MLX90372 - Triaxis® Position Processor
Datasheet
Features and Benefits
Hall Technology
On Chip Signal Processing for Robust
Absolute Position Sensing
ISO26262 ASIL-C Safety
Element out of Context
AEC-Q100 Qualified
Programmable Measurement Range
Programmable Linear Transfer Characteristic
(4 or 8 Multi-points or 16 or 32 PWL)
Selectable (fast) SENT or PWM Output
SAE J2716 APR2016 SENT
Enhanced serial data communication
48 bits ID Number option
Single Die - SOIC-8 Package (RoHS)
Dual Die (Full Redundant) - TSSOP-16 Package
(RoHS)
PCB-less DMP-4 Package (RoHS)
Robustness against stray-field
SOIC-8
TSSOP-16
DMP-4
Application Examples
Absolute Rotary Position Sensor
Pedal Position Sensor
Throttle Position Sensor
Ride Height Position Sensor
Absolute Linear Position Sensor
Steering Wheel Position Sensor
Float-Level Sensor
Non-Contacting Potentiometer
REVISION 8 - 08 MAR 2019
3901090372
Description
The MLX90372 is a monolithic magnetic position
processor IC. It consists of a Triaxis® Hall magnetic
front end, an analog to digital signal conditioner, a
DSP for advanced signal processing and an output
stage driver.
The MLX90372 is sensitive to the three
components of the magnetic flux density applied
to the IC (i.e. Bx, By and Bz). This allows the
MLX90372 with the correct magnetic circuit to
decode the absolute position of any moving
magnet (e.g. rotary position from 0 to 360
Degrees or linear displacement, see fig. 2). It
enables the design of non-contacting position
sensors that are frequently required for both
automotive and industrial applications.
The MLX90372 provides SENT frames encoded
according to a Secure Sensor format. The circuit
delivers enhanced serial messages providing error
codes, and user-defined values. Through
programming, the MLX90372 can also be
configured to output a PWM (Pulse Width
Modulated) signal.
MLX90372 - Triaxis® Position Processor
Datasheet
Ordering Information
Temp.
Package
Option Code
Packing
Form
MLX90372
G
DC
ACC-300
RE
Angular Rotary / Linear position
MLX90372
G
GO
ACC-200
RE
Linear position Strayfield Immune
MLX90372
G
GO
ACC-300
RE
Angular Rotary / Linear position
MLX90372
G
VS
ACC-300
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ACC-301
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ACC-303
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ACC-308
RE/RX
Angular Rotary / Linear position
MLX90372
G
DC
ACE-100
RE
Angular Rotary Strayfield Immune
MLX90372
G
DC
ACE-200
RE
Linear position Strayfield Immune
MLX90372
G
DC
ACE-300
RE
Angular Rotary / Linear position
MLX90372
G
GO
ACE-100
RE
Angular Rotary Strayfield Immune
MLX90372
G
GO
ACE-200
RE
Linear position Strayfield Immune
MLX90372
G
GO
ACE-300
RE
Angular Rotary / Linear position
MLX90372
G
GO
ACE-500
RE
Angular Rotary Strayfield Immune
MLX90372
G
VS
ACE-100
RE/RX
Angular Rotary Strayfield Immune
MLX90372
G
VS
ACE-101
RE/RX
Angular Rotary Strayfield Immune
MLX90372
G
VS
ACE-103
RE/RX
Angular Rotary Strayfield Immune
MLX90372
G
VS
ACE-108
RE/RX
Angular Rotary Strayfield Immune
MLX90372
G
VS
ACE-200
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ACE-201
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ACE-203
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ACE-208
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ACE-300
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ACE-301
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ACE-303
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ACE-308
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ACE-350
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ACE-357
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ADE-310
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ADE-311
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ADE-313
RE/RX
Angular Rotary / Linear position
MLX90372
G
VS
ADE-318
RE/RX
Angular Rotary / Linear position
Product
Definition
Table 1 - Ordering Codes
REVISION 8 - 08 MAR 2019
3901090372
Page 2 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Temperature Code:
G: from -40°C to 160°C
Package Code:
DC : SOIC-8 package (see 18.1)
GO : TSSOP-16 package (full redundancy dual die, see 18.5)
VS : DMP-4 package (PCB-less dual mold, see 18.12)
Option Code - Chip revision
ACE-123 : Chip Revision
ACC : Not recommended for new designs (1)
ACE : Standard preferred revision (1)
ADE : DMP “low emissions” version
Option Code - Application
ACE-123 : 1-Application - Magnetic configuration
1: Angular Rotary Strayfield Immune - Low field Variant
2: Linear position Strayfield Immune
3: Legacy / Angular Rotary / Linear position
5: Angular Rotary Strayfield Immune - High field Variant
Option Code - SW & DMP-4
configuration
ACE-123 : 2-SW and DMP-4 package configuration
For SOIC-8 (code DC) and TSSOP-16 (code GO) packages
0: SENT 3µs mode
For DMP-4 (code VS) package with Pinout-A (see section 3.3)
0: SENT 3µs mode, standard capacitor configuration (2)
1: SENT 3µs mode, capacitor configuration no 2 (2)
For DMP-4 (code VS) package with Pinout-B (see section 3.4)
5: SENT 3µs mode
Option Code - Trim & Form
ACE-123 : 3-DMP-4 Trim & Form configuration
0: Standard STD1 1.27. See section 18.9
1: Trim and Form STD1 2.54. See section 18.10 (not recommended
for new designs, prefer STD4 2.54)
3: Trim and Form STD2 2.54. See section 18.11
7: Trim and Form STD3 2.00. See section 18.12
8: Trim and Form STD4 2.54. See section 18.13
Packing Form:
-RE : Tape & Reel
VS:2500 pcs/reel
DC:3000 pcs/reel
GO:4500 pcs/reel
-RX : Tape & Reel, similar to RE with parts face-down (VS package only)
Ordering Example:
MLX90372GDC-ACE-300-RE
For a legacy version in SOIC-8 package, delivered in Reel of 3000pcs.
Table 2 - Ordering Codes Information
1
ACE is preferred product revision to be selected for new designs. ACC remains in production during the entire product lifecycle.
2
See section 15.3 Wiring with the MLX90372 in DMP-4 Package (built-in capacitors)
REVISION 8 - 08 MAR 2019
3901090372
Page 3 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Contents
Features and Benefits ..................................................................................................................... 1
Application Examples...................................................................................................................... 1
Description..................................................................................................................................... 1
Ordering Information ..................................................................................................................... 2
1. Functional Diagram and Application Modes ................................................................................. 7
2. Glossary of Terms ....................................................................................................................... 8
3. Pin Definitions and Descriptions .................................................................................................. 9
3.1. Pin Definition for SOIC-8 package ............................................................................................ 9
3.2. Pin Definition for TSSOP-16 package ....................................................................................... 9
3.3. Pin Definition for DMP#1 - Pinout A package ........................................................................ 10
3.4. Pin Definition for DMP#2 - Pinout B package ........................................................................ 10
4. Absolute Maximum Ratings ....................................................................................................... 11
5. Isolation Specification ............................................................................................................... 11
6. General Electrical Specifications ................................................................................................ 12
7. Timing Specification .................................................................................................................. 14
7.1. General Timing Specifications ............................................................................................... 14
7.2. Timing Modes ........................................................................................................................ 14
7.3. Timing Definitions .................................................................................................................. 16
7.4. SENT timing specifications ..................................................................................................... 18
7.5. PWM timing specifications .................................................................................................... 22
8. Magnetic Field Specifications .................................................................................................... 23
8.1. Rotary Stray-field Immune Mode - Low Field Variant (-100 code) ........................................ 23
8.2. Rotary Stray-field Immune Mode - High Field Variant (-500 code) ....................................... 24
8.3. Linear Stray-field Immune Mode (-200 code) ....................................................................... 25
8.4. Standard/Legacy Mode (-300 code) ...................................................................................... 26
9. Accuracy Specifications ............................................................................................................. 28
9.1. Definitions ............................................................................................................................. 28
9.2. Rotary Stray-field Immune Mode - Low Field Variant (-100 code) ........................................ 29
9.3. Rotary Stray-field Immune Mode - High Field Variant (-500 code) ....................................... 30
9.4. Linear Stray-field Immune Mode ........................................................................................... 30
9.5. Standard/Legacy Mode .......................................................................................................... 31
10. Memory Specifications ............................................................................................................ 32
11. Digital Output Protocol ........................................................................................................... 33
REVISION 8 - 08 MAR 2019
3901090372
Page 4 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
11.1. Single Edge Nibble Transmission (SENT) SAE J2716 ............................................................ 33
11.2. PWM (pulse width modulation)........................................................................................... 42
12. End-User Programmable Items ................................................................................................ 43
12.1. End User Identification Items .............................................................................................. 47
13. Description of End-User Programmable Items ......................................................................... 48
13.1. Output modes ...................................................................................................................... 48
13.2. Output Transfer Characteristic ............................................................................................ 49
13.3. Sensor Front-End ................................................................................................................. 57
13.4. Filtering................................................................................................................................ 58
13.5. Programmable Diagnostics Settings .................................................................................... 59
14. Functional Safety .................................................................................................................... 62
14.1. Safety Manual ...................................................................................................................... 62
14.2. Safety Mechanisms .............................................................................................................. 62
15. Recommended Application Diagrams ...................................................................................... 66
15.1. Wiring with the MLX90372 in SOIC-8 Package .................................................................... 66
15.2. Wiring with the MLX90372 in TSSOP-16 Package ................................................................ 67
15.3. Wiring with the MLX90372 in DMP-4 Package (built-in capacitors) .................................... 68
16. Standard information regarding manufacturability of Melexis products with different
soldering processes .................................................................................................................. 69
17. ESD Precautions ...................................................................................................................... 69
18. Package Information ............................................................................................................... 70
18.1. SOIC-8 - Package Dimensions .............................................................................................. 70
18.2. SOIC-8 - Pinout and Marking ............................................................................................... 70
18.3. SOIC-8 - Sensitive spot positioning ...................................................................................... 71
18.4. SOIC-8 - Angle detection ..................................................................................................... 72
18.5. TSSOP-16 - Package Dimensions .......................................................................................... 73
18.6. TSSOP-16 - Pinout and Marking ........................................................................................... 74
18.7. TSSOP-16 - Sensitive spot positioning ................................................................................. 74
18.8. TSSOP-16 - Angle Detection................................................................................................. 75
18.9. DMP-4 - Package Outline Dimensions (POD) - STD1 1.27 .................................................... 76
18.10. DMP-4 - Package Outline Dimensions (POD) - STD1 2.54 .................................................. 77
18.11. DMP-4 - Package Outline Dimensions (POD) - STD2 2.54 .................................................. 78
18.12. DMP-4 - Package Outline Dimensions (POD) - STD3 2.00 .................................................. 79
18.13. DMP-4 - Package Outline Dimensions (POD) - STD4 2.54 .................................................. 80
18.14. DMP-4 - Marking ............................................................................................................... 81
REVISION 8 - 08 MAR 2019
3901090372
Page 5 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
18.15. DMP-4 - Sensitive Spot Positioning ................................................................................... 81
18.16. DMP-4 - Angle detection ................................................................................................... 84
18.17. Packages Thermal Performances ....................................................................................... 84
19. Contact .................................................................................................................................. 85
20. Disclaimer .............................................................................................................................. 85
REVISION 8 - 08 MAR 2019
3901090372
Page 6 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
1. Functional Diagram and Application Modes
fig. 1 - MLX90372 Block diagram
Rotary Strayfield Immune
Angular Rotary
Linear Position
fig. 2 - Application Modes
REVISION 8 - 08 MAR 2019
3901090372
Page 7 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
2. Glossary of Terms
Name
Description
ADC
Analog-to-Digital Converter
AoU
Assumption of Use
ASP
Analog Signal Processing
AWD
Absolute Watchdog
CPU
Central Processing Unit
CRC
Cyclic Redundancy Check
%DC
Duty Cycle of the output signal i.e. TON /(TON + TOFF)
DMP
Dual Mould Package
DP
Discontinuity Point
DCT
Diagnostic Cycle Time
DSP
Digital Signal Processing
ECC
Error Correcting Code
EMA
Exponential Moving Average
EMC
Electro-Magnetic Compatibility
EoL
End of Line
FIR
Finite Impulse Response
Gauss (G)
Alternative unit for the magnetic flux density (10G = 1mT)
HW
Hardware
IMC
Integrated Magnetic Concentrator
INL / DNL
Integral Non-Linearity / Differential Non-Linearity
IWD
Intelligent Watchdog
LSB/MSB
Least Significant Bit / Most Significant Bit
NC
Not Connected
NVRAM
Non Volatile RAM
POR
Power-on Reset
PSF
Product Specific Functions
PWL
Piecewise Linear
PWM
Pulse Width Modulation
RAM
Random Access Memory
ROM
Read-Only Memory
SEooC
Safety Element out of Context
TC
Temperature Coefficient (in ppm/°C)
Tesla (T)
SI derived unit for the magnetic flux density (Vs/m2)
Table 3 - Glossary of Terms
REVISION 8 - 08 MAR 2019
3901090372
Page 8 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
3. Pin Definitions and Descriptions
3.1. Pin Definition for SOIC-8 package
Pin #
Name
Description
1
VDD
Supply
2
Input
For test or Application
3
Test
For test or Application
4
N.C.
Not connected
5
OUT
Output
6
VSS
Digital ground
7
VDEC
Decoupling pin
8
VSS
Analog ground
Table 4 - SOIC-8 Pins definition and description
Pins Input and Test are internally grounded in application. For optimal EMC behaviour always connect the
unused pins to the ground of the PCB.
3.2. Pin Definition for TSSOP-16 package
Pin #
Name
Description
1
VDEC1
Decoupling pin die1
2
VSS1
Analog ground die1
3
VDD1
Supply die1
4
Input1
For test or Application
5
Test2
For test or Application
6
OUT2
Output die2
7
N.C.
