0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MLX90363EDC-ABB-000-SP

MLX90363EDC-ABB-000-SP

  • 厂商:

    MELEXIS(迈来芯)

  • 封装:

    SOICN-8_4.9X3.9MM

  • 描述:

    MLX90363EDC-ABB-000-SP

  • 数据手册
  • 价格&库存
MLX90363EDC-ABB-000-SP 数据手册
MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Features and Benefits          Tria⊗is® Magnetometer (BX, BY, BZ) On Chip Signal Processing for Robust Position Sensing High Speed Serial Interface (SPI compatible – Full Duplex) Enhanced Self-Diagnostics Features 5V and 3V3 Application Compatible 14 bit Output Resolution 48 bit ID Number Single Die – SOIC-8 Package RoHS Compliant Dual Die (Full Redundant) – TSSOP-16 Package RoHS Compliant Description The MLX90363 is a monolithic magnetic sensor IC featuring the Tria⊗is® Hall technology. Conventional planar Hall technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is® Hall sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an Integrated Magneto-Concentrator (IMC) which is deposited on the CMOS die. The MLX90363 is sensitive to three (BX, BY and BZ) components of the flux density applied to the IC. This allows the MLX90363 to sense any magnet moving in its surrounding and decode its position through an appropriate signal processing. Using its Serial Interface the MLX90363 can transmit a digital output (SP – 64 bits per frame). TSSOP-16 Applications    Absolute Contacless Position Sensor Steering Wheel Position Sensor 3D Joystick Position Sensor The MLX90363 is intended for Embedded Position Sensor applications (vs. Stand-Alone “Remote” Sensor) for which the output is directly provided to a microcontroller (Master) close to the magnetometer IC MLX90363 (Slave). The SPI protocol confirms this intent. The MLX90363 is using full duplex SPI protocol and requires therefore the separated SPI signal lines: MOSI, MISO, /SS and SCLK. VDD VDEC 3V3 Regulator DSP Triaxis ® VX VY VZ RAM MUX SOIC-8 G ADC EEPROM Output Stage 14 bit SPI Angle µC 14 bit SPI XYZ ROM - Firmware MISO MOSI SCLK SS VSS MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 1. Ordering Information Product Code Temperature Code Package Code Option Code Packing Form Code MLX90363 E DC ABB-000 RE MLX90363 E GO ABB-000 RE MLX90363 K DC ABB-000 RE MLX90363 K GO ABB-000 RE MLX90363 L DC ABB-000 RE MLX90363 L GO ABB-000 RE Legend: Temperature Code: E: from -40 Deg.C to 85 Deg.C K: from -40 Deg.C to 125 Deg.C L: from -40 Deg.C to 150 Deg.C Package Code: “DC” for SOIC-8 package “GO” for TSSOP-16 package (dual die) Option Code: ABB-xxx: die version xxx-000: standard Packing Form: “RE” for Reel “TU” for Tube Ordering Example: MLX90363LGO-ABB-000-RE Table 1 - Legend REVISION 006 – DEC 2016 Page 2 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Contents Features and Benefits................................................................................................................................... 1 Applications .................................................................................................................................................. 1 Description ................................................................................................................................................... 1 1. Ordering Information ............................................................................................................................... 2 2. Functional Diagram .................................................................................................................................. 6 3. Glossary of Terms ..................................................................................................................................... 6 4. Pinout ....................................................................................................................................................... 7 5. Pin Description ......................................................................................................................................... 8 6. Absolute Maximum Ratings ...................................................................................................................... 8 7. Electrical Specification .............................................................................................................................. 9 8. Isolation Specification............................................................................................................................. 10 9. Timing Specification................................................................................................................................ 10 9.1. Timing Specification for 5V Application......................................................................................... 10 9.2. Timing Specification for 3V3 Application....................................................................................... 11 10. Accuracy Specification .......................................................................................................................... 12 11. Magnetic Specification ......................................................................................................................... 14 12. CPU & Memory Specification ............................................................................................................... 15 13. Serial Interface ..................................................................................................................................... 15 13.1. Electrical Layer and Timing Specification .................................................................................... 15 13.2. Serial Protocol .............................................................................................................................. 17 13.3. Message General Structure ......................................................................................................... 18 13.4. Regular Messages ........................................................................................................................ 20 13.4.1. Note for the regular message “X – Y – Z – diagnostic” (Marker = 2) .................................... 21 13.5. Trigger Mode 1............................................................................................................................. 21 13.6. Trigger Mode 2............................................................................................................................. 23 13.7. Trigger Mode 3............................................................................................................................. 24 13.8. Trigger Modes Timing Specifications........................................................................................... 26 13.8.1. 5V Application ........................................................................................................................ 26 13.8.2. 3V3 Application ...................................................................................................................... 27 13.9. Opcode Table ............................................................................................................................... 29 13.10. Timing specifications per Opcode, and next allowed messages............................................... 29 REVISION 006 – DEC 2016 Page 3 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 13.11. NOP Command and NOP Answer .............................................................................................. 30 13.12. OscCounterStart and OscCounterStop Commands .................................................................. 31 13.13. Protocol Errors Handling............................................................................................................ 33 13.14. Ready, Error and NTT Messages ................................................................................................ 34 13.15. DiagnosticsDetails commands ................................................................................................... 35 13.16. MemoryRead message .............................................................................................................. 36 13.17. EEWrite Message ....................................................................................................................... 37 13.18. Reboot ........................................................................................................................................ 40 13.19. Standby ...................................................................................................................................... 40 13.20. Start-up Sequence (Serial Communication) .............................................................................. 41 13.21. Allowed sequences .................................................................................................................... 42 14. Traceability Information ....................................................................................................................... 43 15. End-User Programmable Items ............................................................................................................ 44 16. Description of End-User Programmable Items ..................................................................................... 45 16.1. User Configuration: Device Orientation ...................................................................................... 45 16.2. User Configuration: Magnetic Angle Formula ............................................................................. 45 16.3. User Configuration: 3D = 0 formula trimming parameters SMISM and ORTH_B1B2 ................ 45 16.3.1. Magnetic Angle ∠XY .............................................................................................................. 46 16.3.2. Magnetic Angle ∠XZ and ∠YZ ............................................................................................... 