0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MLX90641ESF-BAB-000-TU

MLX90641ESF-BAB-000-TU

  • 厂商:

    MELEXIS(迈来芯)

  • 封装:

    TO39-4

  • 描述:

    16X12THERMALARRAYSENSOR3VOLT

  • 数据手册
  • 价格&库存
MLX90641ESF-BAB-000-TU 数据手册
MLX90641 16x12 IR array Datasheet 1. Features and Benefits  Small size, low cost 16x12 pixels IR array  Easy to integrate  Industry standard four lead TO39 package  Factory calibrated  Noise Equivalent Temperature Difference (NETD) 0.1K @4Hz refresh rate  I2C compatible digital interface  Programmable refresh rate 0.5Hz…64Hz  2. Application Examples  High precision non-contact temperature measurements  Microwave ovens  Intrusion / Movement detection  Temperature sensing element for residential, commercial and industrial building air conditioning  Thermal Comfort sensor in automotive Air Conditioning control system 3.3V supply voltage  Passenger classification  Current consumption ≈ 12mA   2 FOV options – 55°x35° and 110°x75° Industrial temperature control of moving parts  Operating temperature -40°C ÷ 125°C  Visual IR thermometers  Target temperature -40°C ÷ 300°C   Complies with RoHS regulations Driver SW for MCU available at: https://github.com/melexis/mlx90641library.git 3. Description The MLX90641 is a fully calibrated 16x12 pixels thermal IR array in an industry standard 4-lead TO39 package with digital interface. The MLX90641 contains 192 FIR pixels. An ambient sensor is integrated to measure the ambient temperature of the chip and supply sensor to measure the VDD. The outputs of all sensors IR, Ta and VDD are stored in internal RAM and are accessible through I2C. Band gap reference and PTAT sensor Vdd Regulator for digital part 34 MHz RC oscillator Array M pixels M amplifiers M ADC EEPROM Storage RAM I2C Vss SDA SCL Figure 1 Block diagram MLX90641 16x12 IR array Datasheet Contents 1. Features and Benefits ............................................................................................................................ 1 2. Application Examples............................................................................................................................. 1 3. Description ............................................................................................................................................ 1 4. Ordering Information ............................................................................................................................ 6 5. Glossary of Terms .................................................................................................................................. 7 6. Pin Definitions and Descriptions ............................................................................................................ 8 7. Absolute Maximum Ratings ................................................................................................................... 8 8. General Electrical Specifications ............................................................................................................ 9 9. False pixel correction ........................................................................................................................... 10 10. Detailed General Description............................................................................................................. 10 10.1. Pixel position ................................................................................................................................... 10 10.2. Communication protocol ............................................................................................................... 11 10.2.1. Low level ................................................................................................................................... 11 10.3. Measurement mode ....................................................................................................................... 12 10.4. Refresh rate..................................................................................................................................... 12 10.5. Measurement flow ......................................................................................................................... 13 10.6. Address map ................................................................................................................................... 15 10.6.1. Internal registers....................................................................................................................... 15 10.6.2. RAM ........................................................................................................................................... 17 EEPROM ................................................................................................................................................. 18 11. Calculating Object Temperature ........................................................................................................ 21 11.1. Restoring calibration data from EERPOM and calculations.......................................................... 21 11.1.1. Restoring the VDD sensor parameters and VDD calculations ................................................ 21 11.1.2. Restoring the Ta sensor parameters ....................................................................................... 22 11.1.3. Restoring the offset .................................................................................................................. 22 11.1.4. Restoring the Sensitivity .................................................................................................... 23 11.1.5. Restoring the Kta(i,j) coefficient .............................................................................................. 24 11.1.6. Restoring the Kv(i,j) coefficient ................................................................................................ 24 11.1.7. Restoring the GAIN coefficient (common for all pixel) ........................................................... 25 11.1.8. Restoring the KsTa coefficient (common for all pixel) ............................................................ 25 11.1.9. Restoring corner temperatures (common for all pixel) .......................................................... 25 REVISION 3 – DECEMBER 9, 2019 3901090641 Page 2 of 55 MLX90641 16x12 IR array Datasheet 11.1.10. Restoring the KsTo coefficient (common for all pixel) .................................... 25 11.1.11. Restoring sensitivity correction coefficients for each temperature range ......................... 26 11.1.12. Restoring Emissivity ................................................................................................................ 26 11.1.13. Restoring the Sensitivity ................................................................................................. 27 11.1.14. Restoring the offset of the CP ................................................................................................ 27 11.1.15. Restoring the Kv CP coefficient .............................................................................................. 