MLX90363 Magnetometer IC
with High Speed Serial Interface
Datasheet
Features and Benefits
Tria⊗is® Magnetometer (BX, BY, BZ)
On Chip Signal Processing for Robust Position
Sensing
High Speed Serial Interface (SPI compatible –
Full Duplex)
Enhanced Self-Diagnostics Features
5V and 3V3 Application Compatible
14 bit Output Resolution
48 bit ID Number
Single Die – SOIC-8 Package RoHS Compliant
Dual Die (Full Redundant) – TSSOP-16 Package
RoHS Compliant
Description
The MLX90363 is a monolithic magnetic sensor IC
featuring
the
Tria⊗is®
Hall
technology.
Conventional planar Hall technology is only
sensitive to the flux density applied orthogonally
to the IC surface. The Tria⊗is® Hall sensor is also
sensitive to the flux density applied parallel to the
IC surface. This is obtained through an Integrated
Magneto-Concentrator (IMC) which is deposited
on the CMOS die.
The MLX90363 is sensitive to three (BX, BY and BZ)
components of the flux density applied to the IC.
This allows the MLX90363 to sense any magnet
moving in its surrounding and decode its position
through an appropriate signal processing.
Using its Serial Interface the MLX90363 can
transmit a digital output (SP – 64 bits per frame).
TSSOP-16
Applications
Absolute Contacless Position Sensor
Steering Wheel Position Sensor
3D Joystick Position Sensor
The MLX90363 is intended for Embedded Position
Sensor applications (vs. Stand-Alone “Remote”
Sensor) for which the output is directly provided
to a microcontroller (Master) close to the
magnetometer IC MLX90363 (Slave). The SPI
protocol confirms this intent.
The MLX90363 is using full duplex SPI protocol
and requires therefore the separated SPI signal
lines: MOSI, MISO, /SS and SCLK.
VDD
VDEC
3V3
Regulator
DSP
Triaxis
®
VX
VY
VZ
RAM
MUX
SOIC-8
G
ADC
EEPROM
Output Stage
14 bit SPI Angle
µC
14 bit SPI XYZ
ROM - Firmware
MISO
MOSI
SCLK
SS
VSS
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
1. Ordering Information
Product Code
Temperature Code
Package Code
Option Code
Packing Form Code
MLX90363
E
DC
ABB-000
RE
MLX90363
E
GO
ABB-000
RE
MLX90363
K
DC
ABB-000
RE
MLX90363
K
GO
ABB-000
RE
MLX90363
L
DC
ABB-000
RE
MLX90363
L
GO
ABB-000
RE
Legend:
Temperature Code:
E: from -40 Deg.C to 85 Deg.C
K: from -40 Deg.C to 125 Deg.C
L: from -40 Deg.C to 150 Deg.C
Package Code:
“DC” for SOIC-8 package
“GO” for TSSOP-16 package (dual die)
Option Code:
ABB-xxx: die version
xxx-000: standard
Packing Form:
“RE” for Reel
“TU” for Tube
Ordering Example:
MLX90363LGO-ABB-000-RE
Table 1 - Legend
REVISION 006 – DEC 2016
Page 2 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Contents
Features and Benefits................................................................................................................................... 1
Applications .................................................................................................................................................. 1
Description ................................................................................................................................................... 1
1. Ordering Information ............................................................................................................................... 2
2. Functional Diagram .................................................................................................................................. 6
3. Glossary of Terms ..................................................................................................................................... 6
4. Pinout ....................................................................................................................................................... 7
5. Pin Description ......................................................................................................................................... 8
6. Absolute Maximum Ratings ...................................................................................................................... 8
7. Electrical Specification .............................................................................................................................. 9
8. Isolation Specification............................................................................................................................. 10
9. Timing Specification................................................................................................................................ 10
9.1. Timing Specification for 5V Application......................................................................................... 10
9.2. Timing Specification for 3V3 Application....................................................................................... 11
10. Accuracy Specification .......................................................................................................................... 12
11. Magnetic Specification ......................................................................................................................... 14
12. CPU & Memory Specification ............................................................................................................... 15
13. Serial Interface ..................................................................................................................................... 15
13.1. Electrical Layer and Timing Specification .................................................................................... 15
13.2. Serial Protocol .............................................................................................................................. 17
13.3. Message General Structure ......................................................................................................... 18
13.4. Regular Messages ........................................................................................................................ 20
13.4.1. Note for the regular message “X – Y – Z – diagnostic” (Marker = 2) .................................... 21
13.5. Trigger Mode 1............................................................................................................................. 21
13.6. Trigger Mode 2............................................................................................................................. 23
13.7. Trigger Mode 3............................................................................................................................. 24
13.8. Trigger Modes Timing Specifications........................................................................................... 26
13.8.1. 5V Application ........................................................................................................................ 26
13.8.2. 3V3 Application ...................................................................................................................... 27
13.9. Opcode Table ............................................................................................................................... 29
13.10. Timing specifications per Opcode, and next allowed messages............................................... 29
REVISION 006 – DEC 2016
Page 3 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
13.11. NOP Command and NOP Answer .............................................................................................. 30
13.12. OscCounterStart and OscCounterStop Commands .................................................................. 31
13.13. Protocol Errors Handling............................................................................................................ 33
13.14. Ready, Error and NTT Messages ................................................................................................ 34
13.15. DiagnosticsDetails commands ................................................................................................... 35
13.16. MemoryRead message .............................................................................................................. 36
13.17. EEWrite Message ....................................................................................................................... 37
13.18. Reboot ........................................................................................................................................ 40
13.19. Standby ...................................................................................................................................... 40
13.20. Start-up Sequence (Serial Communication) .............................................................................. 41
13.21. Allowed sequences .................................................................................................................... 42
14. Traceability Information ....................................................................................................................... 43
15. End-User Programmable Items ............................................................................................................ 44
16. Description of End-User Programmable Items ..................................................................................... 45
16.1. User Configuration: Device Orientation ...................................................................................... 45
16.2. User Configuration: Magnetic Angle Formula ............................................................................. 45
16.3. User Configuration: 3D = 0 formula trimming parameters SMISM and ORTH_B1B2 ................ 45
16.3.1. Magnetic Angle ∠XY .............................................................................................................. 46
16.3.2. Magnetic Angle ∠XZ and ∠YZ ............................................................................................... 46
16.4. User Configuration: 3D = 1 formula trimming parameters KALPHA, KBETA, KT ........................ 47
16.5. User Configuration: Filter ............................................................................................................ 47
16.6. Virtual Gain Min and Max Parameters ........................................................................................ 47
16.7. Hysteresis Filter............................................................................................................................ 48
16.8. EMC Filter on SCI Pins .................................................................................................................. 48
16.9. Identification & FREE bytes.......................................................................................................... 48
16.10. Lock ............................................................................................................................................ 48
17. Self Diagnostic ...................................................................................................................................... 49
18. Firmware Flowcharts ............................................................................................................................ 51
18.1. Start-up sequence ........................................................................................................................ 51
18.2. Signal Processing (GETx) .............................................................................................................. 52
18.3. Fail-safe Mode ............................................................................................................................. 52
Fail-safe mode – entry conditions ..................................................................................................... 53
18.4. Automatic Gain Control ............................................................................................................... 53
REVISION 006 – DEC 2016
Page 4 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
19. Recommended Application Diagrams .................................................................................................. 54
19.1. MLX90363 in SOIC-8 Package and 5V Application ...................................................................... 54
19.2. MLX90363 in SOIC-8 Package and 3V3 Application .................................................................... 54
19.3. MLX90363 in TSSOP-16 Package and 5V Application ................................................................. 55
19.4. MLX90363 in TSSOP-16 Package and 3V3 Application ............................................................... 55
20. Standard information regarding manufacturability of Melexis products with different soldering
processes ............................................................................................................................................... 56
21. ESD Precautions.................................................................................................................................... 56
22. Package Information............................................................................................................................. 57
22.1. SOIC-8 - Package Dimensions ...................................................................................................... 57
22.2. SOIC-8 - Pinout and Marking ....................................................................................................... 57
22.3. SOIC-8 - IMC Positionning ............................................................................................................ 58
22.4. TSSOP-16 - Package Dimensions ................................................................................................. 59
22.5. TSSOP-16 - Pinout and Marking................................................................................................... 60
22.6. TSSOP-16 - IMC Positionning ....................................................................................................... 60
23. Disclaimer ............................................................................................................................................. 62
24. Contact ................................................................................................................................................. 62
REVISION 006 – DEC 2016
Page 5 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
2. Functional Diagram
VDEC
VDD
3V3
Regulator
DSP
VX
VY
VZ
RAM
MUX
Triaxis
®
G
ADC
EEPROM
Output Stage
14 bit SPI Angle
µC
14 bit SPI XYZ
ROM - Firmware
MISO
MOSI
SCLK
SS
VSS
Figure 1 – Block Diagram
3. Glossary of Terms
Gauss (G), Tesla (T)
TC
NC
Byte
Word
ADC
LSB
MSB
DNL
INL
RISC
ASP
DSP
ATAN
IMC
CoRDiC
EMC
FE
RE
MSC
FW
HW
Units for the magnetic flux density - 1 mT = 10 G
Temperature Coefficient (in ppm/Deg.C.)
Not Connected
8 bits
16 bits (= 2 bytes)
Analog-to-Digital Converter
Least Significant Bit
Most Significant Bit
Differential Non-Linearity
Integral Non-Linearity
Reduced Instruction Set Computer
Analog Signal Processing
Digital Signal Processing
Trigonometric function: arctangent (or inverse tangent)
Integrated Magneto-Concentrator (IMC®)
Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform)
Electro-Magnetic Compatibility
Falling Edge
Rising Edge
Message Sequence Chart
Firmware
Hardware
Table 2 – Glossary of Terms
REVISION 006 – DEC 2016
Page 6 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
4. Pinout
PIN
SOIC-8
TSSOP-16
1
VDD
VDEC1
2
MISO
VSS1 (Ground1)
3
Test
VDD1
4
SCLK
MISO1
5
/SS
Test2
6
MOSI
SCLK2
7
VDEC
/SS2
8
VSS (Ground)
MOSI2
9
VDEC2
10
VSS2 (Ground2)
11
VDD2
12
MISO2
13
Test1
14
SCLK1
15
/SS1
16
MOSI1
For optimal EMC behavior, it is recommended to connect the unused pins (Test) to the Ground (see
section 19).
REVISION 006 – DEC 2016
Page 7 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
5. Pin Description
Name
Direction
Type
Function / Description
VDD
Supply
Analog
Supply (5V and 3V3 applications)
MISO
OUT
Digital
Master In Slave Out
Test
I/O
Both
SCLK
IN
Digital
Clock
/SS
IN
Digital
Slave Select
MOSI
IN
Digital
Master Out Slave In
Test Pin
5V Application
VDEC
I/O
Analog
Decoupling Pin
3V3 Application
Supply (Shorted to VDD)
VSS (Ground)
GND
Analog
Ground
6. Absolute Maximum Ratings
Parameter
Value
Supply Voltage, VDD
+ 18 V
Reverse VDD Voltage
- 0.3 V
Supply Voltage, VDEC
+ 3.6 V
Reverse VDEC Voltage
- 0.3 V
Positive Input Voltage
+ 11 V
Reverse Input Voltage
- 11 V
Positive Output Voltage
VDD + 0.3 V
Reverse Output Voltage
- 0.3 V
Operating Ambient Temperature Range, TA
- 40 Deg.C … + 150 Deg.C
Storage Temperature Range, TS
- 40 Deg.C … + 150 Deg.C
Magnetic Flux Density
± 700 mT
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximumrated conditions for extended periods may affect device reliability.
