MLX90373 Triaxis® Position Processor
Datasheet
Features and Benefits
Description
The MLX90373 is a monolithic sensor sensitive to
the three components of the flux density applied
to the IC (i.e. B X, BY and BZ). This allows the
MLX90373 with the correct magnetic circuit to
decode the absolute position of any magnet
moving in its vicinity (e.g. rotary position from 0
to 360 Degrees or linear displacement, see Figure
2).
Hall Technology.
On-Chip Signal Processing for Robust Absolute
Position Sensing.
ISO26262 ASIL-C Safety
Element out of Context (SEooC).
Programmable Measurement Range.
Programmable Linear Transfer Characteristic
(Multi-points 4 or 8 points or Piece-WiseLinear 17 or 32 points).
2-wire PSI5 protocol (v1.3 and v2.1).
48 bit ID Number option.
Dual Die (Full Redundant) - TSSOP-16 Package
(RoHS).
PCB-less DMP-4 Package (RoHS).
Robustness against Stray-Field.
TSSOP-16
DMP-4
Application Examples
Absolute Rotary Position Sensor.
Absolute Linear Position Sensor.
Pedal Position Sensor.
Throttle Position Sensor.
Ride Height Position Sensor.
Steering Wheel Position Sensor.
Fuel Level Sensor.
Non-Contacting Potentiometer.
The MLX90373 provides a 2-wires PSI5 (Peripheral
Sensor Interface 5) output protocol over the
supply line. The protocol is compatible with v1.3
and v2.1 PSI5 specifications.
MLX90373 Triaxis® Position Processor
Datasheet
Ordering Information
Product
Temp
Package
Option Code
Packing Form
Definition
MLX90373
K
VS
ABA-100
RE/RX
Angular Position Stray-Field Immune
MLX90373
K
VS
ABA-103
RE/RX
Angular Position Stray-Field Immune
MLX90373
K
VS
ABA-108
RE/RX
Angular Position Stray-Field Immune
MLX90373
K
VS
ABA-300
RE/RX
Linear / Angular Position
MLX90373
K
VS
ABA-303
RE/RX
Linear / Angular Position
MLX90373
K
VS
ABA-308
RE/RX
Linear / Angular Position
MLX90373
K
GO
ABA-300
RE
Linear / Angular Position
Legend:
Temperature Code:
K: from -40°C to 125°C
Package Code:
GO : TSSOP-16 package (fully redundant dual die, see 18.1)
VS : DMP-4 package (dual mold PCB-less, see 18.2)
Option Code:
ABA: die Version
xxx-123:
1: Application – Magnetic configuration
1: Angular Rotary Stray-Field Immune
3: Legacy / Angular Rotary / Linear position
2: SW Configuration
0 : Default Configuration
3: Trim-and-Form for DMP-4 package
Packing Form:
0: Standard straight leads. See 18.2.1.1
3: Trim-and-Form STD2 2.54. See 18.2.1.2
8: Trim-and-Form STD4 2.54. See 18.2.1.3
RE : Tape & Reel
RX : Tape & Reel, similar to RE with parts face-down (DMP-4 package only)
Ordering Example:
“MLX90373KVS-ABA-100-RE”
For an Angular Rotary Stray-Field Immune application in DMP-4 package,
delivered in Reel, face-up.
Table 1: Ordering information legend
Revision 1.0
May 2019
Page 2 of 55
MLX90373 Triaxis® Position Processor
Datasheet
Contents
Features and Benefits ................................................................................................................................ 1
Application Examples ................................................................................................................................. 1
Description................................................................................................................................................. 1
Ordering Information ................................................................................................................................. 2
1. Functional Diagram and Application Modes ........................................................................................... 5
2. Glossary of Terms................................................................................................................................... 6
3. Pin Definitions and Descriptions............................................................................................................. 7
3.1. Pin Definition for TSSOP-16 Package................................................................................................. 7
3.2. Pin Definition for DMP-4 Package ..................................................................................................... 7
4. Absolute Maximum Ratings.................................................................................................................... 8
5. Isolation Specification ............................................................................................................................ 8
6. General Electrical Specifications............................................................................................................. 8
7. Timing Specification ............................................................................................................................. 10
7.1. Definitions......................................................................................................................................... 10
7.2. General Timing ................................................................................................................................. 11
7.3. PSI5 Timing ...................................................................................................................................... 11
8. Magnetic Field Specifications ............................................................................................................... 12
8.1. Rotary Stray-Field Immune (-10x code) .......................................................................................... 12
8.2. Standard/Legacy Mode (-30x code) ................................................................................................ 13
9. Accuracy Specifications ........................................................................................................................ 14
9.1. Angular accuracy .............................................................................................................................. 14
9.2. Angular Velocity Accuracy ............................................................................................................... 17
9.3. Temperature Accuracy ..................................................................................................................... 17
10. Memory Specification ........................................................................................................................ 18
11. PSI5 Communication Interface ........................................................................................................... 18
11.1. PSI5 Communication Supported Standards .................................................................................. 18
11.2. Data Current Modulation .............................................................................................................. 18
11.3. Communication Mode ................................................................................................................... 20
11.4. Cycle Time....................................................................................................................................... 21
11.5. Data Frame in Run-Time ................................................................................................................ 22
11.6. Sensor Start-Up .............................................................................................................................. 24
11.7. Sensor Initialization ........................................................................................................................ 24
11.8. Error Reporting Mode .................................................................................................................... 26
Revision 1.0
May 2019
Page 3 of 55
MLX90373 Triaxis® Position Processor
Datasheet
12. End-User Programmable Items .......................................................................................................... 27
12.1. End-User Identification Items ........................................................................................................ 31
13. Description of End-User Programmable Items ................................................................................... 31
13.1. Output Transfer Characteristic ...................................................................................................... 31
13.2. Sensor Front-End............................................................................................................................ 37
13.3. Filter ................................................................................................................................................ 38
13.4. Programmable Diagnostics Settings.............................................................................................. 40
14. Functional Safety ............................................................................................................................... 41
14.1. Safety Manual................................................................................................................................. 41
14.2. Safety Mechanisms ........................................................................................................................ 41
15. Recommended Application Diagrams ................................................................................................ 44
15.1. Wiring in TSSOP-16 Package .......................................................................................................... 44
15.2. Wiring in DMP-4 Package .............................................................................................................. 45
16. Standard Information Regarding Manufacturability Of Melexis Products With Different
Soldering Processes............................................................................................................................. 46
17. ESD Precautions ................................................................................................................................. 46
18. Package Information .......................................................................................................................... 47
18.1. TSSOP-16 Package .......................................................................................................................... 47
18.2. DMP-4 Package .............................................................................................................................. 49
19. Contact .............................................................................................................................................. 55
20. Disclaimer .......................................................................................................................................... 55
Revision 1.0
May 2019
Page 4 of 55
MLX90373 Triaxis® Position Processor
Datasheet
1. Functional Diagram and Application Modes
Figure 1: MLX90373 Block Diagram
Angular Rotary Stray-Field
Immune
Legacy / Angular Rotary
Legacy / Linear Position
Figure 2: Application Modes
Revision 1.0
May 2019
Page 5 of 55
MLX90373 Triaxis® Position Processor
Datasheet
2. Glossary of Terms
Name
Description
ADC
Analog-to-Digital Converter
AWD
Absolute Watchdog
CPU
Central Processing Unit
CRC
Cyclic Redundancy Check
DMP
Dual Mould Package
DP
Discontinuity Point
DSP
Digital Signal Processing
ECC
Error Correcting Code
ECU
Electronic Control Unit
EMA
Exponential Moving Average
EMC
Electro-Magnetic Compatibility
EoL
End of Line
FIR
Finite Impulse Response
Gauss (G)
Alternative unit for the magnetic flux density (10G = 1mT)
HW
Hardware
IMC
Integrated Magnetic Concentrator
IWD
Intelligent Watchdog
LSB/MSB
Least Significant Bit / Most Significant Bit
NC
Not Connected
NVRAM
Non Volatile RAM
PSF
Product Specific Functions
PSI5
Peripheral Sensor Interface 5
PTC
Programming Through Connector
PWL
Piecewise Linear
RAM
Random Access Memory
ROM
Read-Only Memory
SEooC
Safety Element out of Context
TC
Temperature Coefficient (in ppm/°C)
Tesla (T)
SI derived unit for the magnetic flux density (Vs/m2)
Table 2: Glossary of Terms
Revision 1.0
May 2019
Page 6 of 55
MLX90373 Triaxis® Position Processor
Datasheet
3. Pin Definitions and Descriptions
3.1. Pin Definition for TSSOP-16 Package
Pin #
Name
Description
1
VDEC1
Decoupling pin die 1
2
VSS1
Ground die 1
3
VDD1
Supply die 1
4
IN1
External sensor input die 1
5
TEST2
Test pin die 2
6
IDATA2
Current sensing die 2
7
N.C.
Not connected
8
N.C.
Not connected
9
VDEC2
Decoupling pin die 2
10
VSS2
Ground die 2
11
VDD2
Supply die 2
12
IN2
External sensor input die 2
13
TEST1
Test pin die 1
14
N.C.
Not connected
15
IDATA1
Current sensing die 1
16
N.C.