27 11.1.16. Restoring the Kta CP coefficient ............................................................................................ 27 11.1.17. Restoring the TGC coefficient ................................................................................................ 27 11.1.18. Restoring calibration resolution control settings ................................................................. 28 11.2. Temperature calculation ................................................................................................................ 28 11.2.1. Example input data ................................................................................................................... 28 11.2.2. Temperature calculation .......................................................................................................... 31 12. Performance graphs .......................................................................................................................... 42 12.1. Accuracy .......................................................................................................................................... 42 12.1.1. Pixel accuracy............................................................................................................................ 42 12.1.2. Ta accuracy ............................................................................................................................... 43 12.2. Startup time .................................................................................................................................... 44 12.2.1. First valid data........................................................................................................................... 44 12.2.2. Thermal behavior...................................................................................................................... 44 12.3. Noise performance and resolution ................................................................................................ 45 12.4. Field of view (FOV) .......................................................................................................................... 47 13. Application information ..................................................................................................................... 48 13.1. Optical considerations .................................................................................................................... 48 13.2. Electrical considerations ................................................................................................................ 48 13.3. Using the device in “image mode” ................................................................................................ 49 14. Application Comments ...................................................................................................................... 50 15. Mechanical drawings ......................................................................................................................... 51 15.1. FOV 55°............................................................................................................................................ 51 15.2. FOV 110° ......................................................................................................................................... 52 15.3. Device marking ............................................................................................................................... 53 16. Standard Information ........................................................................................................................ 54 17. ESD Precautions................................................................................................................................. 54 18. Revision History Table ....................................................................................................................... 54 REVISION 3 – DECEMBER 9, 2019 3901090641 Page 3 of 55 MLX90641 16x12 IR array Datasheet 19. Contact .............................................................................................................................................. 55 20. Disclaimer .......................................................................................................................................... 55 Tables Table 1 Ordering information .......................................................................................................................................................... 6 Table 2 Glosarry of terms ................................................................................................................................................................ 7 Table 3 Pin definition ...................................................................................................................................................................... 8 Table 4 Absolute maximum ratings ................................................................................................................................................. 8 Table 5 Electrical specification ........................................................................................................................................................ 9 Table 6 Priorities of subpage controls ............................................................................................................................................16 Table 7 Configuration parameters memory ....................................................................................................................................18 Table 8 EEPROM overview (words) .................................................................................................................................................19 Table 9 Calibration parameters memory (EEPROM - bits) ...............................................................................................................20 Table 10 Calculation example input data ........................................................................................................................................28 Table 11 Calculation example calibration data ................................................................................................................................30 Table 12 Noise performance ..........................................................................................................................................................46 Table 13 Available FOV options ......................................................................................................................................................47 Table 14 Revision history ...............................................................................................................................................................54 Figures Figure 1 Block diagram ................................................................................................................................................................... 