Not connected
8
VSS2
Digital ground die2
9
VDEC2
Decoupling pin die2
10
VSS2
Analog ground die2
11
VDD2
Supply die2
12
Input 2
For test or Application
13
Test1
For test or Application
14
N.C.
Not connected
15
OUT1
Output die1
16
VSS1
Digital ground die1
Table 5 - TSSOP-16 Pins definition and description
REVISION 8 - 08 MAR 2019
3901090372
Page 9 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Pins Input and Test are internally grounded in application. For optimal EMC behaviour always connect the
unused pins to the ground of the PCB.
3.3. Pin Definition for DMP#1 - Pinout A package
DMP-4 package pinout A offers a pin to pin compatibility with the previous generation of Triaxis®
products.
Pin #
Name
Description
1
VSS
Ground
2
VDD
Supply
3
OUT
Output
4
VSS
Ground
Table 6 - DMP-4 Pins definition and description (pinout A)
3.4. Pin Definition for DMP#2 - Pinout B package
DMP-4 package configuration pinout B offers full benefit of the applications of Input pin (NTC, digital or
analog gateway).
Pin #
Name
Description
1
OUT
Output
2
VSS
Ground
3
VDD
Supply
4
Input
NTC/Gateway
Table 7 - DMP-4 Pins definition and description (pinout B)
REVISION 8 - 08 MAR 2019
3901090372
Page 10 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
4. Absolute Maximum Ratings
Parameter
Symbol
Supply Voltage
Reverse Voltage Protection
Max
Unit
VDD
28
V
< 48h ; Tj < 175°C
VDD
37
V
< 60s ; TAMB ≤ 35°C
Condition
VDD-rev
-14
V
< 48h
VDD-rev
-20
V
< 1h
V
< 48h
V
< 48h
Positive Output Voltage
VOUT
Reverse Output Voltage
VOUT-rev
Internal Voltage
Min
28
-14
VDEC
VDEC-rev
3.6
-0.3
Positive Input pin Voltage
VInput
Reverse Input pin Voltage
VInput-rev
Positive Test pin Voltage
VTest
Reverse Test pin Voltage
VTest-rev
-0.3
Operating Temperature
TAMB
-40
V
V
6
-3
V
V
3.6
V
V
+160
°C
+175
°C
Junction Temperature
TJ
Storage Temperature
TST
-55
+170
°C
Magnetic Flux Density
Bmax
-1
1
T
see 18.17 for package thermal
dissipation values
Table 8 - Absolute maximum ratings
Exceeding any of the absolute maximum ratings may cause permanent damage.
Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.
5. Isolation Specification
Only valid for the TSSOP-16 package (code GO, i.e. dual die version).
Parameter
Isolation Resistance
Symbol
Min
Typ
Max
Unit
Condition
Risol
4
-
-
MΩ
Between dice, measured between
VSS1 and VSS2 with +/-20V bias
Table 9 - Isolation specification
REVISION 8 - 08 MAR 2019
3901090372
Page 11 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
6. General Electrical Specifications
General electrical specifications are valid for temperature range [-40;160] °C and supply voltage range
[4.5;5.5] V unless otherwise noted.
Electrical Parameter
Symbol
Min
Typ
Max
Unit Condition
Supply Voltage
VDD
4.5
5
5.5
V
For voltage regulated mode
Supply Voltage Battery
VDD
6
12
18
V
For Battery usage (4)
(3)
IDD
9.0
10.5
12.6
mA
Rotary and linear stray field
applications (option code -100, 200, -500)
Supply Current(3)
IDD
8.0
9.0
10.5
mA
Legacy applications (option code 300)
Surge Current
Isurge
-
30
40
mA
IC Startup current (tstartup < 40µs)
Start-up Level
VDDstart
3.6
V
Minimal supply start-up voltage
PTC Entry Level (rising)
VPROV0
7.10
7.35
7.70
V
Supply overvoltage detection for 5V
applications (4)
VPROV0Hyst
400
500
600
mV
VPROV1
21.5
23.0
24.5
V
For Battery usage (4)
VPROV1Hyst
0.8
1.4
2.0
V
For Battery usage (4)
Undervoltage detection
VDDUVH
3.95
4.1
4.25
V
Supply undervoltage high threshold
Undervoltage detection
VDDUVL
3.75
3.90
4.05
V
Supply undervoltage low threshold
VDEC
3.2
3.3
3.4
V
Internal analog voltage
Regulated Voltage
Overvoltage detection
VDECOVH
3.65
3.75
3.85
V
High threshold
Regulated Voltage
Undervoltage detection
VDECUVL
2.70
2.85
2.92
V
Low threshold
VDECOVHyst
VDECUVHyst
100
150
200
mV
VDDD
1.80
1.85
1.95
V
Digital supply Overvoltage
detection
VDDDOVH
2.00
2.10
2.20
V
Digital Supply
Undervoltage detection
VDDDUVL
1.585
1.680
1.735
V
Digital Supply OV / UV
detection Hysteresis
VPORHyst
30
100
200
mV
Supply Current
PTC Entry Level Hysteresis
PTC Entry Level (rising)
PTC Entry Level Hysteresis
Regulated Voltage
Regulated voltage UV / OV
detection hysteresis
Digital supply
Supply overvoltage hysteresis
Power-on Reset low threshold
Table 10 - Supply System Electrical Specifications
3 For
4
the dual die version, the supply current is multiplied by 2.
Selection between 5V or battery applications is done using WARM_ACT_HIGH parameter. See chap.12
REVISION 8 - 08 MAR 2019
3901090372
Page 12 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Electrical Parameter
Symbol
Min
Typ
Max
Unit
Condition
Push-pull modes (SENT, PWM)
VOUT = 0 V
VOUT = 5 V .. 18V
Output Short Circuit
Current( 5)
IOUTshortPP
-25
10
-10
25
mA
mA
Ouput Short Circuit
Current
IOUTshortOD1
10
25
mA
SENT Open Drain (see 13.1.1)
VOUT = 5V
Output Short Circuit
Current
IOUTshortOD2
25
90
mA
PWM mode Open Drain only
(see 13.1.1)
RL
3
kΩ
PWM pull-up to 5V,
PWM pull-down to 0V
RL
10
-
55
kΩ
SENT pull-up
RL
1
-
100
kΩ
Open drain pull-up
VsatLoPP
0
1
2
5
%VDD
RL ≥ 10kΩ
RL ≥ 3kΩ, pull-up to 5V
VsatLoPP
0
-
2.5
%VDD
RL ≥ 10kΩ, ADE version
VsatHiPP
98
95
99
100
%VDD
RL ≥ 10kΩ
RL ≥ 3kΩ, pull-down
VsatHiPP
97.5
-
100
%VDD
RL ≥ 10kΩ, ADE version
VsatLoOD
0
10
%Vext
Pull-up to any external voltage
Vext ≤ 18V, IL ≤ 3.4mA
Digital output Ron
Ron
27
50
100
Ω
ACC and ACE chip revision.
Push-pull mode
Digital output Ron
Ron
50
100
215
Ω
ADE chip revision. Push-pull
mode
Output Load
Digital push-pull output
level
Digital open drain output
level
Table 11 - Output Electrical specifications
5 Output
current limitation triggers after a typical delay of 3µs.
REVISION 8 - 08 MAR 2019
3901090372
Page 13 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
7. Timing Specification
Timing specifications are valid for temperature range [-40;160] °C and supply voltage range [4.5; 5.5] V
unless otherwise noted.
7.1. General Timing Specifications
Parameter
Main Clock Frequency
Symbol
Min.
Typ
Max.
Unit
Condition
22.8
24
25.2
MHz
Including thermal and lifetime
drift
5
%Fck
Relative tolerances, including
thermal and lifetime drift
FCK
-5
Main Clock initial
tolerances
ΔFCK,0
23.75
24
24.25
MHz
T=35°C
Main Clock Frequency
Thermal Drift
ΔFCK,T
-2
-
2
%Fck
Relative to clock frequency at
35°C. No ageing effects.
1MHz Clock Frequency
F1M
Intelligent Watchdog
Timeout
TIWD
19
20
21
ms
FCK = 24MHz
Absolute Watchdog
Timeout
TAWD
19
20
21
ms
F1M = 1MHz
DCTANA
34
34
17
17
Tframe
Sync. Mode, NangFram=2
34
34
Tframe
Sync. Mode, NangFram=1
20
ms
see Table 72, section 14.2
Analog Diagnostics DCT
Digital Diagnostics DCT
Fail Safe state duration
Safe Startup Time
1
DCTDIG
MHz
TangleMeas
Asynchronous mode (7.2.1)
TFSS
9.8
28.4
11.0
32.0
11.9
34.6
ms
After a digital single-event fault
ACE / ADE versions
ACC version
TSafeStup
-
11.2
12.4
ms
Only valid for ACE / ADE
versions (see. 7.3.1.2)
Table 12 - General Timing Specifications
7.2. Timing Modes
The MLX90372 can be configured in two continuous angle acquisition modes described in the following
sections.
7.2.1. Continuous Asynchronous Acquisition Mode
In this mode, the sensor continuously acquire angle at a fixed rate that is asynchronous with regards to
the output. The acquisition rate is defined by the T_ADC_SEQ parameter which defines the angle
measurement period TangleMeas. This mode is used in SENT without pause and PWM. Despite that PWM is
periodic, asynchronous mode is better suited and enable complete filtering options for PWM signals that
are often slow compared to the measurement sequence.
REVISION 8 - 08 MAR 2019
3901090372
Page 14 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
fig. 3 - Continuous Asynchronous Timing Mode
Parameter
Symbol
Angle acquisition time
TangleAcq
Internal Angle
Measurement Period
TangleMeas
528
588
-
μs
Typical is default factory
settings (no user control)
NTframe
282
-
-
ticks
Do not change for
asynchronous mode (see
chap.12, T_FRAME)
SENT Frame Tick Count
Min.
Typ
Max.
330
Unit
Condition
μs
Table 13 - Continuous Asynchronous Timing Mode
7.2.2. Continuous Synchronous Acquisition Mode
In continuous synchronous timing mode, the sensor acquires angles based on the output frequency. As a
consequence, the output should have a fixed frame frequency. This mode makes sense only with
constant SENT frame length (SENT with pause). The length of the SENT frame is defined by the parameter
T_FRAME in number of ticks. The user has the choice to select either one or two angle acquisitions and
DSP calculations per frame.
fig. 4 - Continuous Synchronous Timing Mode
REVISION 8 - 08 MAR 2019
3901090372
Page 15 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Following table describes the frame length of synchronous acquisition mode with regards to T_FRAME
parameter value (see chap. 12). Minimal values represent MLX90372 best achievable performance.
Typical values are default or recommended values. Maximal values are limited by the SAE J2716 standard
and not displayed in this table. For a chosen timing configuration, one has to take into account the main
clock relative tolerances listed in Table 12 to get a tolerance on the frame length.
Parameter
Symbol
Min
Typ
Max
Unit
Condition
SENT Frame Tick Count
(Normal SENT)
NTframe
310(6)
320
-
ticks
For tick time of 3μs (Normal
SENT) and two angles per frame
SENT Frame Tick Count
(Normal SENT)
NTframe
282(6)
304(7)
-
ticks
For tick time of 3μs (Normal
SENT) and one angle per frame
SENT Frame Tick Count (Fast
SENT)
NTframe
320(6)
330
-
ticks
For tick time of 1.5μs (Fast SENT)
and one angle per frame
SENT Frame Period (Normal)
Tframe
930(6)
960
-
μs
3μs tick time with pause and two
angles per frame (FCK = 24MHz)
SENT Frame Period (Fast)
Tframe
480(6)
495
-
μs
1.5μs tick time with pause, one
angle per frame (FCK = 24MHz)
NangFram
1
2
2
Number of angles per frame
set by TWO_ANGLES_FRAME
parameter
Table 14 - SENT Synchronous Timing Mode Configurations
7.3. Timing Definitions
7.3.1. Startup Time and Startup Phases definition
VDDstart
Supply Voltage
SENT output
Tinit
High-Z
Tstup
Null Frame
Null Frame
Null Frame
Valid Angle
Valid Angle
Tstup3
Tstup2
Tstup1
Output
Ready
PWM output
High-Z (no drive)
First Sync
Pulse
First Valid Angle
fig. 5 - Startup Time Definition
6 Minimal timings are only confirmed to work in a specific configuration and may lead to noise degradation. Melexis
recommends typical configuration (factory settings) for safe operation with any end user configuration.
7
This timing optimizes the startup time (see Table 17)
REVISION 8 - 08 MAR 2019
3901090372
Page 16 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
7.3.1.1. Normal Startup
A typical startup in SENT consists of two main phases. During the first one, the circuit performs its
initialisation until being able to start acquiring angles and transmitting SENT frames. This first phase lasts
Tinit milliseconds. After that time, the IC starts transmitting SENT initialisation frames, also called null
frames, their content being mainly zeros. During the second phase, the sensor acquires angles until the
amplification chain gain settles. The overall startup time Tstup is the time between power up and complete
transmission of the first valid angle.
7.3.1.2. Safe Startup
When COLD_SAFE_STARTUP_EN is set (see chap. 12, End-User Programmable Items), the circuit performs
a full diagnostic cycle before starting the transmission of an angle. This sequence lasts TSafeStup
milliseconds (see Table 12 - General Timing Specifications). After Tinit, the circuit start sending null SENT
frames until the full diagnostic sequence is complete.
7.3.1.3. Startup phase in PWM mode
In PWM mode, startup is defined by three values, T stup[1..3]. The first value is reached when the output is
ready and starts to drive a voltage. The second value T2 is the start of the first value angle transmission
and the third one T3 the moment the first angle has been transmitted.
