 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor The conditioned analog signals are converted through an ADC (configurable − 14 or 15 bits) and provided to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose primary function is the extraction of the two (2) angular information from the three (3) raw signals (after socalled front-end compensation steps) through the following operations: α = ATAN ⎜ ⎜ ⎛ VX ⎝ k ZVZ ⎞ ⎟ ⎟ ⎠ ⎞ β = ATAN ⎜ Y ⎟ ⎜k V ⎟ ⎝ Z Z⎠ where kZ is a programmable parameter. In a joystick based on a “ball & socket” joint as shown on Figure 3 (right), the magnet (axial magnetization) moves on a hemisphere centered at the pivot point. The flux density is described through slightly more complex equations but the MLX90333 offers an alternate algorithm to extract both angular informations: ⎛V α = ATAN ⎜ ⎛ ⎛ ⎞ ⎟ ⎜ (k V ) 2 + (k V ) 2 ⎟ ZZ tY ⎝ ⎠ VX VY β = ATAN ⎜ where kZ and kt are programmable parameters. ⎞ ⎟ ⎜ (k V ) 2 + (k V ) 2 ⎟ ZZ tX ⎝ ⎠ The DSP functionality is governed by the micro-code (firmware − F/W) of the micro-controller which is stored into the ROM (mask programmable). In addition to the ″ATAN″ function, the F/W controls the whole analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also the self-diagnostic modes. In the MLX90333, the ″ATAN″ function is computed via a look-up table (i.e. it is not obtained through a CoRDiC algorithm). Due to the fact that the ″ATAN″ operation is performed on the ratios ″VX/VZ″ and ″VY/VZ″, the angular information are intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects) affecting the magnetic signal. This feature allows therefore an improved thermal accuracy vs. joystick based on conventional linear Hall sensors. Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the target transfer characteristic and it is provided at the output(s) as: • • • an analog output level through a 12 bit DAC followed by a buffer a digital PWM signal with 12 bit depth (programmable frequency 100 Hz … 1 kHz) a digital Serial Protocol (SP − 14 bits computed angular information available) 3901090333 Rev. Preliminary Page 11 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary position sensor output transfer characteristic: Vout(α) = ClampLo Vout(α) = Voffset + Gain × α Vout(α) = ClampHi Vout(β) = ClampLo Vout(β) = Voffset + Gain × β Vout(β) = ClampHi for α ≤ αmin for αmin ≤ α ≤ αmax for α ≥ αmax for β ≤ βmin for βmin ≤ β ≤ βmax for β ≥ βmax where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user. The linear part of the transfer curve can be adjusted through a 3 point calibration. Once only one output is used, a 5 point calibration is also available for further improvement of the linearity. The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC). The programming steps do not require any dedicated pins. The operation is done using the supply and output nodes of the IC. The programming of the MLX90333 is handled at both engineering lab and production line levels by the Melexis Programming Unit PTC-04 with the MLX90316 daughterboard and dedicated software tools (DLL − User Interface). 3901090333 Rev. Preliminary Page 12 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 7. MLX90333 Electrical Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K). Parameter Nominal Supply Voltage Supply Current(3) POR Level Output Current Both outputs OUT 1 & OUT 2 Output Short Circuit Current Both outputs OUT 1 & OUT 2 Output Load Both outputs OUT 1 & OUT 2 Analog Saturation Output Level Both outputs OUT 1 & OUT 2 Digital Saturation Output Level Both outputs OUT 1 & OUT 2 Symbol VDD Idd VDD POR Iout Slow Fast mode(4) mode(4) 2 -8 -20 12 12 24 1 1 96 1.5 97 1 1.5 97 98 4(7) 99 100 0 1 10 10 Test Conditions Min 4.5 Typ 5 8.5 13.5 2.7 Max 5.5 11 16 3 8 20 15 15 45 ∞(6) ∞(6) 3 Units V mA mA V mA mA mA mA mA kΩ kΩ %VDD %VDD %VDD %VDD %VDD %VDD %VDD %VDD %VDD %VDD %VDD(9) %VDD(9) Supply Under Voltage Analog Output mode PWM Output mode Vout = 0 V Vout = 5 V Vout = 14 V (TA = 25°C) Pull-down to Ground Pull-up to 5V(5) Pull-up load RL ≥ 10 kΩ Pull-down load RL ≥ 10 kΩ Pull-up Low Side RL ≥ 10 kΩ Push-Pull (IOUT = -20mV) Push-Pull (IOUT = 20mV) Pull-down load RL ≥ 10 kΩ Pull-up load RL ≥ 10 kΩ Pull-down load RL ≥ 10 kΩ Pull-up load RL ≥ 10 kΩ Broken VSS& Pull-down load RL ≤ 10 kΩ Broken VSS(8) & Pull-up load RL ≥ 1kΩ Broken VDD(8) & Pull-down load RL ≥ 1kΩ Broken VDD & Pull-up load to 5V Programmable Programmable Ishort RL Vsat_lo Vsat_hi VsatD_lo VsatD_hi Diag_lo Diag_hi BVSSPD Active Diagnostic Output Level Both outputs OUT 1 & OUT 2 Passive Diagnostic Output Level BVSSPU Both outputs OUT 1 & OUT 2 (Broken Track Diagnostic) (7) BVDDPD BVDDPU Clamped Output Level Both outputs OUT 1 & OUT 2 3 For No Broken Track diagnostic 0 0 100 100 Clamp_lo Clamp_hi the dual version, the supply current is multiplied by 2 section 14.5.1 for details concerning Slow and Fast mode 5 Applicable for output in Analog and PWM (Open-Drain) modes 6 RL < ∞ for output in PWM mode 7 For detailed information, see also section 15 9 Clamping levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi) 4 See 3901090333 Rev. Preliminary Page 13 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor As an illustration of the previous table, the MLX90333 fits the typical classification of the output span described on the Figure 10. 100 % 90 % 80 % 70 % 96 % 92 % 88 % Diagnostic Band (High) Clamping High Output Level 60 % 50 % 40 % 30 % 20 % 10 % 0% 12 % 8% 4% Linear Range Clamping Low Diagnostic Band (Low) Figure 10 - Output Span Classification 3901090333 Rev. Preliminary Page 14 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 8. MLX90333 Isolation Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K). Only valid for the package code GO i.e. dual die version. Parameter Isolation Resistance Symbol Test Conditions Between 2 dies Min 4 Typ Max Units MΩ 9. MLX90333 Timing Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K). Parameter Main Clock Frequency Sampling Rate Step Response Time Watchdog Start-up Cycle Analog Output Slew Rate PWM Frequency Digital Output Rise Time Both outputs OUT 1 & OUT 2 Digital Output Fall Time Both outputs OUT 1 & OUT 2 10 See 11 See Symbol Ck Fast Slow Fast Ts Wd Tsu Slow Test Conditions Slow mode(10) mode(10) mode(11) mode(11) mode(10), Filter=5(11) Min Typ 7 20 600 200 Max Units MHz MHz μs μs 4 400 600 5 15 200 100 100 120 2.2 1.8 1.9 1000 ms μs ms ms V/ms Hz μs μs μs μs Fast mode(10), Filter=0(11) See Section 15 Slow and Fast COUT = 42 nF COUT = 100 nF FPWM PWM Output Enabled Mode 5 – 10nF, RL = 10 kΩ Mode 7 – 10nF, RL = 10 kΩ Mode 5 – 10nF, RL = 10 kΩ Mode 7 – 10nF, RL = 10 kΩ mode(10) section 14.5.1 for details concerning Slow and Fast mode section 14.6 for details concerning Filter parameter 3901090333 Rev. Preliminary Page 15 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 10. MLX90333 Accuracy Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K). Parameter ADC Resolution on the raw signals X, Y and Z Symbol RADC Fast Test Conditions Slow Mode(12) Mode(12) -60 Min Typ 15 14 60 Max Units bits bits LSB15 Offset on the Raw Signals X, Y X0, Y0, Z0 TA = 25°C and Z Mismatch on the Raw Signals X, Y and Z SMISMXY SMISMXZ SMISMYZ Thermal Offset Drift #1 on the raw signals X, Y and Z Thermal Offset Drift #2 (to be considered only for the analog output mode) Thermal Drift of Sensitivity Mismatch Analog Output Resolution RDAC 12 bits DAC (Theoretical – Noise free) INL DNL Output stage Noise Noise pk-pk(17) Ratiometry Error PWM Output Resolution PWM Jitter Serial Protocol Output 