1 Figure 2 MLX90641 Overview and pin description ........................................................................................................................... 8 Figure 3 Pixel in the whole FOV ......................................................................................................................................................10 2 Figure 4 I C write command format (default SA=0x33 is used) ........................................................................................................11 2 Figure 5 I C read command format (default SA=0x33 is used) .........................................................................................................11 Figure 6 Refresh rate timing ...........................................................................................................................................................12 Figure 7 Recommended measurement flow ...................................................................................................................................13 Figure 8 TV mode reading pattern ..................................................................................................................................................14 Figure 9 MXL90641 memory map ...................................................................................................................................................15 Figure 10 Status register (0x8000) bits meaning .............................................................................................................................15 Figure 11 Control register 1 (0x800D) bits meaning ........................................................................................................................16 2 Figure 12 I C configuration register (0x800F) bits meaning .............................................................................................................17 Figure 13 RAM memory map (Interleaved mode - default) ..............................................................................................................17 Figure 14 EEPROM to registers mapping .........................................................................................................................................18 Figure 15 EEPROM Hamming and data bit meaning ........................................................................................................................21 Figure 16 To calculation flow .........................................................................................................................................................31 Figure 17 Temperature absolute accuracy - MLX90641BCA .............................................................................................................42 Figure 18 Temperature absolute accuracy - MLX90641BCB .............................................................................................................43 Figure 19 Different accuracy zones depending on device type (BCA on the left and BCB on the right) ..............................................43 Figure 20 MLX90641BCx noise vs refresh rate for different device types .........................................................................................45 Figure 21 MLX90641BCA noise vs pixel and refresh rate at 1Hz and 2Hz .........................................................................................45 Figure 22 MLX90641BCA noise vs pixel and refresh rate at 4Hz, 8Hz and 16Hz ................................................................................45 REVISION 3 – DECEMBER 9, 2019 3901090641 Page 4 of 55 MLX90641 16x12 IR array Datasheet Figure 23 MLX90641BCB noise vs pixel and refresh rate at 1Hz and 2Hz..........................................................................................46 Figure 24 MLX90641BCB noise vs pixel and refresh rate at 4Hz, 8Hz and 16Hz ................................................................................46 Figure 25 Field Of View measurement ............................................................................................................................................47 Figure 26 Application examples concerning the optical consideration .............................................................................................48 Figure 27 MLX90641Bxx electrical connections...............................................................................................................................48 Figure 28 Calculation flow in thermal image mode .........................................................................................................................49 Figure 29 Mechanical drawing of 55° FOV device ............................................................................................................................51 Figure 30 Mechanical drawing of 110° FOV device ..........................................................................................................................52 REVISION 3 – DECEMBER 9, 2019 3901090641 Page 5 of 55 MLX90641 16x12 IR array Datasheet 4. Ordering Information Product Temperature Package Option Code Custom Configuration Packing Form Definition MLX90641 E SF BCA 000 TU 16x12 IR array MLX90641 E SF BCB 000 TU 16x12 IR array MLX90641 K SF BCA 000 TU 16x12 IR array MLX90641 K SF BCB 000 TU 16x12 IR array Legend: Temperature Code: E: -40°C to 85°C K: -40°C to 125°C Package Code: Option Code: “SF” for TO39 package xAx – TGC is disabled and may not be enabled xCx – TGC is enabled Option Code: xxA – FOV = 110°x75° xxB – FOV = 55°x35° Custom configuration Packing Form: Ordering Example: 000 – standard product “TU” - Tubes “MLX90641KSF-BCA-000-TU” Table 1 Ordering information REVISION 3 – DECEMBER 9, 2019 3901090641 Page 6 of 55 MLX90641 16x12 IR array Datasheet 5. Glossary of Terms TC POR Temperature Coefficient (in ppm/°C) Power On Reset IR Infra-Red Ta Ambient Temperature – the temperature of the TO39 package IR data Infrared data (raw data from ADC proportional to IR energy received by the sensor) ADC Analog To Digital Converter TGC Temperature Gradient Coefficient FOV Field Of View nFOV Field Of View of the N-th pixel 2 IC Inter-Integrated Circuit communication protocol SDA Serial Data SCL Serial Clock LSB Least Significant Bit MSB Most Significant Bit Fps Frames per Second – data refresh rate MD Master Device SD Slave Device ASP Analogue Signal Processing DSP Digital Signal Processing ESD Electro Static Discharge EMC Electro Magnetic Compatibility NC Not Connected NA Not Applicable Table 2 Glosarry of terms REVISION 3 – DECEMBER 9, 2019 3901090641 Page 7 of 55 MLX90641 16x12 IR array Datasheet 6. Pin Definitions and Descriptions Pin # Name Description 1 SDA I2C serial data (input / output) 2 VDD Positive supply 3 GND Negative supply (Ground) 4 SCL I2C serial clock (input only) Table 3 Pin definition Figure 2 MLX90641 Overview and pin description 7. Absolute Maximum Ratings Parameter Symbol Min. Typ. Max. Unit V Supply Voltage (over voltage) VDD 5 Supply Voltage (operating max voltage) VDD 3.6 Reverse Voltage (each pin) Operating Temperature Storage Temperature ESD sensitivity (AEC Q100 002) SDA DC sink current -0.3 V TAMB -40 +125 °C TST -40 +150 °C 4 Remark Not in plastic tubes kV 40 mA Table 4 Absolute maximum ratings Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximumrated conditions for extended periods may affect device reliability. REVISION 3 – DECEMBER 9, 2019 3901090641 Page 8 of 55 MLX90641 16x12 IR array Datasheet 8. General Electrical Specifications Electrical Parameter Symbol Min. Typ. Max. Unit Supply Voltage VDD 3 3.3 3.6 V Supply Current IDD 10 12 14 mA VPOR_UP 2.2 2.6 V VDD rising 2.55 V VDD falling POR level up analog POR level down analog POR hysteresis VPOR_DOWN VPOR_hys 50 I2C address(NOTE 3) 0x01 Input high voltage (SDA, SCL) VIH Input low voltage (SDA, SCL) VLOW SDA output low voltage 0x33 (default) Condition mV 0x7F V Over Ta and VDD 0.3*VDD V Over Ta and VDD VOL 0.4 V Over Ta and VDD ISINK=3mA SDA leakage ISDA_leak ± 10 µA VSDA=3.6V, Ta=150°C SCL leakage ISCL_leak ± 10 µA VSCL=3.6V, Ta=150°C SDA capacitance CSDA 10 pF SCL capacitance CSCL 10 pF Acknowledge setup time TSUAC(MD) 0.45 µs Acknowledge hold time TDUAC(MD) 0.45 µs Acknowledge setup time TSUAC(SD) 0.45 µs Acknowledge hold time TDUAC(SD) 0.45 µs 1 MHz 10 times Ta = 25°C I2C clock frequency 0.7*VDD FI2C 0.4 Erase/write cycles Write cell time TWRITE 5 ms Table 5 Electrical specification NOTE 1: For best performance it is recommended to keep the supply voltage as accurate and stable as possible to 3.3V ± 0.05V NOTE 2: When a data in EEPROM cell to be changed an erase (write 0x0000) must be done prior to writing the new value. After each write at least 5ms delay is needed in order to writing process to take place. NOTE 3: Slave address 0x00 must be avoided. 2 NOTE 4: According to I C standard the max sink current is specified to be 20mA, however due to the thermal considerations (the dissipated power into the driver) the max current is limited to 10mA . This is the only parameter which does not comply with the FM+ specification. 2 NOTE 5: Max EEPROM I C speed operations to be done at 400kHz. REVISION 3 – DECEMBER 9, 2019 3901090641 Page 9 of 55 MLX90641 16x12 IR array Datasheet 9. False pixel correction The imager can have up to 1 defective pixel, with either no output or out of specification temperature reading. 2 These pixels are identified in the EEPROM table of the sensor and can be read out throu gh the I C. The defective pixel result can be replaced by an interpolation of its neighboring pixels. 10. Detailed General Description 10.1. Pixel position Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8 Col 10 Col 9 Col 11 Col 13 Col 12 Col 14 Col 15 Col 16 The array consists of 192 IR sensors (also called pixels). Each pixel is identified with its row and column position as Pix(i,j) where i is its row number (from 1 to 12) and j is its column number (from 1 to 16) Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7 Row 8 Row 9 Row 10 Row 11 VDD 0 Row 12 SDA GND SCL Reference tab Figure 3 Pixel in the whole FOV REVISION 3 – DECEMBER 9, 2019 3901090641 Page 10 of 55 MLX90641 16x12 IR array Datasheet 10.2. Communication protocol 2 The device use I C protocol with support of FM+ mode (up to 1MHz clock frequency) and can be only slave on the bus. 2 The SDA and SCL ports are 5V tolerant and the sensor can be directly connected to a 5V I C network. The slave address is programmable and can have up to 127 different slave addresses (SA = 0x00 must be avoided). 10.2.1. Low level 10.2.1.1. Start / Stop conditions Each communication session is initiated by a START condition and ends with a STOP condition. A START condition is initiated by a HIGH to LOW transition of the SDA while a STOP is generated by a LOW to HIGH transition. Both changes must be done while the SCL is HIGH. 10.2.1.2. Device addressing The master is addressing the slave device by sending a 7-bit slave address after the START condition. The first seven bits are th dedicated for the address and the 8 is Read/Write (R/W) bit. This bit indicates the direction of the transfer:  Read (HIGH) means that the master will read the data from the slave  Write (LOW) means that the master will send data to the slave 10.2.1.3. Acknowledge th During the 9 clock following every byte transfer the transmitter releases the SDA line. The receiver acknowledges (ACK) receiving the byte by pulling SDA line to low or does not acknowledge (NoACK) by letting the SDA ‘HIGH’. 10.2.1.4. I2C command format Slave address MSByte address LSByte address MSByte data LSByte data SDA 2 I C write S 0 1 1 0 0 1 1 W A A A A A P SCL 2 Figure 4 I C write command format (default SA=0x33 is used) Slave address Slave address 2 MSByte address SDA I C read S 0 1 1 0 0 1 1 W A LSByte address A MSByte data A S 0 1 1 0 0 1 1 W A LSByte data A NAK P SCL 2 Figure 5 I C read command format (default SA=0x33 is used) REVISION 3 – DECEMBER 9, 2019 3901090641 Page 11 of 55 MLX90641 16x12 IR array Datasheet 10.3. Measurement mode In this mode the measurements are constantly running. Depending on the selected frame rate Fps in the control register, the data for IR pixels and Ta will be updated in the RAM each seconds. In this mode the external microcontroller has full access to the internal registers and memories of the device. 10.4. Refresh rate The refresh rate is configured by “Control register 1” (0x800D) i.e. if “Refresh rate control” = 011  4Hz this would mean that each 250ms a new data (full frame) is available in the RAM. NOTE: It is possible to program the desired refresh rate into device EEPROM eliminating the necessity to reconfigure the device every time it is powered on. The corresponding EEPROM cell is at address 0x240C (see Table 7) Which subpage is updated is indicated by the “Last measured subpage” field. It is important both subpages to be read as the necessary information for the Ta calculations is only available by combining the data from both subpages i.e. the Ta is refreshed with refresh rate twice as low as the one set in “Refresh rate control”. When a new data (subpage) is available a dedicated bit is set to indicate this – bit 3 “New data available in RAM” in “Status register” (0x8000). It is up to the customer to reset the bit once the data is dumped. Set bit “New data available in RAM” Subpage 0 Subpage 0 Subpage 1 250ms 250ms Subpage 1 250ms 250ms Refresh rate control = 011b (4Hz) Figure 6 Refresh rate timing REVISION 3 – DECEMBER 9, 2019 3901090641 Page 12 of 55 MLX90641 16x12 IR array Datasheet 10.5. Measurement flow Following measurement flow is recommended: Measurement Flow 0.5 Hz  4 sec 1 Hz  2 sec 2 Hz  1 sec …. 