46 16.4. User Configuration: 3D = 1 formula trimming parameters KALPHA, KBETA, KT ........................ 47 16.5. User Configuration: Filter ............................................................................................................ 47 16.6. Virtual Gain Min and Max Parameters ........................................................................................ 47 16.7. Hysteresis Filter............................................................................................................................ 48 16.8. EMC Filter on SCI Pins .................................................................................................................. 48 16.9. Identification & FREE bytes.......................................................................................................... 48 16.10. Lock ............................................................................................................................................ 48 17. Self Diagnostic ...................................................................................................................................... 49 18. Firmware Flowcharts ............................................................................................................................ 51 18.1. Start-up sequence ........................................................................................................................ 51 18.2. Signal Processing (GETx) .............................................................................................................. 52 18.3. Fail-safe Mode ............................................................................................................................. 52 Fail-safe mode – entry conditions ..................................................................................................... 53 18.4. Automatic Gain Control ............................................................................................................... 53 REVISION 006 – DEC 2016 Page 4 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 19. Recommended Application Diagrams .................................................................................................. 54 19.1. MLX90363 in SOIC-8 Package and 5V Application ...................................................................... 54 19.2. MLX90363 in SOIC-8 Package and 3V3 Application .................................................................... 54 19.3. MLX90363 in TSSOP-16 Package and 5V Application ................................................................. 55 19.4. MLX90363 in TSSOP-16 Package and 3V3 Application ............................................................... 55 20. Standard information regarding manufacturability of Melexis products with different soldering processes ............................................................................................................................................... 56 21. ESD Precautions.................................................................................................................................... 56 22. Package Information............................................................................................................................. 57 22.1. SOIC-8 - Package Dimensions ...................................................................................................... 57 22.2. SOIC-8 - Pinout and Marking ....................................................................................................... 57 22.3. SOIC-8 - IMC Positionning ............................................................................................................ 58 22.4. TSSOP-16 - Package Dimensions ................................................................................................. 59 22.5. TSSOP-16 - Pinout and Marking................................................................................................... 60 22.6. TSSOP-16 - IMC Positionning ....................................................................................................... 60 23. Disclaimer ............................................................................................................................................. 62 24. Contact ................................................................................................................................................. 62 REVISION 006 – DEC 2016 Page 5 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 2. Functional Diagram VDEC VDD 3V3 Regulator DSP VX VY VZ RAM MUX Triaxis ® G ADC EEPROM Output Stage 14 bit SPI Angle µC 14 bit SPI XYZ ROM - Firmware MISO MOSI SCLK SS VSS Figure 1 – Block Diagram 3. Glossary of Terms Gauss (G), Tesla (T) TC NC Byte Word ADC LSB MSB DNL INL RISC ASP DSP ATAN IMC CoRDiC EMC FE RE MSC FW HW Units for the magnetic flux density - 1 mT = 10 G Temperature Coefficient (in ppm/Deg.C.) Not Connected 8 bits 16 bits (= 2 bytes) Analog-to-Digital Converter Least Significant Bit Most Significant Bit Differential Non-Linearity Integral Non-Linearity Reduced Instruction Set Computer Analog Signal Processing Digital Signal Processing Trigonometric function: arctangent (or inverse tangent) Integrated Magneto-Concentrator (IMC®) Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform) Electro-Magnetic Compatibility Falling Edge Rising Edge Message Sequence Chart Firmware Hardware Table 2 – Glossary of Terms REVISION 006 – DEC 2016 Page 6 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 4. Pinout PIN SOIC-8 TSSOP-16 1 VDD VDEC1 2 MISO VSS1 (Ground1) 3 Test VDD1 4 SCLK MISO1 5 /SS Test2 6 MOSI SCLK2 7 VDEC /SS2 8 VSS (Ground) MOSI2 9 VDEC2 10 VSS2 (Ground2) 11 VDD2 12 MISO2 13 Test1 14 SCLK1 15 /SS1 16 MOSI1 For optimal EMC behavior, it is recommended to connect the unused pins (Test) to the Ground (see section 19). REVISION 006 – DEC 2016 Page 7 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 5. Pin Description Name Direction Type Function / Description VDD Supply Analog Supply (5V and 3V3 applications) MISO OUT Digital Master In Slave Out Test I/O Both SCLK IN Digital Clock /SS IN Digital Slave Select MOSI IN Digital Master Out Slave In Test Pin 5V Application VDEC I/O Analog Decoupling Pin 3V3 Application Supply (Shorted to VDD) VSS (Ground) GND Analog Ground 6. Absolute Maximum Ratings Parameter Value Supply Voltage, VDD + 18 V Reverse VDD Voltage - 0.3 V Supply Voltage, VDEC + 3.6 V Reverse VDEC Voltage - 0.3 V Positive Input Voltage + 11 V Reverse Input Voltage - 11 V Positive Output Voltage VDD + 0.3 V Reverse Output Voltage - 0.3 V Operating Ambient Temperature Range, TA - 40 Deg.C … + 150 Deg.C Storage Temperature Range, TS - 40 Deg.C … + 150 Deg.C Magnetic Flux Density ± 700 mT Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximumrated conditions for extended periods may affect device reliability. REVISION 006 – DEC 2016 Page 8 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 7. Electrical Specification DC Operating Parameters at VDD = 5V (5V Application) or VDD = 3.3V (3V3 Application) and for TA as specified by the Temperature suffix (E, K or L). Parameter Symbol Test Conditions Min Typ Max Units Nominal Supply Voltage VDD5 5V Application 4.5 5 5.5 V Nominal Supply Voltage VDD33 3V3 Application 3.15 3.3 3.45 V Supply Current (1) IDD 12.5 15.5 mA Standby Current ISTANDBY 3.5 4.5 mA Supply Current at VDD MAX IDDMAX VDD = 18V 18 mA POR Rising Level POR LH Voltage referred to VDEC 2.6 2.8 3.1 V POR Falling Level POR HL Voltage referred to VDEC 2.5 2.7 2.9 V POR Hysteresis POR Hyst Voltage referred to VDEC MISO Switch Off Rising Level MT8V LH VDD level for disabling MISO (2) 7.5 9.5 V MISO Switch Off Falling Level MT8V HL VDD level for disabling MISO (2) 6 7.5 V MISO Switch Off Hysteresis MT8VHyst VDD level for disabling MISO (2) 1 2 V 0.1 V Input High Voltage Level VIH 65%* VDD - - V Input Low Voltage Level VIL - - 35%* VDD V Input Hysteresis VHYS Input Capacitance CIN Referred to GND Output High Voltage Level VOH Current Drive IOH = 0.5 mA Output Low Voltage Level VOL Current Drive IOH = 0.5 mA Output High Short Circuit Current IshortH VOUT forced to 0V Output Low Short Circuit Current IshortL VOUT forced to VDD 1 2 20%* VDD V 20 pF VDD0.4 V 0.4 V 20 30 mA 25 30 mA For the dual version, the supply current is multiplied by 2 Above the MT8V threshold, no SPI communication is possible REVISION 006 – DEC 2016 Page 9 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 8. Isolation Specification Only valid for the package code GO i.e. dual die version. Parameter Symbol Isolation Resistance Test Conditions Between dice Min Typ Max 4 Units MΩ 9. Timing Specification 9.1. Timing Specification for 5V Application DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (E, K or L). Parameter Main Clock Frequency Symbol Test Conditions Ck Min Typ 15.2 Trigger Mode 1 (Trg. Mod. 1), Frame Rate Watchdog time-out Power On to First SCI message (Start-up Time) FR Wd tStartUp SCI protocol: Slave-select rising-edge to falling-edge tShort SCI protocol: EEWrite Time teewrite Markers 0&2, SCI 2MHz All other modes, markers and SCI Frequencies See Section 17 See Section 13.20 Trimmed oscillator 15.3 18.8 Max Units 18.8 MHz 1000 s-1 500 s-1 20 ms 20 ms 120 µs 32 ms Trg.Mod.1, Markers 0&2 Diagnostic Loop Time Internal 1MHz signal tDiag 40 ms FR = 500 s -1 20 ms FR = 200 s -1 10 ms Ck = 19 MHz 1 MISO Rise Time CL = 30 pF, RL = 10 kΩ 35 60 ns MISO Fall Time CL = 30 pF, RL = 10 kΩ 35 60 ns REVISION 006 – DEC 2016 t1us FR = 1000 s-1 µs Page 10 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Parameter Symbol Test Conditions Min Typ Max Units Sinewave Flux Density (3) FR = 1000 s-1 Magnetic Flux Density Frequency 4 Hz FR = 500 s -1 8 Hz FR = 100 s -1 18 Hz FR = 1000 s-1 (4) 28 Hz -1 (4) 14 Hz FR = 200 s-1 (4) 5.6 Hz FR = 500 s 9.2. Timing Specification for 3V3 Application DC Operating Parameters at VDD = 3.3V (unless otherwise specified) and for TA as specified by the Temperature suffix (E, K or L). Parameter Main Clock Frequency Symbol Test Conditions Ck Min Typ 13.1 Trigger Mode 1 (Trg. Mod. 1), Frame Rate Watchdog time-out Power On to First SCI message (Start-up Time) FR Wd tStartUp SCI protocol: Slave-select rising-edge to falling-edge tShort SCI protocol: EEWrite Time teewrite Markers 0&2, SCI 2MHz All other modes, markers and SCI Frequencies Max Units 18.8 MHz 862 s-1 430 s-1 23.2 ms See Section 17 15.3 See Section 13.20 23.2 ms 139 µs 37 ms Trimmed oscillator Trg.Mod.1, Markers 0&2 Diagnostic Loop Time Internal 1MHz signal tDiag t1us FR = 862 s-1 46.4 ms FR = 430 s -1 23.2 ms FR = 215 s -1 11.6 ms Ck = 19 MHz 1 µs 3 Sensitivity monitors enabled (See section 17). Beyond that frequency, the Sensitivity monitor must be disabled. Contact Melexis for more details. 