7.3.2. Latency (average)
Latency is the average lag between the movement of the detected object (magnet) and the response of
the sensor output. This value is representative of the time constant of the system for regulation
calculations.
fig. 6 - Definition of Latency
7.3.3. Step Response (worst case)
Step response is defined as the delay between a change of position of the magnet and the 100% settling
time of the sensor output with full angle accuracy with regards to filtering. Worst case is happening when
the movement of the magnet occurs just after a measurement sequence has begun. Step response
therefore consists of the sum of:
δmag,measSeq, the delay between magnetic change and start of next measurement sequence
TmeasSeq, the measurement sequence length
δmeasSeq,frameStart, the delay between end of measurement sequence and start of next frame
Tframe, the frame length
REVISION 8 - 08 MAR 2019
3901090372
Page 17 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Worst case happens when δmag,measSeq = TmeasSeq , which gives:
𝑇𝑇𝑤𝑤𝑤𝑤𝑆𝑆𝑡𝑡𝑡𝑡𝑝𝑝 = 2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
Magnetic step
(input change)
δ mag,measSeq
T measSeq
δ mag,measSeq
Output response to
the magnetic step
T frame
partial response
Complete response
End of SENT/PWM Frame
Measurement
sequence
SENT w
pause
PWM
Step Response
fig. 7 - Step Response Definition
7.4. SENT timing specifications
7.4.1. MLX90372 ACE/ADE SENT Timing Specifications
Timing specifications are valid for a given configuration of the SENT frame and tick time (see 11.1.9)
Parameter
Symbol
Min
Typ
Max
Unit
Condition
1.5
3
6
μs
1.5μs = Fast SENT
3μs = Normal SENT (default)
6μs = Slow SENT
-
2.95
3.10
ms
Until initialisation frame start
SENT edge rise Time
4.5
6.2
7.5
μs
SENT edge fall Time
3.9
4.8
5.2
μs
for SENT_SEL_SR_RISE/FALL = 4
(see 11.1.6)
Tick time
SENT startup time (up to
first sync pulse)
Slow Message cycle length
Tinit
691
415
ms
Extended sequence (40 frames )
Short sequence (24 frames )
Table 15 - SENT General Timing Specifications
REVISION 8 - 08 MAR 2019
3901090372
Page 18 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Parameter
Symbol
Min
Typ
Max
Unit
Condition
For SENT with pause (synchronous), 3μs tick time, 2 angles per SENT frame, T_FRAME = 310
SENT startup time
Tstup
-
6.48
-
ms
Until first valid angle received
Average Latency
Tlatcy
-
1.73
2.19
-
ms
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (8)
TwcStep
-
-
2.98
3.91
ms
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (8)
Step Response (worst
case)
For SENT with pause (synchronous), 3μs tick time, 2 angles per SENT frame, T_FRAME = 320
SENT startup time
Tstup
-
6.60
-
ms
Until first valid angle received
Average Latency
Tlatcy
-
1.77
2.25
-
ms
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (8)
TwcStep
-
-
3.12
4.08
ms
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (8)
Step Response (worst
case)
For SENT with pause (synchronous), 3μs tick time, 1 angle per SENT frame, T_FRAME = 282
SENT startup time
Tstup
-
6.99
-
ms
Until first valid angle received
Average Latency
Tlatcy
-
1.33
-
ms
Filter = 0 (no filter)
TwcStep
-
-
2.32
ms
Filter = 0 (no filter)
Step Response (worst
case)
For SENT with pause (synchronous), 3μs tick time, 1 angle per SENT frame, T_FRAME = 304
SENT startup time
Tstup
-
6.41
-
ms
Until first valid angle received
Average Latency
Tlatcy
-
1.54
-
ms
Filter = 0 (no filter)
TwcStep
-
-
2.60
ms
Filter = 0 (no filter)
Step Response (worst
case)
Table 16 - Synchronous SENT Mode Timing Specifications for 3us tick time
Parameter
Symbol
Min
Typ
Max
Unit
Condition
For SENT with pause (synchronous), 1.5μs tick time, 1 angle per SENT frame, T_FRAME = 320
SENT startup time
Average Latency
Step Response (worst
case)
8
Tstup
Tlatcy
TwcStep
6.12
6.23
-
0.98
1.15
1.31
-
-
1.58
1.89
2.20
-
-
ms
Until first valid angle received
ms
Filter = 0 (no filter)
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (8)
ms
Filter = 0 (no filter)
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (8)
See section 13.4 for details concerning Filter parameter
REVISION 8 - 08 MAR 2019
3901090372
Page 19 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Parameter
Symbol
Min
Typ
Max
Unit
Condition
For SENT with pause (synchronous), 1.5μs tick time, 1 angle per SENT frame, T_FRAME = 330
SENT startup time
Average Latency
Tstup
Tlatcy
Step Response (worst
case)
TwcStep
6.12
6.23
-
1.05
1.21
1.37
-
-
1.63
1.95
2.27
-
-
ms
Until first valid angle received
ms
Filter = 0 (no filter)
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (8)
ms
Filter = 0 (no filter)
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (8)
Table 17 - Synchronous SENT Mode Timing Specifications for 1.5us tick time
Parameter
Symbol
Min
Typ
Max
Unit
Condition
For SENT without pause (asynchronous), 3μs tick time(9)
SENT startup time
Average Latency
(9)
Step Response (worst
case)
Tstup
6.25
6.42
6.39
6.56
Tlatcy
1.40
1.67
2.20
1.40
1.70
2.29
-
-
2.41
2.94
4.00
2.72
3.32
4.50
TwcStep
6.51
6.68
ms
Until first valid angle received
with SENT_INIT_GM = 1
ms
Filter = 0 (no filter)
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (8)
ms
Filter = 0 (no filter)
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (8)
For SENT without pause (asynchronous), 1.5μs tick time(9)
SENT startup time
Average Latency
(9)
Step Response (worst
case)
Tstup
6.42
6.50
Tlatcy
0.91
1.17
1.70
0.91
1.21
1.80
-
-
1.76
2.29
3.34
1.94
2.54
3.72
TwcStep
6.56
ms
Until first valid angle received
ms
Filter = 0 (no filter)
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (8)
ms
Filter = 0 (no filter)
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (8)
Table 18 - Asynchronous SENT Mode Timing Specifications
9 In
asynchronous mode, the latency is defined as an average delay with regards to all possible variations. For worst case, refer
to step response (worst case) values
REVISION 8 - 08 MAR 2019
3901090372
Page 20 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
7.4.2. MLX90372 ACC Default SENT Timing specifications
MLX90372 ACC versions come with the following typical default programming that differs from ACE/ADE
version (see chapter 12, item no 134, T_FRAME).
Parameter
SENT Frame Tick Count
(Normal SENT)
Symbol
Min
Typ
Max
Unit
Condition
NTframe
-
366
-
ticks
For tick time of 3μs (Normal
SENT) and two angles per frame
ms
Extended sequence (40 frames )
Short sequence (24 frames )
791
475
Slow Message cycle length
Table 19 - Default ACC Synchronous SENT frame length
For this typical value, the timing performances are described in the next table (Table 20). ACC has the
same timing capabilities than the ACE and can be programmed in a similar way. When the ACC default
programming is changed to match the one of ACE/ADE, timing performances are equivalent. For timing
performances not described in this section, refer to the Table 14 and section 7.4.1.
Parameter
Symbol
Min
Typ
Max
Unit
Condition
For SENT with pause (synchronous), 3μs tick time, 2 angles per SENT frame
SENT startup time
Tstup
-
7.18
-
ms
Until first valid angle received
Average Latency
Tlatcy
-
1.79
2.33
-
ms
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (10)
TwcStep
-
-
3.28
4.38
ms
Filter = 1 (FIR11)
Filter = 2 (FIR1111) (8)
Step Response (worst
case)
For SENT with pause (synchronous), 3μs tick time, 1 angle per SENT frame(11)
SENT startup time
Tstup
-
6.60
-
ms
Until first valid angle received
Average Latency
Tlatcy
-
1.49
-
ms
Filter = 0 (no filter)
TwcStep
-
-
2.61
ms
Filter = 0 (no filter)
Step Response (worst
case)
Table 20 - Synchronous SENT mode ACC default timing specifications
10
See section 13.4 for details concerning Filter parameter
11
Need experimental/formal confirmation, data based on simulation
REVISION 8 - 08 MAR 2019
3901090372
Page 21 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
7.5. PWM timing specifications
For the parameters in below table, maximum timings correspond to minimal frequency and vice versa.
Parameter
Symbol
Min
Typ
Max
Unit
FPWM
100
1000
2000
Hz
PWM Frequency Initial
Tolerances
ΔFPWM,0
-1.5
1.5
%FPWM
PWM Frequency Thermal
Drift
ΔFPWM,T
-2.0
2.0
%FPWM
PWM Frequency Drift
ΔFPWM
-5.0
5.0
%FPWM
PWM startup Time (up to
output ready)
Tstup1
PWM startup Time (up to
first sync. Edge)
Tstup2
7.10
7.60
16.6
ms
Tstup1 + TPWM
PWM startup Time (up to
first data received)
Tstup3
7.60
8.60
26.6
ms
Tstup1 + 2* TPWM (12)
Rise Time PWM
1.0
4.8
12.0
μs
Fall Time PWM
1.0
4.8
12.0
μs
typ. for SENT_SEL_SR_RISE/FALL
= 4 (see 11.1.6). Measured
between 1.1V and 3.8V
PWM Frequency
6.60
Condition
T=35°C, can be trimmed at EOL
Over temperature and lifetime
ms
Table 21 - PWM timing specifications
12
First frame transmitted has no synchronization edge; therefore the second frame transmitted is the first complete one.
REVISION 8 - 08 MAR 2019
3901090372
Page 22 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
8. Magnetic Field Specifications
Magnetic field specifications are valid for temperature range [-40; 160] °C unless otherwise noted.
8.1. Rotary Stray-field Immune Mode - Low Field Variant (-100 code)
Parameter
Symbol
Min
Typ
Max
Number of magnetic poles
NP
4( 13)
-
-
Magnetic Flux Density in XY plane
BX, BY( 14)
25(15)
mT
�𝐵𝐵𝑋𝑋2 + 𝐵𝐵𝑌𝑌2
Magnetic Flux Density in Z
BZ
100
mT
(this is not the useful signal)
1
0
mT
mm
Magnetic in-plane gradient
of in-plane field component
Magnet Temperature
Coefficient
∆𝐵𝐵𝑋𝑋𝑋𝑋
∆𝑋𝑋𝑋𝑋
3.8
10
TCm
-2400
0.075
0.100
0.125
Field too Low Threshold(17)
∆𝐵𝐵𝑋𝑋𝑋𝑋
∆𝑋𝑋𝑋𝑋
BTH_LOW
0.8
1.2
( 18)
Field too High Threshold(17)
BTH_HIGH
70
100(19)
102(19)
Field Strength Resolution(16)
Unit
ppm
°C
mT
mm LSB
mT
mm
mT
mm
Condition
(this is not the useful signal)
2
2
��𝑑𝑑𝐵𝐵𝑋𝑋 − 𝑑𝑑𝐵𝐵𝑌𝑌 � + �𝑑𝑑𝐵𝐵𝑋𝑋 + 𝑑𝑑𝐵𝐵𝑌𝑌 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
2
this is the useful signal (see fig. 8)
Magnetic field gradient norm
(12bits data)
Typ is recommended value to be
set by user
Typ is recommended value to be
set by user
Table 22 - Magnetic specification for rotary stray-field immune- low field variant
Nominal performances apply when the useful signal ∆𝐵𝐵𝑋𝑋𝑋𝑋 /∆𝑋𝑋𝑋𝑋 is above the typical specified limit. Under
this value, limited performances apply. See 8.1 for accuracy specifications.
13
Due to 4 poles magnet usage, maximum angle measurement range is limited to 180°
14
The condition must be fulfilled for all combinations of B X and BY.
15
Above this limit, the IMC® starts to saturate, yielding to an increase of the linearity error.
16
Only valid with default MAGNET_SREL_T[1..7] configuration
17
Typ. value is set by default for NVRAM rev.9 and shall be set by user for rev.8 (see Table 50, USER_ID3 and Table 49)
Higher values of Field too Low threshold are not recommended by Melexis and shall only been set in accordance with the
magnetic design and taking a sufficient safety margin to prevent false positive.
18
19
Due to the saturation effect of the IMC, the FieldTooHigh monitor detects only defects in the sensor
REVISION 8 - 08 MAR 2019
3901090372
Page 23 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Temperature (°C)
160
Limited
Performances
Nominal
Performances
Typical magnet
characteristics
-40
3.8 5.7
10
∆B XY mT
∆XY mm
fig. 8 - Minimum useful signal definition for rotary stray-field immune application-low field variant
8.2. Rotary Stray-field Immune Mode - High Field Variant (-500 code)
Parameter
Symbol
Min
Typ
Max
Number of magnetic poles
NP
4(13)
-
-
Magnetic Flux Density in XY plane
BX, BY (14)
Magnetic Flux Density in Z
BZ
Magnetic in-plane gradient
of in-plane field component
Magnet Temperature
Coefficient
Field Strength Resolution(16)
∆𝐵𝐵𝑋𝑋𝑋𝑋
∆𝑋𝑋𝑋𝑋
TCm
∆𝐵𝐵𝑋𝑋𝑋𝑋
∆𝑋𝑋𝑋𝑋
8.25
Unit
Condition
67(15)
mT
100
mT
�𝐵𝐵𝑋𝑋2 + 𝐵𝐵𝑌𝑌2
0
mT
mm
21
-2400
0.075
0.100
0.125
Field too Low Threshold(17)
BTH_LOW
1.2
2
(18)
Field too High Threshold(17)
BTH_HIGH
80
100(19)
102(19)
ppm
°C
mT
mm LSB
mT
mm
mT
mm
(this is not the useful signal)
(this is not the useful signal)
1
2
2
��𝑑𝑑𝐵𝐵𝑋𝑋 − 𝑑𝑑𝐵𝐵𝑌𝑌 � + �𝑑𝑑𝐵𝐵𝑋𝑋 + 𝑑𝑑𝐵𝐵𝑌𝑌 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑌𝑌
𝑑𝑑𝑑𝑑
this is the useful signal.
𝑑𝑑𝑑𝑑
2
Magnetic field gradient norm
(12bits data)
Typ is recommended value to
be set by user
Typ is recommended value to
be set by user
Table 23 - Magnetic specification for rotary stray-field immune
See 8.2 for accuracy specifications.