64 Hz  0.03125 sec POR Wait 80ms + delay determined by the refresh rate Just once after POR Extract calibration data from EEPROM and store in RAM Yes Absolute temp measurement? No Wait app 4 min Sub frame “0” Read meas data Clear bit “New data available in RAM” - Bit3 in 0x8000 Calculate the temperature of the sub frame “0” Image processing decision making Yes Step mode ? No Set Start Of Measurement – Bit5 in 0x8000 Wait time determined by RR – 20% No Is “New data available in RAM” set Yes Read meas data Sub frame “1” Clear bit “New data available in RAM” - Bit3 in 0x8000 Calculate the temperature of the sub frame “1” Image processing decision making Yes Step mode ? No Set Start Of Measurement – Bit5 in 0x8000 Wait time determined by RR – 20% Yes Is “New data available in RAM” set No Figure 7 Recommended measurement flow REVISION 3 – DECEMBER 9, 2019 3901090641 Page 13 of 55 MLX90641 16x12 IR array Datasheet Subpage 0  0x8000 = 0xXXX8 RAM Subpage 1  0x8000 = 0xXXX9 RAM 0x0400 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 0x0400 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 0x0420 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 0x0420 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 0x0440 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 0x0440 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 0x0460 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 0x0460 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 0x0480 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 0x0480 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 0x04A0 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 0x04A0 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 0x04C0 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 0x04C0 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 0x04E0 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 0x04E0 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 0x0500 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 0x0500 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 0x0520 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 0x0520 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 0x0540 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 0x0540 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 0x0560 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 0x0560 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 0x0400 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0x0410 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0x0440 33 34 35 36 37 38 39 40 41 42 43 44 45 46 0x0450 49 50 51 52 53 54 55 56 57 58 59 60 61 0x0480 65 66 67 68 69 70 71 72 73 74 75 76 0x0490 81 82 83 84 85 86 87 88 89 90 91 0x04C0 97 98 99 100 101 102 103 104 105 106 0x04D0 113 114 115 116 117 118 119 120 121 0x0500 129 130 131 132 133 134 135 136 137 0x0510 145 146 147 148 149 150 151 152 0x0540 161 162 163 164 165 166 167 0x0550 177 178 179 180 181 182 183 RAM Only highlighted cells are updated at each refresh rate RAM 0x0420 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 0x0430 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 47 48 0x0460 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 62 63 64 0x0470 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 77 78 79 80 0x04A0 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 92 93 94 95 96 0x04B0 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 107 108 109 110 111 112 0x04E0 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 122 123 124 125 126 127 128 0x04D0 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 138 139 140 141 142 143 144 0x0520 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 153 154 155 156 157 158 159 160 0x0530 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 168 169 170 171 172 173 174 175 176 0x0560 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 184 185 186 187 188 189 190 191 192 0x0570 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 Control register 1 (0x800D) = 0981 Figure 8 TV mode reading pattern REVISION 3 – DECEMBER 9, 2019 3901090641 Page 14 of 55 MLX90641 16x12 IR array Datasheet 10.6. Address map 0x0000 ROM 0x03FF 0x0400 RAM 0x05BF 0x2400 EEPROM 0x273F 0x8000 Registers (MLX reserved) 0x800C 0x800D Registers 0x8011 0x8011 Registers (MLX reserved) 0x8016 Figure 9 MXL90641 memory map 10.6.1. Internal registers B12 B11 B10 B9 B8 B7 B6 B5 - - - - - - - - - - - B4 B3 B2 B1 B0 Last measured subpage controlled by MLX90641 B13 New data available in RAM B14 Melexis reserved B15 Enable overwrite There are few internal register that are customer accessible through which the device performance may be customized: Status register - 0x8000 0 0 0 Measurement of subpage 0 has been measured 0 0 1 Measurement of subpage 1 has been measured 0 1 0 Melxis reserved 0 1 1 Melxis reserved 1 0 0 Melxis reserved 1 0 1 Melxis reserved 1 1 0 Melxis reserved 1 1 1 Melxis reserved 0 No new data is available in RAM (must be reset by the customer) 1 A new data is available in RAM 0 Data in RAM overwrite is disabled 1 Data in RAM overwrite is enabled Melexis reserved Figure 10 Status register (0x8000) bits meaning REVISION 3 – DECEMBER 9, 2019 3901090641 Page 15 of 55 MLX90641 16x12 IR array B7 B6 B5 B4 B3 B2 B1 B0 Enable subpages mode B8 Melexis reserved B9 Enable data hold B10 Select subpage B11 Reading pattern B12 Refresh rate control B13 Resolution control B14 Melexis reserved B15 Enable subpages repeat Datasheet 0 - - - 0 Transfer the data into storage RAM at each measured frame (default) 1 Transfer the data into storage RAM only if en_overwrite = 1 (check 0x8000) 1 Select subpage determines which subpage to be measured if Enable subpages mode = "1" 0 0 Subpage 0 is selected (default) 0 0 1 Subpage 1 is selected 0 1 0 Not Applicable 0 1 1 Not Applicable 1 0 0 Not Applicable 1 0 1 Not Applicable 1 1 0 Not Applicable 1 1 1 Not Applicable IR refresh rate = 0.5Hz IR refresh rate = 1Hz 0 1 0 IR refresh rate = 2Hz (default) 0 1 1 IR refresh rate = 4Hz 1 0 0 IR refresh rate = 8Hz 1 0 1 IR refresh rate = 16Hz 1 1 0 IR refresh rate = 32Hz 1 1 1 IR refresh rate = 64Hz 0 0 ADC set to 16 bit resolution 0 1 ADC set to 17 bit resolution 1 0 ADC set to 18 bit resolution (default) 1 1 ADC set to 19 bit resolution Chess pattern Subpade mode is activated (default) Keep this bit = "0" (default) 0 0 1 1 No subpages, only one page will be measured 1 Toggles between subpage "0" and subpage "1" if Enable subpages mode = "1" (default) 0 0 Interleaved (TV) mode (default) 0 0 0 0 0 Control register 1 - 0x800D Melexis reserved Figure 11 Control register 1 (0x800D) bits meaning Enable subpage mode (Bit 0) Enable subpage repeat (Bit 3) Select subpage (Bit 4) Working mode 0 0 - measure subpage 0 only 0 1 - measure subpage 0 only 1 0 - 0101… 1 1 0 measure subpage 0 only 1 1 1 measure subpage 1 only Table 6 Priorities of subpage controls REVISION 3 – DECEMBER 9, 2019 3901090641 Page 16 of 55 MLX90641 16x12 IR array B3 B2 B1 B0 B7 B6 B5 B4 B3 B2 B1 B0 FM+ disable B4 I2C threshold levels B5 SDA driver current limit control B6 Melexis reserved B7 Melexis reserved Datasheet 0 - - - - - - - - - - - - I2C configuration register - 0x800F 0 FM+ mode enabled (default) 1 FM+ mode disabled 0 VDD reffered threshold (normal mode) (default) 1 1.8V reffered threshold (1.8V mode) 0 SDA driver current limit is ON (default) 1 SDA driver current limit is OFF Melexis reserved Melexis reserved 2 Figure 12 I C configuration register (0x800F) bits meaning 10.6.2. RAM Pixels 1…16 (subpage 0) Pixels 17…32 (subpage 0) 0x041F 0x0420 Pixels 1…16 (subpage 1) Pixels 17…32 (subpage 1) 0x043F 0x0440 Pixels 33…48 (subpage 0) Pixels 49…64 (subpage 0) 0x045F 0x0460 Pixels 33…48 (subpage 1) Pixels 49…64 (subpage 1) 0x047F 0x0480 … 0x0520 … … 0x049F … 0x053F 0x0540 Pixels 161…176 (subpage 0) Pixels 177…192 (subpage 