12 TA = 25°C Between X and Y Between X and Z Between Y and Z Thermal Offset Drift at the DSP input (excl. DAC and output stage) Thermal Offset Drift of the DAC and Output Stage - 0.3 0.025 -4 0.05 1 0.05 5 10 -0.1 0 0.025 5 14 10 20 0.1 +4 2 + 0.3 % %VDD/LSB LSB LSB %VDD LSB15 LSB15 %VDD %DC/LSB LSB12 bits - 0.3 + 0.3 %VDD -1 1 % End-User programmable(13) (KT parameter) -60 +60 LSB15 Clamped Output Gain = 14, Slow mode, Filter=5 Gain = 14, Fast mode, Filter=0 RPWM JPWM RSPI 12 bits (Theoretical – Jitter free) Gain = 11, FPWM = 250 Hz – 800Hz Theoretical – Jitter free 15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to 0.005Deg/LSB15 in Low Speed Mode and 0.01Deg/LSB14 in High Speed. 13 The mismatch between X and Z (Y and Z) is end-user programmable through the 2 parameters KZ and KT as described in the formulas page 11 in order to take into account the IC mismatch and system tolerances (magnetic and mechanical). 17 The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in application mode (Section 14.6). 19 Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error. 3901090333 Rev. Preliminary Page 16 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor Resolution 11. MLX90333 Magnetic Specification DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (K). Parameter Magnetic Flux Density Magnet Temperature Coefficient Symbol B TCm Test Conditions Min 20 -2400 Typ 50 Max 70(19) 0 Units mT ppm/°C 12. MLX90333 CPU & Memory Specification The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz. Parameter ROM RAM EEPROM Symbol Test Conditions Min Typ 10 256 128 Max Units kB B B 3901090333 Rev. Preliminary Page 17 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 13. MLX90333 End-User Programmable Items Parameter MAINMODE Outputs Mode PWMPOL1 PWMPOL2 PWM_Freq ALPHA_POL ALPHA_MOD180 ALPHA_DP ALPHA_DEADZONE ALPHA_S0 ALPHA_X ALPHA_Y ALPHA_S1 BETA_POL BETA_MOD180 BETA_DP BETA_DEADZONE BETA_S0 BETA_X BETA_Y BETA_S1 CLAMP_LOW CLAMP_HIGH 2D XYZ KZ KT FIELDTHRES_LOW FIELDTHRES_HIGH DERIVGAIN FILTER FILTER A1 FILTER A2 FSWAP FHYST MELEXISID1 MELEXISID2 MELEXISID3 CUSTUMERID1 CUSTUMERID2 CUSTUMERID3 3901090333 Rev. Preliminary Comments Select Outputs Configuration Define the output stages mode PWM Polarity (Out 1) PWM Polarity (Out 2) PWM Frequency Revert the Sign of Alpha Modulo Operation (180deg) on Alpha Alpha Discontinuity Point Alpha Dead Zone Initial Slope Alpha X Coordinate Alpha Y Coordinate Alpha S Coordinate Revert the Sign of Beta Modulo Operation (180deg) on Beta Beta Discontinuity Point Beta Dead Zone Beta Dead Zone Beta X Coordinate Beta Y Coordinate Beta S Coordinate Clamping Low Clamping High SPI Only Default Values # bit 0 2 2 3 0 1 0 1 1000h 16 TBD 1 TBD 1 TBD 8 TBD 6 TBD 16 TBD 16 TBD 16 TBD 16 TBD 1 TBD 1 TBD 6 TBD 8 TBD 16 TBD 16 TBD 16 TBD 16 8% 16 8% 16 TBD 1 TBD 1 TBD 8 TBD 8 TBD 8 TBD 8 TBD 8 TBD 8 6600h 16 2A00h 16 TBD 1 TBD 8 MLX 16 MLX 16 MLX 16 TBD 16 TBD 16 TBD 16 Data Sheet May 07 Filter coefficient A1 for FILTER=6 Filter coefficient A2 for FILTER=6 Page 18 of 38 MLX90333 Triaxis 3D-Joystick Position Sensor HIGHSPEED GAINMIN GAINMAX EEHAMHOLE RESONFAULT MLXLOCK LOCK 0 TBD TBD 3131h TBD TBD TBD 1 8 8 16 2 1 1 14. Description of End-User Programmable Items 14.1. Output Configuration The parameter MAINMODE defines the output stages configuration MAINMODE 0 1 2 3 OUT1 ALPHA BETA ALPHA BETA OUT2 BETA ALPHA ALPHA DERIVATE BETA DERIVATE 14.2. Output Mode The MLX90333 outputs type is defined by the Output Mode parameter. Parameter Analog Output Mode PWM Output Mode Serial 14.2.1. Analog Output Mode The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration allows the use of a pull-up or pull-down resistor. 