REVISION 8 - 08 MAR 2019
3901090372
Page 24 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
8.3. Linear Stray-field Immune Mode (-200 code)
Parameter
Symbol
Min
Typ
Max
2
-
Unit
Condition
Number of magnetic poles
NP
Magnetic Flux Density in X
BX
80(20)
mT
BY ≤ 20mT
BX, BY( 21)
70(22)
mT
BZ
100
mT
�𝐵𝐵𝑋𝑋2 + 𝐵𝐵𝑌𝑌2 , BY>20mT
Magnetic Flux Density in X-Y
Magnetic Flux Density in Z
Magnetic gradient of X-Z
field components
Distance between the two
IMC®
∆𝐵𝐵𝑋𝑋𝑋𝑋
∆𝑋𝑋
GIMC
Magnet Temperature
Coefficient
TCm
∆𝐵𝐵𝑋𝑋𝑋𝑋
∆𝑋𝑋
mT
mm
6( 23)
1.91
∆𝑋𝑋
IMC gain
Field Strength Resolution(16)
3
Linear movement
mm
∆𝐵𝐵𝑍𝑍 2 ( 24)
�
𝐼𝐼𝐼𝐼𝐼𝐼 ∆𝑋𝑋
see chapter 18 for magnetic
center definitions
see (24)
1.19
-2400
2
��∆𝐵𝐵𝑋𝑋 � + � 1
∆𝑋𝑋
𝐺𝐺
0
0.037
0.05
0.063
Field too Low Threshold(17)
BTH_LOW
0.2
1.2
( 25)
Field too High Threshold(17)
BTH_HIGH
35
50
51
ppm
°C
mT
Magnetic field gradient norm
mm LSB expressed in 12bits words
mT
mm
mT
mm
Typ is recommended value to be
set by user
Typ is recommended value to be
set by user
Table 24 - Magnetic specifications for linear stray-field application
Nominal performances apply when the useful signal ∆Bxz/∆x and temperature ranges are inside the
values defined in the following figure (fig. 9). At higher temperature or lower field gradients, the accuracy
of MLX90372 is degraded and Limited Performances, described in section 9.4.2, apply.
20 Above
21
80 mT, with BY field in the mentioned limits, the IMC® starts saturating yielding to an increase of the linearity error.
The condition must be fulfilled for all combinations of B x and By.
22 Above
70 mT, the IMC® starts saturating yielding to an increase of the linearity error.
23 Below
6 mT/mm, the performances are degraded due to a reduction of the signal-to-noise ratio, signal-to-offset ratio.
24 IMC
has better performance for concentrating in-plane (X-Y) field components, resulting in a better magnetic sensitivity. A
correction factor, called IMC gain has to be applied to the Z field component to account for this difference.
Higher values of Field too Low threshold are not recommended by Melexis and shall only been set in accordance with the
magnetic design and taking a sufficient safety margin to prevent false positive.
25
REVISION 8 - 08 MAR 2019
3901090372
Page 25 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
160
Limited
Performances
135
Temperature (°C)
Limited
Performances
Typical magnet
characteristics
3
Nominal
Performances
6
∆BXZ mT
∆X mm
-40
fig. 9 - Minimum useful signal definition for linear stray-field immune application
8.4. Standard/Legacy Mode (-300 code)
Parameter
Symbol
Min.
Typ.
Max.
Number of magnetic poles
NP
-
2
-
Magnetic Flux Density in XY plane
Bx, By(21)
Magnetic Flux Density in Z
Bz
Useful Magnetic Flux
Density Norm
Unit
Condition
70
mT
100
mT
�𝐵𝐵𝑋𝑋2 + 𝐵𝐵𝑌𝑌2
in absolute value
�𝐵𝐵𝑋𝑋2 + 𝐵𝐵𝑌𝑌2 (X-y mode)
BNorm
10(26)
20
mT
�𝐵𝐵𝑋𝑋2 + �
1
𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼
�𝐵𝐵𝑌𝑌2 + �
1
𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼
2
𝐵𝐵𝑍𝑍 � (X-Z mode)
2
𝐵𝐵𝑍𝑍 � (Y-Z mode)
see 13.3.1 for sensing mode
description.
IMC gain
GIMC
Magnet Temperature
Coefficient
TCm
-2400
Field Strength
Resolution(28)
BNorm
0.075
26
1.19
see
0
0.100
0.125
ppm
°C
mT
LSB
27
Magnetic field gradient norm
expressed in 12bits words
Below 10 mT the performances are degraded due to a reduction of the signal-to-noise ratio, signal-to-offset ratio
IMC has better performance for concentrating in-plane (X-Y) field components, resulting in a better overall magnetic
sensitivity. A correction factor, called IMC gain has to be applied to the Z field component to account for this difference.
27
REVISION 8 - 08 MAR 2019
3901090372
Page 26 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Field Too Low Threshold(29)
BTH_LOW
0.4
4.0
(25)
mT
Typ is recommended value to
be set by user
Field Too High Threshold(29)
BTH_HIGH
70
100(30)
100(30)
mT
Typ is recommended value to
be set by user
Table 25 - Magnetic specifications for Standard application
Nominal performances apply when the useful signal BNorm is above the typical specified limit. Under this
value, limited performances apply. See 9.5 for accuracy specifications.
160
Temperature (°C)
Limited
Performances
-40
Nominal
Performances
Typical magnet
characteristic
10
15
20
Norm (mT)
fig. 10 - Minimum useful signal definition for Standard/Legacy application
28
Only valid with default MAGNET_SREL_T[1..7] configuration
29
Typ. value is set by default for NVRAM rev.9 and shall be set by user for rev.8 (see Table 50, USER_ID3 and Table 49)
30
Due to the saturation effect of the IMC, the FieldTooHigh monitor detects only defects in the sensor
REVISION 8 - 08 MAR 2019
3901090372
Page 27 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
9. Accuracy Specifications
Accuracy specifications are valid for temperature range [-40;160] °C and supply voltage range [4.5 - 5.5] V
unless otherwise noted.
9.1. Definitions
This section defines several parameters, which will be used for the magnetic specifications.
rv
Cu
d
ur
re
lC
su
ea
ea
Id
M
Output (%DC, Deg)
ve
e
9.1.1. Intrinsic Linearity Error
Noise (pk-pk)
Intrinsic Linearity Error
(LE)
±3σ
Input (Deg.)
fig. 11 - Sensor accuracy definition
Illustration of fig. 11 depicts the intrinsic linearity error in new parts. The Intrinsic Linearity Error refers to
the IC itself (offset, sensitivity mismatch, orthogonality) taking into account an ideal magnetic field. Once
associated to a practical magnetic construction and the associated mechanical and magnetic tolerances,
the output linearity error increases. However, it can be improved with the multi-point end-user
calibration (see 13.2). As a consequence, this error is not critical in application because it is calibrated
away.
9.1.2. Total Angle Drift
After calibration, the output angle of the sensor might still change due to temperature change, aging,
etc.. This is defined as the total drift 𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 :
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 = max{𝜃𝜃(𝜃𝜃𝐼𝐼𝐼𝐼 , 𝑇𝑇, 𝑡𝑡) − 𝜃𝜃(𝜃𝜃𝐼𝐼𝐼𝐼 , 𝑇𝑇𝑅𝑅𝑅𝑅 , 𝑡𝑡0 )}
where 𝜃𝜃𝐼𝐼𝐼𝐼 is the input angle, 𝑇𝑇 is the temperature, 𝑇𝑇𝑅𝑅𝑅𝑅 is the room temperature, and 𝑡𝑡 is the elapsed
lifetime after calibration. 𝑡𝑡0 represents the status at the start of the operating life. Note the total drift
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 is always defined with respect to angle at room temperature. In this datasheet, 𝑇𝑇𝑅𝑅𝑅𝑅 is typically
defined at 35°C, unless stated otherwise. The total drift is valid for all angles along the full mechanical
stroke.
REVISION 8 - 08 MAR 2019
3901090372
Page 28 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
9.2. Rotary Stray-field Immune Mode - Low Field Variant (-100 code)
9.2.1. Nominal Performance
Valid before EoL calibration and for all applications under nominal performances conditions described in
section 8.1 (fig. 8) and chapter 6.
Parameter
XY - Intrinsic Linearity Error
Symbol
Min
LE_XY
-1
Typ
Noise (31)
XY - Total Drift (33)
Hysteresis
Output Stray Field Immunity
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇_𝑋𝑋𝑋𝑋
-0.85
Max
Unit
1
Deg.
0.2
0.4
Deg.
Filter = 2
Filter = 0 ( 32)
0.85
Deg.
Relative to 35°C
0.1
Deg.
0.6
∂θFF
Condition
Deg.
with 10mT/mm useful gradient
field and 4kA/m stray-field (34)
Table 26 - Rotary stray-field immune nominal magnetic performances
9.2.2. Limited Performances
Valid before EoL calibration and for all applications under limited performances conditions described in
section 8.1 (fig. 8) and chapter 6.
Parameter
XY - Intrinsic Maximum Error
Noise
Symbol
Min
LE
-1
Typ
(31)
XY - Total Drift (33)
Hysteresis
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇_𝑋𝑋𝑋𝑋
-0.85
0.1
Max
Unit
1
Deg.
Condition
0.7
0.5
0.35
Deg.
Filter = 0
Filter = 1
Filter = 2
0.85
Deg.
Relative to 35°C
Deg.
Table 27 - Rotary stray-field immune limited magnetic performances
31
±3σ
32
See section 13.4 for details concerning Filter parameter
Verification done on new and aged devices in an ideal magnetic field gradient (see 9.1.2). An additional application-specific
error arises from the non-ideal magnet and mechanical tolerance drift.
33
Tested in accordance with ISO 11452-8:2015, at 30°C, with stray-field strength of 4kA/m from any direction. This error scales
linearly with both the useful field and the disturbing field.
34
REVISION 8 - 08 MAR 2019
3901090372
Page 29 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
9.3. Rotary Stray-field Immune Mode - High Field Variant (-500 code)
Valid before EoL calibration and for all applications under nominal performances conditions described in
section 8.2 and chapter 6.
Parameter
XY - Intrinsic Linearity Error
Noise
Symbol
Min
LE_XY
-1
Typ
(31)
XY - Total Drift (33)
Hysteresis
Output Stray Field Immunity
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇_𝑋𝑋𝑋𝑋
-0.67
-0.60
Max
Unit
1
Deg.
0.25
0.35
0.5
Deg.
Filter = 2
Filter = 1
Filter = 0 (32)
0.67
0.60
Deg.
for the full temperature range
for Tmax = 140°C
0.1
Deg.
0.30
∂θFF
Condition
Deg.
with 21mT/mm useful gradient
field and 4kA/m stray-field (34)
Table 28 - Rotary stray-field immune nominal magnetic performances
9.4. Linear Stray-field Immune Mode (-200 code)
9.4.1. Nominal Performances
Valid before EoL calibration and for all applications under nominal conditions described in section 8.3
(fig. 9) and chapter 6.
Parameter
XZ - Intrinsic Maximum Error
Noise
Symbol
Min
Typ
Max
Unit
LE_XZ
-2.5
±1.25
2.5
Deg.
0.10
0.15
-
0.20
0.30
0.25
Deg.
Filter = 1, 6mT/mm
Filter = 0, 6mT/mm
Filter = 0, 6mT/mm, Tmax=125°C
0.8
Deg.
Compared to 35°C, 6mT/mm
gradient field
0.10
Deg.
6mT/mm gradient field
0.8
Deg.
For 6mT/mm gradient field and
4kA/m stray-field (34)
0.2
Deg.
For 6mT/mm gradient field and
1kA/m stray-field (34)
(31)
XZ - Total Drift (33)
Hysteresis
Output Stray Field Immunity
Output Stray Field Immunity
REVISION 8 - 08 MAR 2019
3901090372
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇_𝑋𝑋𝑋𝑋
∂θFF
∂θFF
-0.8
Condition
Table 29 - Linear stray-field immune magnetic performances
Page 30 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
9.4.2. Limited Performances
Valid before EoL calibration and for all applications under limited performances conditions described in
section 8.3 (fig. 9) and chapter 6.
Parameter
XZ - Intrinsic Maximum Error
Noise
Symbol
Min
Typ
Max
Unit
LE_XZ
-4
±2
4
Deg.
0.20
0.25
-
0.40
0.65
0.45
Deg.
Filter = 1, 3mT/mm
Filter = 0, 3mT/mm
Filter = 0, 3mT/mm, Tmax=125°C
1.4
Deg.
Compared to 35°C, 3mT/mm
0.25
Deg.
3mT/mm
(35)
XZ - Total Drift (33)
Hysteresis
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇_𝑋𝑋𝑋𝑋
-1.4
Condition
Table 30 - Linear stray-field immune limited magnetic performances
9.5. Standard/Legacy Mode (-300 code)
9.5.1. Nominal Performances
Valid before EoL calibration and for all applications under nominal conditions described in section 8.4
(fig. 10) and chapter 6.
Parameter
Symbol
Min
XY - Intrinsic Linearity Error
LE_XY
-1
XZ - Intrinsic Linearity Error
LE_XZ
-2.5
YZ - Intrinsic Linearity Error
LE_YZ
-2.5
Noise
(35)
XY - Total Drift
(36)
XZ - Total Drift
(36)
YZ - Total Drift
(36)
Hysteresis
Typ
Max
Unit
Condition
1
Deg.
±1.25
2.5
Deg.
±1.25
2.5
Deg.
0.05
0.1
0.05
0.1
0.2
0.1
Deg.
Filter = 0, 40mT
Filter = 0, 20mT
Filter = 2
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇_𝑋𝑋𝑋𝑋
-0.45
0.45
Deg.
Relative to 35°C
-0.6
0.6
Deg.
Relative to 35°C
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇_𝑌𝑌𝑌𝑌
-0.6
0.6
Deg.
Relative to 35°C
0.1
Deg.
20mT
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇_𝑋𝑋𝑋𝑋
0.05
Table 31 - Standard Mode Nominal Magnetic Performances
35
±3σ
Verification done on new and aged devices in an ideal magnetic field (see 9.1.2). An additional application-specific error arises
from the non-ideal magnet and mechanical tolerance drift.
