0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MLX90373KGO-ABA-300-SP

MLX90373KGO-ABA-300-SP

  • 厂商:

    MELEXIS(迈来芯)

  • 封装:

    TSSOP16_5X4.4MM

  • 描述:

    IC SENSOR POSITION PSI-5 OUTPUT

  • 数据手册
  • 价格&库存
MLX90373KGO-ABA-300-SP 数据手册
MLX90373 Triaxis® Position Processor Datasheet Features and Benefits Description   The MLX90373 is a monolithic sensor sensitive to the three components of the flux density applied to the IC (i.e. B X, BY and BZ). This allows the MLX90373 with the correct magnetic circuit to decode the absolute position of any magnet moving in its vicinity (e.g. rotary position from 0 to 360 Degrees or linear displacement, see Figure 2).         Hall Technology. On-Chip Signal Processing for Robust Absolute Position Sensing. ISO26262 ASIL-C Safety Element out of Context (SEooC). Programmable Measurement Range. Programmable Linear Transfer Characteristic (Multi-points 4 or 8 points or Piece-WiseLinear 17 or 32 points). 2-wire PSI5 protocol (v1.3 and v2.1). 48 bit ID Number option. Dual Die (Full Redundant) - TSSOP-16 Package (RoHS). PCB-less DMP-4 Package (RoHS). Robustness against Stray-Field. TSSOP-16 DMP-4 Application Examples         Absolute Rotary Position Sensor. Absolute Linear Position Sensor. Pedal Position Sensor. Throttle Position Sensor. Ride Height Position Sensor. Steering Wheel Position Sensor. Fuel Level Sensor. Non-Contacting Potentiometer. The MLX90373 provides a 2-wires PSI5 (Peripheral Sensor Interface 5) output protocol over the supply line. The protocol is compatible with v1.3 and v2.1 PSI5 specifications. MLX90373 Triaxis® Position Processor Datasheet Ordering Information Product Temp Package Option Code Packing Form Definition MLX90373 K VS ABA-100 RE/RX Angular Position Stray-Field Immune MLX90373 K VS ABA-103 RE/RX Angular Position Stray-Field Immune MLX90373 K VS ABA-108 RE/RX Angular Position Stray-Field Immune MLX90373 K VS ABA-300 RE/RX Linear / Angular Position MLX90373 K VS ABA-303 RE/RX Linear / Angular Position MLX90373 K VS ABA-308 RE/RX Linear / Angular Position MLX90373 K GO ABA-300 RE Linear / Angular Position Legend: Temperature Code: K: from -40°C to 125°C Package Code: GO : TSSOP-16 package (fully redundant dual die, see 18.1) VS : DMP-4 package (dual mold PCB-less, see 18.2) Option Code: ABA: die Version xxx-123: 1: Application – Magnetic configuration  1: Angular Rotary Stray-Field Immune  3: Legacy / Angular Rotary / Linear position 2: SW Configuration  0 : Default Configuration 3: Trim-and-Form for DMP-4 package Packing Form:  0: Standard straight leads. See 18.2.1.1  3: Trim-and-Form STD2 2.54. See 18.2.1.2  8: Trim-and-Form STD4 2.54. See 18.2.1.3 RE : Tape & Reel RX : Tape & Reel, similar to RE with parts face-down (DMP-4 package only) Ordering Example: “MLX90373KVS-ABA-100-RE” For an Angular Rotary Stray-Field Immune application in DMP-4 package, delivered in Reel, face-up. Table 1: Ordering information legend Revision 1.0 May 2019 Page 2 of 55 MLX90373 Triaxis® Position Processor Datasheet Contents Features and Benefits ................................................................................................................................ 1 Application Examples ................................................................................................................................. 1 Description................................................................................................................................................. 1 Ordering Information ................................................................................................................................. 2 1. Functional Diagram and Application Modes ........................................................................................... 5 2. Glossary of Terms................................................................................................................................... 6 3. Pin Definitions and Descriptions............................................................................................................. 7 3.1. Pin Definition for TSSOP-16 Package................................................................................................. 7 3.2. Pin Definition for DMP-4 Package ..................................................................................................... 7 4. Absolute Maximum Ratings.................................................................................................................... 8 5. Isolation Specification ............................................................................................................................ 8 6. General Electrical Specifications............................................................................................................. 8 7. Timing Specification ............................................................................................................................. 10 7.1. Definitions......................................................................................................................................... 10 7.2. General Timing ................................................................................................................................. 11 7.3. PSI5 Timing ...................................................................................................................................... 11 8. Magnetic Field Specifications ............................................................................................................... 12 8.1. Rotary Stray-Field Immune (-10x code) .......................................................................................... 12 8.2. Standard/Legacy Mode (-30x code) ................................................................................................ 13 9. Accuracy Specifications ........................................................................................................................ 14 9.1. Angular accuracy .............................................................................................................................. 14 9.2. Angular Velocity Accuracy ............................................................................................................... 17 9.3. Temperature Accuracy ..................................................................................................................... 17 10. Memory Specification ........................................................................................................................ 18 11. PSI5 Communication Interface ........................................................................................................... 18 11.1. PSI5 Communication Supported Standards .................................................................................. 18 11.2. Data Current Modulation .............................................................................................................. 18 11.3. Communication Mode ................................................................................................................... 20 11.4. Cycle Time....................................................................................................................................... 21 11.5. Data Frame in Run-Time ................................................................................................................ 22 11.6. Sensor Start-Up .............................................................................................................................. 24 11.7. Sensor Initialization ........................................................................................................................ 24 11.8. Error Reporting Mode .................................................................................................................... 26 Revision 1.0 May 2019 Page 3 of 55 MLX90373 Triaxis® Position Processor Datasheet 12. End-User Programmable Items .......................................................................................................... 27 12.1. End-User Identification Items ........................................................................................................ 