REVISION 006 – DEC 2016
Page 8 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
7. Electrical Specification
DC Operating Parameters at VDD = 5V (5V Application) or VDD = 3.3V (3V3 Application) and for TA as specified
by the Temperature suffix (E, K or L).
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
Nominal Supply Voltage
VDD5
5V Application
4.5
5
5.5
V
Nominal Supply Voltage
VDD33
3V3 Application
3.15
3.3
3.45
V
Supply Current (1)
IDD
12.5
15.5
mA
Standby Current
ISTANDBY
3.5
4.5
mA
Supply Current at VDD MAX
IDDMAX
VDD = 18V
18
mA
POR Rising Level
POR LH
Voltage referred to VDEC
2.6
2.8
3.1
V
POR Falling Level
POR HL
Voltage referred to VDEC
2.5
2.7
2.9
V
POR Hysteresis
POR Hyst
Voltage referred to VDEC
MISO Switch Off Rising Level
MT8V LH
VDD level for disabling MISO (2)
7.5
9.5
V
MISO Switch Off Falling Level
MT8V HL
VDD level for disabling MISO (2)
6
7.5
V
MISO Switch Off Hysteresis
MT8VHyst
VDD level for disabling MISO (2)
1
2
V
0.1
V
Input High Voltage Level
VIH
65%*
VDD
-
-
V
Input Low Voltage Level
VIL
-
-
35%*
VDD
V
Input Hysteresis
VHYS
Input Capacitance
CIN
Referred to GND
Output High Voltage Level
VOH
Current Drive IOH = 0.5 mA
Output Low Voltage Level
VOL
Current Drive IOH = 0.5 mA
Output High Short Circuit
Current
IshortH
VOUT forced to 0V
Output Low Short Circuit
Current
IshortL
VOUT forced to VDD
1
2
20%*
VDD
V
20
pF
VDD0.4
V
0.4
V
20
30
mA
25
30
mA
For the dual version, the supply current is multiplied by 2
Above the MT8V threshold, no SPI communication is possible
REVISION 006 – DEC 2016
Page 9 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
8. Isolation Specification
Only valid for the package code GO i.e. dual die version.
Parameter
Symbol
Isolation Resistance
Test Conditions
Between dice
Min
Typ
Max
4
Units
MΩ
9. Timing Specification
9.1. Timing Specification for 5V Application
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (E, K or L).
Parameter
Main Clock Frequency
Symbol
Test Conditions
Ck
Min
Typ
15.2
Trigger Mode 1 (Trg. Mod. 1),
Frame Rate
Watchdog time-out
Power On to First SCI message
(Start-up Time)
FR
Wd
tStartUp
SCI protocol: Slave-select
rising-edge to falling-edge
tShort
SCI protocol: EEWrite Time
teewrite
Markers 0&2, SCI 2MHz
All other modes, markers and
SCI Frequencies
See Section 17
See Section 13.20
Trimmed oscillator
15.3
18.8
Max
Units
18.8
MHz
1000
s-1
500
s-1
20
ms
20
ms
120
µs
32
ms
Trg.Mod.1, Markers 0&2
Diagnostic Loop Time
Internal 1MHz signal
tDiag
40
ms
FR = 500 s
-1
20
ms
FR = 200 s
-1
10
ms
Ck = 19 MHz
1
MISO Rise Time
CL = 30 pF, RL = 10 kΩ
35
60
ns
MISO Fall Time
CL = 30 pF, RL = 10 kΩ
35
60
ns
REVISION 006 – DEC 2016
t1us
FR = 1000 s-1
µs
Page 10 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
Sinewave Flux Density (3)
FR = 1000 s-1
Magnetic Flux Density
Frequency
4
Hz
FR = 500 s
-1
8
Hz
FR = 100 s
-1
18
Hz
FR = 1000 s-1 (4)
28
Hz
-1 (4)
14
Hz
FR = 200 s-1 (4)
5.6
Hz
FR = 500 s
9.2. Timing Specification for 3V3 Application
DC Operating Parameters at VDD = 3.3V (unless otherwise specified) and for TA as specified by the
Temperature suffix (E, K or L).
Parameter
Main Clock Frequency
Symbol
Test Conditions
Ck
Min
Typ
13.1
Trigger Mode 1 (Trg. Mod. 1),
Frame Rate
Watchdog time-out
Power On to First SCI message
(Start-up Time)
FR
Wd
tStartUp
SCI protocol: Slave-select
rising-edge to falling-edge
tShort
SCI protocol: EEWrite Time
teewrite
Markers 0&2, SCI 2MHz
All other modes, markers and
SCI Frequencies
Max
Units
18.8
MHz
862
s-1
430
s-1
23.2
ms
See Section 17
15.3
See Section 13.20
23.2
ms
139
µs
37
ms
Trimmed oscillator
Trg.Mod.1, Markers 0&2
Diagnostic Loop Time
Internal 1MHz signal
tDiag
t1us
FR = 862 s-1
46.4
ms
FR = 430 s
-1
23.2
ms
FR = 215 s
-1
11.6
ms
Ck = 19 MHz
1
µs
3
Sensitivity monitors enabled (See section 17). Beyond that frequency, the Sensitivity monitor must be disabled.
Contact Melexis for more details.
4
Limitation linked to the Automatic Gain Control. Beyond that frequency, there is a reduced immunity to norm change
(e.g. through vibration). See also Section 18.4
REVISION 006 – DEC 2016
Page 11 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
MISO Rise Time
CL = 30 pF, RL = 10 kΩ
35
60
ns
MISO Fall Time
CL = 30 pF, RL = 10 kΩ
35
60
ns
FR = 862 s-1 (5)
24
Hz
FR = 430 s
-1 (5)
12
Hz
FR = 215 s
-1 (5)
4.8
Hz
Magnetic Flux Density
Frequency
10. Accuracy Specification
DC Operating Parameters at VDD = 5V (5V Application) or VDD = 3.3V (3V3 Application) and for TA as specified
by the Temperature suffix (E, K or L).
Parameter
Symbol
ADC Resolution on the raw
signals X, Y and Z
RADC
Serial Interface Resolution
RSI
Offset on the Raw Signals X, Y
and Z
X0, Y0, Z0
Test Conditions
Min
Typ
Max
Units
14
bit
On the angle value
14
bit
On the X,Y,Z values
12
bit
TA = 25 Deg.C
-30
30
LSB14
TA = 25 Deg.C
Mismatch on the Raw Signals
X, Y and Z
SMISMXY
SMISMXZ
SMISMYZ
-1
1
%
Between X and Z
(6)
-30
30
%
Between Y and Z
(6)
-30
30
%
Between X and Y
TA = 25 Deg.C
Magnetic Angle Phase Error
ORTHXY
ORTHXZ
ORTHYZ
Between X and Y
-0.3
0.3
Deg.
Between X and Z
(7)
-10
10
Deg.
Between Y and Z
(7)
-10
10
Deg.
5
Limitation linked to the Automatic Gain Control. Beyond that frequency, there is a reduced immunity to norm change
(e.g. through vibration). See also Section 18.4
6
The Mismatch between X or Y and Z can be reduced through the calibration of the SMISM (or k) factor in the end
application. See section 16.3.2 for more information
7
The Magnetic Angle Phase error X or Y and Z can be reduced through the calibration of the ORTH_B1B2 factor in the
end application. See section 16.3.2 for more information
REVISION 006 – DEC 2016
Page 12 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
-1
1
Deg.
-20
20
Deg.
-0.1
0.1
Deg.
20 mT
-0.8
0.8
Deg.
50 mT
-0.4
0.4
Deg.
20 mT
-1
1
Deg.
50 mT
-0.6
0.6
Deg.
Temperature suffix E and K
-30
30
LSB14
Temperature suffix L
-45
45
LSB14
XY axis, XZ axis, YZ axis
Temperature suffix E and K
-0.5
0.5
%
Temperature suffix L
-0.7
0.7
%
XY axis, XZ axis, YZ axis
-0.1
0.1
Deg.
TA = 25 Deg.C
Intrinsic Linearity Error
(8)
Le
Magnetic Angle ∠XY
Magnetic Angle ∠XZ, ∠YZ
(9)
5V Application
VDD = 4.5 … 5.5 V
3V3 Application
VDD = 3.20 … 3.40 V
Supply Dependency
Temperature suffix E and K
Temperature suffix L
Thermal Offset Drift (10)
Thermal Drift of Sensitivity
Mismatch (11)
Thermal Drift of Magnetic
Angle Phase Error
8
The Intrinsic Linearity Error is a consolidation of the IC errors (offset, sensitivity mismatch, phase error) taking into
account an ideal rotating field. Once associated to a practical magnetic construction and the associated mechanical
and magnetic tolerances, the output linearity error increases.
9
The Intrisic Linearity Error for Magnetic Angle ∠XZ, ∠YZ can be reduced through the programming of the SMISM (or k)
factor and ORTH_B1B2. By applying the correct compensation, a non linearity error of +/-1 Deg. can be reached. See
section 16.3.2 for more information
10
For instance, Thermal Offset Drift equal ± 30 LSB14 yields to max. ± 0.32 Deg. error. This is only valid if the Virtual
Gain is not fixed (See Section 18.4). See Front End Application Note for more details
11
For instance, Thermal Drift of Sensitivity Mismatch equal ± 0.4 % yields to max. ± 0.1 Deg. error. See Front End
Application Note for more details
REVISION 006 – DEC 2016
Page 13 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
20mT, No Filter
0.2
Deg.
50mT, No Filter
0.1
Deg.
50mT, FILTER = 1
0.07
Deg.
20mT, No Filter
0.25
Deg.
50mT, No Filter
0.12
Deg.
50mT, FILTER = 1
0.08
Deg.
20mT, No Filter
12
LSB14
50mT, No Filter
6
LSB14
50mT, FILTER = 1
4
LSB14
20mT, No Filter
14
LSB14
50mT, No Filter
7
LSB14
50mT, FILTER = 1
4
LSB14
Temperature suffix E and K
Magnetic Angle Noise (12)
Temperature suffix L
Temperature suffix E and K
Raw signals X, Y, Z Noise (12)
Temperature suffix L
11. Magnetic Specification
DC Operating Parameters at VDD = 5V (5V Application) or VDD = 3.3V (3V3 Application) and for TA as specified
by the Temperature suffix (E, K or L).
Parameter
Min
Typ
Max
Units
B X, B Y
20
50
70 (13)
mT
BZ
24
75
126
mT
Magnet Temperature
Coefficient
TCm
-2400
IMC Gain in X and Y (14)
GainIMCXY
1.2
IMC Gain in Z (14)
GainIMCZ
1.1
Magnetic Flux Density in X or Y
Magnetic Flux Density in Z
k factor
Symbol
k
Test Conditions
GainIMCXY / GainIMCZ
1
ppm/
0
1.4
Deg.C
1.8
1.3
1.2
1.5
12
Noise is defined by ± 3 σ for 1000 successive acquisitions. The application diagram used is described in the recommended wiring
(Section 20). For detailed information, refer to section Filter in application mode (Section 16.5).
13
Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.
14
This is the magnetic gain linked to the Integrated Magneto Concentrator structure. This is the overall variation. Within one lot,
the part to part variation is typically ± 10% versus the average value of the IMC gain of that lot.