36
REVISION 8 - 08 MAR 2019
3901090372
Page 31 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
9.5.2. Limited Performances
Valid before EoL calibration and for all applications under limited performances conditions described in
section 8.4 (fig. 10) and chapter 6.
Parameter
Symbol
Min
XY - Intrinsic Linearity Error
LE_XY
-1
XZ - Intrinsic Linearity Error
LE_XZ
-2.5
YZ - Intrinsic Linearity Error
LE_YZ
-2.5
Noise
Typ
Max
Unit
1
Deg.
±1.25
2.5
Deg.
±1.25
2.5
Deg.
0.2
0.14
0.1
0.4
0.28
0.2
Deg.
Filter = 0
Filter = 1
Filter = 2
(35)
XY - Total Drift
(36)
XZ - Total Drift
(36)
YZ - Total Drift
(36)
Hysteresis
Condition
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇_𝑋𝑋𝑋𝑋
-0.6
0.6
Deg.
Relative to 35°C
-0.8
0.8
Deg.
Relative to 35°C
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇_𝑌𝑌𝑌𝑌
-0.8
0.8
Deg.
Relative to 35°C
0.2
Deg.
10mT
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇_𝑋𝑋𝑋𝑋
0.1
Table 32 - Standard Mode Limited Magnetic Performances
10. Memory Specifications
Parameter
Symbol
ROM
ROMsize
32
kB
1 bit parity check (single error
detection)
RAM
RAMsize
1024
B
1 bit parity check (single error
detection)
NVRAMsize
256
B
6 bits ECC (single error correction,
double error detection)
NVRAM
Min
Typ
Max
Unit
Note
Table 33 - Memory Specifications
REVISION 8 - 08 MAR 2019
3901090372
Page 32 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
11. Digital Output Protocol
11.1. Single Edge Nibble Transmission (SENT) SAE J2716
The MLX90372 provides a digital output signal compliant with SAE J2716 Revised APR2016.
11.1.1. Sensor message definition
The MLX90372 repeatedly transmits a sequence of pulses, corresponding with a sequence of nibbles (4
bits), with the following sequence:
Calibration/Synchronization pulse period 56 clock ticks to determine the time base of the SENT
frame
One 4 bit Status and Serial Communication nibble pulse
A sequence of one up to six 4 bits data nibbles pulses representing the values of the signal(s) to
be transmitted. The number of nibbles will be fixed for each application of the encoding scheme
(i.e. Singe Secure sensor format A.3, Throttle positions sensor A.1)
One 4 bits Checksum nibble pulse
One optional pause pulse
See also SAE J2716 APR2016 for general SENT specification.
fig. 12 - SENT message encoding example for two 12bits signals
REVISION 8 - 08 MAR 2019
3901090372
Page 33 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
11.1.2. Sensor message frame contents
The MLX90372 SENT transmits a sequence of data nibbles, according to the following configurations:
Description
Symbol
SENT
SENTrev
Clock tick time
Min
Typ
Max
2010
2016
tickTime
1
3
Number of data nibbles
Xdn
3
6
Frame duration (no pause
pulse)
Npp
154
Frame duration with pause
pulse
Ppc
282
Sensor type
A.1
A.3
320
Unit
Description
SENT revision. Supports
enhanced serial channel
messages (2016)
Main use cases :
Fast SENT, 1.5µs tick time
Normal SENT, 3µs tick time
Slow SENT, 6µs tick time
(see section 7.4)
12
µs
270
ticks
6 data nibbles
922
ticks
Valid for 3µs tick time
Dual Throttle Position sensors
Single Secure sensors
Table 34 - SENT Protocol Frame Definition
11.1.3. Single secure sensor A.3
The MLX90372 SENT transmits a sequence of data nibbles; according single secure sensor format defined
in SAE J2716 appendix A.3.The frame contains 12 bit angular value, a 8 bit rolling counter and an inverted
copy of the most significant nibble of angular value.
SM
[1:0]
S
[1:0]
Ch 1
[11:8]
Ch 1
[7:4]
Ch 1
[3:0]
COUNT
[7:4]
12 bit angle data
~Ch 1
[11:8]
COUNT
[3:0]
CRC
8 bit rolling counter
fig. 13 - A.3 Single Secure Sensor Frame Format
Shorthand Description
Tick
time
Data
nibbles
Pause
Pulse
Serial
message
Data
format
SENT2010-03.0us-6dn-ppc(366.0)-esp-A.3
3µs
6
Y
Enhanced
A.3
SENT2010-03.0us-6dn-ppc(366.0)-nsp-A.3
3µs
6
Y
None
A.3
SENT2010-03.0us-6dn-npp-nsp-A.3
3µs
6
N
None
A.3
1..12
6
Y/N
En/None
A.3
SENT2010-##-#us-#dn-###()-###-A.3
Table 35 - A.3 Single Secure Sensor Shorthand examples
REVISION 8 - 08 MAR 2019
3901090372
Page 34 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
11.1.4. Dual Throttle position sensor A.1
The MLX90372 SENT transmits a sequence of data nibbles; according dual throttle positions sensor
defined in SAE J2716 appendix A.1.The frame contains two 12 bit angular values.
SM
[1:0]
S
[1:0]
Ch 1
[7:4]
Ch 1
[11:8]
Ch 1
[3:0]
Ch2
[3:0]
12 bit angle data
Ch2
[7:4]
Ch2
[11:8]
CRC
12 bit angle data
fig. 14 - A.1 Dual Throttle Position Sensor Frame Format
Shorthand Description
Tick
time
Data
nibbles
SENT2010-03.0us-6dn-ppc(366.0)-esp-A.1
3µs
6
Y
Enhanced
A.1
SENT2010-03.0us-6dn-ppc(366.0)-nsp-A.1
3µs
6
Y
None
A.1
SENT2010-03.0us-6dn-npp-nsp-A.1
3µs
6
N
None
A.1
1..12
6
Y/N
En/None
A.1
SENT2010-##-#us-#dn-###()-###-A.1
Pause
Pulse
Serial
message
Data
format
Table 36 - A.1 Dual Throttle Position Sensor Shorthand Examples
Second fast channel configuration:
SENT_FAST_CHANNEL
CH2 configuration
0
Temperature sensor (SP ID 0x23)
1
0xFF9(d4089) - CH1
2
RAM data (RAMPROBE_PTR)
3
0xFFF(d4095) - CH1
Table 37 - A.1 Dual Throttle Position Sensor Fast Channel 2 configuration
11.1.5. Start-up behaviour
The circuit will start to send initialisation frames once digital start-up is done but angle measurement
initialisation sequence is not yet complete. These initialisation frames content can be chosen by user with
the following option:
SENT_INIT_GM
Initialisation frame value
Comments
0
0x000
SAE compliant
1
0xFFF
OEM requirement
Table 38 - Initialisation Frame Content Definition
REVISION 8 - 08 MAR 2019
3901090372
Page 35 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
11.1.6. SENT Output Timing configuration
SENT_TICK_TIME
Tick time configuration
Description
0
3 µs
Standard SENT
1
0.5 µs
Not recommended
2
1 µs
Not recommended
3
1.5 µs
4
2.0 µs
Not recommended
5
2.5 µs
Not recommended
6
6 µs
Slow SENT
7
12 µs
Not recommended
Fast SENT
Table 39 - SENT Tick Time Configuration
SENT_SEL_SR_FALL(37)
Fall time (Tfall)
SENT_SEL_SR_RISE(37)
Rise Time (Trise)
0
No slew rate control
0
No slew rate control
1
0.7 µs
1
0.9 µs
2
1.2 µs
2
1.6 µs
3
1.9 µs (ACC)
2.4 µs (ACE/ADE)
3
3.0 µs
4
4.8 µs
4
6.2 µs
5
9.6 µs
5
12 µs
6
19 µs
6
24 µs
7
24 µs
7
30 µs
Table 40 - SENT Rise and Fall Times Configuration
3.8V
1.1V
Tfall
Trise
SENT_SEL_SR_FALL
SENT_SEL_SR_RISE
fig. 15 - SENT Rise and Fall Times configuration
37
Due to output filtering, fast edges on the MLX90372 ADE version cannot be achieved. Use default programmed values.
REVISION 8 - 08 MAR 2019
3901090372
Page 36 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
NIBBLE_PULSE_CONFIG
High/low time configuration
2
Fixed low time (5 ticks)
3
Fixed high time (6 ticks)(38)
Table 41 - SENT Nibble configuration (high/low times)
11.1.7. Serial message channel (slow channel)
Serial data is transmitted serial in bit number 3 and 2 of the status and communication nibble. A serial
message frame stretches over 18 consecutive SENT data messages from the transmitter. All 18 frames
must be successfully received (no errors, calibration pulse variation, data nibble CRC error, etc.) for the
serial value to be received.
Enhanced format with 12-bits data and 8-bits message ID is used (SAE J2716 APR2016 5.2.4.2, fig. 5.2.4.22). According to the standard, SM[0] contains a 6bits CRC followed by a 12-bits data. Message content is
defined by a 8-bit message ID transmitted in the SM[1] channel. Correspondence between ID and
message content is defined in the tables below (Table 42, Table 43 and Table 44).
SM
[1:0]
S
[1:0]
Status Nibble =
Ch 1
[11:8]
2 bit serial message
2 bit status
fig. 16 - SENT Status Nibble and Serial Message
By default, the short sequence consisting of a cycle of 24 data is transmitted (Table 42). An extended
sequence can be used through configuration of SENT_SLOW_EXTENDED (Table 43). Additionally, the
norm of the B field detected by the sensor can be returned at the end of the sequence by setting
SENT_SLOW_BFIELD (Table 44)
#
8bit ID
Item
Source data
1
0x01
Diagnostic error code
Current status code from RAM
2
0x06
SENT standard revision
SENT_REV from NVRAM
3
0x01
Diagnostic error code
Current status code from RAM
4
0x05
Manufacturer code
SENT_MAN_CODE from NVRAM
5
0x01
Diagnostic error code
Current status code from RAM
When using fixed high time in normal SENT mode, Melexis recommends lowering SENT_SEL_SR_RISE to 3 or setting
ABE_OUT_MODE to 2 to two to avoid potential timing degradation on short nibbles.
38
REVISION 8 - 08 MAR 2019
3901090372
Page 37 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
#
8bit ID
Item
Source data
6
0x03
Channel 1 / 2 Sensor type
SENT_SENSOR_TYPE from NVRAM
7
0x01
Diagnostic error code
Current status code from RAM
8
0x07
Fast channel 1: X1
SENT_CHANNEL_X1 from NVRAM
9
0x01
Diagnostic error code
Current status code from RAM
10
0x08
Fast channel 1: X2
SENT_CHANNEL_X2 from NVRAM
11
0x01
Diagnostic error code
Current status code from RAM
12
0x09
Fast channel 1: Y1
SENT_CHANNEL_Y1 from NVRAM
13
0x01
Diagnostic error code
Current status code from RAM
14
0x0A
Fast channel 1: Y2
SENT_CHANNEL_Y2 from NVRAM
15
0x01
Diagnostic error code
Current status code from RAM
16
0x23
(Internal) temperature
Current temperature from RAM
17
0x01
Diagnostic error code
Current status code from RAM
18
0x29
Sensor ID #1
SENT_SENSOR_ID1 from NVRAM
19
0x01
Diagnostic error code
Current status code from RAM
20
0x2A
Sensor ID #2
SENT_SENSOR_ID2 from NVRAM
21
0x01
Diagnostic error code
Current status code from RAM
22
0x2B
Sensor ID #3
SENT_SENSOR_ID3 from NVRAM
23
0x01
Diagnostic error code
Current status code from RAM
24
0x2C
Sensor ID #4
SENT_SENSOR_ID4 from NVRAM
Table 42 - SENT Slow Channel Standard Data Sequence
#
8bit ID
Item
Source data
25
0x01
Diagnostic error code
Current status code from RAM
26
0x90
OEM Code #1
SENT_OEM_CODE1 from NVRAM
27
0x01
Diagnostic error code
Current status code from RAM
28
0x91
OEM Code #2
SENT_OEM_CODE2 from NVRAM
29
0x01
Diagnostic error code
Current status code from RAM
30
0x92
OEM Code #3
SENT_OEM_CODE3 from NVRAM
31
0x01
Diagnostic error code
Current status code from RAM
32
0x93
OEM Code #4
SENT_OEM_CODE4 from NVRAM
33
0x01
Diagnostic error code
Current status code from RAM
34
0x94
OEM Code #5
SENT_OEM_CODE5 from NVRAM
35
0x01
Diagnostic error code
Current status code from RAM
36
0x95
OEM Code #6
SENT_OEM_CODE6 from NVRAM
REVISION 8 - 08 MAR 2019
3901090372
Page 38 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
#
8bit ID
Item
Source data
37
0x01
Diagnostic error code
Current status code from RAM
38
0x96
OEM Code #7
SENT_OEM_CODE7 from NVRAM
39
0x01
Diagnostic error code
Current status code from RAM
40
0x97
OEM Code #8
SENT_OEM_CODE8 from NVRAM
Table 43 - SENT Slow Channel Extended Data Sequence
#
8bit ID
Item
source data
25
0x80
Field Strength
Bfield_norm from RAM
(standard sequence)
41
0x80
Field Strength
Bfield_norm from RAM
(extended sequence)
Table 44 - SENT Slow Channel Magnetic Field Norm ID and position
For Field Strength encoding, see chapter 8, Magnetic Field Specifications, under the application
corresponding section.
11.1.8. Serial Message Error Code
The list of error and status messages transmitted in the 12-bit Serial Message data field when Serial
Message 8-bit ID is 0x01, is given in the Table 45. The error is one-hot encoded and therefore each bit is
linked to one or several monitor. Only the first error detected is reported and serial message error code
will not be updated until all the errors have disappeared. This mechanism ensures only one error at a
time takes control of the error debouncing counter (see 13.5.2).