31 13. Description of End-User Programmable Items ................................................................................... 31 13.1. Output Transfer Characteristic ...................................................................................................... 31 13.2. Sensor Front-End............................................................................................................................ 37 13.3. Filter ................................................................................................................................................ 38 13.4. Programmable Diagnostics Settings.............................................................................................. 40 14. Functional Safety ............................................................................................................................... 41 14.1. Safety Manual................................................................................................................................. 41 14.2. Safety Mechanisms ........................................................................................................................ 41 15. Recommended Application Diagrams ................................................................................................ 44 15.1. Wiring in TSSOP-16 Package .......................................................................................................... 44 15.2. Wiring in DMP-4 Package .............................................................................................................. 45 16. Standard Information Regarding Manufacturability Of Melexis Products With Different Soldering Processes............................................................................................................................. 46 17. ESD Precautions ................................................................................................................................. 46 18. Package Information .......................................................................................................................... 47 18.1. TSSOP-16 Package .......................................................................................................................... 47 18.2. DMP-4 Package .............................................................................................................................. 49 19. Contact .............................................................................................................................................. 55 20. Disclaimer .......................................................................................................................................... 55 Revision 1.0 May 2019 Page 4 of 55 MLX90373 Triaxis® Position Processor Datasheet 1. Functional Diagram and Application Modes Figure 1: MLX90373 Block Diagram Angular Rotary Stray-Field Immune Legacy / Angular Rotary Legacy / Linear Position Figure 2: Application Modes Revision 1.0 May 2019 Page 5 of 55 MLX90373 Triaxis® Position Processor Datasheet 2. Glossary of Terms Name Description ADC Analog-to-Digital Converter AWD Absolute Watchdog CPU Central Processing Unit CRC Cyclic Redundancy Check DMP Dual Mould Package DP Discontinuity Point DSP Digital Signal Processing ECC Error Correcting Code ECU Electronic Control Unit EMA Exponential Moving Average EMC Electro-Magnetic Compatibility EoL End of Line FIR Finite Impulse Response Gauss (G) Alternative unit for the magnetic flux density (10G = 1mT) HW Hardware IMC Integrated Magnetic Concentrator IWD Intelligent Watchdog LSB/MSB Least Significant Bit / Most Significant Bit NC Not Connected NVRAM Non Volatile RAM PSF Product Specific Functions PSI5 Peripheral Sensor Interface 5 PTC Programming Through Connector PWL Piecewise Linear RAM Random Access Memory ROM Read-Only Memory SEooC Safety Element out of Context TC Temperature Coefficient (in ppm/°C) Tesla (T) SI derived unit for the magnetic flux density (Vs/m2) Table 2: Glossary of Terms Revision 1.0 May 2019 Page 6 of 55 MLX90373 Triaxis® Position Processor Datasheet 3. Pin Definitions and Descriptions 3.1. Pin Definition for TSSOP-16 Package Pin # Name Description 1 VDEC1 Decoupling pin die 1 2 VSS1 Ground die 1 3 VDD1 Supply die 1 4 IN1 External sensor input die 1 5 TEST2 Test pin die 2 6 IDATA2 Current sensing die 2 7 N.C. Not connected 8 N.C. Not connected 9 VDEC2 Decoupling pin die 2 10 VSS2 Ground die 2 11 VDD2 Supply die 2 12 IN2 External sensor input die 2 13 TEST1 Test pin die 1 14 N.C. Not connected 15 IDATA1 Current sensing die 1 16 N.C. Not connected Table 3: TSSOP-16 Pin definition and description Pins Input and Test are internally grounded in application. For optimal EMC behavior always connect the unused pins to the ground of the PCB. Pins IDATA must be non-connected. 3.2. Pin Definition for DMP-4 Package Pin # Name Description 1 VSS Ground 2 VDD Supply/PSI5-OUT 3 N.C. Not connected 4 VSS Ground Table 4: DMP-4 Pin definition and description Revision 1.0 May 2019 Page 7 of 55 MLX90373 Triaxis® Position Processor Datasheet 4. Absolute Maximum Ratings Parameter Symbol Supply Voltage Reverse Voltage Protection Min. Max. Unit Condition VDD 27 V < 24h ; TJ < 175°C VDD 37 V < 60s ; TAMB ≤ 35°C VDD-REV -14 V < 24h ; TJ < 175°C VDD-REV -20 V < 1h Internal Voltage VDEC Internal Voltage VDEC-rev 3.6 -0.3 Positive Input pin Voltage VInput Reverse Input pin Voltage VInput-rev -3 TAMB -40 Operating Temperature V V 6 V V 125 °C 175 °C See 18.2.5 and 18.1.5 for packages thermal dissipation values Refer to the qualification profile Junction Temperature TJ Storage Temperature TST -55 170 °C Sensed magnetic field BMAX -1 1 T Table 5: Absolute maximum ratings Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximumrated conditions for extended periods may affect device reliability. 5. Isolation Specification Only valid for the package code GO, i.e. TSSOP-16 package (dual die). Parameter Isolation Resistance Symbol Min. Typ. Max. Unit Condition Risol 4 - - MΩ Between dice, measured between VSS1 and VSS2 with +/-20V bias Table 6: Isolation Specification 6. General Electrical Specifications General electrical specifications are valid for temperature range [-40; 125] °C and the supply voltage range inside their defined operating range unless otherwise noted. Revision 1.0 May 2019 Page 8 of 55 MLX90373 Triaxis® Position Processor Datasheet Electrical Parameter Symbol Min Typ Max Unit Operating Supply Voltage during PSI5 communication VDD 6 12 18(1) V DMP-4 package VDD 4.1 5 6(1) V TSSOP-16 and DMP-4 package Quiescent Supply current(2) IDDQ 10 11.5 13.5 mA Rotary Stray-Field application (option code -10x). Quiescent Supply current(2) IDDQ 9 10.5 12.5 mA Legacy application (option code -30x). Start-up Level VDDstart 3.6 Undervoltage detection VDDUVH 3.8 4.0 Undervoltage detection VDDUVL 3.70 VDDstartHyst Start-up Hysteresis PTC Entry Level (rising) PTC Entry Level Hysteresis Current settling error at startup Condition V Minimal supply start-up voltage 4.1 V High threshold 3.90 4.00 V Low threshold 0.05 0.10 0.15 V VPROV1 22 24 26 V VPROV1Hyst 0.8 1.4 2.0 V IERRSTART -2 2 mA Current consumption settling error 5ms after power-up µs PSI5 std. Microcut rejection Tucut Regulated Voltage VDEC 3.2 3.3 3.4 V Internal analog voltage Regulated Voltage Overvoltage detection VDECOVH 3.65 3.75 3.85 V High threshold Regulated Voltage Undervoltage detection VDECUVL 2.70 2.85 2.92 V Low threshold VDECOVHyst VDECUVHyst 100 150 200 mV VDDD 1.80 1.85 1.95 V Digital supply Overvoltage detection VDDDOVH 2.00 2.10 2.20 V Digital Supply Undervoltage detection VDDDUVL 1.585 1.680 1.735 V Digital Supply OV / UV detection Hysteresis VPORHyst 30 100 200 mV Regulated voltage UV / OV detection hysteresis Digital supply 10 Power-on Reset low threshold Table 7:General electrical specifications 1 The maximum PSI5 operating voltage, excluding Synchronization pulse, is limited by the die temperature and the thermal dissipation performance of the considered package. 2 For the dual die version, the supply current is multiplied by 2. Revision 1.0 May 2019 Page 9 of 55 MLX90373 Triaxis® Position Processor Datasheet 7. Timing Specification Timing conditions, including the variations of supply, temperature and aging, unless specified . 