REVISION 006 – DEC 2016
Page 14 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
12. CPU & Memory Specification
The digital signal processing is based on a 16 bit RISC µController featuring
ROM & RAM
EEPROM with hamming codes (ECC)
Watchdog
C Compiler
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
ROM
14
KB
RAM
256
B
EEPROM
64
B
3.5
MIPS
CPU MIPS
Ck = 15 MHz
13. Serial Interface
The MLX90363 serial interface allows a Master device to operate the position sensor. The MLX90363
interface allows Multi-Slave applications and synchronous start of the data acquisition among the Slaves.
The interface offers 2 Mbps data transfer bit rate and is full duplex. The interface accepts messages of 64
bits wide only, making the interfacing robust.
In this document, the words message, frame and packet refer to the same concept.
13.1. Electrical Layer and Timing Specification
Message transmissions start necessarily at a falling edge on /SS and end necessarily at a rising edge on the
/SS signal. This defines a message. The serial interface counts the number of transmitted bits and declares
the incoming message invalid when the bit count differs from 64. The Master must therefore ensure the
flow described below:
1. Set pin /SS Low
2. Send and receive 8 bytes or 4 words
3. Set pin /SS High
REVISION 006 – DEC 2016
Page 15 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
The MISO and MOSI signals change on SCLK rising edge and are captured on SCLK falling edge. The mostsignificant-bit of the transmitted byte or word comes first (15).
/SS Pin
t1
tSCLK_HI
tSCLK
t3
tSCLK_LO
SCLK Pin
tMOSI
MOSI Pin
t2
t4
tMISO
MISO Pin
Figure 2 – Serial Interface Timing Diagram
The interface is sensitive, in Trigger mode 2 (see section 13.6), to Sync pulses. A Sync pulse is negative pulse
on /SS, while SCLK is kept quiet.
/SS Pin (IC PIN)
tSyncPulse
Figure 3 – Sync Pulse Timing Diagram
Parameter
Clock Period
Clock Low Level
Clock High Level
Clock to Data Delay
Data Capture Setup Time
Symbol
tSCLK
tSCLK_HI
tSCLK_LO
tMISO
tMOSI
Test Conditions
Min
Typ
Max
Units
EE_PINFILTER = 1
450
500
ns
EE_PINFILTER = 2
900
1000
ns
EE_PINFILTER = 3
1800
2000
ns
EE_PINFILTER = 1
225
ns
EE_PINFILTER = 2
450
ns
EE_PINFILTER = 3
900
ns
EE_PINFILTER = 1
225
ns
EE_PINFILTER = 2
450
ns
EE_PINFILTER = 3
900
ns
EE_PINFILTER = 1, CL = 30pF
210
ns
EE_PINFILTER = 2, CL = 30pF
300
ns
EE_PINFILTER = 3, CL = 30pF
510
ns
30
ns
15
For instance, for Master compatible w/ the Motorola SPI protocol, the configuration bits must be CPHA=1, CPOL=0,
LSBFE=0.
REVISION 006 – DEC 2016
Page 16 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Parameter
/SS FE to SCLK RE
/SS FE to MISO Low Impedance
SCLK FE to /SS RE
/SS RE to MISO High
Impedance
Sync Pulse Duration
Symbol
t1
t2
Test Conditions
Min
EE_PINFILTER = 1
225
ns
EE_PINFILTER = 2
450
ns
EE_PINFILTER = 3
900
ns
tSyncPulse
Max
Units
EE_PINFILTER = 1
90
120
ns
EE_PINFILTER = 2
180
210
ns
EE_PINFILTER = 3
370
420
ns
t3
t4
Typ
225
ns
EE_PINFILTER = 1
90
120
ns
EE_PINFILTER = 2
180
210
ns
EE_PINFILTER = 3
370
420
ns
EE_PINFILTER = 1
520
10000
ns
EE_PINFILTER = 2
610
10000
ns
EE_PINFILTER = 3
820
10000
ns
Table 3 – Serial Interface Timing Specifications
Melexis recommends using the Multi-Slave application diagram as
shown on the right.
The SCLK, MISO and MOSI wires interconnect the Slaves with the
Master. A Slave is selected by its dedicated /SS input. A Slave
MISO output is in high-impedance state when the Slave is not
selected.
Slave 1
Master
SCLK
MOSI
MISO
SS1
SS2
SS3
SCLK
MOSI
MISO
SS
Slave 2
SCLK
MOSI
MISO
SS
Slave 3
Slaves can be triggered synchronously by sending Sync pulses on the different
/SS. The pulses must not overlap to avoid electrical short-circuits on the MISO
bus.
SCLK
MOSI
MISO
SS
13.2. Serial Protocol
The serial protocol of MLX90363 allows the SPI Master device to request the following information:
Position (magnetic angle Alpha)
Raw field components (X,Y and Z)
Self-Diagnostic data
It allows customizing the calibration of the sensor, when needed, at the end-of-line, through EEPROM
programming.
The serial protocol offers a transfer rate of 1000 messages/sec. A regular message holds position and
diagnostic information. The data acquisition start and processing is fully under the control of the SPI Master.
The user configuration bits, stored in EEPROM, are programmable with this protocol.
REVISION 006 – DEC 2016
Page 17 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Data integrity is guaranteed in both directions by an 8 bit CRC covering the content of the incoming and
outgoing messages.
13.3. Message General Structure
A message has a unique Opcode. The general structure of a message consists of 8 bytes (byte #0,
transmitted first, to byte #7 transmitted last).
Byte #7 (the last byte transmitted) holds an 8 bit CRC. The byte #6 holds a Marker plus either an Opcode or a
rolling counter (6 bit Roll Counter).
#
1
7
(4)
6
5
4
3
3
1
0
(3)
#
0
7
(2)
6
5
4
3
2
1
2
5
7
2
0
(1)
(5)
4
CRC
6
Marker
Opcode or Roll Counter
Table 4 – General Structure of a message and bit naming convention
(1) This bit is named Byte0[0]
(2) This bit is named Byte0[7]
(3) This bit is named Byte1[0]
(4) This bit is named Byte1[7]
(5) This bit is named Byte2[0]
A blank cell refers necessarily to a bit 0.
In a byte, the most-significant-bit is transmitted first (for instance, Byte0[7] is transmitted first, Byte0[0]
transmitted last).
Parameter CRC[7:0] is Byte7[7:0], Parameter Marker[1:0] is Byte6[7:6],
Parameter Opcode[5:0] (or Roll Counter[5:0]) is Byte6[5:0]
CRCs are encoded and decoded according the following algorithm (language-C):
crc = 0xFF;
crc = cba_256_TAB[ Byte0 ^ crc ];
crc = cba_256_TAB[ Byte1 ^ crc ];
crc = cba_256_TAB[ Byte2 ^ crc ];
crc = cba_256_TAB[ Byte3 ^ crc ];
crc = cba_256_TAB[ Byte4 ^ crc ];
crc = cba_256_TAB[ Byte5 ^ crc ];
crc = cba_256_TAB[ Byte6 ^ crc ];
crc = ~crc;
The Table 5 corresponds to the CRC-8 polynomial “0xC2”.
REVISION 006 – DEC 2016
Page 18 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
cba_256_TAB
0
1
2
3
4
5
6
7
0
0x00
0x2f
0x5e
0x71
0xbc
0x93
0xe2
0xcd
1
0x57
0x78
0x09
0x26
0xeb
0xc4
0xb5
0x9a
2
0xae
0x81
0xf0
0xdf
0x12
0x3d
0x4c
0x63
3
0xf9
0xd6
0xa7
0x88
0x45
0x6a
0x1b
0x34
4
0x73
0x5c
0x2d
0x02
0xcf
0xe0
0x91
0xbe
5
0x24
0x0b
0x7a
0x55
0x98
0xb7
0xc6
0xe9
6
0xdd
0xf2
0x83
0xac
0x61
0x4e
0x3f
0x10
7
0x8a
0xa5
0xd4
0xfb
0x36
0x19
0x68
0x47
8
0xe6
0xc9
0xb8
0x97
0x5a
0x75
0x04
0x2b
9
0xb1
0x9e
0xef
0xc0
0x0d
0x22
0x53
0x7c
10
0x48
0x67
0x16
0x39
0xf4
0xdb
0xaa
0x85
11
0x1f
0x30
0x41
0x6e
0xa3
0x8c
0xfd
0xd2
12
0x95
0xba
0xcb
0xe4
0x29
0x06
0x77
0x58
13
0xc2
0xed
0x9c
0xb3
0x7e
0x51
0x20
0x0f
14
0x3b
0x14
0x65
0x4a
0x87
0xa8
0xd9
0xf6
15
0x6c
0x43
0x32
0x1d
0xd0
0xff
0x8e
0xa1
16
0xe3
0xcc
0xbd
0x92
0x5f
0x70
0x01
0x2e
17
0xb4
0x9b
0xea
0xc5
0x08
0x27
0x56
0x79
18
0x4d
0x62
0x13
0x3c
0xf1
0xde
0xaf
0x80
19
0x1a
0x35
0x44
0x6b
0xa6
0x89
0xf8
0xd7
20
0x90
0xbf
0xce
0xe1
0x2c
0x03
0x72
0x5d
21
0xc7
0xe8
0x99
0xb6
0x7b
0x54
0x25
0x0a
22
0x3e
0x11
0x60
0x4f
0x82
0xad
0xdc
0xf3
23
0x69
0x46
0x37
0x18
0xd5
0xfa
0x8b
0xa4
24
0x05
0x2a
0x5b
0x74
0xb9
0x96
0xe7
0xc8
25
0x52
0x7d
0x0c
0x23
0xee
0xc1
0xb0
0x9f
26
0xab
0x84
0xf5
0xda
0x17
0x38
0x49
0x66
27
0xfc
0xd3
0xa2
0x8d
0x40
0x6f
0x1e
0x31
28
0x76
0x59
0x28
0x07
0xca
0xe5
0x94
0xbb
29
0x21
0x0e
0x7f
0x50
0x9d
0xb2
0xc3
0xec
30
0xd8
0xf7
0x86
0xa9
0x64
0x4b
0x3a
0x15
31
0x8f
0xa0
0xd1
0xfe
0x33
0x1c
0x6d
0x42
Table 5 – cba_256_TAB Look-up table Polynomial “C2”
REVISION 006 – DEC 2016
Page 19 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
#
1
7
6
5
4
3
0xFF
2
1
0
#
0
7
6
5
4
3
0xC1
3
0xFF
2
0x16
5
0xFF
4
0xD4
7
0x23
6
0x86
2
1
0
Table 6 – Example of valid CRC
13.4. Regular Messages
The MLX90363 offers three types of regular messages:
“α” – diagnostic
“α – β” – diagnostic
X – Y – Z – diagnostic
#
1
7
E1
6
E0
5
4
3
2
1
ALPHA [13:8]
0
#
0
7
6
5
4
3
2
ALPHA [7:0]
3
0
2
0
5
0
4
VG[7:0]
7
CRC
6
0
0
1
0
ROLL
Table 7 – “α” message
#
1
7
E1
6
E0
5
3
4
3
2
1
ALPHA [13:8]
0
BETA [13:8]
#
0
7
6
2
5
0
4
7
CRC
6
5
4
3
2
ALPHA [7:0]
1
0
BETA [7:0]
VG[7:0]
0
1
ROLL
Table 8 – “α – β” message
#
1
7
E1
6
E0
5
4
3
2
1
X COMPONENT [13:8]
0
#
0
7
6
5
4
3
2
X COMPONENT [7:0]
3
Y COMPONENT [13:8]
2
Y COMPONENT [7:0]
5
Z COMPONENT [13:8]
4
Z COMPONENT [7:0]
7
CRC
6
1
0
1
0
ROLL
Table 9 – “X – Y – Z” message
The bits Byte6[7] and Byte6[6] are markers. They allow the Master to recognize the type of regular message
(00b, 01b, 10b). The marker is present in all messages (incoming and outgoing). The marker of any message
which is not a regular message is equal to 11b.