The MSB acts as an error Flag when SENT_DIAG_STRICT is set. This bit will be high only when an error is
present. For compatibility with previous Triaxis®, this bit can be kept high even if no error is present
(SENT_DIAG_STRICT = 0).
Bit Nb
12 Bit Data (hex)
Diagnostic
Comments
-
0x000 / 0x800
No error
Programmable (SENT_DIAG_STRICT, see
Table 49, no 138)
0
0x801
GainOOS
Gain out of spec (see 13.3.2, GAIN_MIN,
GAIN_MAX)
1
0x802
FieldTooLow
Fieldstrength is below defined low
threshold (see Table 49)
2
0x804
FieldTooHigh
Fieldstrength is above defined high
threshold (see Table 49)
REVISION 8 - 08 MAR 2019
3901090372
Page 39 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Bit Nb
12 Bit Data (hex)
Diagnostic
Comments
3
0x808
ADCclip
ADC is saturated, either low or high
4
0x810
ADC_test
ADC made wrong conversion
5
0x820
Analog Supply Monitors
Detects VDDA (VDEC) over and under
voltage or VDD under voltage
6
0x840
Digital Supply Monitors
Detects VDDD (1.8V internal digital
supply) overvoltage
7
0x880
RoughOffset
Hall Element offset monitor
8
0x900
Over/Under Temp
Temperature sensor monitor (see 13.5.3)
9
0xA00
HE_Bias / Analog Front
End
Hall Element biasing issue / Analog front
end self-test ( 39)
10
0xC00
Suply Bias Current
Current biasing system monitor
Extra Error Flag
set to one if any error present (only when
SENT_DIAG_STRICT = 1). Otherwise,
always high.
11
0x800
Table 45 - SENT Serial Message Error Code
11.1.9. SENT configuration shorthand definition
Shorthand description
SENT SAE J2716 Rev
Clock Tick length [µs]
Number of data Nibbles
39
Format
Req
90372 programmable setting
SENT
xxxx
2007
2008
2010
2016
CRC_2007
0
> 2007
1
2007
0.5 5 V)
0
1
156
Add delay to enter PTC mode (MT7V)
0
1
Magnet Relative sensitivity at temperature Tx. This
parameter is mainly used in Linear Hall Mode. It is
advised to keep defaults for other modes.
255
8
SENSOR FRONT-END
MAGNET_SREL_T[1..7]
179,
8..13
GAINMIN
14
Low threshold for virtual gain
01
8
GAINMAX
15
High threshold for virtual gain
63
8
GAINSATURATION
26
Gain Saturates on GAINMIX and GAINMAX
0
1
Mapping fields for output angle
SENSING_MODE
18
Rotary stray field Immune -- order code 100/500
0
Linear position stray field Immune -- order code 200
4
Linear position / Angular Rotary -- order code 300
DSP_NB_CONV(40)
19
Number of phase spinning within ADC sequence
0=4 phase spinning
3
1-3
0(40)
2
DSP - FILTERING
FILTER
21
Filter mode selection
1
2
HYST
16
Hysteresis threshold for EMA filter
0
8
DENOISING_FILTER_ALPHA_SEL
79
Select the alpha parameter of the EMA (IIR) filter
0
2
DSP – ANGLE MAPPING FUNCTIONS
CW
20
Set rotation to clockwise
0
1
DP
27
Discontinuity point
0
16
WORK_RANGE_GAIN
217
Re-scaling before the piece-wise linearization step
16
8
WORKING_RANGE
23
0
3
4POINTS
22
0
1
DSP_LNR_RESX2
78
0
1
1
1
17, 32pts - Output angle range
(= limited selection of WORK_RANGE_GAIN)
Select LNR method 4 pts
Enable a double resolution LNR method
0: 4-points or 16-segments
1: 8-points or 32-segments
GAIN_ANCHOR_MID
40
180
re-scaling before the piece-wise linearization step
Changing default value could impact the safety metrics. Default value shall be used.
REVISION 8 - 08 MAR 2019
3901090372
Page 43 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Parameter
PSF
value
Description
Default
Values
Standard #bits
29,35
LNRS0, LNRAS.. LNRDS
41,48,
4pts –Slope for reference points A,B,C,D
N/A
16
57
LNRAX, LNRBX.. LNRDX
31,37,
43,51
4pts - X Coordinate for reference points A,B,C,D
N/A
16
LNRAY, LNRBY.. LNRDY
33,39,
45,54
4pts - Y Coordinate for reference points A,B,C,D
N/A
16
LNRX0..X7
46..65
8 pts - X coordinate point 0..7
N/A
16
LNRY0..Y16
28..69
17 pts - Y coordinate point 0..16
1-4088
16
LNR_DELTA_Y01..Y32
182..
213
Delta Y for 32-segment linearization
N/A
8
LNR_DELTA_Y_EXPAND_LOG2
216
Adjust the span of NV_LNR_DELTA_Yn
0
2
1
1
Enables the output scaling function (x2)
USEROPTION_SCALING
24
0 = [0..100%]
1 = [-50..150%]
CLAMPLOW
71
Low clamping value of angle data
1
12
CLAMPHIGH
72
High clamping value of angle data
4088
12
OUTSLOPE_SEL(41)
246
Select temperature-dependent offset (see 13.2.10)
0
2
OUTSLOPE_COLD(41)
253
Slope coefficient at cold of the programmable
temperature-dependent offset (signed value)
0
8
OUTSLOPE_HOT(41)
254
Slope coefficient at Hot of the programmable
temperature-dependent offset (signed value)
0
8
8(40)
8
DIAGNOSTICS
DIAG_TEMP_THR_LOW(40)
84
Temperature threshold for under-temperature
diagnostic
DIAG_TEMP_THR_HIGH(40)
85
Temperature threshold for over-temperature diagnostic
136(40)
8
DIAG_FIELDTOOLOWTHRES
86
Field limit under which a fault is reported. On revision
ACC, need to be programmed by user to be active. Each
LSB of this threshold corresponds to 4 LSB of the field
strength.
( 42)
8
DIAG_FIELDTOOHIGHTHRES
87
Field limit over which a fault is reported. Each LSB of this
threshold corresponds to 4 LSB of the field strength.
255
8
PWM WEAKMAGTHRESH
88
Weak Magnet threshold Byte (PWM only)
0
8
DIAGDEBOUNCE_STEPDOWN
90
Diagnostic debouncing stepdown time
1
4
DIAGDEBOUNCE_STEPUP
91
Diagnostic debouncing step-up time
2
4
DIAGDEBOUNCE_THRESH
93
Diagnostic debouncing threshold
2
6
41
Only available on IC revisions ACE and ADE
42
Default value depends on application and IC revision. See chapter 8 tables for more information.
REVISION 8 - 08 MAR 2019
3901090372
Page 44 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Parameter
PSF
value
Description
Default
Values
Standard #bits
DIAG_EN(40)
94
Diagnostics global enable. Do not modify! (see 14.2
Safety Mechanisms)
COLD_SAFE_STARTUP_EN
95
OUT_DIAG_HIZ_TIME
161
1(40)
1
Normal (0) or full safe (1) start-up after power-on reset
(see 7.3.1)
0
1
Duration of output High-Z after transient digital fault, do
not modify!
-
3
2
2
1
1
2
2
OUTPUT CONFIGURATION
Select digital output communication mode
PROTOCOL
TWO_ANGLES_FRAME
100
125
0
= SENT without pause pulse
1
= PWM
2
= SENT with pause (default)
Enable 2 angle measurements SENT period w/ pause
pulse. ! Has impact on the analog diagnostics DCT (see
Table 12 - General Timing Specifications)
SENT nibble high/low-time configuration
NIBBLE_PULSE_CONFIG
220
2 = Fixed 5 ticks low
3 = Fixed 6 ticks high
T_FRAME
134
SENT Frame Tick Count / PWM period (4µs/LSB). ! Has
impact on the analog diagnostics DCT (see Table 12 General Timing Specifications)
320( 43)
12
T_SYNC_DELAY(40)
137
SENT - ADC synchronization delay
69(43)
12
0
2
Output mode in normal mode
00: SENT mode, digital push-pull
ABE_OUT_MODE
157
01: SENT mode, open-drain
10: PWM mode, digital fast push-pull
11: PWM open-drain, increased short circuit current
SENT_SEL_SR_FALL
530
SENT slope Fall time configuration (see Table 40)
4
3
SENT_SEL_SR_RISE
531
SENT slope Rise time configuration (see Table 40)
4
3
ABE_OUT_CFG
159
Output pin configuration, do not modify!
6
2
OUT_ALWAYS_HIGHZ
105
Forces the PWM second output (TEST pin) in high-Z
mode
0
1
0
1
N/A
2
PWM PROTOCOL OPTIONS
PWM_POL
102
Invert the PWM polarity
Error message within PWM frame
0x0: PWM - config 2 (PWM signal in fault band)
PWM_REPORT_MODE_ANA
104
0x1: PWM - config 1 (HiZ)
0x2: Output = config 3.a (0 constant)
0x3: Output = config 3.b (1 constant)
Default value is valid for ACE/ADE. ACC chip revision comes with T_FRAME=366 and T_SYNC_DELAY=21 as default value. Both
T_FRAME and T_SYNC_DELAY have impact on safety metrics and shall follow Melexis programming recommendations.
43
REVISION 8 - 08 MAR 2019
3901090372
Page 45 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Parameter
PSF
value
Description
Default
Values
Standard #bits
PWM DC_FAULT
107
PWM Duty Cycle in case of Fault
4
8
PWM DC_ FIELDTOOLOW
108
PWM Duty Cycle in case of Field Strength Too Low
10
8
PWM DC_ WEAKMAG
109
PWM Duty Cycle in case of Weak Magnet
6
8
SENT PROTOCOL OPTIONS
STATUS_IN_CRC
111
Add first nibble in SENT CRC calculation
0
1
EN_FAST_CH2
113
Enable serial message DATA nibbles [6:4]
1
1
SENT_CH1_SRC_SEL(40)
114
0(40)
1
N/A
16
Selection of the SENT channel 1 source:
0: Angle
1: RAM data at addr SENT_CH2_PTR
RAMPROBE_PTR
116
Data to be transmitted in SENT channel 2
SENT_MAN_CODE
118
Serial data message Manufacturer code
6
12
SENT_REV
119
Serial data message SENT rev
4
12
SENT_SENSOR_TYPE
121
Serial data message SENSOR_TYPE
0x050
12
SENT_TICK_TIME (40)
123
Sent tick time
0(40)
3
SENT_SS
124
Enable Single Secure sensor format A.3
1
1
SENT_SLOW_EXTENDED
126
Enable enhanced serial message ID OEM code 25-40
0
1
SENT_FAST_CHANNEL_2
128
Configuration of SENT fast channel 2 when
NV_SENT_SS=0
2
2
SENT_LEGACY_CRC
129
Enable SENT2007 CRC calculation
0
1
SENT_SLOW_BFIELD
130
Enable enhanced serial message ID 80
0
1
0
2
Error message within SENT frame in diagnostic mode:
0x0: SENT - Status bit S0 is set
SENT_REPORT_MODE_ANA
131
0x1: SENT - Status bit S0 is set and data = FF9 +
DIAG_FAULT_CODE (FFF by default)
0x2: SENT - Status bit S0 is set and the redundant nibble
is inverted
DIAG_FAULT_CODE(41)
645
Defines the fault code when
SENT_REPORT_MODE_ANA=1
6
3
SENT_DIAG_STRICT
138
Enhanced serial error reporting option: Disable Bit 11
when no error is present.
1
1
SENT_CHANNEL_X1
139
Serial data message X1
0
12
SENT_CHANNEL_X2
140
Serial data message X2
0
12
SENT_CHANNEL_Y1
141
Serial data message Y1
0
12
SENT_CHANNEL_Y2
142
Serial data message Y2
0
12
SENT_SENSOR_ID1.4
143..
146
Serial data message sensor ID1.. ID4
0
12
SENT_OEM_CODE1..8
147..
154
Serial data message OEM code 1..8
0
12
REVISION 8 - 08 MAR 2019
3901090372
Page 46 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
PSF
value
Parameter
Default
Values
Description
Standard #bits
SENT serial configuration
SERIAL_CONFIG
221
1 = No serial protocol
3 = Enhanced serial protocol
3
2
0
1
Do not use 0, 1 or 2 to retain safety goal.
SENT initialization ,
SENT_INIT_GM
222
0 = transmitting 0 as initialization data
1 = transmitting 4095 as initialization data
Table 49 - MLX90372 End-User Programmable Items Table
Performances described in this document are only achieved by adequate programming of the device. To
ensure desired functionality, Melexis recommends following its programming guidelines and contacting
its technical or application services. Melexis does not guarantee the safety of the element if the
configuration of the device is done outside of the above defined values and recommendations.
12.1. End User Identification Items
Parameter
PSF value
Default
Values
Description
Standard #bits
USER_ID[0..5]
USER_ID2
1..6
3
User Id. References
-
Product Number for 90372ACC
4
Product Number for 90372ACE
7
Product Number for 90372ADE
8
8
8
NVRAM default user content revision
USER_ID3
4
90372 ACC
8
90372 ACE/ADE
9
8
0 : Rotary Stray Field Robust, low field version (-1xx
ordering code)
IMC_VERSION
692
1 : Angular / Linear position legacy (-3xx ordering code)
2 : Linear Stray Field Robust (-2xx ordering code)
-
7
-
16
-
16
-
16
4 : Rotary Stray Field Robust, high field version (-5xx
ordering code)
MLX_ID0
677
MLX_ID1
680
MLX_ID2
683
X-Y position on the wafer (8 bit each)
Wafer ID (5 bits)
Lot ID [10..0]
Lot ID [16..11]
Fab ID (4 bits)
Test Database ID (6 bits)
Table 50 - Melexis and Customer ID fields description
User identification numbers (48 bits, 6 bytes) are freely usable by customers for traceability purpose.
Other IDs are read only.
REVISION 8 - 08 MAR 2019
3901090372
Page 47 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
13. Description of End-User Programmable Items
13.1. Output modes
13.1.1. OUT mode (ABE_OUT_MODE)
Defines the Output Stage mode (SENT or PWM, driver mode) in application.