7.1. Definitions 7.1.1. Latency Latency is the average delay between the movement of the detected object (magnet) and the response of the sensor output. This value is representative of the time constant of the system for regulation calculations. Figure 3: Definition of latency 7.1.2. Step Response Step response is defined as the delay between the movement of the detected object (magnet) and the 100% settling time of the sensor output with full angle accuracy with regards to filtering. Worst case is happening when the movement of the magnet occurs just after a measurement sequence has begun. Step response therefore consists of the sum of:  δmag,measSeq: the delay between magnetic change and start of next measurement sequence.  TmeasSeq: the measurement sequence length.  δmeasSeq,frameStart: the delay between end of measurement sequence and start of next frame.  Tframe: the frame length. Worst case happens when δ mag,measSeq = TmeasSeq, which gives: 𝑇wcStep = 2TmeasSeq,frameStart + Tframe Magnetic stimuli (step) Step Response Data acquisition Data acquisition Data acquisition Data acquisition DSP processing DaP DSP processing DaP DSP processing DaP DSP processing DaP TS1 TS1 N-1 cycle Output response to the magnetic step N cycle TS1 TS1 N+1 cycle N+2cycle TS1 Figure 4: Step response and latency Revision 1.0 May 2019 Page 10 of 55 MLX90373 Triaxis® Position Processor Datasheet 7.2. General Timing General electrical specifications are valid for temperature range [-40;125] °C and supply voltage range [4.1;5.5] V unless otherwise noted. Parameter Symbol Min. Typ. Max. Unit Condition FCK 22.8 24 25.2 MHz Including thermal and lifetime drift -5 5 % FCK -2 2 % FCK Main Clock Frequency Relative tolerances, including thermal and lifetime drift Main Clock Frequency Thermal Drift ΔFCK,0 1MHz Clock Frequency F1M Intelligent Watchdog Timeout TIWD 19 20 21 ms FCK = 24MHz Absolute Watchdog Timeout TAWD 19 20 21 ms F1M = 1MHz Tcycle =500μs Tcycle =300μs 1 Relative to clock frequency at 35°C. No ageing effects. MHz Analog Diagnostics DCTANA 15.5 9.3 ms Digital Diagnostics DCTDIG 20 ms 5 ms Stabilization of the quiescent current after start-up power on ms when no diagnostic is enabled ms when all diagnostics are enabled Current settling Time at startup(3) TSET Start-up time TSU 4 5 20.5 Table 8: General Timing Specification 7.3. PSI5 Timing Parameter Symbol Cycle time Tcycle Bit time Sync Pulse Hold Time Min. Typ Max 300 500 Tbit 5 TSHOLD 9 8.4 350 DSP calculation + Data preparation Latency Time 250 350 Tlatency 850 μs μs Synchronous mode only μs 5 acquisitions at 4 MHz 9 acquisitions at 3 MHz μs 2 phase spinning + DSP trimming down Default configuration μs Default configuration, no filtering μs Rotary mode, default configuration, no filtering Velocity mode, default configuration, no filtering 1480 Step Response Time (4) Condition μs 150 Data acquisition Unit TwcStep 2125 Table 9: PSI5 Timing Specification 3 4 Due to duration of initialization phases in PSI5 protocol no PSI5 data frame will be transmitted before initialization phase II. Main clock variations not included. Revision 1.0 May 2019 Page 11 of 55 MLX90373 Triaxis® Position Processor Datasheet 8. Magnetic Field Specifications Magnetic field specifications are valid for temperature range [-40; 125] °C unless otherwise noted. 8.1. Rotary Stray-Field Immune (-10x code) Parameter Unit Symbol Min Typ Max Number of magnetic poles NP 4(5) - - Magnetic Flux Density in XY plane BX, BY(6) 25(7) mT √ (this is not the useful signal) Magnetic Flux Density in Z BZ 100 mT (this is not the useful signal) √( Magnetic in-plane gradient of in-plane field component Magnet Temperature Coefficient Condition 4.1 TCm Field Strength Resolution(8) 10 ) ( ) this is the useful signal (see Figure 5) 0 -2400 0.075 0.100 0.125 Field too Low Threshold(9) BTH_LOW 0.8 1.2 (10) Field too High Threshold(9) BTH_HIGH 70 100(11) 102(11) Magnetic field gradient norm (12bits data) Typ. value recommended Table 10 Magnetic specification for rotary Stray-Field immune application Nominal performances apply when the useful signal is above the typical specified limit. Under this value, limited performances apply. See 9.1 for accuracy specifications. 5 Due to 4 poles magnet usage, maximum angle measurement range is limited to 180° The condition must be fulfilled for all combinations of B X and BY. 7 Above this limit, the IMC® starts to saturate, yielding to an increase of the linearity error. 8 Only valid with default MAGNET_SREL_T[1..7] configuration 9 See section 11 for the value set by default. 10 Higher values of Field too Low threshold are not recommended by Melexis and shall only been set in accordance with the magnetic design and taking a sufficient safety margin to prevent false positive. 11 Due to the saturation effect of the IMC, the FieldTooHigh monitor detects only defects in the sensor 6 Revision 1.0 May 2019 Page 12 of 55 MLX90373 Triaxis® Position Processor Datasheet Temperature (°C) 125 -40 Limited Performances Nominal Performances Typical magnet characteristics 4.1 5.7 10 B XY  mT    XY  mm  Figure 5: Minimum useful signal definition for rotary Stray-Field immune application 8.2. Standard/Legacy Mode (-30x code) Parameter Number of magnetic poles Magnetic Flux Density in X-Y plane Magnetic Flux Density in Z Symbol Min. Typ. Max. NP - 2 - Unit Condition BX, BY (6) 70 mT √ BZ 100 mT in absolute value √ Useful Magnetic Flux Density Norm BNorm 11(12) 20 (x-y mode) √ ( ) (x-z mode) √ ( ) (y-z mode) mT See section 13.2.1 for sensing mode description. (13) IMC gain GIMC 1.19 Magnet Temperature Coefficient TCm -2400 Field Strength Resolution(8) BNorm 0.075 0.100 0.125 Field too Low Threshold(9) BTH_LOW 0.4 4.0 (10) mT Field too High Threshold(9) BTH_HIGH 70 100(11) 100(11) mT 0 Magnetic field gradient norm expressed in 12bits words Typ. Value recommended Table 11: Magnetic specification for standard application Nominal performances apply when the useful signal B Norm is above the typical specified limit. Under this value, limited performances apply. See 9.1 for accuracy specifications. 12 Below 11 mT the performances are degraded due to a reduction of the signal-to-noise ratio, signal-to-offset ratio IMC has better performance for concentrating in-plane (x-y) field components, resulting in a better overall magnetic sensitivity. A correction factor, called IMC gain has to be applied to the z field component to account for this difference. 13 Revision 1.0 May 2019 Page 13 of 55 MLX90373 Triaxis® Position Processor Datasheet 125 Temperature (°C) Limited Performances Nominal Performances Typical magnet characteristic -40 11 15 20 Norm (mT) Figure 6: Minimum useful signal definition for Standard/Legacy application 9. Accuracy Specifications Accuracy specifications are valid for temperature range [-40; 125] °C and supply voltage range specified in section 6 unless otherwise noted. 9.1. Angular accuracy 9.1.1. Definitions 9.1.1.1. Intrinsic Linearity Error Id M eal ea Cu r su re ve d Cu rv e Output (%DC, Deg) Figure 7 depicts the intrinsic linearity error in new parts. The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into account an ideal magnetic field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the output linearity error increases. However, it can be improved with the multi-point end-user calibration (see 13.1). As a consequence, this error is not critical in application because it is calibrated away . Noise (pk-pk) Intrinsic Linearity Error (LE) ±3σ Input (Deg.) Figure 7: Sensor accuracy definition Revision 1.0 May 2019 Page 14 of 55 MLX90373 Triaxis® Position Processor Datasheet 9.1.1.2. Total Angle Drift After calibration, the output angle of the sensor might still change due to temperature change, aging, etc.. This is defined as the total drift : { ( 𝑇 ) ( 𝑇 )} where is the input angle, 𝑇 is the temperature, 𝑇 is the room temperature, and is the elapsed lifetime after calibration. represents the status at the start of the operating life. Note the total drift is always defined with respect to angle at room temperature. In this datasheet, 𝑇 is typically defined at 35°C, unless stated otherwise. The total drift is valid for all angles along the full mechanical stroke. 