14.2.2. PWM Output Mode If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width Modulation (PWM). In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor to VDD. In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up resistor to VDD. The PWM polarity of the Out 1 (Out 2) is selected by the PWMPOL1 (PWMPOL2) parameter: • • PWMPOL1 (PWMPOL2) = 0 for a low level at 100% PWMPOL1 (PWMPOL2) = 1 for a high level at 100% Value 2, 4 5 7 N/A Description Analog Rail-to-Rail Low Side (NMOS) Push-Pull Low Side (NMOS) 3901090333 Rev. Preliminary Page 19 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor The PWM frequency is selected by the PWM_Freq parameter. PWM Frequency Code Oscillator Mode Low Speed High Speed Pulse-Width Modulation Frequency (Hz) 100 35000 200 17500 50000 500 7000 20000 1000 3500 10000 For instance, in Low Speed Mode, set PWM_Freq = 7000 (decimal) to set the PWM frequency at 500Hz. 14.2.3. Serial Protocol Output Mode The MLX90333 features a digital Serial Protocol mode. The MLX90333 is considered as a Slave node. See the dedicated Serial Protocol section for a full description (Section TBD). 14.3. Output Transfer Characteristic Parameter ALPHA_POL BETA_POL ALPHA_MOD180 BETA_MOD180 ALPHA_DP BETA_DP ALPHA_X BETA_X ALPHA_Y BETA_Y ALPHA_S0 ALPHA_S1 BETA_S0 BETA_S1 CLAMP_LOW CLAMP_HIGH ALPHA_DEADZONE BETA_DEADZONE 14.3.1. The Polarity and Modulo Parameters The angle Alpha is defined as the arctangent of X/Z and Beta as the arctangent of Y/Z. It is possible to invert the polarity of these angles via the parameters ALPHA_POL and BETA_POL set to “1”. The MLX90313 can also be insensitive to the field polarity by setting the ALPHA_MOD180/BETA_MOD180 to “1”. Value 0 1 0 1 0 … 359.9999 0 … 359.9999 0 … 100 deg deg % Unit 0 … 17 0 … 100 0 … 100 0 … 359.9999 %/deg % % deg 3901090333 Rev. Preliminary Page 20 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor z β α y x 14.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point) The Discontinuity Point defines the zero point of the circle (Alpha or Beta). The discontinuity point places the origin at any location of the trigonometric circle (see Figure 12). For a Joystick Application, Melexis recommends to set the DP to zero. 14.3.3. LNR Parameters The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angles (Alpha and Beta) and the output signals. The shape of the MLX90333 transfer function from the digital angle values to the output voltages is described by the drawing below (See Figure 11). Four segments can be programmed but the clamping levels are necessarily flat. 100% CLAMPHIGH Clamping High C AlphaOut B ALPHA_S1 ALPHA_Y ALPHA_S0 A CLAMPLOW 0% 0° ALPHA_X Clamping Low Alpha 360° Figure 11 - Digital Angle (Alpha) Transfer Characteristic (Idem ditto for Beta) 3901090333 Rev. Preliminary Page 21 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 14.3.4. CLAMPING Parameters The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum output voltage level. Both parameters have 16 bits of adjustment. In analog mode, the resolution will be limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode, the resolution will be 0.024%DC. In SPI mode, the resolution is 14bits or 0.022deg over 360deg. 14.3.5. DEADZONE Parameter The dead zone is defined as the angle window between 0 and 359.9999 (See Figure 12). When the digital angle (Alpha or Beta) lies in this zone, the IC is in fault mode (RESONFAULT must be set to “1” – See 14.7.1). In case of ALPHA_MOD180 (or BETA_MOD180) is not set, the angle between 180° and 360° will generate a “deadzone” fault, unless DEADZONE=0. z 90° α 180° 0° Programmable 0° point x Programmable Forbidden Zone Figure 12 – Discontinuity Point and Dead Zone (Alpha – Idem ditto for Beta) 14.4. Identification Parameter MELEXSID1 MELEXSID2 MELEXSID3 CUSTUMERID1 CUSTUMERID2 CUSTUMERID3 Value 0 … 65535 0 … 65535 0 … 65535 0 … 65535 0 … 65535 0 … 65535 Unit Identification number: 48 bits freely useable by Customer for traceability purpose. 