ABE_OUT_MODE
Type
Description
Comments
0
SENT
Push-Pull
1
SENT
Open Drain
Requires a pull-up resistor
2
PWM
Push-Pull
In PWM mode, edge rising time is
similar to falling time.
3
PWM
Open Drain
Requires a pull-up resistor, increased
short circuit current (Table 11)
Table 51 - Output Mode Selection
13.1.2. Digital OUT protocol (PROTOCOL)
Selection of the measurement timing mode and the corresponding output protocol
PROTOCOL
Type
Descriptions
0
SENT
Continuous asynchronous angle acquisition, SENT without
pause pulse
1
PWM
Continuous asynchronous angle acquisition, PWM
2
SENT
Continuous synchronous angle acquisition, SENT with pause
Table 52 - Protocol Selection
13.1.3. Serial Channel Configuration - Status and Communication Nibble
SERIAL_CONFIG
Type
Descriptions
0
-
Status and Communication nibble is not present. This
configuration is not compliant with SENT. Do Not Use!
1
nsp
Status nibble will report an error. Data sent along the serial
channel is taken from RAM.
2
ssp
This short serial protocol is not compliant with SENT.
Do Not Use!
3
esp
Status nibble reports errors and serial channel reports
sequence defined in 11.1.7
Table 53 - SENT Serial channel Configuration
REVISION 8 - 08 MAR 2019
3901090372
Page 48 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
13.1.4. PWM Output Mode
If PWM output mode is selected, the output signal is a digital signal with Pulse Width Modulation (PWM).
The PWM polarity is selected by the PWMPOL parameter:
PWM_POL = 0 for a low level at 100%
PWM_POL = 1 for a high level at 100%
The PWM frequency is selected in the range [100, 2000] Hz by the T_FRAME parameter (12bits), defining
the period time in the range [0.5; 10] ms. Minimum allowed value for T_FRAME is therefore 125 (0x7d).
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 =
4
× 𝑇𝑇_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
106
PWM period is derived from the main clock and subject to the same tolerances (see ΔFck).
13.2. Output Transfer Characteristic
There are 4 different possibilities to define the transfer function (LNR) as specified in the Table 54.
With 4 arbitrary points (defined by X and Y coordinates) and 5 slopes
With 8 arbitrary points (defined by X and Y coordinates)
With 17 equidistant points for which only the Y coordinates are defined
With 32 equidistant points for which only offset of Y compared to the average value is defined
Output Transfer Characteristic
4POINTS
DSP_LNR_RESX2
4 Arbitrary Points
1
0
8 Arbitrary Points
1
1
17 Equidistant Points
0
0
32 Equidistant Points
0
1
Table 54 - Output Transfer Characteristic Selection Table
Parameter
LNR type
Value
CW
All
DP
All
0 … 359.9999
deg
4 pts, X coordinates
0 … 359.9999
deg
0 counter clockwise
1 clockwise
Unit
LSB
LNRAX
LNRBX
LNRCX
LNRDX
REVISION 8 - 08 MAR 2019
3901090372
Page 49 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Parameter
LNR type
Value
Unit
LNRAY
LNRBY
0 … 100
4 pts, Y coordinates
LNRCY
-50 … + 150
%
LNRDY
LNRS0
LNRAS
LNRBS
4 pts, slopes
-17 … 0 … 17
%/deg
8 pts, X coordinates
0 … 359.9999
deg
LNRCS
LNRDS
LNRX0
..
LNRX7
LNRY0
…
LNRY7
0..100
8,17 pts, Y coordinates
-50 … + 150
…
%
LNRY16
+/-3.125%
LNR_DELTAY01
…
+/-6.25%
32 pts offsets
+/-12.5%
LNR_DELTAY32
%
+/-25%
65.5 … 360
WORKING RANGE 44
17/32 pts
CLAMP_LOW
All
0 … 100
%
CLAMP_HIGH
All
0 … 100
%
32.75 … 180
deg
Table 55 - Output linearization and clamping parameters
13.2.1. Enable scaling Parameter
This parameter enables to double the scale of Y coordinates linearisation parameters from [0 .. 100]% to
[-50 .. 150]% according to the following table (Table 56). This is valid for all linearisation schemes except
the 32 points.
USEROPTION_SCALING
LNR_Y min value
LNR_Y max value
0
0%
100%
1
-50%
150%
Table 56 - USEROPTION_SCALING parameter
44
See 13.2.8 for details
REVISION 8 - 08 MAR 2019
3901090372
Page 50 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
13.2.2. CW (Clockwise) Parameter
The CW parameter defines the magnet rotation direction.
0 or counter clockwise is the defined by the 1-4-5-8 pin order direction for the SOIC-8 package
and 1-8-9-16 pin order direction for the TSSOP-16 package.
1 or clockwise is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC-8 and
16-9-8-1 pin order direction for the TSSOP-16 package.
Refer to the drawing in the sensitive spot positioning section (18.4, 18.8, 18.16).
13.2.3. Discontinuity Point (or Zero Degree Point)
The Discontinuity Point defines the 0° point on the circle. The discontinuity point places the origin at any
location of the trigonometric circle. The DP is used as reference for all the angular measurements.
0 Deg.
360 Deg.
fig. 18 - Discontinuity Point Positioning
13.2.4. 4-Pts LNR Parameters
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)
between the digital angle and the output signal.
The shape of the MLX90372 four points transfer function from the digital angle value to the digital output
is described in the following figure (fig. 19). Seven segments can be programmed but the clamping levels
are necessarily flat.
Two, three, or even six calibration points are then available, reducing the overall non-linearity of the IC
by almost an order of magnitude each time. Three or six calibration point will be preferred by customers
looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking
for a cheaper calibration set-up and shorter calibration time.
REVISION 8 - 08 MAR 2019
3901090372
Page 51 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
100%
CLAMPHIGH
D
Output [%]
LNR_D_Y
C
LNR_C_Y
B
LNR_B_Y
Slope LNR_C_S
Slope LNR_B_S
Slope
LNR_A_S
A
LNR_A_Y
Slope LNR_D_S
Slope
LNR_S0
CLAMPLOW
DP(0,0)
LNR_A_X
LNR_B_X
LNR_C_X
LNR_D_X
Angle [°] 360
fig. 19 - 4pts Linearisation Parameters Description
13.2.5. 8-Pts LNR Parameters
The 8-Pts LNR parameters, together with the clamping values, fully define the relation (the transfer
function) between the digital angle and the output signal.
The shape of the MLX90372 eight points transfer function from the digital angle value to the output
voltage is described in the following figure (fig. 20). Eight calibration points [LNR_X0...7, LNR_Y0...7]
together with 2 fixed points at the extremity of the range ([0°, 0%] ; [360°, 100%]) divides the transfer
curve into 9 segments. Each segment is defined by 2 points and the values in between is calculated by
linear interpolation.
100%
CLAMPHIGH
LNR_Y7
Output [%]
...
7
4
3
LNR_Y1
LNR_Y0
0
1
5
6
2
CLAMPLOW
DP(0,0)
LNR_X0 LNR_X1
...
Angle [°]
...
LNR_X7
360
fig. 20 - 8pts Linearisation Parameters Description
REVISION 8 - 08 MAR 2019
3901090372
Page 52 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
13.2.6. 17-Pts LNR Parameters
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)
between the digital angle and the output signal.
The shape of the MLX90372 seventeen points transfer function from the digital angle value to the output
voltage is described in the following figure (fig. 21). In the 17-Pts mode, the output transfer characteristic
is Piece-Wise-Linear (PWL).
LNR_Y16
16
100
LNR_Y15
LNR_Y14
15
14
Output [%]
...
13
12
11
10
LNR_Y9
LNR_Y8
50
LNR_Y7
8
7
Δx = w/16, fixed delta angle, with
6
...
5
w=
4
LNR_Y3
LNR_Y2
LNR_Y1
DP(0,0)
LNR_Y0
1
180-
2
9
16·360°
WORK_RANGE_GAIN
3
w
2
180
0
Angle [°]
180+
w
2
fig. 21 - 17pts Linearisation Parameters Description
All the Y-coordinates can be programmed from -50% up to +150% to allow clamping in the middle of one
segment (like on the figure), but the output value is limited to CLAMPLOW and CLAMPHIGH values.
Between two consecutive points, the output characteristic is interpolated.
13.2.7. 32-Pts LNR parameters
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)
between the digital angle and the output signal.
The shape of the MLX90372 thirty-two points transfer function from the digital angle value to the output
voltage is described in the following figure (fig. 22). In the 32-Pts mode, the output transfer characteristic
is Piece-Wise-Linear (PWL).
The points are spread evenly across the working range (see. 13.2.8 and 13.2.9 for working range
selection). The Y-coordinates can be offset from the ideal characteristic within an adjustable range
defined by LNR_DELTA_Y_EXPAND_LOG2. The available values are summarized in Table 57. All
LNR_delta_Y## parameters are encoded in a fractional signed 8-bit value.
REVISION 8 - 08 MAR 2019
3901090372
Page 53 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
LNR_Delta_Y32
100
CLAMPHIGH
Output [%]
LNR_deltaY :
Programmable delta correction vs. Ideal slope (%)
The adjustable range can be selected from
[+/-3.125%, +/-6.25%, +/-12.5%, +/-25%]
Adjustable
range
Δx fixed delta angle (w/32)
Prog. Slope :
WORK_RANGE_GAIN
LNR_Delta_Y16
LNR_Delta_Y15
50
Anchor point
w=
CLAMPLOW
DP(0,0)
Δx
LNR_Delta_Y01
180-
16·360°
WORK_RANGE_GAIN
w
2
180
Angle [°]
180+
w
2
fig. 22 - 32pts Linearisation Parameters Description
LNR_DELTA_Y_EXP
AND_LOG2
Adjustable
Range
Correction
resolution
0
±3.125%
0.024%
1
±6.25%
0.049%
2
±12.5%
0.098%
3
±25%
0.20%
Table 57 - LRN_DELTA_Y_EXPAND_LOG2 values and correction resolution
13.2.8. WORKING_RANGE Parameter for Angle Range Selection
The parameter WORKING_RANGE determines the input range on which the 16 or 32 segments are
uniformly spread. This parameter is provided for compatibility with former versions of MLX Triaxis
sensors. For full featured working range selection, see 13.2.9. For WORKING_RANGE parameter (W),
following table applies.
W
Range
Δx 17pts
Δx 32pts
W
Range
Δx 17pts
Δx 32pts
0
180.0°
11.3°
5.6°
8
90.0°
5.6°
2.8°
1
160.0°
10.0°
5.0°
9
72.0°
4.5°
2.3°
2
144.0°
9.0°
4.5°
10
60.0°
3.8°
1.9°
3
131°
8.2°
4.1°
11
51.45°
3.2°
1.6°
4
120.0°
7.5°
3.8°
12
45.0°
2.8°
1.4°
5
221.5°
6.9°
3.5°
13
40.0°
2.5°
1.3°
6
103°
6.4°
3.2°
14
36.0°
2.3°
1.1°
7
96°
6.0°
3.0°
15
32.75°
2.0°
1.0°
Table 58 - Working range for 180° periodicity (order code -100, -500)
REVISION 8 - 08 MAR 2019
3901090372
Page 54 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
W
Range
Δx 17pts
Δx 32pts
W
Range
Δx 17pts
Δx 32pts
0
360.0°
22.5°
11.3°
8
180.0°
11.3°
5.6°
1
320.0°
20.0°
10.0°
9
144.0°
9.0°
4.5°
2
288.0°
18.0°
9.0°
10
120.0°
7.5°
3.8°
3
261.8°
16.4°
8.2°
11
102.9°
6.4°
3.2°
4
240.0°
15.0°
7.5°
12
90.0°
5.6°
2.8°
5
221.5°
13.8°
6.9°
13
80.0°
5.0°
2.5°
6
205.7°
12.9°
6.4°
14
72.0°
4.5°
2.3°
7
192.0°
12.0°
6.0°
15
65.5°
4.1°
2.0°
Table 59 - Working range for 360° periodicity (order code -200, -300)
Outside of the selected range, the output will remain at clamping levels.
13.2.9. WORK_RANGE_GAIN Parameter for Angle Range Selection
Alternatively, the range for the angle can be selected using the WORK_RANGE_GAIN parameter, which
applies a fixed gain to the transfer characteristic. When using WORK_RANGE_GAIN parameter, the
anchor point is set in the middle of the full angular range, MaxRange/2, and the valid range is set
symmetrically around this value based on the parameter value.
WORK_RANGE_GAIN is coded on 8 bits where the 4 MSB defines the integer part and the 4 LSB the
fractional part. Therefore, the following equation applies to define the angle range w:
w=
16 ∗ MaxRange
WORK_RANGE_GAIN
MaxRange depends on the application. It is 360° for ordering codes -200 and -300 (linear stray-field
immune and legacy) and 180° for ordering codes -100 and -500 (rotary stray-field immune). Both minimal
and maximal angles are then defined by :
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑤𝑤
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑤𝑤
; 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 =
2
2
where θmin corresponds to the angle yielding 0% output and θmax the angle giving a 100% output.
Following tables give some values as example
WORK_RANGE
_GAIN
Zoom
Factor
Range (w)
θmin
θmax
Δx 17pts
Δx 32pts
0x10
1
180°
0°
180°
11.25°
5.63°
0x20
2
90°
45°
135°
5.63°
2.81°
0x40
4
45°
67.5°
112.5°
2.81°
1.41°
0xFF
15.94
11.3°
78.7°
101.3°
0.71°
0.35°
Table 60 - Working range defined by WORK_RANGE_GAIN parameter (ordering codes -100, -500)
REVISION 8 - 08 MAR 2019
3901090372
Page 55 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
WORK_RANGE
_GAIN
Zoom
Factor
Range (w)
θmin
θmax
Δx 17pts
Δx 32pts
0x10
1
360°
0°
360°
22.5°
11.3°
0x20
2
180°
90°
270°
11.3°
5.6°
0x40
4
90°
135°
225°
5.6°
2.8°
0xFF
15.94
22.6°
168.7°
191.3°
1.41°
0.71°
Table 61 - Working range defined by WORK_RANGE_GAIN parameter (ordering codes -200, -300)
Outside of the working range, the output will remain at clamping levels.