Not connected
Table 3: TSSOP-16 Pin definition and description
Pins Input and Test are internally grounded in application. For optimal EMC behavior always connect the
unused pins to the ground of the PCB. Pins IDATA must be non-connected.
3.2. Pin Definition for DMP-4 Package
Pin #
Name
Description
1
VSS
Ground
2
VDD
Supply/PSI5-OUT
3
N.C.
Not connected
4
VSS
Ground
Table 4: DMP-4 Pin definition and description
Revision 1.0
May 2019
Page 7 of 55
MLX90373 Triaxis® Position Processor
Datasheet
4. Absolute Maximum Ratings
Parameter
Symbol
Supply Voltage
Reverse Voltage Protection
Min.
Max.
Unit
Condition
VDD
27
V
< 24h ; TJ < 175°C
VDD
37
V
< 60s ; TAMB ≤ 35°C
VDD-REV
-14
V
< 24h ; TJ < 175°C
VDD-REV
-20
V
< 1h
Internal Voltage
VDEC
Internal Voltage
VDEC-rev
3.6
-0.3
Positive Input pin Voltage
VInput
Reverse Input pin Voltage
VInput-rev
-3
TAMB
-40
Operating Temperature
V
V
6
V
V
125
°C
175
°C
See 18.2.5 and 18.1.5 for packages
thermal dissipation values
Refer to the qualification profile
Junction Temperature
TJ
Storage Temperature
TST
-55
170
°C
Sensed magnetic field
BMAX
-1
1
T
Table 5: Absolute maximum ratings
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximumrated conditions for extended periods may affect device reliability.
5. Isolation Specification
Only valid for the package code GO, i.e. TSSOP-16 package (dual die).
Parameter
Isolation Resistance
Symbol
Min.
Typ.
Max.
Unit
Condition
Risol
4
-
-
MΩ
Between dice, measured between
VSS1 and VSS2 with +/-20V bias
Table 6: Isolation Specification
6. General Electrical Specifications
General electrical specifications are valid for temperature range [-40; 125] °C and the supply voltage
range inside their defined operating range unless otherwise noted.
Revision 1.0
May 2019
Page 8 of 55
MLX90373 Triaxis® Position Processor
Datasheet
Electrical Parameter
Symbol
Min
Typ
Max
Unit
Operating Supply Voltage
during PSI5 communication
VDD
6
12
18(1)
V
DMP-4 package
VDD
4.1
5
6(1)
V
TSSOP-16 and DMP-4 package
Quiescent Supply current(2)
IDDQ
10
11.5
13.5
mA
Rotary Stray-Field application
(option code -10x).
Quiescent Supply current(2)
IDDQ
9
10.5
12.5
mA
Legacy application
(option code -30x).
Start-up Level
VDDstart
3.6
Undervoltage detection
VDDUVH
3.8
4.0
Undervoltage detection
VDDUVL
3.70
VDDstartHyst
Start-up Hysteresis
PTC Entry Level (rising)
PTC Entry Level Hysteresis
Current settling error at
startup
Condition
V
Minimal supply start-up
voltage
4.1
V
High threshold
3.90
4.00
V
Low threshold
0.05
0.10
0.15
V
VPROV1
22
24
26
V
VPROV1Hyst
0.8
1.4
2.0
V
IERRSTART
-2
2
mA
Current consumption settling
error 5ms after power-up
µs
PSI5 std.
Microcut rejection
Tucut
Regulated Voltage
VDEC
3.2
3.3
3.4
V
Internal analog voltage
Regulated Voltage
Overvoltage detection
VDECOVH
3.65
3.75
3.85
V
High threshold
Regulated Voltage
Undervoltage detection
VDECUVL
2.70
2.85
2.92
V
Low threshold
VDECOVHyst
VDECUVHyst
100
150
200
mV
VDDD
1.80
1.85
1.95
V
Digital supply Overvoltage
detection
VDDDOVH
2.00
2.10
2.20
V
Digital Supply Undervoltage
detection
VDDDUVL
1.585
1.680
1.735
V
Digital Supply OV / UV
detection Hysteresis
VPORHyst
30
100
200
mV
Regulated voltage UV / OV
detection hysteresis
Digital supply
10
Power-on Reset low threshold
Table 7:General electrical specifications
1
The maximum PSI5 operating voltage, excluding Synchronization pulse, is limited by the die temperature and the thermal
dissipation performance of the considered package.
2
For the dual die version, the supply current is multiplied by 2.
Revision 1.0
May 2019
Page 9 of 55
MLX90373 Triaxis® Position Processor
Datasheet
7. Timing Specification
Timing conditions, including the variations of supply, temperature and aging, unless specified .
7.1. Definitions
7.1.1. Latency
Latency is the average delay between the movement of the detected object (magnet) and the response
of the sensor output. This value is representative of the time constant of the system for regulation
calculations.
Figure 3: Definition of latency
7.1.2. Step Response
Step response is defined as the delay between the movement of the detected object (magnet) and the
100% settling time of the sensor output with full angle accuracy with regards to filtering. Worst case is
happening when the movement of the magnet occurs just after a measurement sequence has begun.
Step response therefore consists of the sum of:
δmag,measSeq: the delay between magnetic change and start of next measurement sequence.
TmeasSeq: the measurement sequence length.
δmeasSeq,frameStart: the delay between end of measurement sequence and start of next frame.
Tframe: the frame length.
Worst case happens when δ mag,measSeq = TmeasSeq, which gives: 𝑇wcStep = 2TmeasSeq,frameStart + Tframe
Magnetic
stimuli (step)
Step Response
Data
acquisition
Data
acquisition
Data
acquisition
Data
acquisition
DSP
processing DaP
DSP
processing DaP
DSP
processing DaP
DSP
processing DaP
TS1
TS1
N-1 cycle
Output response to
the magnetic step
N cycle
TS1
TS1
N+1 cycle
N+2cycle
TS1
Figure 4: Step response and latency
Revision 1.0
May 2019
Page 10 of 55
MLX90373 Triaxis® Position Processor
Datasheet
7.2. General Timing
General electrical specifications are valid for temperature range [-40;125] °C and supply voltage range
[4.1;5.5] V unless otherwise noted.
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
FCK
22.8
24
25.2
MHz
Including thermal and lifetime
drift
-5
5
% FCK
-2
2
% FCK
Main Clock Frequency
Relative tolerances, including
thermal and lifetime drift
Main Clock Frequency
Thermal Drift
ΔFCK,0
1MHz Clock Frequency
F1M
Intelligent Watchdog Timeout
TIWD
19
20
21
ms
FCK = 24MHz
Absolute Watchdog Timeout
TAWD
19
20
21
ms
F1M = 1MHz
Tcycle =500μs
Tcycle =300μs
1
Relative to clock frequency at
35°C. No ageing effects.
MHz
Analog Diagnostics
DCTANA
15.5
9.3
ms
Digital Diagnostics
DCTDIG
20
ms
5
ms
Stabilization of the quiescent
current after start-up power on
ms
when no diagnostic is enabled
ms
when all diagnostics are enabled
Current settling Time at startup(3)
TSET
Start-up time
TSU
4
5
20.5
Table 8: General Timing Specification
7.3. PSI5 Timing
Parameter
Symbol
Cycle time
Tcycle
Bit time
Sync Pulse Hold Time
Min.
Typ
Max
300
500
Tbit
5
TSHOLD
9
8.4
350
DSP calculation + Data
preparation
Latency Time
250
350
Tlatency
850
μs
μs
Synchronous mode only
μs
5 acquisitions at 4 MHz
9 acquisitions at 3 MHz
μs
2 phase spinning + DSP trimming down
Default configuration
μs
Default configuration, no filtering
μs
Rotary mode, default configuration, no
filtering
Velocity mode, default configuration, no
filtering
1480
Step Response Time
(4)
Condition
μs
150
Data acquisition
Unit
TwcStep
2125
Table 9: PSI5 Timing Specification
3
4
Due to duration of initialization phases in PSI5 protocol no PSI5 data frame will be transmitted before initialization phase II.
Main clock variations not included.
Revision 1.0
May 2019
Page 11 of 55
MLX90373 Triaxis® Position Processor
Datasheet
8. Magnetic Field Specifications
Magnetic field specifications are valid for temperature range [-40; 125] °C unless otherwise noted.
8.1. Rotary Stray-Field Immune (-10x code)
Parameter
Unit
Symbol
Min
Typ
Max
Number of magnetic poles
NP
4(5)
-
-
Magnetic Flux Density in XY plane
BX, BY(6)
25(7)
mT
√
(this is not the useful signal)
Magnetic Flux Density in Z
BZ
100
mT
(this is not the useful signal)
√(
Magnetic in-plane gradient
of in-plane field
component
Magnet Temperature
Coefficient
Condition
4.1
TCm
Field Strength Resolution(8)
10
)
(
)
this is the useful signal (see
Figure 5)
0
-2400
0.075
0.100
0.125
Field too Low Threshold(9)
BTH_LOW
0.8
1.2
(10)
Field too High Threshold(9)
BTH_HIGH
70
100(11)
102(11)
Magnetic field gradient norm
(12bits data)
Typ. value recommended
Table 10 Magnetic specification for rotary Stray-Field immune application
Nominal performances apply when the useful signal
is above the typical specified limit. Under
this value, limited performances apply. See 9.1 for accuracy specifications.