9.1.1. Performances Valid before EoL calibration and for all applications under nominal performances conditions described in sections 8.1 & 6. Revision 1.0 May 2019 Page 15 of 55 MLX90373 Triaxis® Position Processor Datasheet Mode Parameter Symbol XY - Intrinsic Linearity Error LE_XY Nominal performances Min Typ -1 Limited performances Max Min 1 -1 Typ 1 0.4 Noise Rotary StrayField Immune (-10x code) (14) 0.2 XY - Total Drift(16) -0.85 Hysteresis 0.85 Output Stray Field Immunity XY - Intrinsic Linearity Error XZ - Intrinsic Linearity Error YZ - Intrinsic Linearity Error Standard/ Legacy (-30x code) -0.85 0.1 Max -1 -2.5 -2.5 1.25 1.25 0.05 0.1 0.1 0.2 Deg. 0.85 Deg. Relative to 35°C Deg. Deg. -1 -2.5 -2.5 Noise(14) 0.05 XY - Total Drift XZ - Total Drift YZ - Total Drift -0.45 -0.6 -0.6 1.25 1.25 0.2 0.14 0.1 0.1 0.45 0.6 0.6 -0.6 -0.8 -0.8 0.05 1 2.5 2.5 0.4 0.28 0.2 0.6 0.8 0.8 0.1 Hysteresis Deg. Filter = 0(15) Filter = 1 Filter = 2 0.1 1 2.5 2.5 Condition 0.7 0.5 0.35 0.6 LE_XY LE_XZ LE_YZ Unit 0.2 0.1 14 with 10mT/mm useful gradient field and 4kA/m stray-field (17) Deg. Deg. Filter = 0; 40mT Filter = 0; 20mT Filter = 0 Filter = 1 Filter = 2 Deg. Relative to 35°C Deg. 10mT 20mT ±3σ See section 13.3 for details concerning Filter parameter 16 Verification done on aged devices after HTOL in uniform field gradient. The limit represents the peak to peak value of the me asured distribution of the largest angle drift, calculated as 6σ of the output angle θout. An additional application-specific error arises from the non-ideal magnet and mechanical tolerance drift. 17 Tested in accordance with ISO 11452-8:2015 at 30°C, with stray-field strength of 4kA/m from any direction. This error scales linearly with both the useful field and the disturbing field. 15 Revision 1.0 May 2019 Page 16 of 55 MLX90373 Triaxis® Position Processor Datasheet 9.2. Angular Velocity Accuracy The MLX90373 device can calculate the velocity based on the angle measurement. The velocity algorithm must be enabled (VELOCITY_ENABLE) (disabling is advised for "turbo" modes with no velocity information, where computation speed is critical). The velocity algorithm is selectable (VELOCITY_ALGORITHM, 0: simple, 1: tracking loop). Parameter Angular velocity range Symbol Min Typ Max Unit ASFS -1000 - +1000 Deg./s Angular velocity error 26 145 Deg./s Angular velocity noise (14) For VELOCITY_FILTER_FIR=0 31 23 43 41 Deg./s Condition Only error calculation is considered. Max is considering abrupt velocity change 0 to 1000 Deg./s VELOCITY_ALGORITHM =0 VELOCITY_ALGORITHM =1 9.3. Temperature Accuracy One can get the physical temperature of the die using following formula: 𝑇 [ ] 𝑇 DIAG_TEMP_THR_LOW/HIGH are encoded on 8-bit unsigned values with the following relationship towards TLin 𝑇 𝑇 ( ) 𝑇 Following table summarizes the characteristics of the linearized temperature sensor and the encoding of the temperature monitor thresholds. Parameter Symbol Min Typ Max Unit TLIN resolution ResTLIN - 0.125 - °C/LSB TLIN refresh rate FS,TLIN - 200 - Hz TLIN linearity error TLinErr -8 - 8 °C from -40 to 125°C - 8 - LSB Recommended value, corresponds to -57°C - 136 - LSB Recommended value, corresponds to 199°C DIAG_TEMP_THR_LOW DIAG_TEMP_THR_HIGH Temperature threshold resolution ResTthr 2 Condition °C/LSB Table 12: Linearized Temperature Sensor characteristics (die temperature) Revision 1.0 May 2019 Page 17 of 55 MLX90373 Triaxis® Position Processor Datasheet 10. Memory Specification Parameter Symbol Min. Typ. Max. Unit ROM 32 kB RAM 1024 B NVRAM 256 B Condition Table 13: Memory specification 11. PSI5 Communication Interface 11.1. PSI5 Communication Supported Standards The MLX90373 uses PSI5 communication protocol. The information is transmitted by modulating the current of the supply pin VDD according to PSI5 protocol specification. The sensor interface, electrical parameters and data transmission fully complies with v2.1 of the PSI5 protocol specifications. The backward compatibility to the operation modes described in v1.3 of PSI5 standard is also part of the MLX90373 implementation. The configuration of the sensor interface follows the "Chassis and Safety PSI5 Substandard”. The denomination of the PSI5 protocol is defined as follows: A/P PD P/CRC - Tcycle / n L/H Communication mode Payload Error detection Cycle time in µs n° of Time Slots per cycle Bit rate Figure 8: Denomination of PSI5 operation modes 11.2. Data Current Modulation 11.2.1. PSI5 Current Modulation Method The Data Frame is transmitted through a modulation of the current consumption. The Figure 9 shows the current modulation and bit encoding (Manchester encoding). A low level (ISlow) represents the quiescent current consumption of the sensor. A high level (IShigh) is generated by an increased Sink current of the sensor (ISlow+ΔIS). The sink current (Δ IS) and the duration of the bit (TBIT) are selectable (see Table 14). Revision 1.0 May 2019 Page 18 of 55 MLX90373 Triaxis® Position Processor Datasheet IS Bit 0 0 IShigh Bit 1 0 Bit 2 1 Bit 3 0 ΔIS ISlow TBIT t Figure 9: PSI5 current modulation 11.2.2. Current Modulation Specification Electrical Parameter Sink current Symbol Min Typ Max Unit ΔIS 21 26 30(18) mA Common power mode (see section12) 10 13 15 mA Low power mode (see section 12) 4 mA 0.3 mA/s Assuming a maximum temperature drift rate of 20K/s Quiescent current drift DRIFTIS Quiescent current thermal drift rate DRIFTRIS -4 Condition IS Current modulation Falling time(19) TF 0.33 1 μs Time for IS to fall from 80% to 20% of ΔIs See section 15. IS Current modulation Rising time(19) TR 0.33 1 μs Time for IS to rise from 20% to 80% of ΔIs. See section 15. Mark/Space Ratio at Sensor(21) MSR Bit time TBIT Slope rate 47 50 53 % (tfall, 80 - trise,20) / TBit (tfall, 20 - trise, 80) / TBit 7.6 8 8.4 μs Low speed transmission (125 kbit/s) 5 5.3 5.6 μs High-speed transmission (189 kbit/s) (22) fast High-speed transmission (189 kbit/s) slow Low speed transmission (125 kbit/s) Table 14: Data modulation specification table For the power mode (PSI5_LOWCOMMON_MODE) and the speed transmission (PSI5_TRANSMITSPEED) programming, see section 12. 18 19 The maximum value is found at 125deg.C Small rise and fall times will lead to increased radiated emission. Sensors/Bus must meet the test conditions of PSI5 standard. 21 Single sensor configuration shall satisfy the requirement for sending current rise/fall time such that trise from 20 to 80% of IS and tfall from 80 down to 20% of IS is reached within 1μs.. 22 Minimum value of duty cycle has been found at 125deg.C Revision 1.0 May 2019 Page 19 of 55 MLX90373 Triaxis® Position Processor Datasheet 11.3. Communication Mode The sensor can be programmed to communicate in 2 possible modes: asynchronous mode and synchronous parallel bus mode (see Table 15). In asynchronous mode, the sensor transmits the Data Frames periodically without external synchronization, while in synchronous mode; the communication is synchronized by the ECU with a synchronization pulse. Protocol Parameter Communication modes Option Id Option A 2: Asynchronous Mode P 3: Synchronous Parallel Bus Mode NVRAM parameters PROTOCOL Table 15: Communication mode configuration synchronous/asynchronous 11.3.1. Asynchronous Communication In asynchronous mode, the timing and repetition rate of the data transmission are controlled by the sensor. The sensor starts transmitting the data to the ECU periodically (see section 11.4) once the power supply is on. The Figure 10 shows the periodic transmission from one PSI5 Sensor with period T cycle. The supply voltage must enter the operation voltage specified in the section 6. VDD OV TS1 TS2 TS3 TS4 TS1 Tcycle Figure 10: Asynchronous data transmission for x4 Time Slots per cycle 11.3.2. Synchronous Communication in Parallel Bus In synchronous operation, the sensor data transmission is synchronized by the ECU using voltage modulation. Once the sync pulse received, each sensor starts the data transmission (see section 11.3.2.1). VDD TS1 TS2 TS3 TS4 Tcycle Figure 11: Synchronous Parallel bus data transmission for x4 Time Slots per cycle Revision 1.0 May 2019 Page 20 of 55 MLX90373 Triaxis® Position Processor Datasheet 11.3.2.1. Synchronization Pulse The sync pulse generated by the ECU is detected by the sensor as soon as the variation in voltage on VDD is higher than the minimum sync pulse voltage. The sync pulse (reduced or standard, see Table 16) is selectable (PSI5_TRIGGER_STD). Electrical Parameter Symbol Sync Pulse Voltage VSYNC Sensor Trigger threshold VTRIG Tolerance of internal trigger detection timing delay at sensor Sync Pulse Hold Time Min Max Unit Condition 2.5 V For reduced sync pulse 3.5 V For standard sync pulse 1.2 1.5 1.8 V For reduced sync pulse 1.4 2.0 2.6 V For standard sync pulse 3 μs See definition of parameter in PSI5 spec 9 μs For reduced sync pulse 36 μs For standard sync pulse TTOLDETECT TSHOLD Typ Table 16: Synchronization pulse parameters VDD VSYNC TSHOLD VDDDC t Figure 12: Sync pulse detection VDDDC being the static value of the supply voltage before the synchronization pulse occurs. 