3901090333 Rev. Preliminary Page 22 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 14.5. Sensor Front-End Parameter HIGHSPEED GAINMIN GAINMAX FIELDTHRES_MIN FIELDTHRES_MAX 14.5.1. HIGHSPEED Parameter The HIGHSPEED parameter defines the main frequency for the DSP. • HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock. • HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock. For better noise performance, the Slow Mode must be enabled. 14.5.2. GAINMIN and GAINMAX Parameters The MLX90333 features an automatic gain control (AGC) of the analog chain. The AGC loop is based on (VX)²+ (VY)² + (VZ)² = (Amplitude)² = (Radius)² and it targets an amplitude of 90% of the ADC input span. The current gain can be read out with the programming unit PTC-04 and gives a rough indication of the applied magnetic flux density (Amplitude). GAINMIN & GAINMAX define the boundaries within the gain setting is allowed to vary. Outside this range, the outputs are set in diagnostic low. 14.5.3. FIELDTHRES_MIN and FIELDTHRES_MAX Parameters The strength of the applied field is constantly calculated in a background process. The value of this field can be read out with the PTC-04 and FIELDTHRES_MIN & FIELDTHRES_MAX define the boundaries within the actual field strength (Radius) is allowed to vary. Outside this range, the outputs are set in diagnostic low. Value 0 = Slow mode 1 = Fast mode 0 … 41 0 … 41 0 … 100 0 … 100 % % Unit 3901090333 Rev. Preliminary Page 23 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 14.6. FILTER Parameter FHYST FILTER FSWAP Value 0 … 11 ; step 0.04 0… 6 0 1 Unit deg The MLX90333 includes 3 types of filters: • Hysteresis Filter: programmable by the FHYST parameter • Low Pass FIR Filters controlled with the Filter parameter • Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and FILTER A2 Note: if the parameter FSWAP is set to “1”, the filtering is active on the digital angle. If set to “0”, the filtering is active on the output transfer function. 14.6.1. Hysteresis Filter The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step is smaller than the programmed FHYST parameter value. The output value is modified when the increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the noise level. Please note that for the programmable version, the FHYST parameter is set to 4 by default. If you do not wish this feature, please set it to “0”. 14.6.2. FIR Filters The MLX90333 features 6 FIR filter modes controlled with Filter = 0…5. The transfer function is described below: yn = 1 ∑a i =0 j ∑a x i =0 j i n −i i The characteristics of the filters no 0 to 5 is given in the Table 1. Filter No (j) Type Coefficients a0… a5 Title 90% Response Time 99% Response Time Efficiency RMS (dB) Efficiency P2P (dB) 0 Disable N/A No Filter 1 1 0 0 3 4 Finite Impulse Response 110000 121000 133100 111100 Extra Light Light 2 3 4 4 2 3 4 4 2.9 4.0 4.7 5.6 2.9 3.6 5.0 6.1 Table 1 - FIR Filters Selection Table 3901090333 Rev. Preliminary Page 24 of 38 Data Sheet May 07 1 2 5 122210 5 5 6.2 7.0 MLX90333 Triaxis 3D-Joystick Position Sensor FIR and HYST Filters : Step response Comparative Plot 40000 x(n) fir(n) hyst(n) 38000 [0..65535] Scale 36000 34000 32000 30000 0 5 10 15 Milliseconds 20 25 30 FIR and HYST Filter : Gaussian white noise response 40200 40150 40100 [0..65535] Scale 40050 40000 39950 39900 39850 39800 0 50 Milliseconds 100 150 x(n) fir(n) hyst(n) Figure 13 - Step Response and Noise Response for FIR (No 3) and FHYST=10 14.6.3. IIR Filters The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90333 is given in Figure 14. Only the parameter A1 and A2 are configurable (See Table 2). b0 = 1 