4 Limitation linked to the Automatic Gain Control. Beyond that frequency, there is a reduced immunity to norm change (e.g. through vibration). See also Section 18.4 REVISION 006 – DEC 2016 Page 11 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Parameter Symbol Test Conditions Min Typ Max Units MISO Rise Time CL = 30 pF, RL = 10 kΩ 35 60 ns MISO Fall Time CL = 30 pF, RL = 10 kΩ 35 60 ns FR = 862 s-1 (5) 24 Hz FR = 430 s -1 (5) 12 Hz FR = 215 s -1 (5) 4.8 Hz Magnetic Flux Density Frequency 10. Accuracy Specification DC Operating Parameters at VDD = 5V (5V Application) or VDD = 3.3V (3V3 Application) and for TA as specified by the Temperature suffix (E, K or L). Parameter Symbol ADC Resolution on the raw signals X, Y and Z RADC Serial Interface Resolution RSI Offset on the Raw Signals X, Y and Z X0, Y0, Z0 Test Conditions Min Typ Max Units 14 bit On the angle value 14 bit On the X,Y,Z values 12 bit TA = 25 Deg.C -30 30 LSB14 TA = 25 Deg.C Mismatch on the Raw Signals X, Y and Z SMISMXY SMISMXZ SMISMYZ -1 1 % Between X and Z (6) -30 30 % Between Y and Z (6) -30 30 % Between X and Y TA = 25 Deg.C Magnetic Angle Phase Error ORTHXY ORTHXZ ORTHYZ Between X and Y -0.3 0.3 Deg. Between X and Z (7) -10 10 Deg. Between Y and Z (7) -10 10 Deg. 5 Limitation linked to the Automatic Gain Control. Beyond that frequency, there is a reduced immunity to norm change (e.g. through vibration). See also Section 18.4 6 The Mismatch between X or Y and Z can be reduced through the calibration of the SMISM (or k) factor in the end application. See section 16.3.2 for more information 7 The Magnetic Angle Phase error X or Y and Z can be reduced through the calibration of the ORTH_B1B2 factor in the end application. See section 16.3.2 for more information REVISION 006 – DEC 2016 Page 12 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Parameter Symbol Test Conditions Min Typ Max Units -1 1 Deg. -20 20 Deg. -0.1 0.1 Deg. 20 mT -0.8 0.8 Deg. 50 mT -0.4 0.4 Deg. 20 mT -1 1 Deg. 50 mT -0.6 0.6 Deg. Temperature suffix E and K -30 30 LSB14 Temperature suffix L -45 45 LSB14 XY axis, XZ axis, YZ axis Temperature suffix E and K -0.5 0.5 % Temperature suffix L -0.7 0.7 % XY axis, XZ axis, YZ axis -0.1 0.1 Deg. TA = 25 Deg.C Intrinsic Linearity Error (8) Le Magnetic Angle ∠XY Magnetic Angle ∠XZ, ∠YZ (9) 5V Application VDD = 4.5 … 5.5 V 3V3 Application VDD = 3.20 … 3.40 V Supply Dependency Temperature suffix E and K Temperature suffix L Thermal Offset Drift (10) Thermal Drift of Sensitivity Mismatch (11) Thermal Drift of Magnetic Angle Phase Error 8 The Intrinsic Linearity Error is a consolidation of the IC errors (offset, sensitivity mismatch, phase error) taking into account an ideal rotating field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the output linearity error increases. 9 The Intrisic Linearity Error for Magnetic Angle ∠XZ, ∠YZ can be reduced through the programming of the SMISM (or k) factor and ORTH_B1B2. By applying the correct compensation, a non linearity error of +/-1 Deg. can be reached. See section 16.3.2 for more information 10 For instance, Thermal Offset Drift equal ± 30 LSB14 yields to max. ± 0.32 Deg. error. This is only valid if the Virtual Gain is not fixed (See Section 18.4). See Front End Application Note for more details 11 For instance, Thermal Drift of Sensitivity Mismatch equal ± 0.4 % yields to max. ± 0.1 Deg. error. See Front End Application Note for more details REVISION 006 – DEC 2016 Page 13 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Parameter Symbol Test Conditions Min Typ Max Units 20mT, No Filter 0.2 Deg. 50mT, No Filter 0.1 Deg. 50mT, FILTER = 1 0.07 Deg. 20mT, No Filter 0.25 Deg. 50mT, No Filter 0.12 Deg. 50mT, FILTER = 1 0.08 Deg. 20mT, No Filter 12 LSB14 50mT, No Filter 6 LSB14 50mT, FILTER = 1 4 LSB14 20mT, No Filter 14 LSB14 50mT, No Filter 7 LSB14 50mT, FILTER = 1 4 LSB14 Temperature suffix E and K Magnetic Angle Noise (12) Temperature suffix L Temperature suffix E and K Raw signals X, Y, Z Noise (12) Temperature suffix L 11. Magnetic Specification DC Operating Parameters at VDD = 5V (5V Application) or VDD = 3.3V (3V3 Application) and for TA as specified by the Temperature suffix (E, K or L). Parameter Min Typ Max Units B X, B Y 20 50 70 (13) mT BZ 24 75 126 mT Magnet Temperature Coefficient TCm -2400 IMC Gain in X and Y (14) GainIMCXY 1.2 IMC Gain in Z (14) GainIMCZ 1.1 Magnetic Flux Density in X or Y Magnetic Flux Density in Z k factor Symbol k Test Conditions GainIMCXY / GainIMCZ 1 ppm/ 0 1.4 Deg.C 1.8 1.3 1.2 1.5 12 Noise is defined by ± 3 σ for 1000 successive acquisitions. The application diagram used is described in the recommended wiring (Section 20). For detailed information, refer to section Filter in application mode (Section 16.5). 13 Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error. 14 This is the magnetic gain linked to the Integrated Magneto Concentrator structure. This is the overall variation. Within one lot, the part to part variation is typically ± 10% versus the average value of the IMC gain of that lot. REVISION 006 – DEC 2016 Page 14 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 12. CPU & Memory Specification The digital signal processing is based on a 16 bit RISC µController featuring  ROM & RAM  EEPROM with hamming codes (ECC)  Watchdog  C Compiler Parameter Symbol Test Conditions Min Typ Max Units ROM 14 KB RAM 256 B EEPROM 64 B 3.5 MIPS CPU MIPS Ck = 15 MHz 13. Serial Interface The MLX90363 serial interface allows a Master device to operate the position sensor. The MLX90363 interface allows Multi-Slave applications and synchronous start of the data acquisition among the Slaves. The interface offers 2 Mbps data transfer bit rate and is full duplex. The interface accepts messages of 64 bits wide only, making the interfacing robust. In this document, the words message, frame and packet refer to the same concept. 13.1. Electrical Layer and Timing Specification Message transmissions start necessarily at a falling edge on /SS and end necessarily at a rising edge on the /SS signal. This defines a message. The serial interface counts the number of transmitted bits and declares the incoming message invalid when the bit count differs from 64. The Master must therefore ensure the flow described below: 1. Set pin /SS Low 2. Send and receive 8 bytes or 4 words 3. Set pin /SS High REVISION 006 – DEC 2016 Page 15 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet The MISO and MOSI signals change on SCLK rising edge and are captured on SCLK falling edge. The mostsignificant-bit of the transmitted byte or word comes first (15). /SS Pin t1 tSCLK_HI tSCLK t3 tSCLK_LO SCLK Pin tMOSI MOSI Pin t2 t4 tMISO MISO Pin Figure 2 – Serial Interface Timing Diagram The interface is sensitive, in Trigger mode 2 (see section 13.6), to Sync pulses. A Sync pulse is negative pulse on /SS, while SCLK is kept quiet. /SS Pin (IC PIN) tSyncPulse Figure 3 – Sync Pulse Timing Diagram Parameter Clock Period Clock Low Level Clock High Level Clock to Data Delay Data Capture Setup Time Symbol tSCLK tSCLK_HI tSCLK_LO tMISO tMOSI Test Conditions Min Typ Max Units EE_PINFILTER = 1 450 500 ns EE_PINFILTER = 2 900 1000 ns EE_PINFILTER = 3 1800 2000 ns EE_PINFILTER = 1 225 ns EE_PINFILTER = 2 450 ns EE_PINFILTER = 3 900 ns EE_PINFILTER = 1 225 ns EE_PINFILTER = 2 450 ns EE_PINFILTER = 3 900 ns EE_PINFILTER = 1, CL = 30pF 210 ns EE_PINFILTER = 2, CL = 30pF 300 ns EE_PINFILTER = 3, CL = 30pF 510 ns 30 ns 15 For instance, for Master compatible w/ the Motorola SPI protocol, the configuration bits must be CPHA=1, CPOL=0, LSBFE=0. REVISION 006 – DEC 2016 Page 16 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Parameter /SS FE to SCLK RE /SS FE to MISO Low Impedance SCLK FE to /SS RE /SS RE to MISO High Impedance Sync Pulse Duration Symbol t1 t2 Test Conditions Min EE_PINFILTER = 1 225 ns EE_PINFILTER = 2 450 ns EE_PINFILTER = 3 900 ns tSyncPulse Max Units EE_PINFILTER = 1 90 120 ns EE_PINFILTER = 2 180 210 ns EE_PINFILTER = 3 370 420 ns t3 t4 Typ 225 ns EE_PINFILTER = 1 90 120 ns EE_PINFILTER = 2 180 210 ns EE_PINFILTER = 3 370 420 ns EE_PINFILTER = 1 520 10000 ns EE_PINFILTER = 2 610 10000 ns EE_PINFILTER = 3 820 10000 ns Table 3 – Serial Interface Timing Specifications Melexis recommends using the Multi-Slave application diagram as shown on the right. The SCLK, MISO and MOSI wires interconnect the Slaves with the Master. A Slave is selected by its dedicated /SS input. A Slave MISO output is in high-impedance state when the Slave is not selected. Slave 1 Master SCLK MOSI MISO SS1 SS2 SS3 SCLK MOSI MISO SS Slave 2 SCLK MOSI MISO SS Slave 3 Slaves can be triggered synchronously by sending Sync pulses on the different /SS. The pulses must not overlap to avoid electrical short-circuits on the MISO bus. SCLK MOSI MISO SS 13.2. Serial Protocol The serial protocol of MLX90363 allows the SPI Master device to request the following information:  Position (magnetic angle Alpha)  Raw field components (X,Y and Z)  Self-Diagnostic data It allows customizing the calibration of the sensor, when needed, at the end-of-line, through EEPROM programming. The serial protocol offers a transfer rate of 1000 messages/sec. A regular message holds position and diagnostic information. The data acquisition start and processing is fully under the control of the SPI Master. The user configuration bits, stored in EEPROM, are programmable with this protocol. REVISION 006 – DEC 2016 Page 17 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Data integrity is guaranteed in both directions by an 8 bit CRC covering the content of the incoming and outgoing messages. 