13.2.10. Thermal OUTSLOPE offset correction
Two parameters, OUTSLOPEHOT and OUTSLOPECOLD, are used to add a temperature dependent offset.
This feature is enabled by the parameter OUTSLOPE_SEL that apply this modification either directly to
the angle or after the linearisation function. This thermal offset is only available with the revisions ACE or
ADE of the MLX90372. The MLX90372 uses its internal linearized temperature to compute the offset shift
as depicted in the figure below (fig. 23)
+6.25%
(at ΔT=128°C)
OUTSLOPEHOT
OUTSLOPECOLD
-6.25%
(at ΔT=128°C)
-40
Temperature (°C)
35
160
fig. 23 - Temperature compensated offset
The thermal offset can be added or subtracted before the clamping, either to the angle or output. The span
of this offset is ±6.25% of the full output scale for a temperature difference of 128°C. The added thermal
offset varies with temperature following the equations below. The two thermal coefficients are encoded
in signed two’s complement 8bit format (-128..127) and defined separately below 35°C (OUTSLOPECOLD)
and above 35°C (OUTSLOPEHOT).
OUTSLOPE_SEL
0
1
2
Description
No thermal offset correction
Thermal offset enabled, applied after angle calculation, i.e. after
discontinuity point (𝜃𝜃𝑟𝑟2𝑝𝑝 )
Enabled, applied after output calculation and before clamping (𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 )
Table 62 - Temperature compensated offset selection parameter
REVISION 8 - 08 MAR 2019
3901090372
Page 56 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
If IC internal temperature is higher than 35°C then:
𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜃𝜃𝑖𝑖𝑖𝑖 (1 − Δ𝑇𝑇 ⋅ OUTSLOPEHOT )
If IC internal temperature is lower than 35°C then:
𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜃𝜃𝑖𝑖𝑖𝑖 (1 − Δ𝑇𝑇 ⋅ OUTSLOPECOLD)
where 𝜃𝜃𝑖𝑖𝑖𝑖 is either 𝜃𝜃𝑟𝑟2𝑝𝑝 or 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 depending on OUSLOPE_SEL value.
13.2.11. CLAMPING Parameters
The clamping levels are two independent values to limit the output voltage range. The CLAMPLOW
parameter adjusts the minimum output level. The CLAMPHIGH parameter sets the maximum output.
Both parameters have 16 bits of adjustment and are available for all four LNR modes. As output data
resolution is limited to 12bits, both in SENT and in PWM, the 4 LSB of this parameter will have no
significant effect on the output. The value is encoded in fractional code, from 0% to 100%
13.3. Sensor Front-End
Parameter
Value
SENSING MODE
[0..3]
GAINMIN
[0..63]
GAINMAX
[0..63]
GAINSATURATION
[0, 1]
Table 63 - Sensing Mode and Front-End Configuration
13.3.1. SENSING MODE
The SENSING_MODE parameter defines which sensing mode and fields are used to calculate the angle.
The different possibilities are described in the tables below. This 2 bits value selects the first (B1) and
second (B2) field components according to the Table 64 content.
SENSING_MODE
B1
B2
Angular Mode
Compatible with
0
X
Y
Angular Rotary stray-field Immune
ordering code -100
1
X
Y
X-Y Angular Rotary
ordering code -300
2
Y
Z
Y-Z Angular Rotary
ordering code -300
3
X
Z
X-Z Angular Rotary
ordering code -300
4
ΔX
ΔZ
Linear position, stray-field Immune
ordering code -200
Table 64 - Sensing Mode Description
REVISION 8 - 08 MAR 2019
3901090372
Page 57 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
13.3.2. GAINMIN and GAINMAX Parameters
GAINMIN and GAINMAX define the thresholds on the gain code outside which the fault “GAIN out of
Spec.” is reported (see Table 45, GainOOS). If GAINSATURATION is set, then the virtual gain code is
saturated at GAINMIN and GAINMAX, and no Diagnostic fault is set since the saturations applies before
the diagnostic is checked.
On the MLX90372 ACC the circuit will report a Gain Out of Spec error whenever the maximum gain of 63
is reached, regardless of the GAINMAX value.
13.4. Filtering
The MLX90372 includes 2 types of filters:
Exponential moving average (EMA) Filter: programmable by the HYST parameter
Low Pass FIR Filters controlled with the FILTER parameter
Parameter
Value
FILTER
0…2
HYST
0 … 255
Table 65 - Filtering configuration
13.4.1. Exponential Moving Average (IIR) Filter
The HYST parameter is a hysteresis threshold to activate / de-activate the exponential moving average
filter. The output value of the IC is updated with the applied filter when the digital step is smaller than
the programmed HYST parameter value. The output value is updated without applying the filter when the
increment is bigger than the hysteresis. The filter reduces therefore the noise but still allows a fast step
response for bigger angle changes. The hysteresis must be programmed to a value close to the internal
magnetic angle noise level (1LSB = 8 ∙ 360/216).
yn = a * xn + (1 − a ) * yn−i
xn = Angle
yn = Output
The filters characteristic is given in the following table (Table 66):
DENOISING_FILTER_ALPHA_SEL
0
1
2
3
Coefficients a
0.75
0.5
0.25
0.125
2.4
4.2
Efficiency RMS (dB)
Table 66 - IIR Filter characteristics
REVISION 8 - 08 MAR 2019
3901090372
Page 58 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
13.4.2. FIR Filters
The MLX90372 features 2 FIR filter modes controlled with Filter = 1…2. Filter = 0 corresponds to no
filtering. The transfer function is described by:
yn =
j
1
j
∑a
i
i =0
∑a x
i =0
i n −i
This filter characteristic is given in the Table 67.
FILTER value
0
1
2
Type
Disable
Coefficients ai
1
11
1111
Title
No filter
ExtraLight
Light
DSP cycles (nb of taps)
1
2
4
Efficiency RMS (dB)
0
3.0
6.0
Finite Impulse Response (FIR)
Table 67 - FIR Filter Characteristics
13.5. Programmable Diagnostics Settings
13.5.1. Diagnostics Global Enable
DIAG_EN should be kept to its default value (1) to retain all functional safety capabilities of the
MLX90372. This feature shall not be disabled.
13.5.2. Diagnostic Debouncer
A debouncing algorithm is available for analog diagnostic reporting (see chapter 14, Functional Safety).
Enabling this debouncer will however increase the DCT of the device. Therefore, Melexis recommends
keeping the debouncing of analog faults off by not modifying below described values (see Table 49 for
factory defaults).
NVRAM Parameter
Description
DIAGDEBOUNCE_STEPDOWN
Decrement values for debouncer counter
DIAGDEBOUNCE_STEPUP
Increment value for debouncer counter
DIAG_DEBOUNCE_THRESH
Threshold for debouncer counter to enter diagnostic mode
Table 68 - Diagnostic debouncing parameters
Once an analog monitor detects an error, it takes control of the debouncing counter. This counter will be
incremented by STEPUP value each time this specific monitor is evaluated, and the error is still present.
When the debouncing counter reaches the value defined by DEBOUNCE THRESHOLD, an error is reported
on the error channel, and the debouncing counter stays clamped to this DEBOUNCE THRESHOLD value
REVISION 8 - 08 MAR 2019
3901090372
Page 59 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
(see 11.1.8 for SENT error message codes, 13.5.4 for PWM error reporting). Once the error disappears,
each time its monitor is evaluated, the debouncing counter is decremented by STEPDOWN value. When
the debouncing counter reaches zero, the error disappears from the reporting channel and the
debouncing counter is released. To implement proper reporting times, one should refer to the DCT
defined in the Table 12. The reporting and recovery time are defined in the table below (valid for
THRESH≠0).
Parameter
Reporting Time
Recovery Time
Min
Max
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
� − 1�
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝐷𝐷𝐷𝐷𝐷𝐷 ∙ ��
��
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑥𝑥
� �
𝑦𝑦
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
��
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝐷𝐷𝐷𝐷𝐷𝐷 ∙ ��
� + 1�
𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝑁𝑁
𝐷𝐷𝐷𝐷𝐷𝐷 ∙ ��
𝐷𝐷𝐷𝐷𝐷𝐷 ∙ ��
is the ceiling function of x divided by y
Table 69 - Diagnostic Reporting and Recovery times
13.5.3. Over/Under Temperature Diagnostic
DIAG_TEMP_THR_HIGH defines the threshold for over temperature detection and is compared to the
linearized value of the temperature sensor TLIN. DIAG_TEMP_THR_LOW defines the threshold for under
temperature detection and is compared to the linearized value of the temperature sensor TLIN
TLIN is encoded using the SENT standard for temperature sensor. One can get the physical temperature of
the die using following formula:
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 [°𝐶𝐶] =
𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿
− 73.15
8
DIAG_TEMP_THR_LOW/HIGH are encoded on 8-bit unsigned values with the following relationship
towards TLin
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑇𝑇𝑇𝑇𝑇𝑇_(𝐿𝐿𝐿𝐿𝐿𝐿/𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) =
𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿
16
Following table summarizes the characteristics of the linearized temperature sensor and the encoding of
the temperature monitor thresholds.
Parameter
Symbol
Min
Typ
Max
Unit
TLIN resolution
ResTLIN
-
0.125
-
°C/LSB
TLIN refresh rate
FS,TLIN
-
200
-
Hz
TLIN linearity error
TLinErr
-8
-
8
°C
from -40 to 160°C
TLIN linearity error
TLinErr
-2
-
6
°C
from 35 to 125°C
REVISION 8 - 08 MAR 2019
3901090372
Condition
Page 60 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Parameter
Symbol
Min
Typ
Max
Unit
Condition
Low temperature
threshold
DIAG_TEMP
_THR_LOW
-
8
-
LSB
Recommended value,
corresponds to -57°C
High temperature
threshold
DIAG_TEMP
_THR_HIGH
-
136
-
LSB
Recommended value,
corresponds to 199°C
High/low temperature
threshold resolution
ResTthr
2
°C/LSB
Table 70 - Linearized Temperature Sensor characteristics
13.5.4. PWM Diagnostic
DC_FAULT
This parameter defines the duty-cycle that is present on the PWM output in case of diagnostic reporting.
WEAKMAGTHRESH
This parameter defines the threshold on the field strength which determines the weak magnet condition;
when WEAKMAGTHRESH = 0, there is no reporting of weak magnet condition.
DC_FIELDTOOLOW
This parameter defines the duty-cycle that is output in case of Field Too Low; the Field Too Low
Diagnostic is stronger than the Weak Magnet Diagnostic, from 0% till 100 % by steps of (100/256)%
DC_WEAK
This parameter defines the output duty-cycle in case of Weak Magnet, from 0% till 100% by steps of
(100/256)%
REVISION 8 - 08 MAR 2019
3901090372
Page 61 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
14. Functional Safety
14.1. Safety Manual
The safety manual, available upon request, contains the necessary information to integrate the
MLX90372 component in a safety related item, as Safety Element Out-of-Context (SEooC).
In particular it includes:
The description of the Product Development lifecycle tailored for the Safety Element.
An extract of the Technical Safety concept.
The description of Assumptions-of-Use (AoU) of the element with respect to its intended use,
including:
assumption on the device safe state;
assumptions on fault tolerant time interval and multiple-point faults detection interval;
assumptions on the context, including its external interfaces;
The description of safety analysis results at the device level useful for the system integrator; HW
architectural metrics and description of dependent failures initiators.
The description and the result of the functional safety assessment process; list of confirmation
measures and description of the independency level.
14.2. Safety Mechanisms
The MLX90372 provides numerous self-diagnostic features (safety mechanisms). Those features increase
the robustness of the IC functionality by either preventing the IC to provide an erroneous output signal or
reporting the failure according to the SENT protocol definition.
Legend
● High coverage
○ Medium coverage
ANA : Analog hardware failure reporting, described in the safety manual
High-Z : Special reporting, output is set in high impedance mode (no HW fail-safe mode/timeout, no
SW safe startup)
DIG : Digital hardware failure reporting, described in the safety manual
* : Diagnostic Cycle Time (see 7.1 for values)
At Startup : HW fault present at time zero is detected before a first frame is transmitted.
DIAG_EN : This safety mechanism can be disabled by setting DIAG_EN = 0 (see 12 End-User
Programmable Items). This option should not be used in application mode!
Table 71 - Self Diagnostic Legend
REVISION 8 - 08 MAR 2019
3901090372
Page 62 of 85
MLX90372 - Triaxis® Position Processor
Datasheet
Category and safety mechanism name
Frontend
ADC
Signal-conditioning (AFE, External Sensor) Diagnostic
●
●
Magnetic Signal Conditioning Voltage Test Pattern
●
○
Magnetic Signal Conditioning Rough Offset Clipping check
Backend
Sup
port.
Func.
Module
&
Package
DCT*
●
Reporting
mode
At
startup
DIAG
EN
ANA
○
DCT_Ana
ANA
●
○
DCT_Ana
ANA
NO
●
Magnetic Signal Conditioning Gain Monitor
●
○
●
DCT_Ana
ANA
YES
●
Magnetic Signal Conditioning Gain Clamping
●
○
●
DCT_Ana
ANA
YES
Mag. Sig. Cond. Failure control by the chopping technique
●
n/a
n/a
YES
External Sensor Sig. Cond. Voltage Valid Range Check
●
●
DCT_Ana
ANA
YES
○(45)
External Sensor Sig. Cond. Frequency Valid Range Check
●
●
DCT_Ana
ANA
YES
●
●
A/D Converter Test Pattern
●
DCT_Ana
ANA
ADC Conversion errors & Overflow Errors
●
DCT_Ana
ANA
YES
●
DCT_Ana
ANA
YES
●
Flux Monitor (Specific to Rotary mode)
45
DSP
●
○
●
●
Digital-circuit Diagnostic
●
RAM Parity, 1 bit per 16 bits word, ISO D.2.5.2
●