0) 0x055F 0x0560 Pixels 161…176 (subpage 1) Pixels 177…192 (subpage 1) 0x057F 0x0580 0x0580=Ta_Vbe, 0x0588=CP(SP 0), 0x058A=GAIN Melexis reserved 0x059F 0x05A0 0x05A0=Ta_PTAT, 0x05A8=CP(SP1), 0x05AA=VDDpix Melexis reserved 0x05BF 0x0400 Figure 13 RAM memory map (Interleaved mode - default) REVISION 3 – DECEMBER 9, 2019 3901090641 Page 17 of 55 MLX90641 16x12 IR array Datasheet EEPROM The EEPROM is used to store the calibration constants and the configuration parameters of the device EEPROM address Access Meaning 0x2400 Melexis Melexis reserved 0x2401 Melexis Melexis reserved 0x2402 Melexis Melexis reserved 0x2403 Melexis Configuration register 0x2404 Melexis Melexis reserved 0x2405 Melexis Melexis reserved 0x2406 Melexis Melexis reserved 0x2407 Melexis Device ID1 0x2408 Melexis Device ID2 0x2409 Melexis Device ID3 0x240A Melexis Device Options 0x240B Melexis Melexis reserved 0x240C Customer Control register_1 0x240D Customer Control register_2 0x240E Customer I2CConfReg 0x240F Customer Melexis reserved / I2C_Address Table 7 Configuration parameters memory After POR the device read dedicated EEPROM cells and transfers their content to into the control and configuration register of the device. This way the device is configured and prepared for operation. The relation between EEPROM and register address is shown here after (explanation of the bit meaning can be found in section 10.6.1 Internal registers): EEPROM address Register address Access Name Data [hex] 0x240C 0x800D Customer Control_register_1 0901 0x240D 0x800E Customer Control_register_2 0000 0x240E 0x800F Customer I2CConfReg 0000 0x240F 0x8010 Customer Melexis internal use (8 bit) I2C_Address (8bit) BE33 Figure 14 EEPROM to registers mapping REVISION 3 – DECEMBER 9, 2019 3901090641 Page 18 of 55 MLX90641 16x12 IR array Datasheet Address 0x2400 0x2410 0x2420 0x2430 0x2440 0x2450 0x2460 0x2470 0x2480 0x2490 0x24A0 0x24B0 0x24C0 0x24D0 0x24E0 0x24F0 0x2500 0x2510 0x2520 0x2530 0x2540 0x2550 0x2560 0x2570 0x2580 0x2590 0x25A0 0x25B0 0x25C0 0x25D0 0x25E0 0x25F0 0x2600 0x2610 0x2620 0x2630 0x2640 0x2650 0x2660 0x2670 0x2680 0x2690 0x26A0 0x26B0 0x26C0 0x26D0 0x26E0 0x26F0 0x2700 0x2710 0x2720 0x2730 0 1 Osc Trim Ana Trim 1 Scale occ 2 3 4 5 6 7 8 9 A B MLX Conf reg Ana Trim 2 MLX MLX ID 1 ID 2 ID 3 MLX MLX Kta_avg Kta scales Kv_avg Kv scales Vdd_25 K_vdd KsTo_2 KsTo_3 Pix os R1 MLX row5_max row6_max KsTa Emissivity OS 2 CP Kv CP TGC Kt CP Gain KsTo scale KsTo_1 Scale_row 1…6 PTAT_25 KsTo_4 KsTo_5 Kt_PTAT CT6 C D Cont reg 1 Cont reg 2 E F I2C conf I2C add row1_max row2_max row3_max row4_max Kv_PTAT Alpha PTAT Alpha CP KsTo_6 CT7 KsTo_7 CP scale OS 1 CP CT8 KsTo_8 192 x Pixel offset - subpage 1 192 x Pixel sensitivity - α 192 x Kta, Kv (i, j) 192 x Pixel offset - subpage 2 Table 8 EEPROM overview (words) REVISION 3 – DECEMBER 9, 2019 3901090641 Page 19 of 55 MLX90641 16x12 IR array Datasheet Address \ bit 0x2410 0x2411 0x2412 0x2413 0x2414 0x2415 0x2416 0x2417 0x2418 0x2419 0x241A 0x241B 0x241C 0x241D 0x241E 0x241F 0x2420 0x2421 0x2422 0x2423 0x2424 0x2425 0x2426 0x2427 0x2428 0x2429 0x242A 0x242B 0x242C 0x242D 0x242E 0x242F 0x2430 0x2431 0x2432 0x2433 0x2434 0x2435 0x2436 0x2437 0x2438 0x2439 0x243A 0x243B 0x243C 0x243D 0x243E 0x243F 0x2440 0x2441 … 0x244E 0x244F 0x2450 0x2451 … 0x24FE 0x24FF 0x2500 0x2501 … 0x250E 0x250F 0x2510 0x2511 … 0x25BE 0x25BF 0x25C0 0x25C1 … 0x25CE 0x25CF 0x25D0 0x25D1 … 0x267E 0x267F 0x2680 0x2681 … 0x268E 0x268F 0x2690 0x2691 … 0x273E 0x273F 15 14 13 12 Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code Hamming code … Hamming code Hamming code Hamming code Hamming code … Hamming code Hamming code Hamming code Hamming code … Hamming code Hamming code Hamming code Hamming code … Hamming code Hamming code Hamming code Hamming code … Hamming code Hamming code Hamming code Hamming code … Hamming code Hamming code Hamming code Hamming code … Hamming code Hamming code Hamming code Hamming code … Hamming code Hamming code 11 10 9 8 7 6 5 4 3 2 Scale_OCC_offset_range_1 1 0 MLX Pix_offset_part_1 Pix_offset_part_2 MLX Kta_avg Kta_scale_1 Kta_scale_2 Kv_avg Kta_scale_1 Kta_scale_2 Scale_row_1 Scale_row_2 Scale_row_3 Scale_row_4 Scale_row_5 Scale_row_6 Row_1_max Row_2_max Row_3_max Row_4_max Row_5_max Row_6_max KsTa (fixed scale 15) Emissivity ± 2 GAIN - part 1 GAIN - part 2 Vdd_25 (fixed scale 5) K_Vdd (fixed scale 5) PTAT - part 1 PTAT - part 2 Kt_PTAT (fixed scale 3) Kv_PTAT (fixed scale 12) Alpha_PTAT (fixed scale 11) Alpha CP Alpha CP scale Offset CP - part 1 Offset CP - part 2 Kt CP scale Kv CP scale Cal resolution TGC coefficient ± 4 KsTo scale ± KsTo range 1 (-40°C … -20°C) ± KsTo range 2 (-20°C … 0°C) ± KsTo range 3 (0°C … 80°C) ± KsTo range 4 (80°C … 120°C) ± KsTo range 5 (120°C … see 0x243A) Corner temp range 6 ± KsTo range 6 (see 0x243A … see 0x243C) Corner temp range 7 ± KsTo range 7 (see 0x243C … see 0x243E) Corner temp range 8 ± KsTo range 8 (see 0x243E … ) Offset pixel (1, 1) - subpage 0 Offset pixel (1, 2) - subpage 0 … Offset pixel (1, 15) - subpage 0 Offset pixel (1, 16) - subpage 0 Offset pixel (2, 1) - subpage 0 Offset pixel (2, 2) - subpage 0 … Offset pixel (12, 15) - subpage 0 Offset pixel (12, 16) - subpage 0 Sensitivity (1, 1) Sensitivity (1, 2) … Sensitivity (1, 15) Sensitivity (1, 16) Sensitivity (2, 1) Sensitivity (2, 2) … Sensitivity (12, 15) Sensitivity (12, 16) Kta (1, 1) Kta (1, 2) … Kta (1, 15) Kta (1, 16) Kta (2, 1) Kta (2, 1) … Kta (12, 15) Kta (12, 16) Offset pixel (1, 1) - subpage 1 Offset pixel (1, 2) - subpage 1 … Offset pixel (1, 15) - subpage 1 Offset pixel (1, 16) - subpage 1 Offset pixel (2, 1) - subpage 1 Offset pixel (2, 2) - subpage 1 … Offset pixel (12, 15) - subpage 1 Offset pixel (12, 16) - subpage 1 Kt CP Kv CP Kv (1, 1) Kv (1, 2) … Kv (1, 15) Kv (1, 16) Kv (2, 1) Kv (2, 1) … Kv (12, 15) Kv (12, 16) Table 9 Calibration parameters memory (EEPROM - bits) NOTE 1: In case the pixel calibration data stored in EEPROM (Alpha, offset, Kta and Kv) is equal to 0x0000 this means that this particular pixels has failed and the calculation for To should not be trusted and avoided. Depending on the application, the To value for such pixels can be replaced with a default value such as 273.15°C, can be equal to Ta or one calculate an average value from the adjacent pixels. NOTE 2: The maximum number of deviating pixels is 1 (please check False pixel correction) REVISION 3 – DECEMBER 9, 2019 3901090641 Page 20 of 55 MLX90641 16x12 IR array Datasheet 11. Calculating Object Temperature 11.1. Restoring calibration data from EERPOM and calculations NOTE: 1. All data in the EEPROM are coded as two’s complement (unless otherwise noted) 2. All EEPROM cells are codded using Hamming code for proper data restoring stored in the 5 most significant bits 3. The calculation bellow are considering only the “valid” data in any particular cell ignoring the Hamming code bits i.e. as the five significant bits of each word “0” for instance if the EEPROM content is “0x9A44” we will work with “0x0244” In the example we are restoring calibration data for pixel (6, 9) The polynom for the Hamming code is as follows: P0 = D0 + D1 + D3 + D4 + D6 + D8 + D10 P1 = D0 + D2 + D3 + D5 + D6 + D9 + D10 P2 = D1 + D2 + D3 + D7 + D8 + D9 + D10 P3 = D4 + D5 + D6 + D7 + D8 + D9 + D10 P4 = D0 + D1 + D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9 + D10 + P0 + P1 + P2 + P3 Where P4 is the MSBit in the word while D0…D10 are the data bits. B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 P4 P3 P2 P1 P0 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Figure 15 EEPROM Hamming and data bit meaning 11.1.1. Restoring the VDD sensor parameters and VDD calculations Following formula is used to calculate the VDD of the sensor: [ [ If ] ]  [ ] [ ] Where: [ ]  If [ ]  If Where is restored in 11.1.18 REVISION 3 – DECEMBER 9, 2019 3901090641 Page 21 of 55 MLX90641 16x12 IR array Datasheet 11.1.2. Restoring the Ta sensor parameters Following formula is used to calculate the Ta of the sensor: ( ) , °C Where: [ ]  If [ ]  If [ ] [ If ] [ ( [  ] ( ] [ ) [ ] ] (unsigned) ) Where: [ ]  If [ ]  If [ ] 11.1.3. Restoring the offset There are two sets of offset data for each subpage. ( ) ( ) ( ) ( ) REVISION 3 – DECEMBER 9, 2019 3901090641 Page 22 of 55 MLX90641 16x12 IR array Datasheet [ ( ] [ ) ]  If ( ( If ) ( ] (  ( If [ ) [ ) ) ] ( ) ) ( ) ] (  [ ) (unsigned) 11.1.4. Restoring the Sensitivity 𝜶( ) Sensitivity is divided into 6 ranges (1…32, 33…64 and so on) and for each range we store a reference value as follows: Sensitivity Max value for row 1 (pixels 1…32) is stored at EEPROM address 0x241C Sensitivity Max value for row 2 (pixels 33…64) is stored at EEPROM address 0x241D Sensitivity Max value for row 3 (pixels 65…96) is stored at EEPROM address 0x241E Sensitivity Max value for row 4 (pixels 97…128) is stored at EEPROM address 0x241F Sensitivity Max value for row 5 (pixels 129…160) is stored at EEPROM address 0x2420 Sensitivity Max value for row 6 (pixels 161…192) is stored at EEPROM address 0x2421 ( ( ) ) Where: ( [ ) ] [ [ ] ] [ [ ] ] [ [ ] ] REVISION 3 – DECEMBER 9, 2019 3901090641 Page 23 of 55 MLX90641 16x12 IR array Datasheet [ ] [ ] [ ] [ ] [ ] [ ] 11.1.5. Restoring the Kta(i,j) coefficient ( ( ) ) Where: [ ( ] (depending on pixel number) ) If (  ) [ ( ) ( ) ] If  [ ] [ (unsigned) ] (unsigned) 11.1.6. Restoring the Kv(i,j) coefficient ( ( ) ) Where: ( [ ) If ] ( (depending on pixel number)  ) [ ( ) ( ) ] If  [ ] [ (unsigned) ] (unsigned) REVISION 3 – DECEMBER 9, 2019 3901090641 Page 24 of 55 MLX90641 16x12 IR array Datasheet 11.1.7. Restoring the GAIN coefficient (common for all pixel) ( [ ] ) [ ] (unsigned) 11.1.8. Restoring the KsTa coefficient (common for all pixel) [ ] If  11.1.9. Restoring corner temperatures (common for all pixel) The information regarding corner temperatures is stored into device EEPROM and is restored as follows: [ ] (unsigned) [ ] (unsigned) [ ] (unsigned) Or we can construct the temperatures for the ranges as follows: CT1 = -40°C (hard codded) < Range 1 > CT2 = -20°C (hard codded) < Range 2 > CT3 = 0°C (hard codded) < Range 3 > CT4 = 80°C (hard codded) < Range 4 > CT5 = 120°C (hard codded) < Range 5 > CT6 < Range 6 > CT7 < Range 7 > CT8 < Range 8 11.1.10. Restoring the KsTo coefficient (common for all pixel) [ ] If  [ ] If  [ ] If  [ ] If  [ If ]  REVISION 3 – DECEMBER 9, 2019 3901090641 Page 25 of 55 MLX90641 16x12 IR array Datasheet [ ] If  [ ] If  [ ] If  Where: [ ] (unsigned) 11.1.11. Restoring sensitivity correction coefficients for each temperature range ( ( ( ))) ( ( ( ))) ( ( )) ( ( )) ( ( )) ( ( )) ( ( )) 11.1.12. Restoring Emissivity An emissivity parameter is stored into EEPROM and can have values from -2…1.999 [ If ]  Default value stored in EEPROM is REVISION 3 – DECEMBER 9, 2019 3901090641 Page 26 of 55 MLX90641 16x12 IR array Datasheet 11.1.13. Restoring the Sensitivity 𝜶 [ ] Where: [ ] 11.1.14. Restoring the offset of the CP [ ( ] ) [ ] (signed)  If 11.1.15. Restoring the Kv CP coefficient [ ] (unsigned) Where: [ ] (signed)  If 11.1.16. Restoring the Kta CP coefficient [ ] Where: (unsigned) [ ] (signed)  If 11.1.17. Restoring the TGC coefficient Where: [ ] If (signed)  REVISION 3 – DECEMBER 9, 2019 3901090641 Page 27 of 55 MLX90641 16x12 IR array Datasheet 11.1.18. Restoring calibration resolution control settings For some calculation calibration resolution is needed that is why we store this parameter into EEPROM as well. [ ] (unsigned) 11.2. Temperature calculation 11.2.1. Example input data 11.2.1.1. Example measurement data Input data name Input data value Object temperature 80°C Emissivity (ε) 0.95 Control register 1 (Resctrl) 0x0901 (2 decimal) RAM[0x0498] (pix(6, 9) data) 0x03CC (972) Vbe - RAM[0x0580] 0x4C54 (19540) CP - RAM[0x0588] 0xFF97 (-105) GAIN - RAM[0x058A] 0x2606 (9734) PTAT - RAM[0x05A0] 0x06D8 (1752) VDD - RAM[0x05AA] 0xCB8A (-13430) Table 10 Calculation example input data 11.2.1.2. Calibration data EEPROM address Calibration parameter name Parameter value + Ham [ hex ] Decoded value 0x2410 Scale_os_r1 - 6bits Scale_os_r2 - 5bits 0x0000 Scale_os_r1 = 0 Scale_os_r2 = 0 0x2411 Pix_os_r1_part_1 - 11 bits 0xB7E8 -746 0x2412 Pix_os_r1_part_2 - 11 bits 0xD016 NA 0x2413 MLX 0x2414 MLX 0x2415 Kta_avg - 11 bits 0xC2FD 0.00291824 0x2416 Kta_scale_1 - 6 bits Kta_scale_2 - 5 bits 0x1A43 Kta_scale_1 = 18 Kta_scale_2 = 3 REVISION 3 – DECEMBER 9, 2019 3901090641 Page 28 of 55 MLX90641 16x12 IR array Datasheet 0x2417 Kv_avg - 11bits 0xCA9A 0.325195313 0x2418 Kv_scale_1 - 6 bits Kv_scale_2 - 5 bits 0x5164 Kv_scale_1 = 11 Kv_scale_2 = 4 0x2419 Scale_row_1 - 6 bits Scale_row_2 - 5 bits 0x018C Scale_row_1 = 32 Scale_row_2 = 32 0x241A Scale_row_3 - 6 bits Scale_row_4 - 5 bits 0x018C Scale_row_3 = 32 Scale_row_4 = 32 0x241B Scale_row_5 - 6 bits Scale_row_6 - 5 bits 0x018C Scale_row_5 = 32 Scale_row_6 = 32 0x241C row1_max - 11 bits 0x9CB1 2.7962960E-07 0x241D row2_max - 11 bits 0x956C 3.2316893E-07 0x241E row3_max - 11 bits 0xA5CC 3.4552068E-07 0x241F row4_max - 11 bits 0x7DD1 3.4668483E-07 0x2420 row5_max - 11 bits 0x6D7F 3.2759272E-07 0x2421 row6_max - 11 bits 0x3CD4 2.8777868E-07 0x2422 KsTa, fixed scale 15 0x27B8 -0.002197266 0x2423 Emissivity - ±2, 10 bits 0x19E6 0.94921875 0x2424 GainMeasRef_word1 0xF137 9972 0x2425 GainMeasRef_word2 0x7814 NA 0x2426 Vdd_25 0x2658 -13568 0x2427 K_Vdd 0xEF9E -3136 0x2428 PTAT_25_W1 0x917F 12280 0x2429 PTAT_25_W2 0xF018 NA 0x242A Kt_Ptat 0xE156 42.75 0x242B Kv_Ptat 0x4817 0.005615234 0x242C Alpha PTAT 0x1C80 9 0x242D Alpha cyclops 0x233E 3.0195224E-09 0x242E Alpha cyclop scale 0xC826 38 0x242F Offset CP W1 0xCFFC -119 0x2430 Offset CP W2 0xA009 NA 0x2431 Kta CP scale - 5 bits Kta CP - 6 bits 0xBB53 Kta CP scale = 13 Kta CP = -0.02319336 0x2432 Kv CP scale - 5 bits Kv CP - 6 bits 0xF194 Kv CP scale = 6 Kv CP = 0.3125 REVISION 3 – DECEMBER 9, 2019 3901090641 Page 29 of 55 MLX90641 16x12 IR array Datasheet 0x2433 Resolution control cal - 2 bits TGC - ±4, 9 bits 0xFC00 Resolution control cal = 2 TGC = 0 0x2434 KsTo scale - 11bits 0x7814 KsTo scale = 20 0x2435 KsTo_1 - 10 bits 0xED22 KsTo_1 = -0.0007 0x2436 KsTo_2 - 10 bits 0xED22 KsTo_2 = -0.0007 0x2437 KsTo_3 - 10 bits 0xED22 KsTo_3 = -0.0007 0x2438 KsTo_4 - 10 bits 0xED22 KsTo_4 = -0.0007 0x2439 KsTo_5 - 10 bits 0xED22 KsTo_5 = -0.0007 0x243A CT6 0x80C8 CT6 = 200 0x243B KsTo_6 - 10 bits 0xED22 KsTo_6 = -0.0007 0x243C CT7 0x4190 