5
Due to 4 poles magnet usage, maximum angle measurement range is limited to 180°
The condition must be fulfilled for all combinations of B X and BY.
7
Above this limit, the IMC® starts to saturate, yielding to an increase of the linearity error.
8
Only valid with default MAGNET_SREL_T[1..7] configuration
9
See section 11 for the value set by default.
10
Higher values of Field too Low threshold are not recommended by Melexis and shall only been set in accordance with the
magnetic design and taking a sufficient safety margin to prevent false positive.
11
Due to the saturation effect of the IMC, the FieldTooHigh monitor detects only defects in the sensor
6
Revision 1.0
May 2019
Page 12 of 55
MLX90373 Triaxis® Position Processor
Datasheet
Temperature (°C)
125
-40
Limited
Performances
Nominal
Performances
Typical magnet
characteristics
4.1 5.7
10
B XY mT
XY mm
Figure 5: Minimum useful signal definition for rotary Stray-Field immune application
8.2. Standard/Legacy Mode (-30x code)
Parameter
Number of magnetic poles
Magnetic Flux Density in X-Y
plane
Magnetic Flux Density in Z
Symbol
Min.
Typ.
Max.
NP
-
2
-
Unit
Condition
BX, BY (6)
70
mT
√
BZ
100
mT
in absolute value
√
Useful Magnetic Flux
Density Norm
BNorm
11(12)
20
(x-y mode)
√
(
) (x-z mode)
√
(
) (y-z mode)
mT
See section 13.2.1 for sensing
mode description.
(13)
IMC gain
GIMC
1.19
Magnet Temperature
Coefficient
TCm
-2400
Field Strength Resolution(8)
BNorm
0.075
0.100
0.125
Field too Low Threshold(9)
BTH_LOW
0.4
4.0
(10)
mT
Field too High Threshold(9)
BTH_HIGH
70
100(11)
100(11)
mT
0
Magnetic field gradient norm
expressed in 12bits words
Typ. Value recommended
Table 11: Magnetic specification for standard application
Nominal performances apply when the useful signal B Norm is above the typical specified limit. Under this
value, limited performances apply. See 9.1 for accuracy specifications.
12
Below 11 mT the performances are degraded due to a reduction of the signal-to-noise ratio, signal-to-offset ratio
IMC has better performance for concentrating in-plane (x-y) field components, resulting in a better overall magnetic
sensitivity. A correction factor, called IMC gain has to be applied to the z field component to account for this difference.
13
Revision 1.0
May 2019
Page 13 of 55
MLX90373 Triaxis® Position Processor
Datasheet
125
Temperature (°C)
Limited
Performances
Nominal
Performances
Typical magnet
characteristic
-40
11
15
20
Norm (mT)
Figure 6: Minimum useful signal definition for Standard/Legacy application
9. Accuracy Specifications
Accuracy specifications are valid for temperature range [-40; 125] °C and supply voltage range specified
in section 6 unless otherwise noted.
9.1. Angular accuracy
9.1.1. Definitions
9.1.1.1. Intrinsic Linearity Error
Id
M eal
ea Cu
r
su
re ve
d
Cu
rv
e
Output (%DC, Deg)
Figure 7 depicts the intrinsic linearity error in new parts. The Intrinsic Linearity Error refers to the IC itself
(offset, sensitivity mismatch, orthogonality) taking into account an ideal magnetic field. Once associated
to a practical magnetic construction and the associated mechanical and magnetic tolerances, the output
linearity error increases. However, it can be improved with the multi-point end-user calibration (see
13.1). As a consequence, this error is not critical in application because it is calibrated away .
Noise (pk-pk)
Intrinsic Linearity Error
(LE)
±3σ
Input (Deg.)
Figure 7: Sensor accuracy definition
Revision 1.0
May 2019
Page 14 of 55
MLX90373 Triaxis® Position Processor
Datasheet
9.1.1.2. Total Angle Drift
After calibration, the output angle of the sensor might still change due to temperature change, aging,
etc.. This is defined as the total drift
:
{ (
𝑇 )
(
𝑇
)}
where
is the input angle, 𝑇 is the temperature, 𝑇 is the room temperature, and is the elapsed
lifetime after calibration. represents the status at the start of the operating life. Note the total drift
is always defined with respect to angle at room temperature. In this datasheet, 𝑇 is typically
defined at 35°C, unless stated otherwise. The total drift is valid for all angles along the full mechanical
stroke.
9.1.1. Performances
Valid before EoL calibration and for all applications under nominal performances conditions described in
sections 8.1 & 6.
Revision 1.0
May 2019
Page 15 of 55
MLX90373 Triaxis® Position Processor
Datasheet
Mode
Parameter
Symbol
XY - Intrinsic Linearity Error
LE_XY
Nominal performances
Min
Typ
-1
Limited performances
Max
Min
1
-1
Typ
1
0.4
Noise
Rotary StrayField Immune
(-10x code)
(14)
0.2
XY - Total Drift(16)
-0.85
Hysteresis
0.85
Output Stray Field Immunity
XY - Intrinsic Linearity Error
XZ - Intrinsic Linearity Error
YZ - Intrinsic Linearity Error
Standard/
Legacy
(-30x code)
-0.85
0.1
Max
-1
-2.5
-2.5
1.25
1.25
0.05
0.1
0.1
0.2
Deg.
0.85
Deg.
Relative to 35°C
Deg.
Deg.
-1
-2.5
-2.5
Noise(14)
0.05
XY - Total Drift
XZ - Total Drift
YZ - Total Drift
-0.45
-0.6
-0.6
1.25
1.25
0.2
0.14
0.1
0.1
0.45
0.6
0.6
-0.6
-0.8
-0.8
0.05
1
2.5
2.5
0.4
0.28
0.2
0.6
0.8
0.8
0.1
Hysteresis
Deg.
Filter = 0(15)
Filter = 1
Filter = 2
0.1
1
2.5
2.5
Condition
0.7
0.5
0.35
0.6
LE_XY
LE_XZ
LE_YZ
Unit
0.2
0.1
14
with 10mT/mm useful gradient
field and 4kA/m stray-field (17)
Deg.
Deg.
Filter = 0; 40mT
Filter = 0; 20mT
Filter = 0
Filter = 1
Filter = 2
Deg.
Relative to 35°C
Deg.
10mT
20mT
±3σ
See section 13.3 for details concerning Filter parameter
16
Verification done on aged devices after HTOL in uniform field gradient. The limit represents the peak to peak value of the me asured distribution of the largest angle drift, calculated as 6σ
of the output angle θout. An additional application-specific error arises from the non-ideal magnet and mechanical tolerance drift.
17
Tested in accordance with ISO 11452-8:2015 at 30°C, with stray-field strength of 4kA/m from any direction. This error scales linearly with both the useful field and the disturbing field.
15
Revision 1.0
May 2019
Page 16 of 55
MLX90373 Triaxis® Position Processor
Datasheet
9.2. Angular Velocity Accuracy
The MLX90373 device can calculate the velocity based on the angle measurement. The velocity algorithm
must be enabled (VELOCITY_ENABLE) (disabling is advised for "turbo" modes with no velocity
information, where computation speed is critical).
The velocity algorithm is selectable (VELOCITY_ALGORITHM, 0: simple, 1: tracking loop).
Parameter
Angular velocity range
Symbol
Min
Typ
Max
Unit
ASFS
-1000
-
+1000
Deg./s
Angular velocity error
26
145
Deg./s
Angular velocity noise (14)
For VELOCITY_FILTER_FIR=0
31
23
43
41
Deg./s
Condition
Only error calculation is
considered.
Max is considering abrupt
velocity change 0 to 1000
Deg./s
VELOCITY_ALGORITHM =0
VELOCITY_ALGORITHM =1
9.3. Temperature Accuracy
One can get the physical temperature of the die using following formula:
𝑇
[
]
𝑇
DIAG_TEMP_THR_LOW/HIGH are encoded on 8-bit unsigned values with the following relationship towards TLin
𝑇
𝑇
(
)
𝑇
Following table summarizes the characteristics of the linearized temperature sensor and the encoding of
the temperature monitor thresholds.
Parameter
Symbol
Min
Typ
Max
Unit
TLIN resolution
ResTLIN
-
0.125
-
°C/LSB
TLIN refresh rate
FS,TLIN
-
200
-
Hz
TLIN linearity error
TLinErr
-8
-
8
°C
from -40 to 125°C
-
8
-
LSB
Recommended value,
corresponds to -57°C
-
136
-
LSB
Recommended value,
corresponds to 199°C
DIAG_TEMP_THR_LOW
DIAG_TEMP_THR_HIGH
Temperature threshold resolution
ResTthr
2
Condition
°C/LSB
Table 12: Linearized Temperature Sensor characteristics (die temperature)
Revision 1.0
May 2019
Page 17 of 55
MLX90373 Triaxis® Position Processor
Datasheet
10. Memory Specification
Parameter
Symbol
Min.
Typ.
Max.