The bits E1 and E0 report the status of the diagnostics (4 possibilities) as described in the Table 10 – See
section 17 for more details.
REVISION 006 – DEC 2016
Page 20 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
E1
E0
Description
0
0
First Diagnostics Sequence Not Yet Finished
0
1
Diagnostic Fail
1
0
Diagnostic Pass (Previous cycle)
1
1
Diagnostic Pass – New Cycle Completed
Table 10 - Diagnostics Status Bits
13.4.1. Note for the regular message “X – Y – Z – diagnostic” (Marker = 2)
In the case of Marker = 2d, the X, Y, Z components are given after offset compensation and filtering (see
signal processing in section 18.2). These components are gain dependent (see also section 18.4).
Although being 12 bit resolution signals, the X, Y, Z components are coded on 14 bits. For proper decoding,
the values must be shifted twice to the left in order to get a 16 bit signed value (2’s complementary).
The sensitivity in the X and Y direction is always higher than the Z direction by the IMC Gain factor (see
parameter k factor in section 11). Melexis therefore recommends multiplying the Z component by the
k factor inside the Master in order to use the MLX90363 as a 3D magnetometer.
13.5. Trigger Mode 1
The Master sends a GET1 command to initiate the magnetic field acquisition and post-processing. It waits
tSSREFE, issues the next GET1 and receives at the same time the regular message resulting from the previous
GET.
The field sensing, acquisition and post-processing is starting on /SS rising edge events.
Although GET1 commands are preferably followed by another GET1 command or a NOP command, any other
commands are accepted by the Slave.
FW
SPI HW
background
Get
tSSREFE
SPI
ASP DSP SPI
ASP DSP SPI
ASP DSP SPI
Get
Get
NOP
Roll=0
Roll=1
Roll=2
X
Figure 4 – Trigger Mode 1
REVISION 006 – DEC 2016
Page 21 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Message Sequence Chart
Single Slave - Mode 1
Slave
Master
GET1 (à)
NTT (ß)
Loop
GET1 (à)
Regular Packet (ß)
NOP (à)
Regular Packet (ß)
Figure 5 – Trigger Mode 1 Message Sequence Chart
#
1
7
3
5
7
6
5
4
3
2
1
0
RST
Time – Out
CRC
#
0
2
4
6
7
6
5
4
3
2
1
0
0
1
1
Value
Marker
0
1
0
Table 11 – GET1 MOSI Message (Opcode = 19d)
Note: The NOP message is described at section 13.11.
The parameter Marker defines the regular data packet type expected by the Master:
Marker = 0 refers to frame type “ALPHA + Diagnostic”.
Marker = 1 refers to frame type “ALPHA + BETA + Diagnostic”.
Marker = 2 refers to frame type “Components X + Y + Z +Diagnostic”.
The parameter RST (Byte1[0]) when set, resets the rolling counter attached to the regular data packets.
The parameter TimeOutValue tells the maximum life time of the Regular Data Message.
The time step is t1us (See table in Section 9), the maximum time-out is 65535 * t1us. The time-out timer
starts when the message is ready, and stops on the /SS rising edge of the next message.
On time-out occurrence, there are two possible scenarios:
Scenario 1:
/SS is high, there is no message exchange. In this case, a NTT message replaces the
regular message in the SCI buffer.
Scenario 2:
/SS is low, the regular packet is being sent out. In this case, the timeout violation is
reported on the next message, this later being an NTT message.
The master must handle the NTT errors as described in Table 30 – Protocol Errors Handling (Master standpoint).
REVISION 006 – DEC 2016
Page 22 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
13.6. Trigger Mode 2
The Trigger Mode 1 works without Sync pulses, as the GET1 command plays the role of a sync pulse. When a
delay between the regular message readback and the start of acquisition is needed, or when two or more
Slaves should be triggered synchronously, the use of a sync pulse is required, and this is the meaning of the
Trigger Mode 2.
Principle: The Master first enables the trigger mode 2 by issuing a GET2 command.
The Master then sends a Sync Pulse, at the appropriate time, to initiate the magnetic field acquisition and
post-processing.
Finally the Master reads the response message with a NOP or a GET2. The GET2 command re-initiates a sync
pulse triggered acquisition, whereas the NOP command would just allow the Master to receive the latest
packet.
FW
SPI HW
SP
ASP DSP SPI
I
SP
I
background
Get2
SP
ASP DSP SPI
I
SP
I
Sync
Puls
Sync
Puls
Get2
tRESync
SP
I
Get2
tSyncFE
Figure 6 – Trigger Mode 2 – Single Slave Approach
A timing constraint between GET2 and the Sync pulse (tRESync) should be met.
When this timing is smaller than the constraint, the sync pulse might not be taken in account, causing the
next GET2 to return a NTT packet.
GET1 and GET2/Sync pulse can be interlaced.
Multi-Slave approach: The way of working described below fits the Multi-Slave applications where
synchronous acquisitions are important. GET2 commands are sent one after the other to the Slaves. Then
the Sync pulses are sent almost synchronously (very shortly one after the other).
FW1
SPI HW1
FW2
SP
background
I
Get2
SP
I
ASP DSP SPI
Get2
background
SPI HW2
SP
I
ASP DSP SPI
Get2
SP
I
Sync
Puls
Get2
SP
I
ASP DSP SPI
Get2
SP
I
ASP DSP SPI
Sync
Puls
Get2
Get2 for Slave 1 and Get2 for Slave 2 do not overlap
Figure 7 – Trigger Mode 2 – Multi-Slave approach, example for two Slaves
REVISION 006 – DEC 2016
Page 23 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Message Sequence Chart
Dual Slave - Mode 2 (Sync pulses)
Slave2
Slave1
Master
GET2 (à)
NTT (ß)
GET2 (à)
NTT (ß)
Sync Pulse
Loop
GET2 (à)
Regular Packet (ß)
GET2 (à)
Regular Packet (ß)
Sync Pulse
NOP (à)
Regular Packet (ß)
NOP (à)
Regular Packet (ß)
Figure 8 – Trigger Mode 2 Message Sequence Chart
#
1
7
6
5
3
5
7
4
3
2
Time – Out
CRC
1
0
RST
#
0
2
4
6
7
6
5
4
3
2
1
0
1
0
0
Value
Marker
0
1
0
Table 12 – GET2 MOSI Message (Opcode = 20d)
Parameter definition: See GET1 (Section 13.5).
13.7. Trigger Mode 3
Principle: The acquisition sequences are triggered by a GET message, but unlike the Mode 1, the resulting
data (position …) is buffered. The MISO messages contain the buffered data of the previous GET message,
and not the newly computed values corresponding to the current GET MOSI request. The buffering releases
constraints on the SCI clock frequency (SCLK). The Mode 3 offers frame rates as high as Mode 1, if not
higher, with slower SCLK frequencies. When the clock frequency is limited (400 kbps or less), and when it
matters to reach a certain frame rate, Mode 3 is preferred over Mode 1. In any other cases, for instance
when the shortest response time represents the main design criteria, Mode 1 is preferred.
REVISION 006 – DEC 2016
Page 24 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
FW
background
SPI HW
ASP
SPI
SP
DSP
SPIASPASP
I
DSP
Get3
Get3
tSSRERE_mod3
Roll=0
DSP
DSP
ASP
SPI
Get3
tSSREFE_
mod3
SPI
DSP
NOP
Roll=1
X
Roll=2
Figure 9 – Trigger Mode 3
GET3 sequences must end with a NOP.
Message Sequence Chart
Single Slave - Mode 3
Master
Slave
GET3 (à)
X (ß )
GET3 (à)
Get3Ready (ß)
Loop
GET3 (à)
Regular Packet (ß)
NOP (à)
Regular Packet (ß)
Figure 10 – Trigger Mode 3 Message Sequence Chart
#
1
7
6
5
4
3
2
1
0
RST
Time – Out
3
5
7
#
0
2
4
6
CRC
7
6
5
4
3
2
1
0
1
0
1
Value
Marker
0
1
0
Table 13 – GET3 MOSI Message (Opcode = 21d)
Parameter definition: See GET1 (Section 13.5)
#
1
3
5
7
7
6
5
4
3
CRC
2
1
0
#
0
2
4
6
7
6
5
4
3
2
1
0
1
1
1
0
1
1
0
1
Table 14 – Get3Ready MISO Message (Opcode = 45d)
REVISION 006 – DEC 2016
Page 25 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
13.8. Trigger Modes Timing Specifications
/SS Pin
GET1
GET1
tREFE_mod1
SCI Internal state
High: NTT
Low: Ready
tReady_mod1
Figure 11 – Trigger Mode 1 timing diagram
/SS Pin
SyncPulse
GET2
GET2
tRESync
SCI Internal state
High: NTT
Low: Ready
tSyncFE
tReady_mod2
Figure 12 – Trigger Mode 2 timing diagram
/SS Pin
GET3
SCI Internal state
High: NTT
Low: Ready
GET3
tREFE_mod3
tReady_FEmod3
tRERE_mod3
tReady_REmod3
High: DSP Ongoing
Figure 13 – Trigger Mode 3 timing diagram
13.8.1. 5V Application
Items
tREFE_mod1
tReady_mod1
Definition
Get1 SS Rising Edge to next Get1 SS Falling Edge
Get1 SSRE to SO Answer ReadyToTransmit
Marker
Min
Typ
Max
Unit
0
920
μs
1
1050
μs
2
920
μs
0
920
μs
1
1050
μs
2
920
μs
Table 15 – Trigger Mode 1 Timing Specification (VDD=5V)
REVISION 006 – DEC 2016
Page 26 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Items
tSyncFE
tReady_mod2
tRESync
Definition
Sync Pulse (RE) to Get2 Falling Edge
Sync Pulse (RE) to SO Answer ReadyToTransmit
Marker
Min
Typ
Max
Unit
0
874
μs
1
1004
μs
2
874
μs
0
874
μs
1
1004
μs
2
874
μs
Get2 SS Rising Edge to Sync Pulse (RE)
80
μs
Table 16 – Trigger Mode 2 Timing Specification (VDD=5V)
Items
tRERE_mod3
Definition
Get3 SS RE to RE
tReadyRE_mod3 Get3 SS RE to DSP Completion
tREFE_mod3
Get3 SS Rising to Falling
tReadyFE_mod3
Get3 SS RE to SO Answer ReadyToTransmit
Marker
Min
Typ
Max
Unit
0
950
μs
1
1080
μs
2
950
μs
0
950
μs
1
1080
μs
2
950
μs
90
μs
90
μs
Table 17 – Trigger Mode 3 Timing Specification (VDD=5V)
13.8.2. 3V3 Application
Items
tREFE_mod1
tReady_mod1
Definition
Get1 SS Rising Edge to next Get1 SS Falling Edge
Get1 SSRE to SO Answer ReadyToTransmit
Marker
Min
Typ
Max
Unit
0
1067
μs
1
1218
μs
2
1067
μs
0
1067
μs
1
1218
μs
2
1067
μs
Table 18 – Trigger Mode 1 Timing Specification (VDD=3.3V)
REVISION 006 – DEC 2016
Page 27 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Items
tSyncFE
tReady_mod2
tRESync
Definition
Sync Pulse (RE) to Get2 Falling Edge
Sync Pulse (RE) to SO Answer ReadyToTransmit
Marker
Min
Typ
Max
Unit
0
1014
μs
1
1165
μs
2
1014
μs
0
1014
μs
1
1165
μs
2
1014
μs
Get2 SS Rising Edge to Sync Pulse (RE)
93
μs
Table 19 – Trigger Mode 2 Timing Specification (VDD=3.3V)
Items
tRERE_mod3
Definition
Get3 SS RE to RE
tReadyRE_mod3 Get3 SS RE to DSP Completion
tREFE_mod3
Get3 SS Rising to Falling
tReadyFE_mod3
Get3 SS RE to SO Answer ReadyToTransmit
Marker
Min
Typ
Max
Unit
0
1102
μs
1
1253
μs
2
1102
μs
0
1102
μs
1
1253
μs
2
1102
μs
105
μs
105
μs
Table 20 – Trigger Mode 3 Timing Specification (VDD=3.3V)
REVISION 006 – DEC 2016
Page 28 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
13.9. Opcode Table
Opcode
MOSI Message
Opcode
MISO Message
19d
0x13
GET1
20d
0x14
GET2
21d
0x15
GET3
45d
0x2D
Get3Ready
1d
0x01
MemoryRead
2d
0x02
MemoryRead Answer
3d
0x03
EEWrite
4d
0x04
EEWrite Challenge
5d
0x05
EEChallengeAns
40d
0x28
EEReadAnswer
15d
0x0F
EEReadChallenge
14d
0x0E
EEWrite Status
16d
0x10
NOP / Challenge
17d
0x11
Challenge/NOP MISO Packet
22d
0x16
DiagnosticDetails
23d
0x17
Diagnostics Answer
24d
0x18
OscCounterStart
25d
0x19
OscCounterStart Acknowledge
26d
0x1A
OscCounterStop
27d
0x1B
OscCounterStopAck + CounterValue
47d
0x2F
Reboot
49d
0x31
Standby
50d
0x32
StandbyAck
61d
0x3D
Error frame
62d
0x3E
NothingToTransmit (NTT)
44d
0x2C
Ready Message (first SO after POR)
n/a
Regular Data Packet
Table 21 – Opcode Table
13.10. Timing specifications per Opcode, and next allowed messages
For each MOSI message, the timing between the Slave-select-rising-edge event and the Slave-select-falling
event, as depicted below, is specified.