x(n) Z-1 b1 = 2 -a1 Z-1 y(n) Z-1 b2 = 1 Figure 14 - IIR Diagram Z-1 -a2 3901090333 Rev. Preliminary Page 25 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor Filter No Type Title 90% Response Time Efficiency RMS (dB) Efficiency P2P (dB) Coefficient A1 Coefficient A2 6 Order Infinite Impulse Response (IIR) Medium & Strong 26 40 52 13.6 15.3 16.2 17.1 18.8 20 29120 30208 31296 12992 13952 14976 2nd 11 9.9 12.9 26112 10752 16 11.4 14.6 28160 12288 100 >20 >20 31784 15412 Table 2 - IIR Filter Selection Table The Figure 15 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2. IIR Filter - Gaussian White Noise Response 40200 40150 [0…65535] Scale 40100 40050 40000 39950 39900 39850 39800 0 50 Time 100 150 x(n) y(n) Figure 15 - Noise Response for the IIR Filter 3901090333 Rev. Preliminary Page 26 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 14.7. Programmable Diagnostic Settings Parameter RESONFAULT EEHAMHOLE 14.7.1. RESONFAULT Parameter This RESONFAULT parameter disables the soft reset when a fault is detected by the CPU when the parameter is set to 1. By default, the parameter is set to “0” but it is recommended to set it to “1” to activate the self diagnostic modes (See section 15). Note that in the User Interface (MLX90333UI), the RESONFAULT is split in two bits: • DRESONFAULT: disable the reset in case of a fault. • DOUTINFAULT: disable output in diagnostic low in case of fault. 14.7.2. EEHAMHOLE Parameter The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is detected by the CRC when it is equal to 3131h. By default the parameter is set to 0 (enable memory recovery). Value 0 1 0 3131h Unit 14.8. Lock Parameter MLXLOCK LOCK Value 0 1 0 1 Unit 14.8.1. MLXLOCK Parameter MLXLOCK locks all the parameters set by Melexis. 14.8.2. LOCK Parameter LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the EEPROM values anymore. Note that the lock bit should be set by the solver function “MemLock”. 3901090333 Rev. Preliminary Page 27 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 15. MLX90333 Self Diagnostic The MLX90333 provides numerous self-diagnostic features. Those features increase the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure modes (“fail-safe”). Action ROM CRC Error at start up (64 words including Intelligent Watch Dog - IWD) ROM CRC Error (Operation Background task) RAM Test Fail (Start up) Calibration Data CRC Error (Start-Up) Hamming Code Recovery Error (Start-Up) Calibration Data CRC Error (Operation - Background) Dead Zone Alpha Dead Zone Beta ADC Clipping (ADC Output is 0000h or 7FFFh) Radius Overflow ( > 100% ) or Radius Underflow ( < 50 % ) Field Clipping (Radius < FIELDTHRES_LOW or Radius > FIELDTHRES_HIGH) Rough Offset Clipping (RO is < 0d or > 127d) Gain Clipping (Gain < GAINMIN or GAIN > GAINMAX) DAC Monitor (Digital to Analog converter) CPU Reset (20) Enter Endless Loop: - Progress (watchdog Acknowledge) - Set Outputs in Diagnostic low CPU Reset Hamming Code Recovery CPU Reset CPU Reset Set Outputs in Diagnostic low. Normal Operation until the “dead zone” is left. Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and No CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low (50 % - 100 %) No magnet / field too high See also 14.5.2 Immediate recovery if the “dead zone” is left Effect on Outputs Diagnostic low(21) Immediate Diagnostic low Remark All the outputs are already in Diagnostic low - (start-up) Diagnostic low All the outputs are already in Diagnostic low (start-up) Start-Up Time is increased by 3 ms if successful recovery See 14.7.2 Immediate Diagnostic low Immediate Diagnostic low See also 14.5.2 Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset MLX90333 Fault Mode continues… 20 Immediate Diagnostic low CPU reset means 1. 2. 3. 