Unit
ROM
32
kB
RAM
1024
B
NVRAM
256
B
Condition
Table 13: Memory specification
11. PSI5 Communication Interface
11.1. PSI5 Communication Supported Standards
The MLX90373 uses PSI5 communication protocol. The information is transmitted by modulating the
current of the supply pin VDD according to PSI5 protocol specification. The sensor interface, electrical
parameters and data transmission fully complies with v2.1 of the PSI5 protocol specifications. The
backward compatibility to the operation modes described in v1.3 of PSI5 standard is also part of the
MLX90373 implementation. The configuration of the sensor interface follows the "Chassis and Safety PSI5
Substandard”.
The denomination of the PSI5 protocol is defined as follows:
A/P
PD
P/CRC
-
Tcycle
/
n
L/H
Communication mode
Payload
Error detection
Cycle time in µs
n° of Time Slots per cycle
Bit rate
Figure 8: Denomination of PSI5 operation modes
11.2. Data Current Modulation
11.2.1. PSI5 Current Modulation Method
The Data Frame is transmitted through a modulation of the current consumption. The Figure 9 shows the
current modulation and bit encoding (Manchester encoding). A low level (ISlow) represents the quiescent
current consumption of the sensor. A high level (IShigh) is generated by an increased Sink current of the
sensor (ISlow+ΔIS). The sink current (Δ IS) and the duration of the bit (TBIT) are selectable (see Table 14).
Revision 1.0
May 2019
Page 18 of 55
MLX90373 Triaxis® Position Processor
Datasheet
IS
Bit 0
0
IShigh
Bit 1
0
Bit 2
1
Bit 3
0
ΔIS
ISlow
TBIT
t
Figure 9: PSI5 current modulation
11.2.2. Current Modulation Specification
Electrical Parameter
Sink current
Symbol
Min
Typ
Max
Unit
ΔIS
21
26
30(18)
mA
Common power mode (see section12)
10
13
15
mA
Low power mode (see section 12)
4
mA
0.3
mA/s
Assuming a maximum temperature drift
rate of 20K/s
Quiescent current drift
DRIFTIS
Quiescent current
thermal drift rate
DRIFTRIS
-4
Condition
IS Current modulation
Falling time(19)
TF
0.33
1
μs
Time for IS to fall from 80% to 20% of ΔIs
See section 15.
IS Current modulation
Rising time(19)
TR
0.33
1
μs
Time for IS to rise from 20% to 80% of
ΔIs.
See section 15.
Mark/Space Ratio at
Sensor(21)
MSR
Bit time
TBIT
Slope rate
47
50
53
%
(tfall, 80 - trise,20) / TBit
(tfall, 20 - trise, 80) / TBit
7.6
8
8.4
μs
Low speed transmission (125 kbit/s)
5
5.3
5.6
μs
High-speed transmission (189 kbit/s)
(22)
fast
High-speed transmission (189 kbit/s)
slow
Low speed transmission (125 kbit/s)
Table 14: Data modulation specification table
For the power mode (PSI5_LOWCOMMON_MODE) and the speed transmission (PSI5_TRANSMITSPEED)
programming, see section 12.
18
19
The maximum value is found at 125deg.C
Small rise and fall times will lead to increased radiated emission. Sensors/Bus must meet the test conditions of PSI5 standard.
21
Single sensor configuration shall satisfy the requirement for sending current rise/fall time such that trise from 20 to 80%
of IS and tfall from 80 down to 20% of IS is reached within 1μs..
22
Minimum value of duty cycle has been found at 125deg.C
Revision 1.0
May 2019
Page 19 of 55
MLX90373 Triaxis® Position Processor
Datasheet
11.3. Communication Mode
The sensor can be programmed to communicate in 2 possible modes: asynchronous mode and
synchronous parallel bus mode (see Table 15). In asynchronous mode, the sensor transmits the Data
Frames periodically without external synchronization, while in synchronous mode; the communication is
synchronized by the ECU with a synchronization pulse.
Protocol Parameter
Communication modes
Option
Id
Option
A
2: Asynchronous Mode
P
3: Synchronous Parallel Bus Mode
NVRAM parameters
PROTOCOL
Table 15: Communication mode configuration synchronous/asynchronous
11.3.1. Asynchronous Communication
In asynchronous mode, the timing and repetition rate of the data transmission are controlled by the
sensor. The sensor starts transmitting the data to the ECU periodically (see section 11.4) once the power
supply is on.
The Figure 10 shows the periodic transmission from one PSI5 Sensor with period T cycle. The supply
voltage must enter the operation voltage specified in the section 6.
VDD
OV
TS1
TS2
TS3
TS4
TS1
Tcycle
Figure 10: Asynchronous data transmission for x4 Time Slots per cycle
11.3.2. Synchronous Communication in Parallel Bus
In synchronous operation, the sensor data transmission is synchronized by the ECU using voltage
modulation. Once the sync pulse received, each sensor starts the data transmission (see section
11.3.2.1).
VDD
TS1
TS2
TS3
TS4
Tcycle
Figure 11: Synchronous Parallel bus data transmission for x4 Time Slots per cycle
Revision 1.0
May 2019
Page 20 of 55
MLX90373 Triaxis® Position Processor
Datasheet
11.3.2.1. Synchronization Pulse
The sync pulse generated by the ECU is detected by the sensor as soon as the variation in voltage on VDD
is higher than the minimum sync pulse voltage. The sync pulse (reduced or standard, see Table 16) is
selectable (PSI5_TRIGGER_STD).
Electrical Parameter
Symbol
Sync Pulse Voltage
VSYNC
Sensor Trigger threshold
VTRIG
Tolerance of internal trigger
detection timing delay at
sensor
Sync Pulse Hold Time
Min
Max
Unit
Condition
2.5
V
For reduced sync pulse
3.5
V
For standard sync pulse
1.2
1.5
1.8
V
For reduced sync pulse
1.4
2.0
2.6
V
For standard sync pulse
3
μs
See definition of
parameter in PSI5 spec
9
μs
For reduced sync pulse
36
μs
For standard sync pulse
TTOLDETECT
TSHOLD
Typ
Table 16: Synchronization pulse parameters
VDD
VSYNC
TSHOLD
VDDDC
t
Figure 12: Sync pulse detection
VDDDC being the static value of the supply voltage before the synchronization pulse occurs.
11.4. Cycle Time
The periodicity of transmission (or Cycle Time) is programmable, see Figure 10. The maximum number of
Time Slots (time allocation of a Data Frame within a Cycle) is 4. Each Time Slot must be enabled
(PSI5_TSx_ENABLE) and a corresponding start time specified (PSI5_TSx_START TIME). The time separating
two consecutive Time Slots, TGAP, must be higher than T BIT.
Revision 1.0
May 2019
Page 21 of 55
MLX90373 Triaxis® Position Processor
Datasheet
Protocol Parameter
PSI5 Cycle time selection
Symbol
Option
NVRAM parameters
0: 500 μs
Tcycle
PSI5_CYCLETIME
1: 300 μs
Table 17: Cycle time selection
11.5. Data Frame in Run-Time
11.5.1. Data Frame Content
The Data Frame consists in Start, Payload and Error Detection bits, see Table 18. The Payload consists in
Control (optional), Status (optional) and Data bits.
Data Frame content
Start bits
Bit Symbol
S0, S1
Control bits
F0-2
Payload (PD)
Status bit
E0
Data bits
A[0:N-1]
Error Detection bits
P
C0-2
Description
Frame start bits, always coded as "0"
Optional (only for High precision format).
Rolling counter, incremented once per Time Slot, during runtime and error transmission, with LSB transmission first.
Overflow leads to a reset, e.g. 0x7+0x1=0x0.
Optional (only for High precision format).
Error flag bit.
Data bits, transmitted LSB first. Recommended number of bits
for data, N∈{8, 10, 16, 20}.
Parity bit
CRC
Table 18: Description of data Content in run time
11.5.2. Data Frame Format
The Error Detection, the Payload size and the Format Precision are selectable, see Table 19.
Protocol Parameter
Error Detection
Option Id
P/CRC
Option
NVRAM parameters
0: CRC mode
1: Parity Bit mode
Payload (PD)
N/A
Selectable between 8 to 24 bits.
Data Frame Format
precision
N/A
0: PSI5 low precision
1: PSI5 high precision
PSI5_ERRORDETECTION
PSI5_PAYLOAD_SIZE
PSI5_FRAMEFORMAT_STD
Table 19: Parameterization of the format data
Revision 1.0
May 2019
Page 22 of 55
MLX90373 Triaxis® Position Processor
Datasheet
11.5.2.1. Data Frame Format Supported by the MLX90373
Payload
Start
S0
Data (N bits)
S1
CRC
A0 to AN-1
C2
C1
C0
Payload
Start
S0
S1
Data (N bits)
Parity
A0 to AN-1
P
Figure 13: Low Precision Data Frame Format
Payload
Start
S0
S1
Control
F0
F1
F2
Status
Data (N bits)
E0
A0 to AN-1
CRC
C2
C1
C0
Payload
Start
S0
S1
Control
F0
F1
F2
Statu s
Data (N bits)
Parity
E0
A0 to AN-1
P
Figure 14: High Precision Data Frame Format
11.5.2.2. Example of Data Frame
Start
S0
S1
Data (10 bits)
A0
A1
A2
A3
A4
A5
Parity
A6
A7
A8
A9
P
A10P-300/1L in Low Precision Format
Start
S0
S1
Control
F0
F1
Data (12 bits)
Status
F2
E0
A0
A1
A2
A3
A4
A5
A6
CRC
A7
A8
A9
A10 A11 C2
C1
C0
A16CRC-500/1L in High Precision Format
Figure 15: Example of Data Frame
11.5.3. Data
11.5.3.1. Data Selection
The data can be selected Time Slot by Time Slot (see Table 20).