/SS Pin
Opcode
Opcode
tREFE
Figure 14 – Timing Diagram
Op
MOSI Message
19d
GET1
20d
GET2 followed by Sync
21d
GET3
REVISION 006 – DEC 2016
tREFE
Next allowed MOSI message
tREFE_mod1
GET1, MemoryRead, DiagDetails, NOP
tSyncFE
GET2, MemoryRead, DiagDetails, NOP
tREFE_mod3
GET3, MemoryRead, DiagDetails, NOP
Page 29 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Op
MOSI Message
tREFE
Next allowed MOSI message
1d
MemoryRead
tShort
MemoryRead, DiagDetails, NOP
3d
EEWrite
tShort
EEReadChallenge
5d
EEChallengeAns
teewrite
15d
EEReadChallenge
tShort
EEChallengeAns
16d
NOP / Challenge
tShort
All commands
22d
DiagnosticDetails
tShort
All commands
24d
OscCounterStart
tShort
OscCounterStop
26d
OscCounterStop
tShort
NOP
47d
Reboot
tStartup
49d
Standby
tShort
NOP
See Startup Sequence
All commands
Table 22 – Response time and Next allowed MOSI messages
13.11. NOP Command and NOP Answer
#
1
3
5
7
7
6
5
4
3
2
1
KEY [15:8]
CRC
0
#
0
2
4
6
7
6
5
4
3
2
1
0
0
0
0
KEY [7:0]
1
1
0
1
0
Table 23 – NOP (Challenge) MOSI Message (Opcode = 16d)
MSC NOP
Master
Slave
NOP(Challenge) (à)
X ( ß)
Next Cmd (à)
Challenge Echo (ß)
Figure 15 – NOP Message Sequence Chart
Note: the message X means “unspecified valid answer” and typically contains the answer of the previous
command.
REVISION 006 – DEC 2016
Page 30 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Parameter KEY: any 16 bit number
#
1
3
7
6
5
4
3
2
1
0
KEY_ECHO [15:8]
#
0
2
5
INVERTED KEY_ECHO [15:8]
4
7
CRC
6
7
6
5
4
3
2
1
0
0
1
KEY_ECHO [7:0]
INVERTED KEY_ECHO [7:0]
1
1
0
1
0
0
Table 24 - Challenge Echo MISO Message (Opcode = 17d)
Parameter KEY_ECHO = KEY
Parameter INVERTED KEY_ECHO = 65535 - KEY (meaning bit reversal).
13.12. OscCounterStart and OscCounterStop Commands
The SCI Master can evaluate the Slave’s internal oscillator frequency by the use of the OscCounterStart and
OscCounterStop commands. This first command enables in the MLX90363 a software counter whereas the
second command stops it and returns the counter value.
#
1
3
5
7
7
6
5
4
3
2
1
0
CRC
#
0
2
4
6
7
6
5
4
3
2
1
0
1
1
0
1
1
0
0
0
Table 25 – OscCounterStart MOSI message (opcode 24d)
#
1
3
5
7
7
6
5
4
3
2
1
0
CRC
#
0
2
4
6
7
6
5
4
3
2
1
0
1
1
0
1
1
0
0
1
Table 26 – OscCounterStart Acknowledge MISO message (opcode 25d)
#
1
3
5
7
6
5
4
7
3
2
1
0
CRC
#
0
2
4
7
6
5
4
3
2
1
0
6
1
1
0
1
1
0
1
0
Table 27 – OscCounterStop MOSI message (opcode 26d)
#
1
3
5
7
7
6
5
4
3
2
CounterValue[14:8]
CRC
1
0
#
0
2
4
6
7
6
5
4
3
2
1
0
1
1
CounterValue[7:0]
1
1
0
1
1
0
Table 28 – OscCounter MISO message (opcode 27d)
REVISION 006 – DEC 2016
Page 31 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Parameter CounterValue represents the time between the two events OscCounterStart Slave Select Rising
Edge and OscCounterStop Slave Select Rising Edge, in µs, and for an oscillator frequency equal to 19MHz
exactly.
The oscillator frequency can be calculated using the formula:
Ck = 19 [MHz] * (CounterValue - 40) [lsb] / tOscCounter [µs]
Message Sequence Chart
Oscillator Frequency Diagnostic
Slave
Master
OscCounterStart (à)
Challenge Echo (ß)
OscCounterStop (à)
OscStartAck (ß)
X (à )
OscCounter (ß)
Figure 16 – Oscillator Frequency Diagnostic Message Sequence Chart
SI
SO
SS
OscStart
OscStop
X
StartAck OscCounter
X
tOscCounter
Figure 17 – Oscillator Frequency Diagnostic Timing Diagram (SCI)
Parameter
Symbol
tOscCounter
REVISION 006 – DEC 2016
Test Condition
Min
Typ
Max
Unit
500
1000
30000
µs
Page 32 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
13.13. Protocol Errors Handling
Error Item
Error definition
Condition
Detection
Slave Actions
MISO Message
IncorrectBitCount MOSI Message bit
count ≠ 64
all modes
FW reads the HW
bit counter
Ignore
Message + Reinit Protocol
Error Message
(incorrect
bitcount = 1)
IncorrectCRC
MOSI Message
has a CRC Error
all modes
FW computes CRC
Ignore
Message + Reinit Protocol
Error Message
(incorrect
CRC = 1)
IncorrectOpcode
Invalid MOSI
Message
all modes
FW
Ignore
Message + Reinit Protocol
Error Message
(incorrect
Opcode = 1d)
tREFE <
tReady_mod1
Regular Message
Readback occurs
too early
Trigger
mode 1
Interrupt occurring
too early + FW
reads HW bit +
Protection interrupt
Ignore Frame +
Re-init
Protocol
NTT message
tSyncFE <
tReady_mod2
Regular Message
Readback occurs
too early
Trigger
mode 2
Interrupt occurring
too early + FW
reads HW bit +
Protection interrupt
Ignore Frame +
Re-init
Protocol
NTT message
tRESync Violation
Sync Pulse
occurring too
early
Trigger
mode 2
none. The Sync
pulse is pending
internally.
none (but the
Sync pulse is
not treated
immediately)
Valid message.
Note: This
violation can
cause a tSyncFE
< tReady_mod2
violation.
tRERE_mod3 <
tReady_mod3
Regular Message
Readback occurs
too early
Trigger
mode 3
Protection interrupt
Re-init
Protocol
NTT message
tREFE_mod3 <
tReady_FE_mod3
Regular Message
Readback occurs
too early
Trigger
mode 3
Protection interrupt
Re-init
Protocol
NTT message
TimeOut
Regular Message
Readback occurs
too late
all modes
Timer Interrupt
MISO Frame =
NTT + Re-init
Protocol
NTT message
Table 29 – Protocol Errors Handling (Slave standpoint)
REVISION 006 – DEC 2016
Page 33 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Error Items/Events
Associated Slave
Event
Master
recommended
actions
Associated Slave
Actions
Next MISO message
Receive NTT
Receive NTT
Protocol reinitialization
Protocol reinitialization
Error Message *
(TimeViolation = 1)
Receive Incorrect
CRC / Receive
Incorrect Opcode
undetected event
Protocol reinitialization
none
Normal message
Receive Error
Message
Send Error Message
Protocol reinitialization
none
Normal message
Receive an
unexpected
DiagDetails
message
Run in fail-safe
mode
Protocol reinitialization + Slave
reset
none
DiagDetails
message
Table 30 – Protocol Errors Handling (Master standpoint)
Notes
On NTT or Error messages, Master should consider that the last command is ignored by the Slave,
and it should therefore, either resend the command, or more generally re-initialize the protocol.
After protocol re-initialization, Master can diagnose the communication with a NOP command.
A MISO Error message implicitly means that the Slave has re-initialized the communication and is
therefore ready to receive any commands.
13.14. Ready, Error and NTT Messages
After power-on-reset, the first MISO message is a Ready message.
#
1
3
5
7
7
6
5
4
3
2
FWVersion[15:8]
1
0
CRC
#
0
2
4
6
7
6
5
4
3
2
HWVersion[7:0]
1
0
1
1
1
0
0
0
1
1
Table 31 – Ready MISO Message (Opcode = 44d)
The MLX90363 reports protocol errors using the Error message defined below. Diagnostics Errors (as
opposed to protocol errors) are reported with the bits E1 and E0 of the regular message.
#
1
3
5
7
7
6
5
4
3
CRC
2
1
0
#
0
2
4
6
7
6
5
1
1
1
4
3
2
ERROR CODE
1
1
1
1
0
0
1
Table 32 – Error Message MISO (Opcode = 61d)
REVISION 006 – DEC 2016
Page 34 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
The description of the parameter ErrorCode is give in the table below.