13.3. Message General Structure A message has a unique Opcode. The general structure of a message consists of 8 bytes (byte #0, transmitted first, to byte #7 transmitted last). Byte #7 (the last byte transmitted) holds an 8 bit CRC. The byte #6 holds a Marker plus either an Opcode or a rolling counter (6 bit Roll Counter). # 1 7 (4) 6 5 4 3 3 1 0 (3) # 0 7 (2) 6 5 4 3 2 1 2 5 7 2 0 (1) (5) 4 CRC 6 Marker Opcode or Roll Counter Table 4 – General Structure of a message and bit naming convention (1) This bit is named Byte0[0] (2) This bit is named Byte0[7] (3) This bit is named Byte1[0] (4) This bit is named Byte1[7] (5) This bit is named Byte2[0] A blank cell refers necessarily to a bit 0. In a byte, the most-significant-bit is transmitted first (for instance, Byte0[7] is transmitted first, Byte0[0] transmitted last). Parameter CRC[7:0] is Byte7[7:0], Parameter Marker[1:0] is Byte6[7:6], Parameter Opcode[5:0] (or Roll Counter[5:0]) is Byte6[5:0] CRCs are encoded and decoded according the following algorithm (language-C): crc = 0xFF; crc = cba_256_TAB[ Byte0 ^ crc ]; crc = cba_256_TAB[ Byte1 ^ crc ]; crc = cba_256_TAB[ Byte2 ^ crc ]; crc = cba_256_TAB[ Byte3 ^ crc ]; crc = cba_256_TAB[ Byte4 ^ crc ]; crc = cba_256_TAB[ Byte5 ^ crc ]; crc = cba_256_TAB[ Byte6 ^ crc ]; crc = ~crc; The Table 5 corresponds to the CRC-8 polynomial “0xC2”. REVISION 006 – DEC 2016 Page 18 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet cba_256_TAB 0 1 2 3 4 5 6 7 0 0x00 0x2f 0x5e 0x71 0xbc 0x93 0xe2 0xcd 1 0x57 0x78 0x09 0x26 0xeb 0xc4 0xb5 0x9a 2 0xae 0x81 0xf0 0xdf 0x12 0x3d 0x4c 0x63 3 0xf9 0xd6 0xa7 0x88 0x45 0x6a 0x1b 0x34 4 0x73 0x5c 0x2d 0x02 0xcf 0xe0 0x91 0xbe 5 0x24 0x0b 0x7a 0x55 0x98 0xb7 0xc6 0xe9 6 0xdd 0xf2 0x83 0xac 0x61 0x4e 0x3f 0x10 7 0x8a 0xa5 0xd4 0xfb 0x36 0x19 0x68 0x47 8 0xe6 0xc9 0xb8 0x97 0x5a 0x75 0x04 0x2b 9 0xb1 0x9e 0xef 0xc0 0x0d 0x22 0x53 0x7c 10 0x48 0x67 0x16 0x39 0xf4 0xdb 0xaa 0x85 11 0x1f 0x30 0x41 0x6e 0xa3 0x8c 0xfd 0xd2 12 0x95 0xba 0xcb 0xe4 0x29 0x06 0x77 0x58 13 0xc2 0xed 0x9c 0xb3 0x7e 0x51 0x20 0x0f 14 0x3b 0x14 0x65 0x4a 0x87 0xa8 0xd9 0xf6 15 0x6c 0x43 0x32 0x1d 0xd0 0xff 0x8e 0xa1 16 0xe3 0xcc 0xbd 0x92 0x5f 0x70 0x01 0x2e 17 0xb4 0x9b 0xea 0xc5 0x08 0x27 0x56 0x79 18 0x4d 0x62 0x13 0x3c 0xf1 0xde 0xaf 0x80 19 0x1a 0x35 0x44 0x6b 0xa6 0x89 0xf8 0xd7 20 0x90 0xbf 0xce 0xe1 0x2c 0x03 0x72 0x5d 21 0xc7 0xe8 0x99 0xb6 0x7b 0x54 0x25 0x0a 22 0x3e 0x11 0x60 0x4f 0x82 0xad 0xdc 0xf3 23 0x69 0x46 0x37 0x18 0xd5 0xfa 0x8b 0xa4 24 0x05 0x2a 0x5b 0x74 0xb9 0x96 0xe7 0xc8 25 0x52 0x7d 0x0c 0x23 0xee 0xc1 0xb0 0x9f 26 0xab 0x84 0xf5 0xda 0x17 0x38 0x49 0x66 27 0xfc 0xd3 0xa2 0x8d 0x40 0x6f 0x1e 0x31 28 0x76 0x59 0x28 0x07 0xca 0xe5 0x94 0xbb 29 0x21 0x0e 0x7f 0x50 0x9d 0xb2 0xc3 0xec 30 0xd8 0xf7 0x86 0xa9 0x64 0x4b 0x3a 0x15 31 0x8f 0xa0 0xd1 0xfe 0x33 0x1c 0x6d 0x42 Table 5 – cba_256_TAB Look-up table Polynomial “C2” REVISION 006 – DEC 2016 Page 19 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet # 1 7 6 5 4 3 0xFF 2 1 0 # 0 7 6 5 4 3 0xC1 3 0xFF 2 0x16 5 0xFF 4 0xD4 7 0x23 6 0x86 2 1 0 Table 6 – Example of valid CRC 13.4. Regular Messages The MLX90363 offers three types of regular messages:  “α” – diagnostic  “α – β” – diagnostic  X – Y – Z – diagnostic # 1 7 E1 6 E0 5 4 3 2 1 ALPHA [13:8] 0 # 0 7 6 5 4 3 2 ALPHA [7:0] 3 0 2 0 5 0 4 VG[7:0] 7 CRC 6 0 0 1 0 ROLL Table 7 – “α” message # 1 7 E1 6 E0 5 3 4 3 2 1 ALPHA [13:8] 0 BETA [13:8] # 0 7 6 2 5 0 4 7 CRC 6 5 4 3 2 ALPHA [7:0] 1 0 BETA [7:0] VG[7:0] 0 1 ROLL Table 8 – “α – β” message # 1 7 E1 6 E0 5 4 3 2 1 X COMPONENT [13:8] 0 # 0 7 6 5 4 3 2 X COMPONENT [7:0] 3 Y COMPONENT [13:8] 2 Y COMPONENT [7:0] 5 Z COMPONENT [13:8] 4 Z COMPONENT [7:0] 7 CRC 6 1 0 1 0 ROLL Table 9 – “X – Y – Z” message The bits Byte6[7] and Byte6[6] are markers. They allow the Master to recognize the type of regular message (00b, 01b, 10b). The marker is present in all messages (incoming and outgoing). The marker of any message which is not a regular message is equal to 11b. The bits E1 and E0 report the status of the diagnostics (4 possibilities) as described in the Table 10 – See section 17 for more details. REVISION 006 – DEC 2016 Page 20 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet E1 E0 Description 0 0 First Diagnostics Sequence Not Yet Finished 0 1 Diagnostic Fail 1 0 Diagnostic Pass (Previous cycle) 1 1 Diagnostic Pass – New Cycle Completed Table 10 - Diagnostics Status Bits 13.4.1. Note for the regular message “X – Y – Z – diagnostic” (Marker = 2) In the case of Marker = 2d, the X, Y, Z components are given after offset compensation and filtering (see signal processing in section 18.2). These components are gain dependent (see also section 18.4). Although being 12 bit resolution signals, the X, Y, Z components are coded on 14 bits. For proper decoding, the values must be shifted twice to the left in order to get a 16 bit signed value (2’s complementary). The sensitivity in the X and Y direction is always higher than the Z direction by the IMC Gain factor (see parameter k factor in section 11). Melexis therefore recommends multiplying the Z component by the k factor inside the Master in order to use the MLX90363 as a 3D magnetometer. 13.5. Trigger Mode 1 The Master sends a GET1 command to initiate the magnetic field acquisition and post-processing. It waits tSSREFE, issues the next GET1 and receives at the same time the regular message resulting from the previous GET. The field sensing, acquisition and post-processing is starting on /SS rising edge events. Although GET1 commands are preferably followed by another GET1 command or a NOP command, any other commands are accepted by the Slave. FW SPI HW background Get tSSREFE SPI ASP DSP SPI ASP DSP SPI ASP DSP SPI Get Get NOP Roll=0 Roll=1 Roll=2 X Figure 4 – Trigger Mode 1 REVISION 006 – DEC 2016 Page 21 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Message Sequence Chart Single Slave - Mode 1 Slave Master GET1 (à) NTT (ß) Loop GET1 (à) Regular Packet (ß) NOP (à) Regular Packet (ß) Figure 5 – Trigger Mode 1 Message Sequence Chart # 1 7 3 5 7 6 5 4 3 2 1 0 RST Time – Out CRC # 0 2 4 6 7 6 5 4 3 2 1 0 0 1 1 Value Marker 0 1 0 Table 11 – GET1 MOSI Message (Opcode = 19d) Note: The NOP message is described at section 13.11. The parameter Marker defines the regular data packet type expected by the Master:  Marker = 0 refers to frame type “ALPHA + Diagnostic”.  Marker = 1 refers to frame type “ALPHA + BETA + Diagnostic”.  Marker = 2 refers to frame type “Components X + Y + Z +Diagnostic”. The parameter RST (Byte1[0]) when set, resets the rolling counter attached to the regular data packets. The parameter TimeOutValue tells the maximum life time of the Regular Data Message. The time step is t1us (See table in Section 9), the maximum time-out is 65535 * t1us. The time-out timer starts when the message is ready, and stops on the /SS rising edge of the next message. On time-out occurrence, there are two possible scenarios:  Scenario 1: /SS is high, there is no message exchange. In this case, a NTT message replaces the regular message in the SCI buffer.  Scenario 2: /SS is low, the regular packet is being sent out. In this case, the timeout violation is reported on the next message, this later being an NTT message. The master must handle the NTT errors as described in Table 30 – Protocol Errors Handling (Master standpoint). REVISION 006 – DEC 2016 Page 22 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 13.6. Trigger Mode 2 The Trigger Mode 1 works without Sync pulses, as the GET1 command plays the role of a sync pulse. When a delay between the regular message readback and the start of acquisition is needed, or when two or more Slaves should be triggered synchronously, the use of a sync pulse is required, and this is the meaning of the Trigger Mode 2. Principle: The Master first enables the trigger mode 2 by issuing a GET2 command. The Master then sends a Sync Pulse, at the appropriate time, to initiate the magnetic field acquisition and post-processing. Finally the Master reads the response message with a NOP or a GET2. The GET2 command re-initiates a sync pulse triggered acquisition, whereas the NOP command would just allow the Master to receive the latest packet. FW SPI HW SP ASP DSP SPI I SP I background Get2 SP ASP DSP SPI I SP I Sync Puls Sync Puls Get2 tRESync SP I Get2 tSyncFE Figure 6 – Trigger Mode 2 – Single Slave Approach A timing constraint between GET2 and the Sync pulse (tRESync) should be met. When this timing is smaller than the constraint, the sync pulse might not be taken in account, causing the next GET2 to return a NTT packet. GET1 and GET2/Sync pulse can be interlaced. Multi-Slave approach: The way of working described below fits the Multi-Slave applications where synchronous acquisitions are important. GET2 commands are sent one after the other to the Slaves. Then the Sync pulses are sent almost synchronously (very shortly one after the other). FW1 SPI HW1 FW2 SP background I Get2 SP I ASP DSP SPI Get2 background SPI HW2 SP I ASP DSP SPI Get2 SP I Sync Puls Get2 SP I ASP DSP SPI Get2 SP I ASP DSP SPI Sync Puls Get2 Get2 for Slave 1 and Get2 for Slave 2 do not overlap Figure 7 – Trigger Mode 2 – Multi-Slave approach, example for two Slaves REVISION 006 – DEC 2016 Page 23 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Message Sequence Chart Dual Slave - Mode 2 (Sync pulses) Slave2 Slave1 Master GET2 (à) NTT (ß) GET2 (à) NTT (ß) Sync Pulse Loop GET2 (à) Regular Packet (ß) GET2 (à) Regular Packet (ß) Sync Pulse NOP (à) Regular Packet (ß) NOP (à) Regular Packet (ß) Figure 8 – Trigger Mode 2 Message Sequence Chart # 1 7 6 5 3 5 7 4 3 2 Time – Out CRC 1 0 RST # 0 2 4 6 7 6 5 4 3 2 1 0 1 0 0 Value Marker 0 1 0 Table 12 – GET2 MOSI Message (Opcode = 20d) Parameter definition: See GET1 (Section 13.5). 