NVRAM parameter
Number of bits
Description
PSI5_TSx_SENSORPARAM with x=1, 2, 3, 4 (Time Slot)
3
Time Slot data to be transmitted:
0x0: Angular data
0x1: Angular velocity
0x2: Temperature
0x3: Bfield
0x4: Ramprobe data
PSI5_x_NBITS with x= ANGULARDATA,
ANGULARVELOCITY, TEMPERATURE, BFIELD,
RAMPROBE
4
Data size: (MSB), [1 - 16] bits
Table 20: Selection of sensor data
Revision 1.0
May 2019
Page 23 of 55
MLX90373 Triaxis® Position Processor
Datasheet
11.5.3.2. Data Padding
Sensor Data padding is performed:
For High precision Frame Format, when PD > PSI5_x_NBITS + 4
For Low precision Frame Format, when PD > PSI5_x_NBITS
Where x=ANGULARDATA, ANGULARVELOCITY, TEMPERATURE, BFIELD, RAMPROBE.
When the padding applies, extra MSBs of A[0:N-1] are transmitted from bit number PSI5_x_NBITS to bit
number N-1 and set to 0.
11.6. Sensor Start-Up
Normal or full safe start-up after power-on reset is selectable (COLD_SAFE_STARTUP_EN).
11.7. Sensor Initialization
After startup, three initialization phases are present before entering run-time operation mode. The
initialization phases can be skipped or enabled and configured after reset or error recovery. The
parameters
associated
are
PSI5_COLD_INIT_PHASES
(normal
and
safe
boot)
and
PSI5_RECOVERY_INIT_PHASES (error recovery). Both are encoded as:
0x0: Phase II and III in succession
0x1: Skip phase II, go directly to phase III after phase I
0x2: Skip phase II and III, go directly to running mode after phase I
0x3: Reserved
11.7.1. Initialization Phase I
No sensor data is transmitted during this phase. The duration of this phase is configurable
(PSI5_INIT_I_DURATION) in step of 1ms.
Electrical Parameter
Symbol
Min
Typ
Max
Unit
Initialization Phase I duration
DURPHI
50
100
200
ms
Condition
Table 21: Description of data content of phase I
11.7.2. Initialization phase II
The content transferred during this phase includes mandatory fields (F1 -F5) and optional fields (F6-F9)
selectable (PSI5_INIT_II_EXTRA_FIELDS, MSbit enables F9). During this phase, the Status bit of the
Payload (E0) is set to 0.
The initialization phase II can be sent more than once (PSI5_INIT_II_REPETITIONCOUNT).
Revision 1.0
May 2019
Page 24 of 55
MLX90373 Triaxis® Position Processor
Datasheet
Field
Name and NVRAM parameter
Parameter definition
Value
F1-F5: Mandatory
F1
(D1)
Protocol Description
PSI5_INIT_METAINFO
PSI5 Spec V1.x
PSI5 Spec V2.x, Data Range Initialization
PSI5 Spec V2.x, Serial Channel Initialization
0100
0110
0111
F2
(D2, D3)
Number of data nibbles
transmitted (in phase II)
PSI5_INIT_INITLENGTH
Examples:
F1- F5 = 9 Nibbles
F1- F9 = 32 Nibbles
F3
(D4, D5)
Sensor Manufacturer Code
PSI5_INIT_VENDORID
Information depending on the
corresponding sensor type
Sensor specific
information
F4
(D6, D7)
Definition of sensor type
PSI5_INIT_SENSORTYPE
Information depending on the
corresponding sensor type
Sensor specific
information
F5
(D8, D9)
Definition of specific sensor
parameters
PSI5_INIT_SENSORPARAMS
Information depending on the
corresponding sensor type
Sensor specific
information
Examples:
0000 1001
0010 0000
F6 - F9 recommended information for automotive applications
F6
(D10, D11)
Definition of sensor specific
parameters or additional
information
PSI5_INIT_SENSORCODE
To be specified by the sensor manufacturer
Sensor specific
definition
F7
(D12-D14)
Sensor Code (Sensor
application)
PSI5_INIT_SENSORAPPCODE
Usage e.g. for product revision information
Sensor specific
definition
F8
(D15-D18)
Sensor production Date
PSI5_INIT_PRODUCTIONDATE
Binary coded Julian date:
Year: 00-99 (7b)
Month: 01-12 (4b)
Day: 01-31 (5b)
Example
2006: 0000110
March: 0011
30: 11110
F9
(D19-D32)
Sensor Trace information
E.g. production lot/line/serial
number
Specified by the sensor manufacturer
MLX_ID[0-2] will be sent here
Sensor specific
definition
Table 22: Description of data content of phase II
11.7.3. Initialization Phase III
During this phase, the Status bit of the Payload (E0) is used as an error flag and the sensor sends one of
the status messages listed in the Table below.
Status message
Sent output value
"Sensor ready"
0x1E7
"Sensor defect"
0x1F4
Table 23: Description of data content of phase III
The number of messages is configurable (PSI5_INIT_III_COUNT).
Revision 1.0
May 2019
Page 25 of 55
MLX90373 Triaxis® Position Processor
Datasheet
Electrical Parameter
Symbol
Min
Typ
Max
Unit
Initialization Phase III, number of messages
NBMSG
2
10
200
msgs
Condition
Table 24: Configuration of initialization III duration
11.8. Error Reporting Mode
When the MLX90373 detects an internal error, the error is reported through the PSI5 Data Frame using
the format depicted in section 11.8.1, transmitting the information described in section 11.8.2.
11.8.1. Error Reporting Data Format
The Data Frame content during error reporting depends on the Frame Format.
11.8.1.1. High Precision Frame Format
In case of High precision frame format then the format is defined by the following picture.
Start
0
0
Control
F0
F1
Status
F2
1
Error Register (6 bits)
Status Data (10 bits)
ER0 ER1 ER2 ER3 ER4 ER5
A0 to A9
CRC
C2
C1
C0
Figure 16: Error reporting in High precision Frame Format
11.8.1.2. Low Precision Frame Format
Status Data (10 bits)
Parity
A0 to A9
P
Figure 17: Error reporting in Low precision Frame Format
11.8.2. Error Register
The error register is computed as described in the table below depending on the error bits (See section
14.2 and safety manual for more information).
Bit number in the error register Calculation
Comment
0
GAINOOS || ROCLIP || HE_SYMMETRY
Aggregation
1
FIELDTOOLOW || FIELDTOOHIGH
Aggregation
2
ADCCLIP || ADCDROP
Aggregation
3
ADC_TEST
4
SUP_OV_VDDA || SUP_OV_V1V8
5
OVERTEMP
Aggregation
Table 25: Error register and diagnostics
Revision 1.0
May 2019
Page 26 of 55
MLX90373 Triaxis® Position Processor
Datasheet
11.8.3. Status Data
The status data (D0-D9) from Figure 17 is used to transmit 10 bits status data, LSB being transmitted first,
and the data value is specified in the table below.
Value(dec)
Value(Hex)
Signification
+500
0x1F4
Sensor Defect
+489
0x1E9
Sensor in service Mode
+487
0x1E7
Sensor Ready
+483
0x1E3
Reserved Sensor used
Table 26: Status data
12. End-User Programmable Items
Default values marked in the table below are subject to change.
Parameter
Description
Default
standard
#
bit
USER_ID[0..5]
User ID. Reference. Reserved for customers
traceability
see 12.1
8
MEMLOCK
Enable NVRAM write LOCK
0x0
2
SENSOR FRONT END
GAINMIN
Low threshold for virtual gain
0x01
8
GAINMAX
High threshold for virtual gain
0x3F
8
GAINSATURATION
Gain saturated on GAINMIN and GAINMAX
0x0
1
SENSING_MODE
Mapping fields for output angle
- Rotary Stray-Field robust
- Legacy mode
0x0
0x1
3
MAGNET_SREL_T[1..7]
Magnet relative sensitivity at temperature Tx. This
parameter is mainly used in linear Hall mode. It is
advised to keep defaults for other modes.
0xFF
8
DSP_NB_CONV(23)
Number of phase spinning within ADC sequence
0x0(23)
2
PROTOCOL
Selection of output protocol
0x2: PSI5 Asynchronous
0x3: PSI5 Synchronous
0x3
2
PSI5_PAYLOAD_SIZE
Payload size
0x14
5
PSI5_ERRORDETECTION
Select CRC (0) or Parity (1) as error detection
0x0
1
PSI5 OUTPUT PROTOCOL
23
Changing default value could impact the safety metrics. Default value shall be used.