11.4. Cycle Time The periodicity of transmission (or Cycle Time) is programmable, see Figure 10. The maximum number of Time Slots (time allocation of a Data Frame within a Cycle) is 4. Each Time Slot must be enabled (PSI5_TSx_ENABLE) and a corresponding start time specified (PSI5_TSx_START TIME). The time separating two consecutive Time Slots, TGAP, must be higher than T BIT. Revision 1.0 May 2019 Page 21 of 55 MLX90373 Triaxis® Position Processor Datasheet Protocol Parameter PSI5 Cycle time selection Symbol Option NVRAM parameters 0: 500 μs Tcycle PSI5_CYCLETIME 1: 300 μs Table 17: Cycle time selection 11.5. Data Frame in Run-Time 11.5.1. Data Frame Content The Data Frame consists in Start, Payload and Error Detection bits, see Table 18. The Payload consists in Control (optional), Status (optional) and Data bits. Data Frame content Start bits Bit Symbol S0, S1 Control bits F0-2 Payload (PD) Status bit E0 Data bits A[0:N-1] Error Detection bits P C0-2 Description Frame start bits, always coded as "0" Optional (only for High precision format). Rolling counter, incremented once per Time Slot, during runtime and error transmission, with LSB transmission first. Overflow leads to a reset, e.g. 0x7+0x1=0x0. Optional (only for High precision format). Error flag bit. Data bits, transmitted LSB first. Recommended number of bits for data, N∈{8, 10, 16, 20}. Parity bit CRC Table 18: Description of data Content in run time 11.5.2. Data Frame Format The Error Detection, the Payload size and the Format Precision are selectable, see Table 19. Protocol Parameter Error Detection Option Id P/CRC Option NVRAM parameters 0: CRC mode 1: Parity Bit mode Payload (PD) N/A Selectable between 8 to 24 bits. Data Frame Format precision N/A 0: PSI5 low precision 1: PSI5 high precision PSI5_ERRORDETECTION PSI5_PAYLOAD_SIZE PSI5_FRAMEFORMAT_STD Table 19: Parameterization of the format data Revision 1.0 May 2019 Page 22 of 55 MLX90373 Triaxis® Position Processor Datasheet 11.5.2.1. Data Frame Format Supported by the MLX90373 Payload Start S0 Data (N bits) S1 CRC A0 to AN-1 C2 C1 C0 Payload Start S0 S1 Data (N bits) Parity A0 to AN-1 P Figure 13: Low Precision Data Frame Format Payload Start S0 S1 Control F0 F1 F2 Status Data (N bits) E0 A0 to AN-1 CRC C2 C1 C0 Payload Start S0 S1 Control F0 F1 F2 Statu s Data (N bits) Parity E0 A0 to AN-1 P Figure 14: High Precision Data Frame Format 11.5.2.2. Example of Data Frame Start S0 S1 Data (10 bits) A0 A1 A2 A3 A4 A5 Parity A6 A7 A8 A9 P A10P-300/1L in Low Precision Format Start S0 S1 Control F0 F1 Data (12 bits) Status F2 E0 A0 A1 A2 A3 A4 A5 A6 CRC A7 A8 A9 A10 A11 C2 C1 C0 A16CRC-500/1L in High Precision Format Figure 15: Example of Data Frame 11.5.3. Data 11.5.3.1. Data Selection The data can be selected Time Slot by Time Slot (see Table 20). NVRAM parameter Number of bits Description PSI5_TSx_SENSORPARAM with x=1, 2, 3, 4 (Time Slot) 3 Time Slot data to be transmitted: 0x0: Angular data 0x1: Angular velocity 0x2: Temperature 0x3: Bfield 0x4: Ramprobe data PSI5_x_NBITS with x= ANGULARDATA, ANGULARVELOCITY, TEMPERATURE, BFIELD, RAMPROBE 4 Data size: (MSB), [1 - 16] bits Table 20: Selection of sensor data Revision 1.0 May 2019 Page 23 of 55 MLX90373 Triaxis® Position Processor Datasheet 11.5.3.2. Data Padding Sensor Data padding is performed:  For High precision Frame Format, when PD > PSI5_x_NBITS + 4  For Low precision Frame Format, when PD > PSI5_x_NBITS Where x=ANGULARDATA, ANGULARVELOCITY, TEMPERATURE, BFIELD, RAMPROBE. When the padding applies, extra MSBs of A[0:N-1] are transmitted from bit number PSI5_x_NBITS to bit number N-1 and set to 0. 11.6. Sensor Start-Up Normal or full safe start-up after power-on reset is selectable (COLD_SAFE_STARTUP_EN). 11.7. Sensor Initialization After startup, three initialization phases are present before entering run-time operation mode. The initialization phases can be skipped or enabled and configured after reset or error recovery. The parameters associated are PSI5_COLD_INIT_PHASES (normal and safe boot) and PSI5_RECOVERY_INIT_PHASES (error recovery). Both are encoded as: 0x0: Phase II and III in succession 0x1: Skip phase II, go directly to phase III after phase I 0x2: Skip phase II and III, go directly to running mode after phase I 0x3: Reserved 11.7.1. Initialization Phase I No sensor data is transmitted during this phase. The duration of this phase is configurable (PSI5_INIT_I_DURATION) in step of 1ms. Electrical Parameter Symbol Min Typ Max Unit Initialization Phase I duration DURPHI 50 100 200 ms Condition Table 21: Description of data content of phase I 11.7.2. Initialization phase II The content transferred during this phase includes mandatory fields (F1 -F5) and optional fields (F6-F9) selectable (PSI5_INIT_II_EXTRA_FIELDS, MSbit enables F9). During this phase, the Status bit of the Payload (E0) is set to 0. The initialization phase II can be sent more than once (PSI5_INIT_II_REPETITIONCOUNT). Revision 1.0 May 2019 Page 24 of 55 MLX90373 Triaxis® Position Processor Datasheet Field Name and NVRAM parameter Parameter definition Value F1-F5: Mandatory F1 (D1) Protocol Description PSI5_INIT_METAINFO PSI5 Spec V1.x PSI5 Spec V2.x, Data Range Initialization PSI5 Spec V2.x, Serial Channel Initialization 0100 0110 0111 F2 (D2, D3) Number of data nibbles transmitted (in phase II) PSI5_INIT_INITLENGTH Examples: F1- F5 = 9 Nibbles F1- F9 = 32 Nibbles F3 (D4, D5) Sensor Manufacturer Code PSI5_INIT_VENDORID Information depending on the corresponding sensor type Sensor specific information F4 (D6, D7) Definition of sensor type PSI5_INIT_SENSORTYPE Information depending on the corresponding sensor type Sensor specific information F5 (D8, D9) Definition of specific sensor parameters PSI5_INIT_SENSORPARAMS Information depending on the corresponding sensor type Sensor specific information Examples: 0000 1001 0010 0000 F6 - F9 recommended information for automotive applications F6 (D10, D11) Definition of sensor specific parameters or additional information PSI5_INIT_SENSORCODE To be specified by the sensor manufacturer Sensor specific definition F7 (D12-D14) Sensor Code (Sensor application) PSI5_INIT_SENSORAPPCODE Usage e.g. for product revision information Sensor specific definition F8 (D15-D18) Sensor production Date PSI5_INIT_PRODUCTIONDATE Binary coded Julian date: Year: 00-99 (7b) Month: 01-12 (4b) Day: 01-31 (5b) Example 2006: 0000110 March: 0011 30: 11110 F9 (D19-D32) Sensor Trace information E.g. production lot/line/serial number Specified by the sensor manufacturer MLX_ID[0-2] will be sent here Sensor specific definition Table 22: Description of data content of phase II 11.7.3. Initialization Phase III During this phase, the Status bit of the Payload (E0) is used as an error flag and the sensor sends one of the status messages listed in the Table below. Status message Sent output value "Sensor ready" 0x1E7 "Sensor defect" 0x1F4 Table 23: Description of data content of phase III The number of messages is configurable (PSI5_INIT_III_COUNT). Revision 1.0 May 2019 Page 25 of 55 MLX90373 Triaxis® Position Processor Datasheet Electrical Parameter Symbol Min Typ Max Unit Initialization Phase III, number of messages NBMSG 2 10 200 msgs Condition Table 24: Configuration of initialization III duration 11.8. Error Reporting Mode When the MLX90373 detects an internal error, the error is reported through the PSI5 Data Frame using the format depicted in section 11.8.1, transmitting the information described in section 11.8.2. 11.8.1. Error Reporting Data Format The Data Frame content during error reporting depends on the Frame Format. 