13.7. Trigger Mode 3 Principle: The acquisition sequences are triggered by a GET message, but unlike the Mode 1, the resulting data (position …) is buffered. The MISO messages contain the buffered data of the previous GET message, and not the newly computed values corresponding to the current GET MOSI request. The buffering releases constraints on the SCI clock frequency (SCLK). The Mode 3 offers frame rates as high as Mode 1, if not higher, with slower SCLK frequencies. When the clock frequency is limited (400 kbps or less), and when it matters to reach a certain frame rate, Mode 3 is preferred over Mode 1. In any other cases, for instance when the shortest response time represents the main design criteria, Mode 1 is preferred. REVISION 006 – DEC 2016 Page 24 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet FW background SPI HW ASP SPI SP DSP SPIASPASP I DSP Get3 Get3 tSSRERE_mod3 Roll=0 DSP DSP ASP SPI Get3 tSSREFE_ mod3 SPI DSP NOP Roll=1 X Roll=2 Figure 9 – Trigger Mode 3 GET3 sequences must end with a NOP. Message Sequence Chart Single Slave - Mode 3 Master Slave GET3 (à) X (ß ) GET3 (à) Get3Ready (ß) Loop GET3 (à) Regular Packet (ß) NOP (à) Regular Packet (ß) Figure 10 – Trigger Mode 3 Message Sequence Chart # 1 7 6 5 4 3 2 1 0 RST Time – Out 3 5 7 # 0 2 4 6 CRC 7 6 5 4 3 2 1 0 1 0 1 Value Marker 0 1 0 Table 13 – GET3 MOSI Message (Opcode = 21d) Parameter definition: See GET1 (Section 13.5) # 1 3 5 7 7 6 5 4 3 CRC 2 1 0 # 0 2 4 6 7 6 5 4 3 2 1 0 1 1 1 0 1 1 0 1 Table 14 – Get3Ready MISO Message (Opcode = 45d) REVISION 006 – DEC 2016 Page 25 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 13.8. Trigger Modes Timing Specifications /SS Pin GET1 GET1 tREFE_mod1 SCI Internal state High: NTT Low: Ready tReady_mod1 Figure 11 – Trigger Mode 1 timing diagram /SS Pin SyncPulse GET2 GET2 tRESync SCI Internal state High: NTT Low: Ready tSyncFE tReady_mod2 Figure 12 – Trigger Mode 2 timing diagram /SS Pin GET3 SCI Internal state High: NTT Low: Ready GET3 tREFE_mod3 tReady_FEmod3 tRERE_mod3 tReady_REmod3 High: DSP Ongoing Figure 13 – Trigger Mode 3 timing diagram 13.8.1. 5V Application Items tREFE_mod1 tReady_mod1 Definition Get1 SS Rising Edge to next Get1 SS Falling Edge Get1 SSRE to SO Answer ReadyToTransmit Marker Min Typ Max Unit 0 920 μs 1 1050 μs 2 920 μs 0 920 μs 1 1050 μs 2 920 μs Table 15 – Trigger Mode 1 Timing Specification (VDD=5V) REVISION 006 – DEC 2016 Page 26 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Items tSyncFE tReady_mod2 tRESync Definition Sync Pulse (RE) to Get2 Falling Edge Sync Pulse (RE) to SO Answer ReadyToTransmit Marker Min Typ Max Unit 0 874 μs 1 1004 μs 2 874 μs 0 874 μs 1 1004 μs 2 874 μs Get2 SS Rising Edge to Sync Pulse (RE) 80 μs Table 16 – Trigger Mode 2 Timing Specification (VDD=5V) Items tRERE_mod3 Definition Get3 SS RE to RE tReadyRE_mod3 Get3 SS RE to DSP Completion tREFE_mod3 Get3 SS Rising to Falling tReadyFE_mod3 Get3 SS RE to SO Answer ReadyToTransmit Marker Min Typ Max Unit 0 950 μs 1 1080 μs 2 950 μs 0 950 μs 1 1080 μs 2 950 μs 90 μs 90 μs Table 17 – Trigger Mode 3 Timing Specification (VDD=5V) 13.8.2. 3V3 Application Items tREFE_mod1 tReady_mod1 Definition Get1 SS Rising Edge to next Get1 SS Falling Edge Get1 SSRE to SO Answer ReadyToTransmit Marker Min Typ Max Unit 0 1067 μs 1 1218 μs 2 1067 μs 0 1067 μs 1 1218 μs 2 1067 μs Table 18 – Trigger Mode 1 Timing Specification (VDD=3.3V) REVISION 006 – DEC 2016 Page 27 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Items tSyncFE tReady_mod2 tRESync Definition Sync Pulse (RE) to Get2 Falling Edge Sync Pulse (RE) to SO Answer ReadyToTransmit Marker Min Typ Max Unit 0 1014 μs 1 1165 μs 2 1014 μs 0 1014 μs 1 1165 μs 2 1014 μs Get2 SS Rising Edge to Sync Pulse (RE) 93 μs Table 19 – Trigger Mode 2 Timing Specification (VDD=3.3V) Items tRERE_mod3 Definition Get3 SS RE to RE tReadyRE_mod3 Get3 SS RE to DSP Completion tREFE_mod3 Get3 SS Rising to Falling tReadyFE_mod3 Get3 SS RE to SO Answer ReadyToTransmit Marker Min Typ Max Unit 0 1102 μs 1 1253 μs 2 1102 μs 0 1102 μs 1 1253 μs 2 1102 μs 105 μs 105 μs Table 20 – Trigger Mode 3 Timing Specification (VDD=3.3V) REVISION 006 – DEC 2016 Page 28 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 13.9. Opcode Table Opcode MOSI Message Opcode MISO Message 19d 0x13 GET1 20d 0x14 GET2 21d 0x15 GET3 45d 0x2D Get3Ready 1d 0x01 MemoryRead 2d 0x02 MemoryRead Answer 3d 0x03 EEWrite 4d 0x04 EEWrite Challenge 5d 0x05 EEChallengeAns 40d 0x28 EEReadAnswer 15d 0x0F EEReadChallenge 14d 0x0E EEWrite Status 16d 0x10 NOP / Challenge 17d 0x11 Challenge/NOP MISO Packet 22d 0x16 DiagnosticDetails 23d 0x17 Diagnostics Answer 24d 0x18 OscCounterStart 25d 0x19 OscCounterStart Acknowledge 26d 0x1A OscCounterStop 27d 0x1B OscCounterStopAck + CounterValue 47d 0x2F Reboot 49d 0x31 Standby 50d 0x32 StandbyAck 61d 0x3D Error frame 62d 0x3E NothingToTransmit (NTT) 44d 0x2C Ready Message (first SO after POR) n/a Regular Data Packet Table 21 – Opcode Table 13.10. Timing specifications per Opcode, and next allowed messages For each MOSI message, the timing between the Slave-select-rising-edge event and the Slave-select-falling event, as depicted below, is specified. /SS Pin Opcode Opcode tREFE Figure 14 – Timing Diagram Op MOSI Message 19d GET1 20d GET2 followed by Sync 21d GET3 REVISION 006 – DEC 2016 tREFE Next allowed MOSI message tREFE_mod1 GET1, MemoryRead, DiagDetails, NOP tSyncFE GET2, MemoryRead, DiagDetails, NOP tREFE_mod3 GET3, MemoryRead, DiagDetails, NOP Page 29 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Op MOSI Message tREFE Next allowed MOSI message 1d MemoryRead tShort MemoryRead, DiagDetails, NOP 3d EEWrite tShort EEReadChallenge 5d EEChallengeAns teewrite 15d EEReadChallenge tShort EEChallengeAns 16d NOP / Challenge tShort All commands 22d DiagnosticDetails tShort All commands 24d OscCounterStart tShort OscCounterStop 26d OscCounterStop tShort NOP 47d Reboot tStartup 49d Standby tShort NOP See Startup Sequence All commands Table 22 – Response time and Next allowed MOSI messages 13.11. NOP Command and NOP Answer # 1 3 5 7 7 6 5 4 3 2 1 KEY [15:8] CRC 0 # 0 2 4 6 7 6 5 4 3 2 1 0 0 0 0 KEY [7:0] 1 1 0 1 0 Table 23 – NOP (Challenge) MOSI Message (Opcode = 16d) MSC NOP Master Slave NOP(Challenge) (à) X ( ß) Next Cmd (à) Challenge Echo (ß) Figure 15 – NOP Message Sequence Chart Note: the message X means “unspecified valid answer” and typically contains the answer of the previous command. REVISION 006 – DEC 2016 Page 30 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet  Parameter KEY: any 16 bit number # 1 3 7 6 5 4 3 2 1 0 KEY_ECHO [15:8] # 0 2 5 INVERTED KEY_ECHO [15:8] 4 7 CRC 6 7 6 5 4 3 2 1 0 0 1 KEY_ECHO [7:0] INVERTED KEY_ECHO [7:0] 1 1 0 1 0 0 Table 24 - Challenge Echo MISO Message (Opcode = 17d)  Parameter KEY_ECHO = KEY  Parameter INVERTED KEY_ECHO = 65535 - KEY (meaning bit reversal). 13.12. OscCounterStart and OscCounterStop Commands The SCI Master can evaluate the Slave’s internal oscillator frequency by the use of the OscCounterStart and OscCounterStop commands. This first command enables in the MLX90363 a software counter whereas the second command stops it and returns the counter value. # 1 3 5 7 7 6 5 4 3 2 1 0 CRC # 0 2 4 6 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 Table 25 – OscCounterStart MOSI message (opcode 24d) # 1 3 5 7 7 6 5 4 3 2 1 0 CRC # 0 2 4 6 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 1 Table 26 – OscCounterStart Acknowledge MISO message (opcode 25d) # 1 3 5 7 6 5 4 7 3 2 1 0 CRC # 0 2 4 7 6 5 4 3 2 1 0 6 1 1 0 1 1 0 1 0 Table 27 – OscCounterStop MOSI message (opcode 26d) # 1 3 5 7 7 6 5 4 3 2 CounterValue[14:8] CRC 1 0 # 0 2 4 6 7 6 5 4 3 2 1 0 1 1 CounterValue[7:0] 1 1 0 1 1 0 Table 28 – OscCounter MISO message (opcode 27d) REVISION 006 – DEC 2016 Page 31 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Parameter CounterValue represents the time between the two events OscCounterStart Slave Select Rising Edge and OscCounterStop Slave Select Rising Edge, in µs, and for an oscillator frequency equal to 19MHz exactly. The oscillator frequency can be calculated using the formula: Ck = 19 [MHz] * (CounterValue - 40) [lsb] / tOscCounter [µs] Message Sequence Chart Oscillator Frequency Diagnostic Slave Master OscCounterStart (à) Challenge Echo (ß) OscCounterStop (à) OscStartAck (ß) X (à ) OscCounter (ß) Figure 16 – Oscillator Frequency Diagnostic Message Sequence Chart SI SO SS OscStart OscStop X StartAck OscCounter X tOscCounter Figure 17 – Oscillator Frequency Diagnostic Timing Diagram (SCI) Parameter Symbol tOscCounter REVISION 006 – DEC 2016 Test Condition Min Typ Max Unit 500 1000 30000 µs Page 32 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 13.13. Protocol Errors Handling Error Item Error definition Condition Detection Slave Actions MISO Message IncorrectBitCount MOSI Message bit count ≠ 64 all modes FW reads the HW bit counter Ignore Message + Reinit Protocol Error Message (incorrect bitcount = 1) IncorrectCRC MOSI Message has a CRC Error all modes FW computes CRC Ignore Message + Reinit Protocol Error Message (incorrect CRC = 1) IncorrectOpcode Invalid MOSI Message all modes FW Ignore Message + Reinit Protocol Error Message (incorrect Opcode = 1d) tREFE < tReady_mod1 Regular Message Readback occurs too early Trigger mode 1 Interrupt occurring too early + FW reads HW bit + Protection interrupt Ignore Frame + Re-init Protocol NTT message tSyncFE < tReady_mod2 Regular Message Readback occurs too early Trigger mode 2 Interrupt occurring too early + FW reads HW bit + Protection interrupt Ignore Frame + Re-init Protocol NTT message tRESync Violation Sync Pulse occurring too early Trigger mode 2 none. The Sync pulse is pending internally. none (but the Sync pulse is not treated immediately) Valid message. Note: This violation can cause a tSyncFE < tReady_mod2 violation. tRERE_mod3 < tReady_mod3 Regular Message Readback occurs too early Trigger mode 3 Protection interrupt Re-init Protocol NTT message tREFE_mod3 < tReady_FE_mod3 Regular Message Readback occurs too early Trigger mode 3 Protection interrupt Re-init Protocol NTT message TimeOut Regular Message Readback occurs too late all modes Timer Interrupt MISO Frame = NTT + Re-init Protocol NTT message Table 29 – Protocol Errors Handling (Slave standpoint) REVISION 006 – DEC 2016 Page 33 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Error Items/Events Associated Slave Event Master recommended actions Associated Slave Actions Next MISO message Receive NTT Receive NTT Protocol reinitialization Protocol reinitialization Error Message * (TimeViolation = 1) Receive Incorrect CRC / Receive Incorrect Opcode undetected event Protocol reinitialization none Normal message Receive Error Message Send Error Message Protocol reinitialization none Normal message Receive an unexpected DiagDetails message Run in fail-safe mode Protocol reinitialization + Slave reset none DiagDetails message Table 30 – Protocol Errors Handling (Master standpoint) Notes  On NTT or Error messages, Master should consider that the last command is ignored by the Slave, and it should therefore, either resend the command, or more generally re-initialize the protocol.  