Revision 1.0
May 2019
Page 27 of 55
MLX90373 Triaxis® Position Processor
Datasheet
Default
standard
#
bit
Select 500us (0x0) or 300us (0x1) PSI5 cycle time
0x0
2
PSI5_TRANSMITSPEED
PSI5 transmission speed selection
0: Low speed transmission (125 kbit/s)
1: High-speed transmission (189 kbit/s )
0x1
1
PSI5_FRAMEFORMAT_STD
Select low (0) or high (1) precision PSI5 frame
format
0x1
1
PSI5_TRIGGER_STD
Trigger level selection
0: reduced sync pulse
1: standard sync pulse
0x1
1
PSI5_TS[1..4]_ENABLE
Enable timeslot
0x0, 0x1,
0x1, 0x0
1
PSI5_TS[1..4]_SENSORPARAM
Content of timeslot
0x0, 0x0,
0x1, 0x0
3
PSI5_TS[1..4]_STARTTIME
Start time of timeslot (TTOLDETECT excluded)
0x0, 0x175,
0x2AC, 0x0
11
PSI5_ANGULARDATA_NBITS
Number of bits to represent angular data by [1..16]
0xB
4
PSI5_ANGULARVELOCITY_NBITS
Number of bits to represent velocity data by [1..16]
0xB
4
PSI5_TEMPERATURE_NBITS
Number of bits to represent temperature data by
[1..16]
0x0
4
PSI5_BFIELD_NBITS
Number of bits to represent field strength data by
[1..16]
0x0
4
PSI5_RAMPROBE_NBITS
Number of bits to represent ramprobe data by
[1..16]
0xF
4
PSI5_ALTERNATE_A
Alternate measurement, phase A
0x0
3
PSI5_ALTERNATE_B
Alternate measurement, phase B
0x0
3
WARM_TRIGGER_LONG
Add delay to enter PTC mode (MT7V)
0x0
1
PSI5_SYNC_ERROR_REPORT
One (0) or three (1) error frames are sent for SYNC
error reporting
0x1
1
PSI5_SYNC_TO_MIN_CNT_REPORT
Number of SYNC errors to be detected before
reporting
0x0
3
PSI5_SYNC_MAX_TOL
Set timeout for receiving sync pulses
0xC
8
PSI5_SYNC_MIN_TOL
Set short condition for receiving sync pulses
0xC
8
PSI5_LOWCOMMON_MODE
Low (0, 13mA) or common (1, 26mA) current
modulation level
0x1
1
PSI5_REDUCEDCURRENT_MODE
Reduced current modulation level
0x0
1
0x1
2
Parameter
Description
PSI5_CYCLETIME
FILTERING
DSP_FILTER
Revision 1.0
Filter mode selection
May 2019
Page 28 of 55
MLX90373 Triaxis® Position Processor
Datasheet
Default
standard
#
bit
Hysteresis threshold for EMA filter
0x0
8
DENOISING_FILTER_ALPHA_SEL
Select the alpha parameter of the IIR filter
0x0
2
PSI5_DPI_FILTER_ENABLE
Enable DPI filter in analog interface
0x0
1
VELOCITY_FILTER_FIR
Filter selection for velocity measurement
0x1
2
VELOCITY_DENOISING_FILTER_ALPH
A_SEL
Select the alpha parameter of the IIR filter of the
velocity measurement
0x0
2
VELOCITY_HYST
Hysteresis threshold for EMA filter of velocity
measurement
0x1
8
Parameter
Description
HYST
LINEAR TRANSFER CHARACTERISTIC
DSP_SEL_4PTS
Set for LNR selection
0x0
1
DSP_LNR_RESX2
Set for LNR selection
0x0
1
CW
Set rotation to clockwise
0x0
1
DP
Discontinuity point
0x0000
16
CLAMPLOW
Low clamping value of output signal
0x0010
16
CLAMPHIGH
High clamping value of output signal
0xFF80
16
USEROPTION_SCALING
Enables the output scaling
0 = [0..100%]
1 = [-50%..150%]
0x1
1
LNR_S0
Slope before point A in 4-Pts LNR
-
16
LNR_A_S, LNR_B_S, LNR_C_S,
LNR_D_S
Slopes after point A/B/C/D in 4-Pts LNR
-
16
LNR_A_X, LNR_B_X, LNR_C_X,
LNR_D_X
X coordinates of point A/B/C/D in 4-Pts LNR
-
16
LNR_A_Y, LNR_B_Y, LNR_C_Y,
LNR_D_Y
Y coordinates of point A/B/C/D in 4-Pts LNR
-
16
LNR_X[00..07]
X coordinates for the 8-Pts LNR
-
16
LNR_Y[00..07]
Y coordinates for the 8-Pts LNR
Y coordinates for the 17-Pts LNR
0x4009 -
16
GAIN_ANCHOR_MID
Re-scaling before the piece-wise linearization step
0x1
1
LNR_Y[08..16]
Y coordinates for the 17-Pts LNR
- 0xBFC8
16
LNR_S0_Q15
Slope for 32-Pts LNR
-
16
LNR_DELTA_Y[01..32]
Delta Y for 32-Pts LNR
-
8
LNR_DELTA_Y_EXPAND_LOG2
Adjust the span of LNR_DELTA_Y[01..32], for 32-Pts
LNR
0x0
2
WORK_RANGE_GAIN
Angle range in 17-Pts and 32-Pts LNR
0x10
8
Revision 1.0
May 2019
Page 29 of 55
MLX90373 Triaxis® Position Processor
Datasheet
Parameter
Description
Default
standard
#
bit
VELOCITY
VELOCITY_ALGORITHM
Enable tracking loop algorithm for angular velocity
measurement
0x1
1
VELOCITY_ENABLE
Enable velocity measurement
0x1
1
0x0000
16
0x1(23)
1
RAMPROBE
RAMPROBE_PTR
RAM address to be probed
DIAGNOSTICS
DIAG_GLOBAL_EN(23)
Diagnostics global enable. DO NOT MODIFY!
DIAG_DEBOUNCE_STEPDOWN
Diagnostic debouncing step-down time
0x1
4
DIAG_DEBOUNCE_STEPUP
Diagnostic debouncing step-up time
0x2
4
DIAG_DEBOUNCE_THRESH
Diagnostic debouncing threshold
0x02
6
DIAG_TEMP_THR_LOW(23)
Temperature threshold for under-temperature
diagnostic
0x08
8
DIAG_TEMP_THR_HIGH(23)
Temperature threshold for over-temperature
diagnostic
0x88
8
DIAG_FIELDTOOLOWTHRES
Field limit under which a fault is reported
application
dependant
8
DIAG_FIELDTOOHIGHTHRES
Field limit over which a fault is reported
0xFF
8
OUT_DIAG_HIZ_TIME
Transient failure reporting time. When a transient
digital failure is detected, the output drivers are
disabled during N ms. The time-out is calculated as:
timeout = (OUT_DIAG_HIZ_TIME+1) * 4 * 1ms.
0x7
3
COLD_SAFE_STARTUP_EN
Normal (0) or full safe (1) start-up after power-on
reset
0x0
1
INITIALIZATION
PSI5_COLD_INIT_PHASES
Initialization phase configuration, after normal and
safe boot
0x0
2
PSI5_RECOVERY_INIT_PHASES
Initialization phase configuration, after error
recovery
0x2
2
PSI5_INIT_I_DURATION
Duration of initialization phase I
0x32
8
PSI5_INIT_II_EXTRA_FIELDS
Enable extra fields in initialization phase II
0x0
4
PSI5_INIT_II_REPETITIONCOUNT
Repetition count of initialization phase II
0x4
4
PSI5_INIT_METAINFO
Initialization phase II, protocol description
0x6
4
PSI5_INIT_INITLENGTH
Initialization phase II, number of nibbles
0x09
8
PSI5_INIT_VENDORID
Initialization phase II, vendor identification
0x06
8
PSI5_INIT_SENSORTYPE
Initialization phase II, sensor type
0x06
8
Revision 1.0
May 2019
Page 30 of 55
MLX90373 Triaxis® Position Processor
Datasheet
Default
standard
#
bit
Initialization phase II, sensor specific parameters
0x00
8
PSI5_INIT_SENSORCODE
Initialization phase II, sensor manufacturer
0x00
8
PSI5_INIT_SENSORAPPCODE
Initialization phase II, sensor application specific
code
0x000
12
PSI5_INIT_PRODUCTIONDATE
Initialization phase II, production data
0x0000
16
PSI5_INIT_III_COUNT
Message count for initialization phase III
0x2
8
Parameter
Description
PSI5_INIT_SENSORPARAMS
Table 27: End-user Programmable Items
12.1. End-User Identification Items
Parameter
Description
Default Standard
# bit
MLX_ID0
X-Y position on the wafer (8 bits each)
-
16
MLX_ID1
Wafer ID (5 bits); Lot ID [10..0] (11 bits)
-
16
MLX_ID2
Lot ID [16..11] (6 bits); Fab ID (4 bits); Test Database ID (6 bits)
-
16
CHIP_
VERSION
IMC shape version identifier
Order code 10x
Order code 30x
0
1
7
Status of MLX final test (0: Fail and 1: Pass)
1
1
Program '1' at last step of FT to indicate a bin 1
1
8
0
8
1
8
USER_ID3
2
8
USER_ID4
0
8
USER_ID5
0
8
TEST_STATUS
USER_ID0
USER_ID1
USER_ID2
Die version (1 = ABA)
Table 28: End-user identification items
13. Description of End-User Programmable Items
13.1. Output Transfer Characteristic
13.1.1. Selection
The transfer function (LNR) is selectable ( DSP_SEL4PTS and DSP_LNR_RESX2) as per the Table 29.