11.8.1.1. High Precision Frame Format In case of High precision frame format then the format is defined by the following picture. Start 0 0 Control F0 F1 Status F2 1 Error Register (6 bits) Status Data (10 bits) ER0 ER1 ER2 ER3 ER4 ER5 A0 to A9 CRC C2 C1 C0 Figure 16: Error reporting in High precision Frame Format 11.8.1.2. Low Precision Frame Format Status Data (10 bits) Parity A0 to A9 P Figure 17: Error reporting in Low precision Frame Format 11.8.2. Error Register The error register is computed as described in the table below depending on the error bits (See section 14.2 and safety manual for more information). Bit number in the error register Calculation Comment 0 GAINOOS || ROCLIP || HE_SYMMETRY Aggregation 1 FIELDTOOLOW || FIELDTOOHIGH Aggregation 2 ADCCLIP || ADCDROP Aggregation 3 ADC_TEST 4 SUP_OV_VDDA || SUP_OV_V1V8 5 OVERTEMP Aggregation Table 25: Error register and diagnostics Revision 1.0 May 2019 Page 26 of 55 MLX90373 Triaxis® Position Processor Datasheet 11.8.3. Status Data The status data (D0-D9) from Figure 17 is used to transmit 10 bits status data, LSB being transmitted first, and the data value is specified in the table below. Value(dec) Value(Hex) Signification +500 0x1F4 Sensor Defect +489 0x1E9 Sensor in service Mode +487 0x1E7 Sensor Ready +483 0x1E3 Reserved Sensor used Table 26: Status data 12. End-User Programmable Items Default values marked in the table below are subject to change. Parameter Description Default standard # bit USER_ID[0..5] User ID. Reference. Reserved for customers traceability see 12.1 8 MEMLOCK Enable NVRAM write LOCK 0x0 2 SENSOR FRONT END GAINMIN Low threshold for virtual gain 0x01 8 GAINMAX High threshold for virtual gain 0x3F 8 GAINSATURATION Gain saturated on GAINMIN and GAINMAX 0x0 1 SENSING_MODE Mapping fields for output angle - Rotary Stray-Field robust - Legacy mode 0x0 0x1 3 MAGNET_SREL_T[1..7] Magnet relative sensitivity at temperature Tx. This parameter is mainly used in linear Hall mode. It is advised to keep defaults for other modes. 0xFF 8 DSP_NB_CONV(23) Number of phase spinning within ADC sequence 0x0(23) 2 PROTOCOL Selection of output protocol 0x2: PSI5 Asynchronous 0x3: PSI5 Synchronous 0x3 2 PSI5_PAYLOAD_SIZE Payload size 0x14 5 PSI5_ERRORDETECTION Select CRC (0) or Parity (1) as error detection 0x0 1 PSI5 OUTPUT PROTOCOL 23 Changing default value could impact the safety metrics. Default value shall be used. Revision 1.0 May 2019 Page 27 of 55 MLX90373 Triaxis® Position Processor Datasheet Default standard # bit Select 500us (0x0) or 300us (0x1) PSI5 cycle time 0x0 2 PSI5_TRANSMITSPEED PSI5 transmission speed selection 0: Low speed transmission (125 kbit/s) 1: High-speed transmission (189 kbit/s ) 0x1 1 PSI5_FRAMEFORMAT_STD Select low (0) or high (1) precision PSI5 frame format 0x1 1 PSI5_TRIGGER_STD Trigger level selection 0: reduced sync pulse 1: standard sync pulse 0x1 1 PSI5_TS[1..4]_ENABLE Enable timeslot 0x0, 0x1, 0x1, 0x0 1 PSI5_TS[1..4]_SENSORPARAM Content of timeslot 0x0, 0x0, 0x1, 0x0 3 PSI5_TS[1..4]_STARTTIME Start time of timeslot (TTOLDETECT excluded) 0x0, 0x175, 0x2AC, 0x0 11 PSI5_ANGULARDATA_NBITS Number of bits to represent angular data by [1..16] 0xB 4 PSI5_ANGULARVELOCITY_NBITS Number of bits to represent velocity data by [1..16] 0xB 4 PSI5_TEMPERATURE_NBITS Number of bits to represent temperature data by [1..16] 0x0 4 PSI5_BFIELD_NBITS Number of bits to represent field strength data by [1..16] 0x0 4 PSI5_RAMPROBE_NBITS Number of bits to represent ramprobe data by [1..16] 0xF 4 PSI5_ALTERNATE_A Alternate measurement, phase A 0x0 3 PSI5_ALTERNATE_B Alternate measurement, phase B 0x0 3 WARM_TRIGGER_LONG Add delay to enter PTC mode (MT7V) 0x0 1 PSI5_SYNC_ERROR_REPORT One (0) or three (1) error frames are sent for SYNC error reporting 0x1 1 PSI5_SYNC_TO_MIN_CNT_REPORT Number of SYNC errors to be detected before reporting 0x0 3 PSI5_SYNC_MAX_TOL Set timeout for receiving sync pulses 0xC 8 PSI5_SYNC_MIN_TOL Set short condition for receiving sync pulses 0xC 8 PSI5_LOWCOMMON_MODE Low (0, 13mA) or common (1, 26mA) current modulation level 0x1 1 PSI5_REDUCEDCURRENT_MODE Reduced current modulation level 0x0 1 0x1 2 Parameter Description PSI5_CYCLETIME FILTERING DSP_FILTER Revision 1.0 Filter mode selection May 2019 Page 28 of 55 MLX90373 Triaxis® Position Processor Datasheet Default standard # bit Hysteresis threshold for EMA filter 0x0 8 DENOISING_FILTER_ALPHA_SEL Select the alpha parameter of the IIR filter 0x0 2 PSI5_DPI_FILTER_ENABLE Enable DPI filter in analog interface 0x0 1 VELOCITY_FILTER_FIR Filter selection for velocity measurement 0x1 2 VELOCITY_DENOISING_FILTER_ALPH A_SEL Select the alpha parameter of the IIR filter of the velocity measurement 0x0 2 VELOCITY_HYST Hysteresis threshold for EMA filter of velocity measurement 0x1 8 Parameter Description HYST LINEAR TRANSFER CHARACTERISTIC DSP_SEL_4PTS Set for LNR selection 0x0 1 DSP_LNR_RESX2 Set for LNR selection 0x0 1 CW Set rotation to clockwise 0x0 1 DP Discontinuity point 0x0000 16 CLAMPLOW Low clamping value of output signal 0x0010 16 CLAMPHIGH High clamping value of output signal 0xFF80 16 USEROPTION_SCALING Enables the output scaling 0 = [0..100%] 1 = [-50%..150%] 0x1 1 LNR_S0 Slope before point A in 4-Pts LNR - 16 LNR_A_S, LNR_B_S, LNR_C_S, LNR_D_S Slopes after point A/B/C/D in 4-Pts LNR - 16 LNR_A_X, LNR_B_X, LNR_C_X, LNR_D_X X coordinates of point A/B/C/D in 4-Pts LNR - 16 LNR_A_Y, LNR_B_Y, LNR_C_Y, LNR_D_Y Y coordinates of point A/B/C/D in 4-Pts LNR - 16 LNR_X[00..07] X coordinates for the 8-Pts LNR - 16 LNR_Y[00..07] Y coordinates for the 8-Pts LNR Y coordinates for the 17-Pts LNR 0x4009 - 16 GAIN_ANCHOR_MID Re-scaling before the piece-wise linearization step 0x1 1 LNR_Y[08..16] Y coordinates for the 17-Pts LNR - 0xBFC8 16 LNR_S0_Q15 Slope for 32-Pts LNR - 16 LNR_DELTA_Y[01..32] Delta Y for 32-Pts LNR - 8 LNR_DELTA_Y_EXPAND_LOG2 Adjust the span of LNR_DELTA_Y[01..32], for 32-Pts LNR 0x0 2 WORK_RANGE_GAIN Angle range in 17-Pts and 32-Pts LNR 0x10 8 Revision 1.0 May 2019 Page 29 of 55 MLX90373 Triaxis® Position Processor Datasheet Parameter Description Default standard # bit VELOCITY VELOCITY_ALGORITHM Enable tracking loop algorithm for angular velocity measurement 0x1 1 VELOCITY_ENABLE Enable velocity measurement 0x1 1 0x0000 16 0x1(23) 1 RAMPROBE RAMPROBE_PTR RAM address to be probed DIAGNOSTICS DIAG_GLOBAL_EN(23) Diagnostics global enable. DO NOT MODIFY! DIAG_DEBOUNCE_STEPDOWN Diagnostic debouncing step-down time 0x1 4 DIAG_DEBOUNCE_STEPUP Diagnostic debouncing step-up time 0x2 4 DIAG_DEBOUNCE_THRESH Diagnostic debouncing threshold 0x02 6 DIAG_TEMP_THR_LOW(23) Temperature threshold for under-temperature diagnostic 0x08 8 DIAG_TEMP_THR_HIGH(23) Temperature threshold for over-temperature diagnostic 0x88 8 DIAG_FIELDTOOLOWTHRES Field limit under which a fault is reported application dependant 8 DIAG_FIELDTOOHIGHTHRES Field limit over which a fault is reported 0xFF 8 OUT_DIAG_HIZ_TIME Transient failure reporting time. When a transient digital failure is detected, the output drivers are disabled during N ms. The time-out is calculated as: timeout = (OUT_DIAG_HIZ_TIME+1) * 4 * 1ms. 0x7 3 COLD_SAFE_STARTUP_EN Normal (0) or full safe (1) start-up after power-on reset 0x0 1 INITIALIZATION PSI5_COLD_INIT_PHASES Initialization phase configuration, after normal and safe boot 0x0 2 PSI5_RECOVERY_INIT_PHASES Initialization phase configuration, after error recovery 0x2 2 PSI5_INIT_I_DURATION Duration of initialization phase I 0x32 8 PSI5_INIT_II_EXTRA_FIELDS Enable extra fields in initialization phase II 0x0 4 PSI5_INIT_II_REPETITIONCOUNT Repetition count of initialization phase II 0x4 4 PSI5_INIT_METAINFO Initialization phase II, protocol description 0x6 4 PSI5_INIT_INITLENGTH Initialization phase II, number of nibbles 0x09 8 PSI5_INIT_VENDORID Initialization phase II, vendor identification 0x06 8 PSI5_INIT_SENSORTYPE Initialization phase II, sensor type 0x06 8 Revision 1.0 May 2019 Page 30 of 55 MLX90373 Triaxis® Position Processor Datasheet Default standard # bit Initialization phase II, sensor specific parameters 0x00 8 PSI5_INIT_SENSORCODE Initialization phase II, sensor manufacturer 0x00 8 PSI5_INIT_SENSORAPPCODE Initialization phase II, sensor application specific code 0x000 12 PSI5_INIT_PRODUCTIONDATE Initialization phase