After protocol re-initialization, Master can diagnose the communication with a NOP command.  A MISO Error message implicitly means that the Slave has re-initialized the communication and is therefore ready to receive any commands. 13.14. Ready, Error and NTT Messages After power-on-reset, the first MISO message is a Ready message. # 1 3 5 7 7 6 5 4 3 2 FWVersion[15:8] 1 0 CRC # 0 2 4 6 7 6 5 4 3 2 HWVersion[7:0] 1 0 1 1 1 0 0 0 1 1 Table 31 – Ready MISO Message (Opcode = 44d) The MLX90363 reports protocol errors using the Error message defined below. Diagnostics Errors (as opposed to protocol errors) are reported with the bits E1 and E0 of the regular message. # 1 3 5 7 7 6 5 4 3 CRC 2 1 0 # 0 2 4 6 7 6 5 1 1 1 4 3 2 ERROR CODE 1 1 1 1 0 0 1 Table 32 – Error Message MISO (Opcode = 61d) REVISION 006 – DEC 2016 Page 34 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet The description of the parameter ErrorCode is give in the table below. Code Description of Error CODE 1 Incorrect BitCount 2 Incorrect CRC Answer = NTT message 3 Two reasons: Answer Time-Out or Answer not Ready OPCODE not valid 4 In most of the timing violations, the Slave answers with a NTT message. A NTT message is stored in the Slave’s ROM (as opposed to the Slave’s RAM). NTT messages are typically seen in case of timing violation: either the firmware is still currently processing the previous SCI command, or a time-out occurred (see GET). In normal operation, NTT messages are not supposed to be observed: the Master is supposed to respect the protocol timings defined. # 1 7 6 3 1 5 1 5 1 4 3 2 1 1 0 1 1 1 7 # 0 7 6 2 1 4 CRC 6 5 4 1 1 1 1 1 3 1 1 1 2 1 0 1 1 1 1 1 1 1 1 1 0 Table 33 – NTT (Nothing To Transmit) Message (Opcode = 62d) 13.15. DiagnosticsDetails commands This is the only function that can be combined with a regular message. # 1 3 5 7 7 6 5 4 3 2 1 0 CRC # 0 2 4 6 7 6 5 4 3 2 1 0 1 1 0 1 0 1 1 0 Table 34 – DiagnosticsDetails MOSI Command (Opcode = 22d) Use DiagnosticDetails to get a detailed analysis of the diagnostics. # 1 3 5 7 7 D15 6 D14 FSMERC 5 D13 4 D12 3 D11 2 D10 ANADIAGCNT CRC 1 D9 0 D8 # 0 7 D7 6 D6 5 D5 4 D4 3 D3 2 D2 1 D1 0 D0 2 4 6 0 0 0 D20 D19 D18 D17 D16 1 1 0 1 0 1 1 1 Table 35 – Diagnostics DiagnosticDetails MISO message (Opcode = 23d) Diagnostic bit Dx: see Section 17 Parameter ANADIAGCNT is a sequence loop counter referring to the analog-class diagnostics (all others). REVISION 006 – DEC 2016 Page 35 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet If FSMERC = 3, ANADIAGCNT takes another meaning:  193 protection error interruption happened  194 invalid address error interruption happened  195 program error interruption happened  196 exchange error interruption happened  197 not connected error interruption happened  198 Stack Interrupt  199 Flow Control Error Parameter FSMERC reports the root-cause of entry in fail-safe mode  FSMERC = 0: the chip is not in fail-safe mode  FSMERC = 1: BIST error happened and the chip is in fail-safe mode  FSMERC = 2: digital diagnostic error happened and the chip is in fail-safe mode  FSMERC = 3: one of the 5 error interruptions listed above happened and the chip is in fail-safe mode 13.16. MemoryRead message # 1 7 3 5 7 6 5 4 3 2 ADDR0[15:8] ADDR1[15:8] CRC 1 0 # 0 2 4 6 7 6 5 4 3 2 ADDR0[7:0] 1 0 0 1 ADDR1[7:0] 1 1 0 0 0 0 Table 36 – MemoryRead MOSI Message (Opcode = 1d) MemoryRead returns two EEPROM or RAM words respectively pointed by the parameters ADDR0, ADDR1. The parameter ADDRx has three valid ranges: 0x0000 … 0x00FE for RAM access, 0x1000 ... 0x103E for EEPROM access, and 0x4000 … 0x5FFE for ROM access REVISION 006 – DEC 2016 Page 36 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet MSC MemoryRead Master Slave MemoryRead (à) X (ß ) Loop MemoryRead (à) MemoryRead (ß) Next Cmd (à) MemoryRead (ß) Figure 18 – MSC for RAM/ROM/EEPROM Memory Read Note: Enter the loop for complete memory dumps. MemoryRead MISO Message (opcode 2d) The address ADDR may be valid or not: Case of validity: MemoryRead returns normally the data word pointed by ADDR Case of invalidity: MemoryRead returns DataWord = 0. Note: FW makes sure that invalid addresses do not cause memory access violation # 1 7 6 3 5 7 5 4 3 2 1 DATA[15:8] AT ADDR0 0 DATA[15:8] AT ADDR1 # 0 2 4 6 CRC 7 6 5 4 3 2 DATA[7:0] AT ADDR0 1 0 1 0 DATA[7:0] AT ADDR1 1 1 0 0 0 0 Table 37 – MemoryRead MISO Message (Opcode = 2d) 13.17. EEWrite Message # 1 7 0 6 0 5 4 3 2 1 (16) ADDRESS[5:0] 0 # 0 3 KEY[15:8] 2 5 DATA WORD[15:8] 4 7 CRC 6 7 6 5 4 3 2 1 0 1 1 KEY[7:0] DATA WORD[7:0] 1 1 0 0 0 0 Table 38 – EEWrite MOSI Message (Opcode = 3d) 16 The value of the ADDRESS[5:0] shall be even. REVISION 006 – DEC 2016 Page 37 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet The EEPROM data consistency is guaranteed through two protection mechanisms: A and B. Protection A: The parameter ADDRESS should match the parameter KEY. The key associated to each address is public. Protection against erroneous write (in the field) is guaranteed as long as the keys are not stored in the Master (ECU), but in the calibration system, which is typically a CAN or LIN Master. Protection B: Slave challenges the Master with a randomly generated CHALLENGE KEY, expects back this key exclusive-or with 0x1234 MSC EEPROMWrite (Case of Failing Challenge) MSC EEPROMWrite (Case of Erroneous Key) MSC EEPROMWrite Slave Master Slave Master Slave Master EEWrite(Addr,Key)(à) X ( ß) EEWrite(Addr,Key)(à) X ( ß) EEWrite(Addr,Key)(à) X ( ß) EEReadChallenge (à) EEChallenge (ß) EEReadChallenge (à) EEWriteStatus (ß) EEReadChallenge (à) EEChallenge (ß) EEChallengeAns (à) EEReadAnswer (ß) EEChallengeAnsr (à) EEReadAnswer (ß) tEEWrite tEEWrite NOP (à) EEWriteStatus (ß) NOP (à) EEWriteStatus (ß) Figure 19 – MSCs EEWrite ADDRESS[3:1] ADDRESS[5:4] 0 1 2 3 4 5 6 7 0 17485 31053 57190 57724 7899 53543 26763 12528 1 38105 51302 16209 24847 13134 52339 14530 18350 2 55636 64477 40905 45498 24411 36677 4213 48843 3 6368 5907 31384 63325 3562 19816 6995 3147 Table 39 – EEPROM Write Public Keys # 1 3 5 7 7 6 5 4 3 CRC 2 1 0 # 0 2 4 6 7 6 5 4 3 2 1 0 1 1 0 0 1 1 1 1 Table 40 – EEWrite ReadChallenge MOSI Message (Opcode = 15d) REVISION 006 – DEC 2016 Page 38 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet # 1 3 5 7 7 6 5 4 3 2 1 0 CHALLENGE KEY [15:8] CRC # 0 2 4 6 7 6 5 4 3 2 1 0 0 0 CHALLENGE KEY [7:0] 1 1 0 0 0 1 Table 41 – EEWrite EEChallenge MISO Message (Opcode = 4d) The parameter CHALLENGE KEY is randomly generated by the sensor, and should be echoed because of the next command # 1 3 7 6 5 4 3 2 1 0 KEY ECHO [15:8] # 0 2 5 INVERTED KEY ECHO [15:8] 4 7 CRC 6 7 6 5 4 3 2 1 0 0 1 KEY ECHO [7:0] INVERTED KEY ECHO [7:0] 1 1 0 0 0 1 Table 42 – EEWrite ChallengeAns MOSI Message (Opcode = 5d) The parameter KEY ECHO should match CHALLENGE KEY exor’ed with 0x1234. The parameter INVERTED KEY ECHO should match KEY ECHO after bit reversal. # 1 3 4 7 7 6 5 4 3 2 1 0 CRC # 0 2 4 6 7 6 5 4 3 2 1 0 1 1 1 0 1 0 0 0 Table 43 – EEReadAnswer MISO Message (Opcode = 40d) # 1 3 4 7 7 6 5 4 3 2 CRC 1 0 # 0 2 4 6 7 6 5 4 3 2 1 CODE 0 1 1 0 0 1 1 0 1 Table 44 – EEWriteStatus MISO Message (Opcode = 14d) The parameter Code details the exact cause of EEPROM write failure  1 Success  2 Erase/Write Fail  4 EEPROM CRC Erase/Write Fail  6 Key Invalid  7 Challenge Fail  8 Odd Address The command Reboot must be sent after a series of EEPROM writes, to make sure that the new EEPROM parameters are taken into account. REVISION 006 – DEC 2016 Page 39 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 13.18. Reboot Reboot is a valid command in the following three cases. 1. 2. 