Revision 1.0
May 2019
Page 31 of 55
MLX90373 Triaxis® Position Processor
Datasheet
DSP_SEL4PTS
DSP_LNR_RESX2
LNR type
1
0
4Pts
1
1
8Pts
0
0
17Pts
0
1
32Pts
Table 29: Output Transfer Characteristic Selection
13.1.2. Programmable Items
Output Mode
LNR type
4pts
8pts
17pts
32pts
Value
Unit
0: 0 100
1: -50 150
%
USEROPTION_SCALING
●
●
●
CW
●
●
●
●
0: CCW
1: CW
LSB
DP
●
●
●
●
0 359.9999
Deg.
CLAMPLOW
●
●
●
●
0 100
%
CLAMPHIGH
●
●
●
●
0 100
%
LNR_x_X with x=A, B, C, D
●
0 359.9999
Deg.
LNR_x_Y with x=A, B, C, D
●
see USEROPTION_SCALING
%
LNR_S0
LNR_x_S with x=A, B, C, D
●
-17 … 0 … 17
%/Deg.
0 359.9999
Deg.
see USEROPTION_SCALING
%
LNR_Xx with x=0-7
●
LNR_Yx with x=0-7
●
LNR_Yx with x=8-16
●
●
LNR_DELTAYx with x=0132
●
0 100%
selectable
offset range
LNR_S0_Q15
●
0 … 0.555
% /Deg. (scales
with working
range)
LNR_DELTA_Y_EXPAND
_LOG2
●
-3.125 3.125
-6.256.25
-12.5 12.5
-25 25
%
GAIN_ANCHOR_MID
●
Always use “1”
●
-01x code: 11.29 180
-03x code: 22.59 360
WORK_RANGE_GAIN
●
Deg.
Table 30: Programmable items: Output transfer characteristic
Revision 1.0
May 2019
Page 32 of 55
MLX90373 Triaxis® Position Processor
Datasheet
13.1.3. Enable Scaling Parameter
The parameter USEROPTION_SCALING enables to double the scale of Y coordinates linearization
parameters, see the Table 31. This is valid for all Output Linear Characteristic except the 32 segments
one.
USEROPTION_SCALING
LNR_Y min value
LNR_Y max value
0
0%
100%
1
-50%
150%
Table 31: Y coordinates scaling
13.1.4. CLOCKWISE Parameter
The CLOCKWISE parameter defines the magnet rotation direction (CW).
CCW is the defined by 1-8-9-16 pin order direction for the TSSOP-16 package.
CW is defined by the reverse direction: 16-9-8-1 pin order direction for the TSSOP-16 package.
Refer to the drawing in the sensitive spot positioning (see 18.1.3 and 18.2.3)
13.1.5. Discontinuity Point or Zero Degree Point
The Discontinuity Point (DP) defines the 0 Deg. point on the circle. The DP places the origin at any
location of the trigonometric circle. The DP is used as reference for all the angular measurements.
360 Deg.
0 Deg.
Figure 18: The placement of the DP is programmable
Revision 1.0
May 2019
Page 33 of 55
MLX90373 Triaxis® Position Processor
Datasheet
13.1.6. CLAMPING Parameters
The clamping levels are two independent values to limit the output voltage range. The CLAMPLOW
parameter adjusts the minimum output voltage level. The CLAMPHIGH parameter sets the maximum
output voltage level. Both parameters have 16 bits of adjustment and are available for all LNR modes.
13.1.7. WORKING RANGE (PWL only)
The range for the angle can be selected using the WORK_RANGE_GAIN parameter, which applies a fixed
gain to the transfer characteristics. Using WORK_RANGE_GAIN parameter, the anchor point is kept at 180°
and the range is symmetrically set around this value. It creates a zoom-in of the angle around this point.
WORK_RANGE_GAIN is coded on 8 bits where the 4 MSB defines the integer part and the 4 LSB the
fractional parts (in power of twos). Therefore, the following equation applies to define the angle range
W:
with FA=180° for -10x code and FA=360° for -30x code.
Both minimal and maximal angles are then defined by:
where θmin corresponds to the angle yielding 0% output and θmax the angle giving a 100% output.
Following table gives the extreme values as example:
WORK_RANGE_GAIN
0x10
0xFF
code
Range (w)
θmin
θmax
Δx 17 pts
Δx 32 pts
-10x
180°
90°
270°
11.25°
5.63°
-30x
360°
0°
360°
22.50°
11.25°
-10x
11.29°
0°
360°
0.71°
0.35°
-30x
22.59°
168.7°
191.3°
1.41°
0.71°
Table 32: Working range defined with GAIN parameter and option code
Outside of the working range, the output will remain at clamping levels.
13.1.8. 4-Pts LNR Parameters
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)
between the digital angle and the output signal.
The shape of the MLX90373 four points transfer function from the digital angle value to the digital o utput
is described in Figure 19. Seven segments can be programmed but the clamping levels are necessarily
flat.
Two, three, or even six calibration points are then available, reducing the overall non-linearity of the IC
by almost an order of magnitude each time. Three or six calibration point will be preferred by customers
Revision 1.0
May 2019
Page 34 of 55
MLX90373 Triaxis® Position Processor
Datasheet
looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking
for a cheaper calibration set-up and shorter calibration time.
100%
CLAMPHIGH
Clamping High
D
LNR_D_Y
C
Slope LNR_C_S
LNR_C_Y
B
LNR_B_Y
A
Slope LNR_B_S
Slope
LNR_A_S
LNR_A_Y
Slope
LNR_S0
CLAMPLOW
0%
LNR_A_X
0 (Deg.)
Slope LNR_D_S
Clamping Low
LNR_B_X
LNR_C_X
LNR_D_X
360 (Deg.)
Figure 19: 4-Points Transfer function
13.1.9. 8-Pts LNR Parameters
The 8-Pts LNR parameters, together with the clamping values, fully define the relation (the transfer
function) between the digital angle and the output signal.
The shape of the MLX90373 eight points transfer function from the digital angle value to the output
voltage is described in Figure 20. Eight calibration points [LNR_X0...7, LNR_Y0...7] together with 2 fixed
points at the extremity of the range ([0°, 0%] ; [360°, 100%]) divides the transfer curve into 9 segments.
Each segment is defined by 2 points and the values in between is calculated by linear interpolation.
100%
CLAMPHIGH
Clamping High
LNR_Y7
7
...
5
4
3
2
LNR_Y1
LNR_Y0
6
1
0
Clamping Low
CLAMPLOW
0%
0 (Deg.)
LNR_X0 LNR_X1
...
LNR_X7
360 (Deg.)
Figure 20: 8-Points Transfer function
Revision 1.0
May 2019
Page 35 of 55
MLX90373 Triaxis® Position Processor
Datasheet
13.1.10. 17-Pts LNR Parameters (PWL)
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)
between the digital angle and the output signal.
The shape of the MLX90373 seventeen points transfer function from the digital angle value to the output
voltage is described in Figure 21. In the 17-Pts mode, the output transfer characteristic is Piece-WiseLinear (PWL).
LNR_Y16
16
100
LNR_Y15
LNR_Y14
15
14
Output [%]
...
13
12
11
10
LNR_Y9
LNR_Y8
50
LNR_Y7
9
8
7
Δx = w/16, fixed delta angle, with
6
...
5
w=
4
LNR_Y3
LNR_Y2
LNR_Y1
DP(0,0)
LNR_Y0
16·360°
WORK_RANGE_GAIN
3
1
180-
2
w
2
180
Angle [°]
180+
w
2
0
Figure 21: 16-Segments calibration transfer function
All the Y-coordinates can be programmed from -50% up to +150% to allow clamping in the middle of one
segment (like on the figure), but the output value is limited to CLAMPLOW and CLAMPHIGH values.
Between two consecutive points, the output characteristic is interpolated.
13.1.11. 32-Pts LNR Parameters (PWL)
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)
between the digital angle and the output signal.
The shape of the MLX90373 thirty-two points transfer function from the digital angle value to the output
voltage is described in Figure 22. In the 32-Pts mode, the output transfer characteristic is Piece-WiseLinear (PWL).
Revision 1.0
May 2019
Page 36 of 55
MLX90373 Triaxis® Position Processor
Datasheet
LNR_Delta_Y32
100
Output [%]
CLAMPHIGH
LNR_deltaY :
Programmable delta correction vs. Ideal slope (%)
The adjustable range can be selected from
[+/-3.125%, +/-6.25%, +/-12.5%, +/-25%]
Adjustable
range
Δx fixed delta angle (w/32)
Prog. Slope :
WORK_RANGE_GAIN
LNR_Delta_Y16
LNR_Delta_Y15
50
Anchor point
w=
CLAMPLOW
DP(0,0)
Δx
LNR_Delta_Y01
180-
16·360°
WORK_RANGE_GAIN
w
2
180
Angle [°]
180+
w
2
Figure 22: 32-Segments calibration transfer function
The points are spread evenly across the working range (see 13.1.7 for working range selection). The Ycoordinates can be offset from the ideal characteristic within an adjustable range defined by
LNR_DELTA_Y_EXPAND_LOG2. The available values are summarized in the table below. All
LNR_delta_Y## parameters are encoded in a fractional signed 8-bit value.