Code
Description of Error CODE
1
Incorrect BitCount
2
Incorrect CRC
Answer = NTT message
3
Two reasons: Answer Time-Out or Answer not Ready
OPCODE not valid
4
In most of the timing violations, the Slave answers with a NTT message. A NTT message is stored in the
Slave’s ROM (as opposed to the Slave’s RAM). NTT messages are typically seen in case of timing violation:
either the firmware is still currently processing the previous SCI command, or a time-out occurred (see GET).
In normal operation, NTT messages are not supposed to be observed: the Master is supposed to respect the
protocol timings defined.
#
1
7
6
3
1
5
1
5
1
4
3
2
1
1
0
1
1
1
7
#
0
7
6
2
1
4
CRC
6
5
4
1
1
1
1
1
3
1
1
1
2
1
0
1
1
1
1
1
1
1
1
1
0
Table 33 – NTT (Nothing To Transmit) Message (Opcode = 62d)
13.15. DiagnosticsDetails commands
This is the only function that can be combined with a regular message.
#
1
3
5
7
7
6
5
4
3
2
1
0
CRC
#
0
2
4
6
7
6
5
4
3
2
1
0
1
1
0
1
0
1
1
0
Table 34 – DiagnosticsDetails MOSI Command (Opcode = 22d)
Use DiagnosticDetails to get a detailed analysis of the diagnostics.
#
1
3
5
7
7
D15
6
D14
FSMERC
5
D13
4
D12
3
D11
2
D10
ANADIAGCNT
CRC
1
D9
0
D8
#
0
7
D7
6
D6
5
D5
4
D4
3
D3
2
D2
1
D1
0
D0
2
4
6
0
0
0
D20
D19
D18
D17
D16
1
1
0
1
0
1
1
1
Table 35 – Diagnostics DiagnosticDetails MISO message (Opcode = 23d)
Diagnostic bit Dx: see Section 17
Parameter ANADIAGCNT is a sequence loop counter referring to the analog-class diagnostics (all others).
REVISION 006 – DEC 2016
Page 35 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
If FSMERC = 3, ANADIAGCNT takes another meaning:
193 protection error interruption happened
194 invalid address error interruption happened
195 program error interruption happened
196 exchange error interruption happened
197 not connected error interruption happened
198 Stack Interrupt
199 Flow Control Error
Parameter FSMERC reports the root-cause of entry in fail-safe mode
FSMERC = 0: the chip is not in fail-safe mode
FSMERC = 1: BIST error happened and the chip is in fail-safe mode
FSMERC = 2: digital diagnostic error happened and the chip is in fail-safe mode
FSMERC = 3: one of the 5 error interruptions listed above happened and the chip is in fail-safe mode
13.16. MemoryRead message
#
1
7
3
5
7
6
5
4
3
2
ADDR0[15:8]
ADDR1[15:8]
CRC
1
0
#
0
2
4
6
7
6
5
4
3
2
ADDR0[7:0]
1
0
0
1
ADDR1[7:0]
1
1
0
0
0
0
Table 36 – MemoryRead MOSI Message (Opcode = 1d)
MemoryRead returns two EEPROM or RAM words respectively pointed by the parameters ADDR0, ADDR1.
The parameter ADDRx has three valid ranges: 0x0000 … 0x00FE for RAM access, 0x1000 ... 0x103E for
EEPROM access, and 0x4000 … 0x5FFE for ROM access
REVISION 006 – DEC 2016
Page 36 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
MSC MemoryRead
Master
Slave
MemoryRead (à)
X (ß )
Loop
MemoryRead (à)
MemoryRead (ß)
Next Cmd (à)
MemoryRead (ß)
Figure 18 – MSC for RAM/ROM/EEPROM Memory Read
Note: Enter the loop for complete memory dumps.
MemoryRead MISO Message (opcode 2d)
The address ADDR may be valid or not:
Case of validity: MemoryRead returns normally the data word pointed by ADDR
Case of invalidity: MemoryRead returns DataWord = 0.
Note: FW makes sure that invalid addresses do not cause memory access violation
#
1
7
6
3
5
7
5
4
3
2
1
DATA[15:8] AT ADDR0
0
DATA[15:8] AT ADDR1
#
0
2
4
6
CRC
7
6
5
4
3
2
DATA[7:0] AT ADDR0
1
0
1
0
DATA[7:0] AT ADDR1
1
1
0
0
0
0
Table 37 – MemoryRead MISO Message (Opcode = 2d)
13.17. EEWrite Message
#
1
7
0
6
0
5
4
3
2
1
(16)
ADDRESS[5:0]
0
#
0
3
KEY[15:8]
2
5
DATA WORD[15:8]
4
7
CRC
6
7
6
5
4
3
2
1
0
1
1
KEY[7:0]
DATA WORD[7:0]
1
1
0
0
0
0
Table 38 – EEWrite MOSI Message (Opcode = 3d)
16
The value of the ADDRESS[5:0] shall be even.
REVISION 006 – DEC 2016
Page 37 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
The EEPROM data consistency is guaranteed through two protection mechanisms: A and B.
Protection A: The parameter ADDRESS should match the parameter KEY.
The key associated to each address is public. Protection against erroneous write (in the field) is guaranteed
as long as the keys are not stored in the Master (ECU), but in the calibration system, which is typically a CAN
or LIN Master.
Protection B: Slave challenges the Master with a randomly generated CHALLENGE KEY, expects back this key
exclusive-or with 0x1234
MSC EEPROMWrite
(Case of Failing Challenge)
MSC EEPROMWrite
(Case of Erroneous Key)
MSC EEPROMWrite
Slave
Master
Slave
Master
Slave
Master
EEWrite(Addr,Key)(à)
X ( ß)
EEWrite(Addr,Key)(à)
X ( ß)
EEWrite(Addr,Key)(à)
X ( ß)
EEReadChallenge (à)
EEChallenge (ß)
EEReadChallenge (à)
EEWriteStatus (ß)
EEReadChallenge (à)
EEChallenge (ß)
EEChallengeAns (à)
EEReadAnswer (ß)
EEChallengeAnsr (à)
EEReadAnswer (ß)
tEEWrite
tEEWrite
NOP (à)
EEWriteStatus (ß)
NOP (à)
EEWriteStatus (ß)
Figure 19 – MSCs EEWrite
ADDRESS[3:1]
ADDRESS[5:4]
0
1
2
3
4
5
6
7
0
17485
31053
57190
57724
7899
53543
26763
12528
1
38105
51302
16209
24847
13134
52339
14530
18350
2
55636
64477
40905
45498
24411
36677
4213
48843
3
6368
5907
31384
63325
3562
19816
6995
3147
Table 39 – EEPROM Write Public Keys
#
1
3
5
7
7
6
5
4
3
CRC
2
1
0
#
0
2
4
6
7
6
5
4
3
2
1
0
1
1
0
0
1
1
1
1
Table 40 – EEWrite ReadChallenge MOSI Message (Opcode = 15d)
REVISION 006 – DEC 2016
Page 38 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
#
1
3
5
7
7
6
5
4
3
2
1
0
CHALLENGE KEY [15:8]
CRC
#
0
2
4
6
7
6
5
4
3
2
1
0
0
0
CHALLENGE KEY [7:0]
1
1
0
0
0
1
Table 41 – EEWrite EEChallenge MISO Message (Opcode = 4d)
The parameter CHALLENGE KEY is randomly generated by the sensor, and should be echoed because of the
next command
#
1
3
7
6
5
4
3
2
1
0
KEY ECHO [15:8]
#
0
2
5
INVERTED KEY ECHO [15:8]
4
7
CRC
6
7
6
5
4
3
2
1
0
0
1
KEY ECHO [7:0]
INVERTED KEY ECHO [7:0]
1
1
0
0
0
1
Table 42 – EEWrite ChallengeAns MOSI Message (Opcode = 5d)
The parameter KEY ECHO should match CHALLENGE KEY exor’ed with 0x1234.
The parameter INVERTED KEY ECHO should match KEY ECHO after bit reversal.
#
1
3
4
7
7
6
5
4
3
2
1
0
CRC
#
0
2
4
6
7
6
5
4
3
2
1
0
1
1
1
0
1
0
0
0
Table 43 – EEReadAnswer MISO Message (Opcode = 40d)
#
1
3
4
7
7
6
5
4
3
2
CRC
1
0
#
0
2
4
6
7
6
5
4
3
2
1
CODE
0
1
1
0
0
1
1
0
1
Table 44 – EEWriteStatus MISO Message (Opcode = 14d)
The parameter Code details the exact cause of EEPROM write failure
1
Success
2
Erase/Write Fail
4
EEPROM CRC Erase/Write Fail
6
Key Invalid
7
Challenge Fail
8
Odd Address
The command Reboot must be sent after a series of EEPROM writes, to make sure that the new EEPROM
parameters are taken into account.
REVISION 006 – DEC 2016
Page 39 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
13.18. Reboot
Reboot is a valid command in the following three cases.
1.
2.
3.
After an EEPROM write
In fail-safe mode
In standby mode
In normal mode, Reboot reports wrong opcode.
Reboot causes a system reset identical to a true power-on reset. Start-up timings and sequences are
applicable for the reboot message.
Reboot, after EEPROM programming
It is meant to force the FW to refresh the EEPROM cache and I/O space after a series of EEPROM write
commands. It forces the FW to take into account all the changes (modes enabling, disabling...) including
those that are not cached.
Reboot, in fail-safe mode
ECU can issue a Reboot message to exit the fail-safe mode before the watchdog time-out, for a fast recovery.
#
1
3
4
7
7
6
5
4
3
2
1
0
CRC
#
0
2
4
6
7
6
5
4
3
2
1
0
1
1
1
0
1
1
1
1
Table 45 – Reboot (Opcode = 47d)
13.19. Standby
Standby sets the sensor in Standby mode: the digital clock is stopped and some analog blocks are switched
off. The SCI clock remains active, allowing the sensor to be responsive to SCI messages. Standby is a valid
command only after a NOP or a DiagnosticDetails.
The first SCI message received while in Standby wakes up the sensor. The Standby mode is precisely exited
on the SS rising edge. The first message following a Standby message is normally interpreted by the sensor.
It can be NOP, a GET or anything else.
#
1
3
4
7
7
6
5
4
3
CRC
2
1
0
#
0
2
4
6
7
6
5
4
3
2
1
0
1
1
1
1
0
0
0
1
Table 46 – Standby (Opcode = 49d)
The sensor answer to Standby is StandbyAck (opcode 50). After resuming, the diagnostic status bits (E1, E0)
of the 6 following GET messages shall be ignored.
REVISION 006 – DEC 2016
Page 40 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
13.20. Start-up Sequence (Serial Communication)
The MLX90363 serial interface is enabled after the internal start-up initializations and start-up checks.
Note: The start-up sequence of the MLX90363 firmware is described at chapter 18.1.
The recommended SCI start-up sequences (Master – Slave) are depicted in the following message sequence
charts, and timing diagrams. It usually starts with a NOP MOSI message. Ready is the first MISO message.
The start-up sequence timing diagram with verification of the oscillator frequency is depicted in Figure 22.
It’s not mandatory to perform such check, even from a safety point of view.