II, production data 0x0000 16 PSI5_INIT_III_COUNT Message count for initialization phase III 0x2 8 Parameter Description PSI5_INIT_SENSORPARAMS Table 27: End-user Programmable Items 12.1. End-User Identification Items Parameter Description Default Standard # bit MLX_ID0 X-Y position on the wafer (8 bits each) - 16 MLX_ID1 Wafer ID (5 bits); Lot ID [10..0] (11 bits) - 16 MLX_ID2 Lot ID [16..11] (6 bits); Fab ID (4 bits); Test Database ID (6 bits) - 16 CHIP_ VERSION IMC shape version identifier Order code 10x Order code 30x 0 1 7 Status of MLX final test (0: Fail and 1: Pass) 1 1 Program '1' at last step of FT to indicate a bin 1 1 8 0 8 1 8 USER_ID3 2 8 USER_ID4 0 8 USER_ID5 0 8 TEST_STATUS USER_ID0 USER_ID1 USER_ID2 Die version (1 = ABA) Table 28: End-user identification items 13. Description of End-User Programmable Items 13.1. Output Transfer Characteristic 13.1.1. Selection The transfer function (LNR) is selectable ( DSP_SEL4PTS and DSP_LNR_RESX2) as per the Table 29. Revision 1.0 May 2019 Page 31 of 55 MLX90373 Triaxis® Position Processor Datasheet DSP_SEL4PTS DSP_LNR_RESX2 LNR type 1 0 4Pts 1 1 8Pts 0 0 17Pts 0 1 32Pts Table 29: Output Transfer Characteristic Selection 13.1.2. Programmable Items Output Mode LNR type 4pts 8pts 17pts 32pts Value Unit 0: 0  100 1: -50  150 % USEROPTION_SCALING ● ● ● CW ● ● ● ● 0: CCW 1: CW LSB DP ● ● ● ● 0  359.9999 Deg. CLAMPLOW ● ● ● ● 0  100 % CLAMPHIGH ● ● ● ● 0  100 % LNR_x_X with x=A, B, C, D ● 0  359.9999 Deg. LNR_x_Y with x=A, B, C, D ● see USEROPTION_SCALING % LNR_S0 LNR_x_S with x=A, B, C, D ● -17 … 0 … 17 %/Deg. 0  359.9999 Deg. see USEROPTION_SCALING % LNR_Xx with x=0-7 ● LNR_Yx with x=0-7 ● LNR_Yx with x=8-16 ● ● LNR_DELTAYx with x=0132 ● 0  100% selectable offset range LNR_S0_Q15 ● 0 … 0.555 % /Deg. (scales with working range) LNR_DELTA_Y_EXPAND _LOG2 ● -3.125 3.125 -6.256.25 -12.5 12.5 -25 25 % GAIN_ANCHOR_MID ● Always use “1” ● -01x code: 11.29  180 -03x code: 22.59  360 WORK_RANGE_GAIN ● Deg. Table 30: Programmable items: Output transfer characteristic Revision 1.0 May 2019 Page 32 of 55 MLX90373 Triaxis® Position Processor Datasheet 13.1.3. Enable Scaling Parameter The parameter USEROPTION_SCALING enables to double the scale of Y coordinates linearization parameters, see the Table 31. This is valid for all Output Linear Characteristic except the 32 segments one. USEROPTION_SCALING LNR_Y min value LNR_Y max value 0 0% 100% 1 -50% 150% Table 31: Y coordinates scaling 13.1.4. CLOCKWISE Parameter The CLOCKWISE parameter defines the magnet rotation direction (CW).  CCW is the defined by 1-8-9-16 pin order direction for the TSSOP-16 package.  CW is defined by the reverse direction: 16-9-8-1 pin order direction for the TSSOP-16 package. Refer to the drawing in the sensitive spot positioning (see 18.1.3 and 18.2.3) 13.1.5. Discontinuity Point or Zero Degree Point The Discontinuity Point (DP) defines the 0 Deg. point on the circle. The DP places the origin at any location of the trigonometric circle. The DP is used as reference for all the angular measurements. 360 Deg. 0 Deg. Figure 18: The placement of the DP is programmable Revision 1.0 May 2019 Page 33 of 55 MLX90373 Triaxis® Position Processor Datasheet 13.1.6. CLAMPING Parameters The clamping levels are two independent values to limit the output voltage range. The CLAMPLOW parameter adjusts the minimum output voltage level. The CLAMPHIGH parameter sets the maximum output voltage level. Both parameters have 16 bits of adjustment and are available for all LNR modes. 13.1.7. WORKING RANGE (PWL only) The range for the angle can be selected using the WORK_RANGE_GAIN parameter, which applies a fixed gain to the transfer characteristics. Using WORK_RANGE_GAIN parameter, the anchor point is kept at 180° and the range is symmetrically set around this value. It creates a zoom-in of the angle around this point. WORK_RANGE_GAIN is coded on 8 bits where the 4 MSB defines the integer part and the 4 LSB the fractional parts (in power of twos). Therefore, the following equation applies to define the angle range W: with FA=180° for -10x code and FA=360° for -30x code. Both minimal and maximal angles are then defined by: where θmin corresponds to the angle yielding 0% output and θmax the angle giving a 100% output. Following table gives the extreme values as example: WORK_RANGE_GAIN 0x10 0xFF code Range (w) θmin θmax Δx 17 pts Δx 32 pts -10x 180° 90° 270° 11.25° 5.63° -30x 360° 0° 360° 22.50° 11.25° -10x 11.29° 0° 360° 0.71° 0.35° -30x 22.59° 168.7° 191.3° 1.41° 0.71° Table 32: Working range defined with GAIN parameter and option code Outside of the working range, the output will remain at clamping levels. 13.1.8. 4-Pts LNR Parameters The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal. The shape of the MLX90373 four points transfer function from the digital angle value to the digital o utput is described in Figure 19. Seven segments can be programmed but the clamping levels are necessarily flat. Two, three, or even six calibration points are then available, reducing the overall non-linearity of the IC by almost an order of magnitude each time. Three or six calibration point will be preferred by customers Revision 1.0 May 2019 Page 34 of 55 MLX90373 Triaxis® Position Processor Datasheet looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for a cheaper calibration set-up and shorter calibration time. 100% CLAMPHIGH Clamping High D LNR_D_Y C Slope LNR_C_S LNR_C_Y B LNR_B_Y A Slope LNR_B_S Slope LNR_A_S LNR_A_Y Slope LNR_S0 CLAMPLOW 0% LNR_A_X 0 (Deg.) Slope LNR_D_S Clamping Low LNR_B_X LNR_C_X LNR_D_X 360 (Deg.) Figure 19: 4-Points Transfer function 13.1.9. 8-Pts LNR Parameters The 8-Pts LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal. The shape of the MLX90373 eight points transfer function from the digital angle value to the output voltage is described in Figure 20. Eight calibration points [LNR_X0...7, LNR_Y0...7] together with 2 fixed points at the extremity of the range ([0°, 0%] ; [360°, 100%]) divides the transfer curve into 9 segments. Each segment is defined by 2 points and the values in between is calculated by linear interpolation. 100% CLAMPHIGH Clamping High LNR_Y7 7 ... 5 4 3 2 LNR_Y1 LNR_Y0 6 1 0 Clamping Low CLAMPLOW 0% 0 (Deg.) LNR_X0 LNR_X1 ... LNR_X7 360 (Deg.) Figure 20: 8-Points Transfer function Revision 1.0 May 2019 Page 35 of 55 MLX90373 Triaxis® Position Processor Datasheet 13.1.10. 17-Pts LNR Parameters (PWL) The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal. The shape of the MLX90373 seventeen points transfer function from the digital angle value to the output voltage is described in Figure 21. In the 17-Pts mode, the output transfer characteristic is Piece-WiseLinear (PWL). LNR_Y16 16 100 LNR_Y15 LNR_Y14 15 14 Output [%] ... 13 12 11 10 LNR_Y9 LNR_Y8 50 LNR_Y7 9 8 7 Δx = w/16, fixed delta angle, with 6 ... 5 w= 4 LNR_Y3 LNR_Y2 LNR_Y1 DP(0,0) LNR_Y0 16·360° WORK_RANGE_GAIN 3 1 180- 2 w 2 180 Angle [°] 180+ w 2 0 Figure 21: 16-Segments calibration transfer function All the Y-coordinates can be programmed from -50% up to +150% to allow clamping in the middle of one segment (like on the figure), but the output value is limited to CLAMPLOW and CLAMPHIGH values. Between two consecutive points, the output characteristic is interpolated. 13.1.11. 