LNR_DELTA_Y_EXPAND_LOG2
Offset range %
Delta range [LSB12]
Resolution [LSB12]
0
±3.125
-128..127
1
1
±6.25
-256..254
2
2
±12.5
-512..508
4
3
±25
-1024..1016
8
13.2. Sensor Front-End
Parameter
Value
SENSING_MODE
[0 - 4]
GAINMIN
[0 - 63]
GAINMAX
[0 - 63]
GAINSATURATION
[0, 1]
Table 33: Programmable items: sensor front-end
Revision 1.0
May 2019
Page 37 of 55
MLX90373 Triaxis® Position Processor
Datasheet
13.2.1. SENSING MODE
The SENSING_MODE parameter defines which sensing mode and fields are used to calculate the angle.
The different possibilities are described in the tables below.
This 2 bits value selects the first (B1) and second (B2) field components according the table below.
SENSING_MODE
B1
B2
Application
0
ΔX
ΔY
Angular Rotary Stray-Field Immune
1
X
Y
Legacy / XY Angular Rotary
2
Y
Z
Legacy / YZ Angular Rotary
3
X
Z
Legacy / XZ Angular Rotary
Table 34: Programmable items: sensing modes
13.2.2. GAINMIN and GAINMAX Parameters
GAINMIN and GAINMAX define the thresholds on the gain code outside which the fa ult “GAIN out of
Spec.” is set. If GAINSATURATION is set, then the virtual gain code is saturated at GAINMIN and
GAINMAX, and no Diagnostic fault is set since the saturations applies before the diagnostic check.
13.3. Filter
The MLX90373 includes 2 types of programmable filters:
Low Pass FIR Filter.
Exponential moving average Filter.
Filter
Low Pass
Angular
Angular
velocity
●
DSP_FILTER
●
[0 - 2]
VELOCITY_FILTER_FIR
●
Exponential
moving
average
Value
parameter
HYST
[0 - 255]
●
VELOCITY_HYST
[0 - 1]
●
VELOCITY_DENOISING_FILTER_ALPHA_SEL
●
DENOISING_FILTER_ALPHA_SEL
[0 - 3]
Table 35: Filtering configuration
13.3.1. Low Pass FIR Filters
The MLX90373 features 2 FIR filter modes controlled with DSP_FILTER or VELOCITY_FILTER_FIR. The
transfer function is described below:
Revision 1.0
May 2019
Page 38 of 55
MLX90373 Triaxis® Position Processor
Datasheet
yn
j
1
j
a
i 0
a x
i 0
i
n i
i
For information, the filters characteristic is given in the following table:
DSP_FILTER or VELOCITY_FILTER_FIR parameter
Type
0
1
Disable
Coefficients ai
2
Finite Impulse Response
1
11
1111
No filter
ExtraLight
Light
DSP_cycle (j= nb of taps)
1
2
4
Efficiency RMS (dB)
0
3.0
6.0
Description
Table 36: FIR Filter Characteristics
13.3.2. Exponential Moving Average (IIR) Filter
The HYST parameter is a threshold to activate/de-activate the exponential moving average filter.
The output value of the IC is updated with the applied filter when the digital step is smaller than
the programmed HYST parameter value.
The output value is updated without applying the filter when the increment is bigger than the
threshold.
The VELOCITY_HYST parameter is Digital hysteresis (hide the small variation but lower resolution)
0: no hysteresis (default), IIR filter disabled
This filter reduces therefore the noise but still allows a fast step response for bigger angle/position
changes. The threshold must be programmed to a value close to the internal magnetic angle noise level.
(1 LSB = 8 * 360 / 2 16).
yn a * xn (1 a) * yni
xn Angle
yn Output
The filter characteristic is selectable.
DENOISING_FILTER_ALPHA_SEL or
VELOCITY_DENOISING_FILTER_ALPHA_SEL parameter
Coefficients a
Efficiency RMS (dB)
0
1
2
3
0.75
0.5
0.25
0.125
2.4
4.2
Table 37: IIR Filter characteristics
Revision 1.0
May 2019
Page 39 of 55
MLX90373 Triaxis® Position Processor
Datasheet
13.4. Programmable Diagnostics Settings
13.4.1. Diagnostics Global Enable
DIAG_GLOBAL_EN should be kept to its default value (1) to retain all functional safety abilities of the
MLX90373. This feature shall not be disabled.
13.4.2. DIAG Debouncing
A debouncing algorithm is available for analog diagnostic reporting (See section 14.2)
1. The error is reported only if it is active for some user-defined amount of time.
2. The error reporting stays enabled on error recovery for some user-defined amount of time.
The error is reported in the output, using predefined reporting level, reporting time and debouncing
time. The debouncing algorithm is parameterized by the NVRAM parameters as per the Table 38
NVRAM Parameter
Description
Default
Decrement values for debouncer counter
1
Increment value for debouncer counter
5
Threshold for debouncer counter to enter diagnostic mode
15
DIAGDEBOUNCE_STEPDOWN
DIAGDEBOUNCE_STEPUP
DIAG_DEBOUNCE_THRESH
Table 38: Programmable diagnostic - DIAG debouncing
The debouncing algorithm will increment the debouncing counter w/ the STEPUP value in case of an
diagnostic error, and decrement w/ STEPDOWN in case of no analog diagnostic error. If the debouncing
counter is higher than the DEBOUNCE THRESHOLD, then an error is reported and the debouncing counter
is clamped to the DEBOUNCE THRESHOLD value.
The debouncing time and recovery time are defined as per the Table 39.
Parameter
Min
Typ.
Diagnostic Test
Interval (DTI)
Max
9.4ms
Debouncing Time
DTI * (CEILING ( Threshold / UP) -1 )
DTI * CEILING ( Threshold / UP )
Recovery time
DTI * CEILING ( Threshold / DOWN )
DTI * (CEILING ( Threshold / DOWN) + 1 )
Table 39: Programmable diagnostic - debouncing & reporting time
13.4.3. Over/Under Temperature Diagnostic
DIAG_TEMP_THR_HIGH defines the threshold for over temperature detection and is compared to the
linearized value of the temperature sensor T LIN. DIAG_TEMP_THR_LOW defines the threshold for under
temperature detection and is compared to the linearized value of the temperature sensor T LIN.
Revision 1.0
May 2019
Page 40 of 55
MLX90373 Triaxis® Position Processor
Datasheet
14. Functional Safety
14.1. Safety Manual
The safety manual, available upon request, contains the necessary information to integrate the
MLX90373 component in a safety related item, as Safety Element Out-of-Context (SEooC).
In particular it includes:
The description of the Product Development lifecycle tailored for the Safety Element.
An extract of the Technical Safety concept.
The description of Assumptions-of-Use (AoU) of the element with respect to its intended use,
including:
assumption on the device safe state;
assumptions on fault tolerant time interval and multiple-point faults detection interval;
assumptions on the context, including its external interfaces;
The description of safety analysis results at the device level useful for the system integrator; HW
architectural metrics and description of dependent failures initiators.
The description and the result of the functional safety assessment process; list of confirmation
measures and description of the independency level.
14.2. Safety Mechanisms
The MLX90373 provides numerous self-diagnostic features (safety mechanisms). Those features increase
the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case
of internal or external failure modes (“fail-safe”).
Legend
● High coverage
○ Medium coverage
ANA : Analog hardware failure reporting, described in the safety manual
DIG : Digital hardware failure reporting, described in the safety manual
* : Diagnostic Cycle Time
At Startup : HW fault present at time zero is detected before a first frame is transmitted.
Table 40: Self Diagnostic Legend
Revision 1.0
May 2019
Page 41 of 55
MLX90373 Triaxis® Position Processor
Datasheet
Category and safety mechanism name
Frontend
ADC
Signal-conditioning (AFE, External Sensor) Diagnostic
●
●
Magnetic Signal Conditioning Voltage Test Pattern
●
○
Magnetic Signal Conditioning Rough Offset Clipping check
DSP
Backend
Support
Func.
Module &
Package
DCT*
●
Reporting
mode
At
startup
ANA
○
DCT_Ana
ANA
●
○
DCT_Ana
ANA
NO
Magnetic Signal Conditioning Gain Monitor
●
○
●
DCT_Ana
ANA
YES
Magnetic Signal Conditioning Gain Clamping
●
○
●
DCT_Ana
ANA
YES
Mag. Sig. Cond. Failure control by the chopping technique
●
Continuous
n/a
YES
External Sensor Sig. Cond. Voltage Valid Range Check
●
●
DCT_Ana
ANA
YES
External Sensor Sig. Cond. Frequency Valid Range Check
●
●
DCT_Ana
ANA
YES
A/D Converter Test Pattern
●
DCT_Ana
ANA
ADC Conversion errors & Overflow Errors
●
DCT_Ana
ANA
YES
DCT_Ana
ANA
YES
Flux Monitor (Specific to Rotary mode)
●
○
●
Digital-circuit Diagnostic
●
RAM Parity, 1 bit per 16 bits word, ISO D.2.5.2
●