3. After an EEPROM write In fail-safe mode In standby mode In normal mode, Reboot reports wrong opcode. Reboot causes a system reset identical to a true power-on reset. Start-up timings and sequences are applicable for the reboot message. Reboot, after EEPROM programming It is meant to force the FW to refresh the EEPROM cache and I/O space after a series of EEPROM write commands. It forces the FW to take into account all the changes (modes enabling, disabling...) including those that are not cached. Reboot, in fail-safe mode ECU can issue a Reboot message to exit the fail-safe mode before the watchdog time-out, for a fast recovery. # 1 3 4 7 7 6 5 4 3 2 1 0 CRC # 0 2 4 6 7 6 5 4 3 2 1 0 1 1 1 0 1 1 1 1 Table 45 – Reboot (Opcode = 47d) 13.19. Standby Standby sets the sensor in Standby mode: the digital clock is stopped and some analog blocks are switched off. The SCI clock remains active, allowing the sensor to be responsive to SCI messages. Standby is a valid command only after a NOP or a DiagnosticDetails. The first SCI message received while in Standby wakes up the sensor. The Standby mode is precisely exited on the SS rising edge. The first message following a Standby message is normally interpreted by the sensor. It can be NOP, a GET or anything else. # 1 3 4 7 7 6 5 4 3 CRC 2 1 0 # 0 2 4 6 7 6 5 4 3 2 1 0 1 1 1 1 0 0 0 1 Table 46 – Standby (Opcode = 49d) The sensor answer to Standby is StandbyAck (opcode 50). After resuming, the diagnostic status bits (E1, E0) of the 6 following GET messages shall be ignored. REVISION 006 – DEC 2016 Page 40 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 13.20. Start-up Sequence (Serial Communication) The MLX90363 serial interface is enabled after the internal start-up initializations and start-up checks. Note: The start-up sequence of the MLX90363 firmware is described at chapter 18.1. The recommended SCI start-up sequences (Master – Slave) are depicted in the following message sequence charts, and timing diagrams. It usually starts with a NOP MOSI message. Ready is the first MISO message. The start-up sequence timing diagram with verification of the oscillator frequency is depicted in Figure 22. It’s not mandatory to perform such check, even from a safety point of view. Message Sequence Chart Start-up Sequence (Basic Scenario) Master Slave NOP(Challenge) (à) Ready (ß) GETx (à) Challenge Echo (ß) Loop GETx (à) Regular Packet (ß) Figure 20 – MSCs Start-up sequence example VDD POR SI SO SS NOP GETx Ready Challenge Echo tPOR tStartUp Figure 21 – Start-up sequence, basic scenario, timing diagram VDD POR SI SO SS NOP OscStop DiagDetails GETx OscStart Ready Challenge Echo tPOR tStartUp StartAck OscCounter DiagDetails tOscCounter Figure 22 – Start-up sequence timing diagram including Oscillator Frequency Check REVISION 006 – DEC 2016 Page 41 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Notes:  The timing tStartUp is specified at chapter Timing Specifications (Section 9)  The Slave answers with NTT in case the first MOSI message occurs prior the end of the initial checks.  The NOP - Challenge Echo is meant to diagnose the SCI link. 13.21. Allowed sequences Only the message sequences described in this datasheet are accepted by the sensor. A few more are described below; they combine GET1 or GET2 with MemoryRead or DiagDetails. The particular timings associated to these sequences do not overrule the general timing specifications. Message Sequence Chart Single Slave - Combi GET1+MemoryRead Master Loop Slave GET1 (à) MemoryReadAns (ß) Message Sequence Chart Single Slave - Combi GET1+DiagDetails Master Loop Slave GET1 (à) DiagDetails (ß) MemoryRead (à) Regular packet (ß) DiagDetails (à) Regular packet (ß) NOP (à) MemoryReadAns (ß) NOP (à) DiagDetails (ß) Figure 23 – MSCs Combi sequences GET1 + MemoryRead and GET1 + DiagDetails REVISION 006 – DEC 2016 Page 42 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Message Sequence Chart Single Slave - Combi GET2+MemoryRead Master Loop Slave GET2 (à) MemoryReadAns (ß) Message Sequence Chart Single Slave - Combi GET2+DiagDetails Master Loop Slave GET2 (à) DiagDetails (ß) Sync Pulse Sync Pulse MemoryRead (à) Regular packet (ß) DiagDetails (à) Regular packet (ß) NOP (à) MemoryReadAns (ß) NOP (à) DiagDetails (ß) Figure 24 – MSCs Combi sequences GET2 + MemoryRead and GET2 + DiagDetails 14. Traceability Information Every device contains a unique ID that is programmed by Melexis in the EEPROM. Melexis strongly recommends storing this value during the EOL (End-Of-Line) programming to ensure full traceability of the final product. These parameters shall never be erased during the EOL programming. Parameter Comments Address (Hex) Default Values Parameter # bit MLX 48 1012[15:0] MLXID Traceability Information 1014[15:0] 1016[15:0] REVISION 006 – DEC 2016 Page 43 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 15. End-User Programmable Items The list below describes the parameters that are available to the customer during EOL programming. The parameters will be programmed through the EEWrite message (section 13.17). It must be noted that the data type of EEWrite message is a word, and therefore it is mandatory to first readback the complete contents of the word before changing only the bits corresponding to the parameter. Address (Hex) Default Values Parameter # bit 102A[2:0] 0 3 102A[3] 0 1 Enabling of Signal Filter 102A[5:4] 0 2 VIRTUALGAINMAX Electrical Gain Code Max 102E[15:8] 41 8 VIRTUALGAINMIN Electrical Gain Code Min 102E[7:0] 0 8 KALPHA Magnetic Angle Formula Parameter 1022[15:0] 0 16 KBETA Magnetic Angle Formula Parameter 1024[15:0] 1.6 16 SMISM + SEL_SMISM Magnetic Angle Formula Parameter 1032[15:0] 1 16 ORTH_B1B2 Magnetic Angle Formula Parameter 1026[7:0] 0 8 KT Magnetic Angle Formula Parameter 1030[15:0] 1 16 FHYST Hysteresis Value (Alpha + Beta ) 1028[15:8] MLX 8 PINFILTER SCI Input Pins: EMC: Filter Bandwidth 1001[1:0] 1 2 USERID User Identification 103A[15:0] 0001 16 103C[15:0] 0003 16 0 40 Parameter Comments MAPXYZ XYZ Coordinates mapping 3D Enabling of 3D formula (Joystick) FILTER 1018[15:0] FREE Freely usable by user 1026[15:8] 1028[7:0] 103E[7:0] Melexis strongly recommends checking the User Identification data (Parameters USERID) during EOL programming. REVISION 006 – DEC 2016 Page 44 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 16. Description of End-User Programmable Items 16.1. User Configuration: Device Orientation MAPXYZ Assignment 0 B1 = X, B2 = Y, B3 = Z 1 B1 = X, B2 = Z, B3 = Y 2 B1 = Y, B2 = Z, B3 = X 3 B1 = Y, B2 = X, B3 = Z 4 B1 = Z, B2 = X, B3 = Y 5 B1 = Z, B2 = Y, B3 = X Note Use mode 0 instead The values B1, B2 and B3 are inputs to the 2D/3D formula (see section 16.2). The field coordinates X, Y, Z are relative to the device (See Section 22.2 and 22.6). The parameter MAPXYZ selects the application-dependent mapping of (X, Y, Z) to (B1, B2, B3). 16.2. User Configuration: Magnetic Angle Formula Parameter 3D Formula 0  B2  Alpha = arctan   B1  1 Note extended to the full circle  Alpha = arctan    (KALPHA × B3)2 + ( KT × B 2) 2   Beta = arctan   (KBETA × B3)2 + ( KT × B1) 2    B1 B2 extended across B1=0 and B2=0 max 180 Deg.   16.3. User Configuration: 3D = 0 formula trimming parameters SMISM and ORTH_B1B2 REVISION 006 – DEC 2016 Page 45 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 16.3.1. Magnetic Angle ∠XY Parameter Address (hex) Value SMISM + SEL_MISM 1032[15:0] Trimmed by MLX ORTH 1038[7:0] Trimmed by MLX ORTH_SEL 102C[8] 0 MAPXYZ 102A[2:0] 0 This is the default condition as programmed by Melexis. In such case, no front-end calibration is needed from the customer. 16.3.2. Magnetic Angle ∠XZ and ∠YZ Parameter Address (hex) Range Value SEL_SMISM 1032[15] 0 or 1 0 or 1 SMISM 1032[14:0] [0..2] TYP = 1.2 ORTH_SEL 102C[8] 0 or 1 1 ORTH_B1B2 1026[7:0] [0..2] TYP = 0 MAPXYZ 102A[2:0] 1, 2, 4 or 5 1, 2, 4 or 5 If the magnetic angle ∠XZ or ∠YZ is read, Melexis strongly recommends calibrating the front-end parameters in order to reduce the magnetic accuracy error (see Section 10): Phase Error B2 = B1 – B2 * ORTH_B1B2 / 1024 Where ORTH_B1B2 is the phase mismatch between the B1 and B2 signals. Sensitivity Mismatch between B1 and B2 The parameter SMISM is selected in such a way that: i. Case |B1|>|B2| à SEL_SMISM = 0 B1 * SMISM[14:0] / 215 and B2 have the same amplitude. ii. Case |B1| 190 Deg.C (± 20 Deg.C) Temperature < -80 Deg.C (± 20 Deg.C) Field magnitude too high (Norm > 99% ADC Span) (19) 17 Reporting is done through the bits E0 and E1 of the regular messages or the bits Dx of the DiagnosticDetails message. See Table 10 for more details. 18 Diagnostic to be disabled in the 3V3 Application Diagram (VDEC=VDD). 19 Norm = max(abs(X),abs(Y),abs(Z)) REVISION 006 – DEC 2016 Page 49 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Diagnostic Item Action Bit Notes Field magnitude too low (Norm < 20% ADC Span) (19) Report (17) D18 External failure, given that AGC keeps Norm above 47% ADC clipping (X, Y, Z, two phases each) Report (17) D19 External failure Supply voltage monitor (VDD) and Regulator monitor (VDEC) (18) Report (17) (Disabled by default) D20 External failure Firmware Flow monitoring Fail-safe mode n/a Read/Write Access out of physical memory Fail-safe mode n/a Stack Overflow Fail-safe mode n/a Write Access to protected area (IO and RAM Words) Fail-safe mode n/a Unauthorized entry in “SYSTEM” Mode Fail-safe mode n/a Serial Interface Protection Error NTT Message (20) n/a Watchdog Timeout Reset (21) n/a Oscillator Frequency (Dedicated SCI Command) n/a n/a Diagnostic performed by Master VDD > MT8V MISO is HiZ n/a 100% Hardware detection. No communication possible. 20 21 The NTT Message is followed by an Error Message. Resetting has the same effects as a POR: the next SO message is therefore Ready. REVISION 006 – DEC 2016 Page 50 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 18. Firmware Flowcharts 18.1. Start-up sequence The entry in operation mode is preceded by a startup phase or startup sequence, performing the built-in self tests (performed only once), the automatic analog gain adjustment, the temperature acquisition and a first execution of the built-in self diagnostics (also performed continuously afterwards). The start-up sequence ends with the enabling of the serial interface. Start-up Sequence on POR BIST RAM BIST Watchdog BIST EEPROM CRC+DED RAM and IO Space Initialization SCI, ADC Driver Initialization Automatic Gain Control (6 x Signal Processing) Temperature Acquisition Digital Diagnostics First Pass ROM, RAM, CPU, EE CRC Analog Diagnostics First Pass ADCMonitor, TempMonitors... Enable SCI Communication SO = Ready Background Figure 25 – Firmware start-up sequence REVISION 006 – DEC 2016 Page 51 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 18.2. Signal Processing (GETx) The digital signal processing performed by the firmware is depicted by the following diagram. Inputs from EEPROM OfsX0 OfsY0 OfsZ0 Xslope Yslope Zslope T25 Tm40 T125 ORTH SMIS Inputs from ADC Xadc If 3D=0 If Orth_Sel =0 + + - FIR/IIR Filter + * X XB OfsX = ( OfsX0 + XSlope * dT) * VG / VGMAX Yadc kalpha kbeta kt FIR/IIR Setting + + - ORTH_XY * FIR/IIR Filter + Y Map X,Y,Z on B1,B2 ,B3 ORTH_ B1B2 If Marker = 0 Alpha = atan( B2 / B1) If Orth_Sel =1 * * * SMIS B1 Zadc + + - * FIR/IIR Filter + Z If Marker = 1 ALPHA Alpha = atan( Sqrt( (kalpha.B3)2 + (kt.B2)2 ) / B1) YB OfsY = ( OfsY0 + YSlope * dT) * VG / VGMAX DSP Outputs B2 B3 BETA Beta = atan( Sqrt( (Kbeta.B3)2 + (kt.B1)2 ) / B2 ) Digital Signal (Post)-Processing ZB SCI Message Coding Case Marker = 2 OfsZ = ( OfsZ0 + ZSlope * dT ) * VG / VGMAX ALPHA T + * - T25 T125 + - BETA dT ALPHA Tslope 90363 ABB Digital Signal (Pre)-Processing Tm40 VG SCI Message Coding Case Marker = 1 SCI Message Coding Case Marker = 0 Figure 26 – Block Diagram of Signal Processing – Function Model 18.3. Fail-safe Mode The purpose of fail-safe mode is to increase the safety integrity, by blocking position calculation and reporting whenever a digital-type error (WD error, ROM Checksum, Firmware flow error…) is detected In fail-safe mode,  The analog is [set] inactive  The sensor waits for the Master to initiate a reset  Autonomous reset by watchdog after 100ms, i.e. watchdog running but will not be acknowledged  Only SPI driver and communication handler is active. The only supported MOSI commands is sciREBOOT  Upon all SPI MOSI commands, the MISO message SPI_ERROR ( = DiagDetailAnswer) is sent  Diagnostics (analog and digital) and background are not running REVISION 006 – DEC 2016 Page 52 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Fail-safe mode – entry conditions The fail-safe mode is entered upon:  Critical error during initialization (RAM BIST, WD BIST, ROM Checksum, EEPROM CRC)  Critical error during background/digital diagnostics (RAM continuous test, ROM test, EEPROM CRC)  Exception, i.e. system level interrupts (Stack-overflow, invalid address, protection error, program error)  FW flow error 18.4. Automatic Gain Control The Virtual Gain code is updated at every GET message. The new code value is based on the field strength (Norm) of every raw component (X, Y, Z). The Automatic Gain Control (AGC) makes sure that Norm is between 47% and 63.5%, by controlling the gain code within the range (VIRTUALGAINMIN, VIRTUALGAINMAX). The algorithm gives a limitation in term flux density frequency, see Section 10 for specification. It is not recommended to interrupt the GET message sequence, because AGC iterations are triggered by GET messages. If a pause cannot be avoided, the (E1, E0) error bits of the 6 following GET messages shall be ignored. REVISION 006 – DEC 2016 Page 53 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 19. Recommended Application Diagrams 19.1. MLX90363 in SOIC-8 Package and 5V Application 5V VDD_IO VSS_IO 8 SPI MASTER 1 C2 100nF VDD MLX90363 SCLK MOSI MISO VSS Test MOSI /SS SCLK /SS 5 VDEC 4 MISO C1 47nF Figure 27 – Recommended wiring ( 22) for the MLX90363 in SOIC-8 package and 5V Application 19.2. MLX90363 in SOIC-8 Package and 3V3 Application 3V3 VDD_IO VSS_IO 8 1 SPI MASTER VDD MLX90363 SCLK MOSI MISO VDEC Test MOSI SCLK /SS C1 100nF 5 MISO 4 /SS VSS Figure 28 – Recommended wiring (22) for the MLX90363 in SOIC-8 package and 3V3 Application 22 Wiring of the SCI signals must be kept short on the PCB. In other cases, Melexis advises to add 100Ω serial resistor on the SCLK, MOSI, MISO and /SS lines. Melexis also recommends doubling the C1 decoupling capacitor REVISION 006 – DEC 2016 Page 54 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 19.3. MLX90363 in TSSOP-16 Package and 5V Application C3 100nF 5V VDD_IO MLX90363 VSS_IO SPI MASTER SCLK 14 SCLK1 VDEC1 1 6 SCLK2 VSS1 2 16 MOSI1 Test1 13 MOSI 8 MOSI2 VDD1 3 MISO 4 MISO1 VDEC2 9 12 MISO2 VSS2 10 /SS1 15 /SS1 Test2 5 /SS2 7 /SS2 VDD2 11 C1 47nF C2 47nF Figure 29 – Recommended ( 23) wiring in TSSOP-16 package (dual die) and 5V Application 19.4. MLX90363 in TSSOP-16 Package and 3V3 Application 3V3 VDD_IO MLX90363 VSS_IO 14 SCLK1 VDEC1 1 6 SCLK2 VSS1 2 SCLK 16 MOSI1 Test1 13 MOSI 8 MOSI2 VDD1 3 MISO 4 MISO1 VDEC2 9 12 MISO2 VSS2 10 /SS1 15 /SS1 Test2 5 /SS2 7 /SS2 VDD2 11 SPI MASTER C1 100nF C2 100nF Figure 30 – Recommended (23) wiring in TSSOP-16 package (dual die) and 3V3 Application 23 Wiring of the SCI signals must be kept short on the PCB. In other cases, Melexis advises to add 100Ω serial resistor on the SCLK, MOSI, MISO and /SS lines. Melexis also recommends doubling the C1, C2 decoupling capacitors. REVISION 006 – DEC 2016 Page 55 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 20. Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to standards in place in Semiconductor industry. For further details about test method references and for compliance verification of selected soldering method for product integration, Melexis recommends reviewing on our web site the General Guidelines soldering recommendation (http://www.melexis.com/en/quality-environment/soldering). For all soldering technologies deviating from the one mentioned in above document (regarding peak temperature, temperature gradient, temperature profile etc), additional classification and qualification tests have to be agreed upon with Melexis. For package technology embedding trim and form post-delivery capability, Melexis recommends consulting the dedicated trim&forming recommendation application note: lead trimming and forming recommendations (http://www.melexis.com/en/documents/documentation/application-notes/leadtrimming-and-forming-recommendations). Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/en/quality-environment. 21. ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. REVISION 006 – DEC 2016 Page 56 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 22. Package Information 22.1. SOIC-8 - Package Dimensions 1.27 TYP NOTES: 3.81 5.80 3.99** 6.20** 4.80 4.98* All dimensions are in millimeters (angles in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 1.37 1.57 1.52 1.72 0.36 0.46*** 0.19 0.25 0.100 0.250 0.41 1.27 0° 8° 22.2. SOIC-8 - Pinout and Marking 5 8 Part Number MLX90363 (3 digits) Die Version (3 digits) /SS MOSI VDEC VSS Marking : Top 363Axx M12345 Xy-E REVISION 006 – DEC 2016 M12345 Xy-E Bottom SCLK Test MISO 4 VDD 1 Axx 363 YY Lot number: “M” + 5 digits Split lot number + “-E” (Optional ) WW Week Date code (2 digits) Year Date code (2 digits) Page 57 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 22.3. SOIC-8 - IMC Positionning CW 8 7 6 5 CCW X 0.46 +/- 0.06 1.16 +/- 0.155 1.25 1.65 1 2 1.96 2.26 3 4 Y Angle detection SOIC-8 6 N 2 3 5 8 7 4 1 2 7 2 5 8 7 5 3 4 6 5 3 4 S S N 1 6 6 ~ 270 Deg.* ~ 180 Deg.* 8 S 1 7 ~ 90 Deg.* N 8 S ~ 0 Deg.* 3 4 1 2 N * No absolute reference for the angular information. The MLX90363 is an absolute angular position sensor but the linearity error (Le – See section 10) does not include the error linked to the absolute reference 0 Deg. REVISION 006 – DEC 2016 Page 58 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 22.4. TSSOP-16 - Package Dimensions 0.65 TYP 12O TYP 0.20 TYP 0.09 MIN 1.0 DIA 4.30 4.50** 6.4 TYP 0.09 MIN 1.0 12O TYP 1.0 0.50 0.75 0O 8O 1.0 TYP 0.85 0.95 4.90 5.10* 1.1 MAX 0.19 0.30*** 0.09 0.20 0.05 0.15 NOTES: All dimensions are in millimeters (angles in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. REVISION 006 – DEC 2016 Page 59 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 22.5. TSSOP-16 - Pinout and Marking 16 1 VDEC1 MOSI1 /SS1 SCLK1 363Axx M12345 Xy-E VSS1 VDD1 MISO1 Test2 SCLK2 Marking : VDD2 9 MOSI2 8 /SS2 Test1 MISO2 VSS2 Part Number MLX90363 (3 digits) Die Version (3 digits) VDEC2 Top 363 Axx M12345 Lot number: “M” + 5 digits Xy-E Bottom YY Split lot number + “-E” (Optional) WW Week Date code (2 digits) Year Date code (2 digits) 22.6. TSSOP-16 - IMC Positionning CW X2 16 9 Die 1 Die 2 Y2 Y1 0.30 +/- 0.06 CCW 1.95 2.45 1 0.70 +/- 0.13 8 1.84 2.04 X1 2.76 2.96 REVISION 006 – DEC 2016 Page 60 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet Angle detection TSSOP-16 ~ 180 Deg.* 16 9 Die 2 S S Die 2 9 Die 1 N 1 ~ 90 Deg.* 16 S Die 1 8 ~ 270 Deg.* 9 S 16 Die 2 1 ~ 0 Deg.* ~ 180 Deg.* 9 Die 1 8 1 ~ 270 Deg.* 16 N N Die 1 ~ 90 Deg.* 8 1 Die 2 N ~ 0 Deg.* 8 * No absolute reference for the angular information. The MLX90363 is an absolute angular position sensor but the linearity error (Le – See section 10) does not include the error linked to the absolute reference 0 Deg. REVISION 006 – DEC 2016 Page 61 of 62 MLX90363 Magnetometer IC with High Speed Serial Interface Datasheet 23. Disclaimer The information furnished by Melexis herein (“Information”) is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein (“Product”) (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis’ rendering of technical or other services. The Information is provided "as is” and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose. The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights. This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment are specifically not recommended by Melexis. The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation. The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and-conditions. This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document. Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016) ISO/TS 16949 and ISO14001 Certified 24. Contact For the latest version of this document, go to our website at www.melexis.com. For additional information, please contact our Direct Sales team and get help for your specific needs: Europe, Africa Telephone: +32 13 67 04 95 Email : sales_europe@melexis.com Americas Telephone: +1 603 223 2362 Email : sales_usa@melexis.com Asia Email : sales_asia@melexis.com REVISION 006 – DEC 2016 Page 62 of 62
MLX90363EDC-ABB-000-SP 价格&库存

很抱歉,暂时无法提供与“MLX90363EDC-ABB-000-SP”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MLX90363EDC-ABB-000-SP
  •  国内价格 香港价格
  • 1+42.319901+5.05820
  • 10+36.8623010+4.40590
  • 80+30.1452080+3.60300
  • 240+28.71090240+3.43160
  • 560+25.94710560+3.10130
  • 1040+22.168701040+2.64970
  • 2560+21.072502560+2.51870

库存:37

MLX90363EDC-ABB-000-SP
  •  国内价格 香港价格
  • 80+26.7503880+3.19724
  • 240+25.59423240+3.05906
  • 320+25.40168320+3.03604
  • 560+23.41403560+2.79848
  • 1040+20.436871040+2.44264
  • 2560+19.456002560+2.32541

库存:80