32-Pts LNR Parameters (PWL) The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal. The shape of the MLX90373 thirty-two points transfer function from the digital angle value to the output voltage is described in Figure 22. In the 32-Pts mode, the output transfer characteristic is Piece-WiseLinear (PWL). Revision 1.0 May 2019 Page 36 of 55 MLX90373 Triaxis® Position Processor Datasheet LNR_Delta_Y32 100 Output [%] CLAMPHIGH LNR_deltaY : Programmable delta correction vs. Ideal slope (%) The adjustable range can be selected from [+/-3.125%, +/-6.25%, +/-12.5%, +/-25%] Adjustable range Δx fixed delta angle (w/32) Prog. Slope : WORK_RANGE_GAIN LNR_Delta_Y16 LNR_Delta_Y15 50 Anchor point w= CLAMPLOW DP(0,0) Δx LNR_Delta_Y01 180- 16·360° WORK_RANGE_GAIN w 2 180 Angle [°] 180+ w 2 Figure 22: 32-Segments calibration transfer function The points are spread evenly across the working range (see 13.1.7 for working range selection). The Ycoordinates can be offset from the ideal characteristic within an adjustable range defined by LNR_DELTA_Y_EXPAND_LOG2. The available values are summarized in the table below. All LNR_delta_Y## parameters are encoded in a fractional signed 8-bit value. LNR_DELTA_Y_EXPAND_LOG2 Offset range % Delta range [LSB12] Resolution [LSB12] 0 ±3.125 -128..127 1 1 ±6.25 -256..254 2 2 ±12.5 -512..508 4 3 ±25 -1024..1016 8 13.2. Sensor Front-End Parameter Value SENSING_MODE [0 - 4] GAINMIN [0 - 63] GAINMAX [0 - 63] GAINSATURATION [0, 1] Table 33: Programmable items: sensor front-end Revision 1.0 May 2019 Page 37 of 55 MLX90373 Triaxis® Position Processor Datasheet 13.2.1. SENSING MODE The SENSING_MODE parameter defines which sensing mode and fields are used to calculate the angle. The different possibilities are described in the tables below. This 2 bits value selects the first (B1) and second (B2) field components according the table below. SENSING_MODE B1 B2 Application 0 ΔX ΔY Angular Rotary Stray-Field Immune 1 X Y Legacy / XY Angular Rotary 2 Y Z Legacy / YZ Angular Rotary 3 X Z Legacy / XZ Angular Rotary Table 34: Programmable items: sensing modes 13.2.2. GAINMIN and GAINMAX Parameters GAINMIN and GAINMAX define the thresholds on the gain code outside which the fa ult “GAIN out of Spec.” is set. If GAINSATURATION is set, then the virtual gain code is saturated at GAINMIN and GAINMAX, and no Diagnostic fault is set since the saturations applies before the diagnostic check. 13.3. Filter The MLX90373 includes 2 types of programmable filters:   Low Pass FIR Filter. Exponential moving average Filter. Filter Low Pass Angular Angular velocity ● DSP_FILTER ● [0 - 2] VELOCITY_FILTER_FIR ● Exponential moving average Value parameter HYST [0 - 255] ● VELOCITY_HYST [0 - 1] ● VELOCITY_DENOISING_FILTER_ALPHA_SEL ● DENOISING_FILTER_ALPHA_SEL [0 - 3] Table 35: Filtering configuration 13.3.1. Low Pass FIR Filters The MLX90373 features 2 FIR filter modes controlled with DSP_FILTER or VELOCITY_FILTER_FIR. The transfer function is described below: Revision 1.0 May 2019 Page 38 of 55 MLX90373 Triaxis® Position Processor Datasheet yn  j 1 j a i 0 a x i 0 i n i i For information, the filters characteristic is given in the following table: DSP_FILTER or VELOCITY_FILTER_FIR parameter Type 0 1 Disable Coefficients ai 2 Finite Impulse Response 1 11 1111 No filter ExtraLight Light DSP_cycle (j= nb of taps) 1 2 4 Efficiency RMS (dB) 0 3.0 6.0 Description Table 36: FIR Filter Characteristics 13.3.2. Exponential Moving Average (IIR) Filter The HYST parameter is a threshold to activate/de-activate the exponential moving average filter.  The output value of the IC is updated with the applied filter when the digital step is smaller than the programmed HYST parameter value.  The output value is updated without applying the filter when the increment is bigger than the threshold. The VELOCITY_HYST parameter is Digital hysteresis (hide the small variation but lower resolution) 0: no hysteresis (default), IIR filter disabled This filter reduces therefore the noise but still allows a fast step response for bigger angle/position changes. The threshold must be programmed to a value close to the internal magnetic angle noise level. (1 LSB = 8 * 360 / 2 16). yn  a * xn  (1  a) * yni xn  Angle yn  Output The filter characteristic is selectable. DENOISING_FILTER_ALPHA_SEL or VELOCITY_DENOISING_FILTER_ALPHA_SEL parameter Coefficients a Efficiency RMS (dB) 0 1 2 3 0.75 0.5 0.25 0.125 2.4 4.2 Table 37: IIR Filter characteristics Revision 1.0 May 2019 Page 39 of 55 MLX90373 Triaxis® Position Processor Datasheet 13.4. Programmable Diagnostics Settings 13.4.1. Diagnostics Global Enable DIAG_GLOBAL_EN should be kept to its default value (1) to retain all functional safety abilities of the MLX90373. This feature shall not be disabled. 13.4.2. DIAG Debouncing A debouncing algorithm is available for analog diagnostic reporting (See section 14.2) 1. The error is reported only if it is active for some user-defined amount of time. 2. The error reporting stays enabled on error recovery for some user-defined amount of time. The error is reported in the output, using predefined reporting level, reporting time and debouncing time. The debouncing algorithm is parameterized by the NVRAM parameters as per the Table 38 NVRAM Parameter Description Default Decrement values for debouncer counter 1 Increment value for debouncer counter 5 Threshold for debouncer counter to enter diagnostic mode 15 DIAGDEBOUNCE_STEPDOWN DIAGDEBOUNCE_STEPUP DIAG_DEBOUNCE_THRESH Table 38: Programmable diagnostic - DIAG debouncing The debouncing algorithm will increment the debouncing counter w/ the STEPUP value in case of an diagnostic error, and decrement w/ STEPDOWN in case of no analog diagnostic error. If the debouncing counter is higher than the DEBOUNCE THRESHOLD, then an error is reported and the debouncing counter is clamped to the DEBOUNCE THRESHOLD value. The debouncing time and recovery time are defined as per the Table 39. Parameter Min Typ. Diagnostic Test Interval (DTI) Max 9.4ms Debouncing Time DTI * (CEILING ( Threshold / UP) -1 ) DTI * CEILING ( Threshold / UP ) Recovery time DTI * CEILING ( Threshold / DOWN ) DTI * (CEILING ( Threshold / DOWN) + 1 ) Table 39: Programmable diagnostic - debouncing & reporting time 13.4.3. Over/Under Temperature Diagnostic DIAG_TEMP_THR_HIGH defines the threshold for over temperature detection and is compared to the linearized value of the temperature sensor T LIN. DIAG_TEMP_THR_LOW defines the threshold for under temperature detection and is compared to the linearized value of the temperature sensor T LIN. Revision 1.0 May 2019 Page 40 of 55 MLX90373 Triaxis® Position Processor Datasheet 14. Functional Safety 14.1. Safety Manual The safety manual, available upon request, contains the necessary information to integrate the MLX90373 component in a safety related item, as Safety Element Out-of-Context (SEooC). In particular it includes:  The description of the Product Development lifecycle tailored for the Safety Element.  An extract of the Technical Safety concept.  The description of Assumptions-of-Use (AoU) of the element with respect to its intended use, including:  assumption on the device safe state;  assumptions on fault tolerant time interval and multiple-point faults detection interval;  assumptions on the context, including its external interfaces;  The description of safety analysis results at the device level useful for the system integrator; HW architectural metrics and description of dependent failures initiators.  The description and the result of the functional safety assessment process; list of confirmation measures and description of the independency level. 14.2. Safety Mechanisms The MLX90373 provides numerous self-diagnostic features (safety mechanisms). Those features increase the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure modes (“fail-safe”). Legend ● High coverage ○ Medium coverage ANA : Analog hardware failure reporting, described in the safety manual DIG : Digital hardware failure reporting, described in the safety manual * : Diagnostic Cycle Time At Startup : HW fault present at time zero is detected before a first frame is transmitted. Table 40: Self Diagnostic Legend Revision 1.0 May 2019 Page 41 of 55 MLX90373 Triaxis® Position Processor Datasheet Category and safety mechanism name Frontend ADC Signal-conditioning (AFE, External Sensor) Diagnostic ● ● Magnetic Signal Conditioning Voltage Test Pattern ● ○ Magnetic Signal Conditioning Rough Offset Clipping check DSP Backend Support Func. Module & Package DCT* ● Reporting mode At startup ANA ○ DCT_Ana ANA ● ○ DCT_Ana ANA NO Magnetic Signal Conditioning Gain Monitor ● ○ ● DCT_Ana ANA YES Magnetic Signal Conditioning Gain Clamping ● ○ ● DCT_Ana ANA YES Mag. Sig. Cond. Failure control by the chopping technique ● Continuous n/a YES External Sensor Sig. Cond. Voltage Valid Range Check ● ● DCT_Ana ANA YES External Sensor Sig. Cond. Frequency Valid Range Check ● ● DCT_Ana ANA YES A/D Converter Test Pattern ● DCT_Ana ANA ADC Conversion errors & Overflow Errors ● DCT_Ana ANA YES DCT_Ana ANA YES Flux Monitor (Specific to Rotary mode) ● ○ ● Digital-circuit Diagnostic ● RAM Parity, 1 bit per 16 bits word, ISO D.2.5.2 ●
MLX90373KGO-ABA-300-SP 价格&库存

很抱歉,暂时无法提供与“MLX90373KGO-ABA-300-SP”相匹配的价格&库存,您可以联系我们找货

免费人工找货