Message Sequence Chart
Start-up Sequence (Basic Scenario)
Master
Slave
NOP(Challenge) (à)
Ready (ß)
GETx (à)
Challenge Echo (ß)
Loop
GETx (à)
Regular Packet (ß)
Figure 20 – MSCs Start-up sequence example
VDD
POR
SI
SO
SS
NOP GETx
Ready Challenge Echo
tPOR
tStartUp
Figure 21 – Start-up sequence, basic scenario, timing diagram
VDD
POR
SI
SO
SS
NOP
OscStop DiagDetails GETx
OscStart
Ready Challenge Echo
tPOR
tStartUp
StartAck OscCounter DiagDetails
tOscCounter
Figure 22 – Start-up sequence timing diagram including Oscillator Frequency Check
REVISION 006 – DEC 2016
Page 41 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Notes:
The timing tStartUp is specified at chapter Timing Specifications (Section 9)
The Slave answers with NTT in case the first MOSI message occurs prior the end of the initial checks.
The NOP - Challenge Echo is meant to diagnose the SCI link.
13.21. Allowed sequences
Only the message sequences described in this datasheet are accepted by the sensor.
A few more are described below; they combine GET1 or GET2 with MemoryRead or DiagDetails.
The particular timings associated to these sequences do not overrule the general timing specifications.
Message Sequence Chart
Single Slave - Combi GET1+MemoryRead
Master
Loop
Slave
GET1 (à)
MemoryReadAns (ß)
Message Sequence Chart
Single Slave - Combi GET1+DiagDetails
Master
Loop
Slave
GET1 (à)
DiagDetails (ß)
MemoryRead (à)
Regular packet (ß)
DiagDetails (à)
Regular packet (ß)
NOP (à)
MemoryReadAns (ß)
NOP (à)
DiagDetails (ß)
Figure 23 – MSCs Combi sequences GET1 + MemoryRead and GET1 + DiagDetails
REVISION 006 – DEC 2016
Page 42 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Message Sequence Chart
Single Slave - Combi GET2+MemoryRead
Master
Loop
Slave
GET2 (à)
MemoryReadAns (ß)
Message Sequence Chart
Single Slave - Combi GET2+DiagDetails
Master
Loop
Slave
GET2 (à)
DiagDetails (ß)
Sync Pulse
Sync Pulse
MemoryRead (à)
Regular packet (ß)
DiagDetails (à)
Regular packet (ß)
NOP (à)
MemoryReadAns (ß)
NOP (à)
DiagDetails (ß)
Figure 24 – MSCs Combi sequences GET2 + MemoryRead and GET2 + DiagDetails
14. Traceability Information
Every device contains a unique ID that is programmed by Melexis in the EEPROM. Melexis strongly
recommends storing this value during the EOL (End-Of-Line) programming to ensure full traceability of the
final product.
These parameters shall never be erased during the EOL programming.
Parameter
Comments
Address
(Hex)
Default
Values
Parameter
# bit
MLX
48
1012[15:0]
MLXID
Traceability Information
1014[15:0]
1016[15:0]
REVISION 006 – DEC 2016
Page 43 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
15. End-User Programmable Items
The list below describes the parameters that are available to the customer during EOL programming. The
parameters will be programmed through the EEWrite message (section 13.17).
It must be noted that the data type of EEWrite message is a word, and therefore it is mandatory to first
readback the complete contents of the word before changing only the bits corresponding to the parameter.
Address
(Hex)
Default
Values
Parameter
# bit
102A[2:0]
0
3
102A[3]
0
1
Enabling of Signal Filter
102A[5:4]
0
2
VIRTUALGAINMAX
Electrical Gain Code Max
102E[15:8]
41
8
VIRTUALGAINMIN
Electrical Gain Code Min
102E[7:0]
0
8
KALPHA
Magnetic Angle Formula Parameter
1022[15:0]
0
16
KBETA
Magnetic Angle Formula Parameter
1024[15:0]
1.6
16
SMISM + SEL_SMISM
Magnetic Angle Formula Parameter
1032[15:0]
1
16
ORTH_B1B2
Magnetic Angle Formula Parameter
1026[7:0]
0
8
KT
Magnetic Angle Formula Parameter
1030[15:0]
1
16
FHYST
Hysteresis Value (Alpha + Beta )
1028[15:8]
MLX
8
PINFILTER
SCI Input Pins: EMC: Filter Bandwidth
1001[1:0]
1
2
USERID
User Identification
103A[15:0]
0001
16
103C[15:0]
0003
16
0
40
Parameter
Comments
MAPXYZ
XYZ Coordinates mapping
3D
Enabling of 3D formula (Joystick)
FILTER
1018[15:0]
FREE
Freely usable by user
1026[15:8]
1028[7:0]
103E[7:0]
Melexis strongly recommends checking the User Identification data (Parameters USERID) during EOL
programming.
REVISION 006 – DEC 2016
Page 44 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
16. Description of End-User Programmable Items
16.1. User Configuration: Device Orientation
MAPXYZ
Assignment
0
B1 = X, B2 = Y, B3 = Z
1
B1 = X, B2 = Z, B3 = Y
2
B1 = Y, B2 = Z, B3 = X
3
B1 = Y, B2 = X, B3 = Z
4
B1 = Z, B2 = X, B3 = Y
5
B1 = Z, B2 = Y, B3 = X
Note
Use mode 0 instead
The values B1, B2 and B3 are inputs to the 2D/3D formula (see section 16.2).
The field coordinates X, Y, Z are relative to the device (See Section 22.2 and 22.6). The parameter MAPXYZ
selects the application-dependent mapping of (X, Y, Z) to (B1, B2, B3).
16.2. User Configuration: Magnetic Angle Formula
Parameter 3D
Formula
0
B2
Alpha = arctan
B1
1
Note
extended to the full circle
Alpha = arctan
(KALPHA × B3)2 + ( KT × B 2) 2
Beta = arctan
(KBETA × B3)2 + ( KT × B1) 2
B1
B2
extended across B1=0 and B2=0
max 180 Deg.
16.3. User Configuration: 3D = 0 formula trimming parameters SMISM
and ORTH_B1B2
REVISION 006 – DEC 2016
Page 45 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
16.3.1. Magnetic Angle ∠XY
Parameter
Address (hex)
Value
SMISM + SEL_MISM
1032[15:0]
Trimmed by MLX
ORTH
1038[7:0]
Trimmed by MLX
ORTH_SEL
102C[8]
0
MAPXYZ
102A[2:0]
0
This is the default condition as programmed by Melexis. In such case, no front-end calibration is needed
from the customer.
16.3.2. Magnetic Angle ∠XZ and ∠YZ
Parameter
Address (hex)
Range
Value
SEL_SMISM
1032[15]
0 or 1
0 or 1
SMISM
1032[14:0]
[0..2]
TYP = 1.2
ORTH_SEL
102C[8]
0 or 1
1
ORTH_B1B2
1026[7:0]
[0..2]
TYP = 0
MAPXYZ
102A[2:0]
1, 2, 4 or 5
1, 2, 4 or 5
If the magnetic angle ∠XZ or ∠YZ is read, Melexis strongly recommends calibrating the front-end
parameters in order to reduce the magnetic accuracy error (see Section 10):
Phase Error
B2 = B1 – B2 * ORTH_B1B2 / 1024
Where ORTH_B1B2 is the phase mismatch between the B1 and B2 signals.
Sensitivity Mismatch between B1 and B2
The parameter SMISM is selected in such a way that:
i.
Case |B1|>|B2| à SEL_SMISM = 0
B1 * SMISM[14:0] / 215 and B2 have the same amplitude.
ii.
Case |B1| 190 Deg.C
(± 20 Deg.C)
Temperature < -80 Deg.C
(± 20 Deg.C)
Field magnitude too high
(Norm > 99% ADC Span) (19)
17
Reporting is done through the bits E0 and E1 of the regular messages or the bits Dx of the DiagnosticDetails message.
See Table 10 for more details.
18
Diagnostic to be disabled in the 3V3 Application Diagram (VDEC=VDD).
19
Norm = max(abs(X),abs(Y),abs(Z))
REVISION 006 – DEC 2016
Page 49 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Diagnostic Item
Action
Bit
Notes
Field magnitude too low
(Norm < 20% ADC Span) (19)
Report (17)
D18
External failure, given that AGC
keeps Norm above 47%
ADC clipping (X, Y, Z, two
phases each)
Report (17)
D19
External failure
Supply voltage monitor
(VDD) and Regulator monitor
(VDEC) (18)
Report (17) (Disabled by default)
D20
External failure
Firmware Flow monitoring
Fail-safe mode
n/a
Read/Write Access out of
physical memory
Fail-safe mode
n/a
Stack Overflow
Fail-safe mode
n/a
Write Access to protected
area (IO and RAM Words)
Fail-safe mode
n/a
Unauthorized entry in
“SYSTEM” Mode
Fail-safe mode
n/a
Serial Interface Protection
Error
NTT Message (20)
n/a
Watchdog Timeout
Reset (21)
n/a
Oscillator Frequency
(Dedicated SCI Command)
n/a
n/a
Diagnostic performed by Master
VDD > MT8V
MISO is HiZ
n/a
100% Hardware detection. No
communication possible.
20
21
The NTT Message is followed by an Error Message.
Resetting has the same effects as a POR: the next SO message is therefore Ready.
REVISION 006 – DEC 2016
Page 50 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
18. Firmware Flowcharts
18.1. Start-up sequence
The entry in operation mode is preceded by a startup phase or startup sequence, performing the built-in self
tests (performed only once), the automatic analog gain adjustment, the temperature acquisition and a first
execution of the built-in self diagnostics (also performed continuously afterwards). The start-up sequence
ends with the enabling of the serial interface.
Start-up Sequence on POR
BIST RAM
BIST Watchdog
BIST EEPROM CRC+DED
RAM and IO Space Initialization
SCI, ADC Driver Initialization
Automatic Gain Control
(6 x Signal Processing)
Temperature Acquisition
Digital Diagnostics First Pass
ROM, RAM, CPU, EE CRC
Analog Diagnostics First Pass
ADCMonitor, TempMonitors...
Enable SCI Communication
SO = Ready
Background
Figure 25 – Firmware start-up sequence
REVISION 006 – DEC 2016
Page 51 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
18.2. Signal Processing (GETx)
The digital signal processing performed by the firmware is depicted by the following diagram.