4. Core Reset (same as Power-On-Reset). It induces a typical start up time. Periphery Reset (same as Power-On-Reset) Fault Flag/Status Lost The reset can be disabled by clearing the RESONFAULT bit (See 14.7.1) 21 Refer to section 7 for the Diagnostic Output Level specifications Page 28 of 38 Data Sheet May 07 3901090333 Rev. Preliminary MLX90333 Triaxis 3D-Joystick Position Sensor …MLX90333 Fault Mode Fault Mode ADC Monitor (Analog to Digital Converter) Action Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset At Start-Up, wait Until VDD > 3V. During operation, CPU Reset after 3 ms debouncing Effect on Outputs Immediate Diagnostic low Remark ADC Inputs are Shorted Undervoltage Mode - VDD < POR level => Outputs high impedance - POR level < VDD < 3 V => Outputs in Diagnostic low. Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Pull down resistive load => Diag. Low Pull up resistive load => Diag. High(21) Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Firmware Flow Error Read/Write Access out of physical memory Write Access to protected area (IO and RAM Words) Unauthorized entry in “SYSTEM” Mode VDD > 7 V CPU Reset CPU Reset CPU Reset CPU Reset Set Output High Impedance (Analog) Intelligent Watchdog (Observer) 100% Hardware detection 100% Hardware detection 100% Hardware detection 100% Hardware detection VDD > 9.4 V IC is switched off (internal supply) CPU Reset on recovery CPU Reset on recovery 100% Hardware detection Broken VSS Broken VDD CPU Reset on recovery 100% Hardware detection. Pull down load ≤ 10 kΩ to meet Diag Low spec: < 4% VDD No valid diagnostic for VPULLUP = VDD. Pull up load (≤ 10kΩ) to VPULLUP > 8 V to meet Diag Hi spec > 96% Vdd. 3901090333 Rev. Preliminary Page 29 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 16. Recommended Application Diagrams 16.1. Analog Output Wiring with the MLX90333 in SOIC Package ECU 5V Vdd C1 100nF C3 100nF 1 Vdd Test 1 Vss 8 GND C6 4.7nF MLX90333 Vdig C2 100nF ADC R1 10k R2 10k NotUsed 4 Out 2 Test 2 5 Out 1 C4 100nF C1 100nF C3 4.7nF Out 1 Out 2 C5 4.7nF Figure 16 – Recommended wiring for the MLX90333 in SOIC8 package 16.2. PWM Low Side Output Wiring ECU 5V Vdd 1 Vdd Test 1 Vss 8 GND 5V MLX90333 Vdig C2 100nF C6 4.7nF ADC R1 1k R2 1k NotUsed 4 PWM 2 Test 2 5 PWM 1 C4 4.7nF PWM 1 PWM 2 C5 4.7nF Figure 17 – Recommended wiring for a PWM Low Side Output configuration 3901090333 Rev. Preliminary Page 30 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 16.3. Analog Output Wiring with the MLX90333 in TSSOP Package VDD1 ECU Vdd1 GND1 C2 100nF GND1 C31 100nF C32 100nF 16 1 Vdig1 Vss1 Vdd1 GND1 C1 100nF Out2_1 Out1_1 Out1_1 Out2_1 VDD2 MLX90316 C62 100nF 8 Vdig2 C5 100nF C61 100nF GND2 Out2_2 Out1_2 Vdd2 Vss2 9 C4 100nF Vdd2 GND2 GND2 10K 4.7nF ADC Out1_2 Out2_2 Figure 18 – Recommended wiring for the MLX90333 in TSSOP16 package (dual die). 16.4. Serial Protocol Generic schematics for single slave and dual slave applications are described. SPI Master GND Vdd C1 100nF 1 8 5V Vdd Vss _SS _SS R4 SCLK R5 4 SCLK MISO R3 R1 /SS Test 0 MLX90333 Vdig C2 100nF Test 1 5 MOSI MOSI R2 MOSI 3.3V/5V Figure 19 – MLX90333 − Single Die − Serial Protocol Mode 3901090333 Rev. Preliminary Page 31 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor μCtrl Pull-up 90316 Supply Supply Supply R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω) (V) (V) (V) 5V μCtrl w/o O.D. w/o 3.3V 5V 5V 5V 100 1000 20,000 1000 5V μCtrl w/o O.D. w/ 3.3V 5V 3.3V 5V 150 1000 N/A 1000 3.3V μCtrl w/o O.D. (23) 3.3V 3.3V 5V 150 1000 N/A N/A 5V μCtrl w/ O.D. w/o 3.3V (24) 5V 5V 5V 100 1000 20,000 1000 3.3V μCtrl w/ O.D. 3.3V 3.3V 5V 150 1000 N/A N/A Table 3 - Resistor Values for Common Specific Applications Application Type R5 (Ω) 20,000 20,000 N/A 20,000 N/A MOS Type BS170 BS170 BS170 N/A N/A 23 24 μCtrl w/ O.D. : Micro-controller with open-drain capability (for instance NEC V850ES series) μCtrl w/o O.D. : Micro-controller without open-drain capability (like TI TMS320 series or ATMEL AVR ) 3901090333 Rev. Preliminary Page 32 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 17. Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods: Reflow Soldering SMD’s (Surface Mount Devices) • • • IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (Classification reflow profiles according to table 5-2) EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (Reflow profiles according to table 2) Melexis Working Instruction 341901308 Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • • • EN60749-20 Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices Melexis Working Instruction 341901309 Iron Soldering THD’s (Through Hole Devices) • • EN60749-15 Resistance to soldering temperature for through-hole mounted devices Melexis Working Instruction 341901309 Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • • EIA/JEDEC JESD22-B102 and EN60749-21 Solderability Melexis Working Instruction 3304312 For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. For more information on the lead free topic please see quality page at our website: http://www.melexis.com/quality.aspx 18. ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. 3901090333 Rev. Preliminary Page 33 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 19. Package Information 19.1. SOIC8 - Package Dimensions 1.27 TYP NOTES: All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 3.81 3.99** 5.80 6.20** 4.80 4.98* 1.37 1.57 1.52 1.72 0.19 0.25 0° 8° 0.36 0.46*** 0.100 0.250 0.41 1.27 19.2. SOIC8 - Pinout and Marking Out 1 MOSI/MISO Test 1 Vdig Vss Marking : Part Number MLX90333 (3 digits) Die Version (3 digits) 333 TOP 123456 YY WW Week Date code (2 digits) Year Date code (2 digits) Lot number (6 digits) Bxx 8 5 333Bxx 123456 Bottom 1 4 Test 0 Vdd 3901090333 Rev. Preliminary Out 2 SCLK \SS Page 34 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 19.3. SOIC8 - IMC Positionning CW 8 7 6 5 CCW COS 1.25 1.65 1 2 3 4 0.46 +/- 0.06 1.96 2.26 SIN 3901090333 Rev. Preliminary Page 35 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 19.4. TSSOP16 - Package Dimensions 0.65 TYP 12O TYP 0.20 TYP 1.0 DIA 4.30 4.50** 6.4 TYP 0.09 MIN 0.09 MIN 1.0 0.50 0.75 1.0 TYP 0O 8O 12O TYP 1.0 4.90 5.10* 0.85 0.95 0.09 0.20 1.1 MAX 0.19 0.30*** NOTES: 0.05 0.15 All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 3901090333 Rev. Preliminary Page 36 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 19.5. TSSOP16 - Pinout and Marking 16 1 Vdig_1 Vss_1 Vdd_1 333Bxx 123456 Test0_1 _SS_2 Out2_2/SCLK_2 Out1_2/MOSI/MISO_2 Test1_2 8 Test1_1 Out1_1/MOSI/MISO_1 Out2_1/SCLK_1 _SS_1 Test0_2 Vdd_2 Vss_2 Vdig_2 333 Top 123456 Bottom YY WW 9 Marking : Part Number MLX90316 (3 digits) Die Version (3 digits) Bxx Lot number (6 digits) Week Date code (2 digits) Year Date code (2 digits) 19.6. TSSOP16 - IMC Positionning CW COS 2 16 9 Die 1 SIN 2 1.95 2.45 1 1.84 2.04 Die 2 SIN 1 0.30 +/- 0.06 CCW 8 COS 1 2.76 2.96 3901090333 Rev. Preliminary Page 37 of 38 Data Sheet May 07 MLX90333 Triaxis 3D-Joystick Position Sensor 20. Disclaimer Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering of technical or other services. © 2007 Melexis N.V. All rights reserved. For the latest version of this document, go to our website at www.melexis.com Or for additional information contact Melexis Direct: Europe, Africa, Asia: Phone: +32 1367 0495 E-mail: sales_europe@melexis.com America: Phone: +1 603 223 2362 E-mail: sales_usa@melexis.com ISO/TS 16949 and ISO14001 Certified 3901090333 Rev. Preliminary Page 38 of 38 Data Sheet May 07
MLX90333KDC 价格&库存

很抱歉,暂时无法提供与“MLX90333KDC”相匹配的价格&库存,您可以联系我们找货

免费人工找货