Inputs
from
EEPROM
OfsX0
OfsY0
OfsZ0
Xslope
Yslope
Zslope
T25
Tm40
T125
ORTH
SMIS
Inputs
from ADC
Xadc
If 3D=0
If Orth_Sel =0
+
+
-
FIR/IIR
Filter
+
*
X
XB
OfsX = ( OfsX0 + XSlope * dT)
* VG / VGMAX
Yadc
kalpha
kbeta
kt
FIR/IIR
Setting
+
+
-
ORTH_XY
*
FIR/IIR
Filter
+
Y
Map
X,Y,Z
on
B1,B2
,B3
ORTH_
B1B2
If Marker = 0
Alpha = atan( B2 / B1)
If Orth_Sel
=1
*
*
*
SMIS
B1
Zadc
+
+
-
*
FIR/IIR
Filter
+
Z
If Marker = 1
ALPHA
Alpha = atan( Sqrt(
(kalpha.B3)2 + (kt.B2)2 ) / B1)
YB
OfsY = ( OfsY0 + YSlope * dT)
* VG / VGMAX
DSP
Outputs
B2
B3
BETA
Beta = atan( Sqrt(
(Kbeta.B3)2 + (kt.B1)2 ) / B2 )
Digital Signal (Post)-Processing
ZB
SCI Message Coding
Case Marker = 2
OfsZ = ( OfsZ0 + ZSlope * dT )
* VG / VGMAX
ALPHA
T
+
*
-
T25
T125
+
-
BETA
dT
ALPHA
Tslope
90363 ABB Digital Signal (Pre)-Processing
Tm40
VG
SCI Message Coding
Case Marker = 1
SCI Message Coding
Case Marker = 0
Figure 26 – Block Diagram of Signal Processing – Function Model
18.3. Fail-safe Mode
The purpose of fail-safe mode is to increase the safety integrity, by blocking position calculation and
reporting whenever a digital-type error (WD error, ROM Checksum, Firmware flow error…) is detected
In fail-safe mode,
The analog is [set] inactive
The sensor waits for the Master to initiate a reset
Autonomous reset by watchdog after 100ms, i.e. watchdog running but will not be acknowledged
Only SPI driver and communication handler is active. The only supported MOSI commands is
sciREBOOT
Upon all SPI MOSI commands, the MISO message SPI_ERROR ( = DiagDetailAnswer) is sent
Diagnostics (analog and digital) and background are not running
REVISION 006 – DEC 2016
Page 52 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Fail-safe mode – entry conditions
The fail-safe mode is entered upon:
Critical error during initialization (RAM BIST, WD BIST, ROM Checksum, EEPROM CRC)
Critical error during background/digital diagnostics (RAM continuous test, ROM test, EEPROM CRC)
Exception, i.e. system level interrupts (Stack-overflow, invalid address, protection error, program
error)
FW flow error
18.4. Automatic Gain Control
The Virtual Gain code is updated at every GET message. The new code value is based on the field strength
(Norm) of every raw component (X, Y, Z).
The Automatic Gain Control (AGC) makes sure that Norm is between 47% and 63.5%, by controlling the gain
code within the range (VIRTUALGAINMIN, VIRTUALGAINMAX).
The algorithm gives a limitation in term flux density frequency, see Section 10 for specification.
It is not recommended to interrupt the GET message sequence, because AGC iterations are triggered by GET
messages. If a pause cannot be avoided, the (E1, E0) error bits of the 6 following GET messages shall be
ignored.
REVISION 006 – DEC 2016
Page 53 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
19. Recommended Application Diagrams
19.1. MLX90363 in SOIC-8 Package and 5V Application
5V
VDD_IO
VSS_IO
8
SPI MASTER
1
C2
100nF
VDD
MLX90363
SCLK
MOSI
MISO
VSS
Test
MOSI
/SS
SCLK
/SS
5
VDEC
4
MISO
C1
47nF
Figure 27 – Recommended wiring ( 22) for the MLX90363 in SOIC-8 package and 5V Application
19.2. MLX90363 in SOIC-8 Package and 3V3 Application
3V3
VDD_IO
VSS_IO
8
1
SPI MASTER
VDD
MLX90363
SCLK
MOSI
MISO
VDEC
Test
MOSI
SCLK
/SS
C1
100nF
5
MISO
4
/SS
VSS
Figure 28 – Recommended wiring (22) for the MLX90363 in SOIC-8 package and 3V3 Application
22
Wiring of the SCI signals must be kept short on the PCB. In other cases, Melexis advises to add 100Ω serial resistor on
the SCLK, MOSI, MISO and /SS lines. Melexis also recommends doubling the C1 decoupling capacitor
REVISION 006 – DEC 2016
Page 54 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
19.3. MLX90363 in TSSOP-16 Package and 5V Application
C3 100nF
5V
VDD_IO
MLX90363
VSS_IO
SPI MASTER
SCLK
14
SCLK1
VDEC1
1
6
SCLK2
VSS1
2
16
MOSI1
Test1
13
MOSI
8
MOSI2
VDD1
3
MISO
4
MISO1
VDEC2
9
12
MISO2
VSS2
10
/SS1
15
/SS1
Test2
5
/SS2
7
/SS2
VDD2
11
C1 47nF
C2 47nF
Figure 29 – Recommended ( 23) wiring in TSSOP-16 package (dual die) and 5V Application
19.4. MLX90363 in TSSOP-16 Package and 3V3 Application
3V3
VDD_IO
MLX90363
VSS_IO
14
SCLK1
VDEC1
1
6
SCLK2
VSS1
2
SCLK
16
MOSI1
Test1
13
MOSI
8
MOSI2
VDD1
3
MISO
4
MISO1
VDEC2
9
12
MISO2
VSS2
10
/SS1
15
/SS1
Test2
5
/SS2
7
/SS2
VDD2
11
SPI MASTER
C1 100nF
C2 100nF
Figure 30 – Recommended (23) wiring in TSSOP-16 package (dual die) and 3V3 Application
23
Wiring of the SCI signals must be kept short on the PCB. In other cases, Melexis advises to add 100Ω serial resistor on
the SCLK, MOSI, MISO and /SS lines. Melexis also recommends doubling the C1, C2 decoupling capacitors.
REVISION 006 – DEC 2016
Page 55 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
20. Standard information regarding manufacturability
of Melexis products with different soldering processes
Our products are classified and qualified regarding soldering technology, solderability and moisture
sensitivity level according to standards in place in Semiconductor industry.
For further details about test method references and for compliance verification of selected soldering
method for product integration, Melexis recommends reviewing on our web site the General Guidelines
soldering recommendation (http://www.melexis.com/en/quality-environment/soldering).
For all soldering technologies deviating from the one mentioned in above document (regarding peak
temperature, temperature gradient, temperature profile etc), additional classification and qualification tests
have to be agreed upon with Melexis.
For package technology embedding trim and form post-delivery capability, Melexis recommends consulting
the dedicated trim&forming recommendation application note: lead trimming and forming
recommendations
(http://www.melexis.com/en/documents/documentation/application-notes/leadtrimming-and-forming-recommendations).
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more
information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of
the use of certain Hazardous Substances) please visit the quality page on our website:
http://www.melexis.com/en/quality-environment.
21. ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
REVISION 006 – DEC 2016
Page 56 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
22. Package Information
22.1. SOIC-8 - Package Dimensions
1.27 TYP
NOTES:
3.81
5.80
3.99** 6.20**
4.80
4.98*
All dimensions are in millimeters (angles in degrees).
* Dimension does not include mold flash, protrusions or
gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or
protrusion (shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion.
Allowable dambar protrusion shall be 0.08 mm total in
excess of the dimension at maximum material condition.
Dambar cannot be located on the lower radius of the foot.
1.37
1.57
1.52
1.72
0.36
0.46***
0.19
0.25
0.100
0.250
0.41
1.27
0°
8°
22.2. SOIC-8 - Pinout and Marking
5
8
Part Number MLX90363 (3 digits)
Die Version (3 digits)
/SS
MOSI
VDEC
VSS
Marking :
Top
363Axx
M12345
Xy-E
REVISION 006 – DEC 2016
M12345
Xy-E
Bottom
SCLK
Test
MISO
4
VDD
1
Axx
363
YY
Lot number: “M” + 5 digits
Split lot number + “-E” (Optional )
WW
Week Date code (2 digits)
Year Date code (2 digits)
Page 57 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
22.3. SOIC-8 - IMC Positionning
CW
8
7
6
5
CCW
X
0.46 +/- 0.06
1.16 +/- 0.155
1.25
1.65
1
2
1.96
2.26
3
4
Y
Angle detection SOIC-8
6
N
2
3
5
8
7
4
1
2
7
2
5
8
7
5
3
4
6
5
3
4
S
S
N
1
6
6
~ 270 Deg.*
~ 180 Deg.*
8
S
1
7
~ 90 Deg.*
N
8
S
~ 0 Deg.*
3
4
1
2
N
* No absolute reference for the angular information.
The MLX90363 is an absolute angular position sensor but the linearity error (Le – See section 10) does not
include the error linked to the absolute reference 0 Deg.
REVISION 006 – DEC 2016
Page 58 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
22.4. TSSOP-16 - Package Dimensions
0.65 TYP
12O TYP
0.20 TYP
0.09 MIN
1.0 DIA
4.30
4.50** 6.4 TYP
0.09 MIN
1.0
12O TYP
1.0
0.50
0.75
0O
8O
1.0 TYP
0.85
0.95
4.90
5.10*
1.1 MAX
0.19
0.30***
0.09
0.20
0.05
0.15
NOTES:
All dimensions are in millimeters (angles in degrees).
* Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the
dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot.
REVISION 006 – DEC 2016
Page 59 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
22.5. TSSOP-16 - Pinout and Marking
16
1
VDEC1
MOSI1
/SS1
SCLK1
363Axx
M12345
Xy-E
VSS1
VDD1
MISO1
Test2
SCLK2
Marking :
VDD2
9
MOSI2
8
/SS2
Test1
MISO2
VSS2
Part Number MLX90363 (3 digits)
Die Version (3 digits)
VDEC2
Top
363
Axx
M12345 Lot number: “M” + 5 digits
Xy-E
Bottom
YY
Split lot number + “-E” (Optional)
WW
Week Date code (2 digits)
Year Date code (2 digits)
22.6. TSSOP-16 - IMC Positionning
CW
X2
16
9
Die 1
Die 2
Y2
Y1
0.30 +/- 0.06
CCW
1.95
2.45
1
0.70 +/- 0.13
8
1.84
2.04
X1
2.76
2.96
REVISION 006 – DEC 2016
Page 60 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
Angle detection TSSOP-16
~ 180 Deg.*
16
9
Die 2
S
S
Die 2
9
Die 1
N
1
~ 90 Deg.*
16
S
Die 1
8
~ 270 Deg.*
9
S
16
Die 2
1
~ 0 Deg.*
~ 180 Deg.*
9
Die 1
8
1
~ 270 Deg.*
16
N
N
Die 1
~ 90 Deg.*
8
1
Die 2
N
~ 0 Deg.*
8
* No absolute reference for the angular information.
The MLX90363 is an absolute angular position sensor but the linearity error (Le – See section 10) does not
include the error linked to the absolute reference 0 Deg.
REVISION 006 – DEC 2016
Page 61 of 62
MLX90363 Magnetometer IC with High Speed Serial Interface
Datasheet
23. Disclaimer
The information furnished by Melexis herein (“Information”) is believed to be correct and accurate. Melexis disclaims (i) any and all liability in
connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein
(“Product”) (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties,
express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No
obligation or liability shall arise or flow out of Melexis’ rendering of technical or other services.
The Information is provided "as is” and Melexis reserves the right to change the Information at any time and without notice. Therefore,
before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the
relevant information to verify that the information being relied upon is current.
Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and
determine whether it is fit for a particular purpose.
The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does
not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.
This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior
authorization from competent authorities.
The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not
designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental
requirements. High reliability applications, such as medical life-support or life-sustaining equipment are specifically not recommended by
Melexis.
The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing,
operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development,
production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3)
defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with
other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed
conflict or any similar violent situation.
The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found
at https://www.melexis.com/en/legal/terms-and-conditions.
This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document.
Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)
ISO/TS 16949 and ISO14001 Certified
24. Contact
For the latest version of this document, go to our website at www.melexis.com. For additional information,
please contact our Direct Sales team and get help for your specific needs:
Europe, Africa
Telephone: +32 13 67 04 95
Email : sales_europe@melexis.com
Americas
Telephone: +1 603 223 2362
Email : sales_usa@melexis.com
Asia
Email : sales_asia@melexis.com
REVISION 006 – DEC 2016
Page 62 of 62