CT6 = 400 0x243D KsTo_7 - 10 bits 0xED22 KsTo_7 = -0.0007 0x243E CT8 0xDA58 CT6 = 600 0x243F KsTo_8 - 10 bits 0xED22 KsTo_8 = -0.0007 Table 11 Calculation example calibration data REVISION 3 – DECEMBER 9, 2019 3901090641 Page 30 of 55 MLX90641 16x12 IR array Datasheet 11.2.2. Temperature calculation After the parameters restore the temperature calculation is done using following calculation flow (assuming that the EEPROM data are already extracted): Supply voltage value calculation (common for all pixel) - 11.2.2.2 Ambient temperature calculation - 11.2.2.3 Gain compensation - 11.2.2.5.1 IR data compensation – offset, VDD and Ta - 11.2.2.5.3 IR data Emissivity compensation - 11.2.2.5.4 IR data gradient compensation - 11.2.2.7 Normalizing to sensitivity - 11.2.2.8 Calculating To for basic temperature range (0°C…80 °C) - 11.2.2.9 Image (data) processing Figure 16 To calculation flow For this example we calculate the temperature of pixel (12, 16) i.e. row=12 and the column=16. Values marked with green are extracted from device EEPROM Values marked with grey are final parameter values or are values to be used for next calculations 11.2.2.1. Resolution restore The device is calibrated with default resolution setting = 2 (corresponding to ADC resolution set to 18bit see Fig 11) i.e. if the one choose to change the ADC resolution setting to a different one a correction of the data must be done. First we must restore the resolution at which the device has been calibra ted which is stored at EERPOM 0x2433. Where: [ ] [ (unsigned) ] (unsigned) REVISION 3 – DECEMBER 9, 2019 3901090641 Page 31 of 55 MLX90641 16x12 IR array Datasheet In case the ADC resolution is changed the one must multiply the coefficient with the RAM data for VDD only. Please note that the data for Vbe, PTAT and IR pixels (including CP) must not be changed. 11.2.2.2. Supply voltage value calculation (common for all pixel) [ ] [ ]  If [ ] LSB Where: [ ]  If [ ]  If ( ) 11.2.2.3. Ambient temperature calculation (common for all pixel) ( ) , °C Where: [  If [ If ] ]  REVISION 3 – DECEMBER 9, 2019 3901090641 Page 32 of 55 MLX90641 16x12 IR array Datasheet [ ] [ ] [  If ( LSB ) [ ( ] ] [ ) ( ] (unsigned) ) ( ) Where: [ ] = 0x06D8 = 1752  If [ ]  If [ ] ( ) ( ) ( ( ) ) °C 11.2.2.4. Gain parameter calculation (common for all pixels) [ ] [ ]  If ( [ ( [ ] ] ) LSB [ ] (unsigned) ) REVISION 3 – DECEMBER 9, 2019 3901090641 Page 33 of 55 MLX90641 16x12 IR array Datasheet 11.2.2.5. Pixel data calculations The pixel addressing is following the pattern described in Reading pattern as shown in Fig 5: 11.2.2.5.1. Gain compensation ( [ ) [ ] ] ] [  If ( [ ] ) 11.2.2.5.2. Offset calculation ( ) ( ) [ ( ] ( ] )  If ( [ ) ] (  If [ ( [ ) ] ) ) (unsigned) LSB 11.2.2.5.3. IR data compensation – offset, VDD and Ta ( ) ( ) ( ( ) ( )) ( ( ) ( )) The same calculation must be done for the second subpage as well ( ) ( ( ) If ( ) [ ) ] (  LSB ( ) and are the same for both subpages) REVISION 3 – DECEMBER 9, 2019 3901090641 Page 34 of 55 MLX90641 16x12 IR array Datasheet ( ) ( ) ( ( ) ( )) ( ( ) ( )) NOTE: In the example bellow calculation are done for subpage 0 only ( ( ) ) Where: [ ( ) ( ) ] (depending on pixel number)  If ( [ ]  If [ ( ( ( ) ( ) ) ] (unsigned) [ ] [ ] (unsigned) ) ) Where: ( ) ( ) (depending on pixel number)  If ( [ ) ]  If [ ] (unsigned) REVISION 3 – DECEMBER 9, 2019 3901090641 Page 35 of 55 MLX90641 16x12 IR array Datasheet [ ( ( ) ] (unsigned) ) ( ) ( ) ( ) ( ) ( ( )) ( ( )) ( ) ( ) ( ( )) ( ( )) ( ) ( ( ( ) )) ( ( ) ( )) 11.2.2.5.4. IR data Emissivity compensation [ ]  If 11.2.2.6. CP data calculations 11.2.2.6.1. Compensating the GAIN of CP pixel ( [ ) [ ] ] [  If ] 11.2.2.6.2. Compensating offset, Ta and VDD of CP pixel ( ( ( [ ] ( ) [ )) ( ( )) ] )  If [ ] (unsigned) Where: REVISION 3 – DECEMBER 9, 2019 3901090641 Page 36 of 55 MLX90641 16x12 IR array Datasheet [ ] (signed) (signed)  If [ ] (unsigned) Where: [ ] (signed)  If ( ( ) ( )) ( ( )) 11.2.2.7. IR data gradient compensation Where: [ ]  If ( (signed) ( ) ) 11.2.2.8. Normalizing to sensitivity ( ( ) ) The row for the pixel is calculated as follows: ( ( (( ) [ [ ( ( ) ) ) ( (( ( ) ) ) ) ( ) ] ] [ ( ) [ ] ] ) ) REVISION 3 – DECEMBER 9, 2019 3901090641 Page 37 of 55 MLX90641 16x12 IR array Datasheet [ ] [ [ [ ] ]  If ( ( ) ( ( ( ) ( ) )) ( ) ( ] ) ( ( ) ( )) ) 11.2.2.9. Calculating To for basic temperature range (0°C…80 °C) [ ]  If Where: [ ] (unsigned) As the IR signal received by the sensor has two components: 1. IR signal emitted by the object 2. IR signal reflected from the object (the source of this signal is surrounding environment of the sensor) In order to compensate correctly for the emissivity and achieve best accuracy we need to know the surrounding temperature which is responsible for the second component of the IR signal namely the reflected part - . In case this temperature is not available and cannot be provided it might be replaced by . Let’s assume °C. ( ) ( ) ( ) ( ( ) ( √ ( ) ) ) ( ) ( ) √ REVISION 3 – DECEMBER 9, 2019 3901090641 Page 38 of 55 MLX90641 16x12 IR array Datasheet ( ) ( ) ( ) ( ) √ ( ) √ ( √ ( ) ) ( √ ) ( ( ) ( )) 11.2.2.9.1. Calculations for extended temperature ranges In order to extent the object temperature range and get the best possible accuracy an additional calculation cycle is needed. We can identify 8 object temperature ranges (each temperature range has its own so called Corner Temperature – CT which is the temperature at which the range starts): - - Object temperature range 1 = Object temperature range 2 = Object temperature range 3 = Object temperature range 4 = Object temperature range 5 = Object temperature range 6 = Object temperature range 7 = Object temperature range 8 = -40°C … -20°C (Corner temperature for this range is -40°C and cannot be changed) -20°C … 0°C (Corner temperature for this range is -20°C and cannot be changed) 0°C … 80°C (Corner temperature for this range is 0°C and cannot be changed) 80°C … 120°C (Corner temperature for this range is 80°C and cannot be changed) 120°C … CT6°C(Corner temperature for this range is 120°C and cannot be changed) CT6°C … CT7°C CT7°C … CT8°C CT8°C … In order to be able to carry out temperature calculation for the ranges outside of temperature range 3 (To = 0°C…80°C) an additional parameters are needed and must be extracted from the device EEPROM. Those parameters are: - So called corner temperature (CTx) i.e. the value of temperature at the beginning of the range. Please note that the corner temperatures for range 1 is fixed to -40°C, corner temperatures for range 2 is fixed to -20°C, corner temperatures for range 3 is fixed to 0°C, corner temperatures for range 4 is fixed to 80°C , corner temperatures for range 5 is fixed to 120°C while CT6, CT7 and CT8 are adjustable Sensitivity slope for each range – KsTo x - ( ) calculated in 11.2.2.9 11.2.2.9.1.1. Restoring corner temperatures The information regarding corner temperatures is stored into device EEPROM and is restored as follows: [ ] [ ] [ ] Or we can construct the temperatures for the ranges as follows: REVISION 3 – DECEMBER 9, 2019 3901090641 Page 39 of 55 MLX90641 16x12 IR array Datasheet CT1 = -40°C (hard codded) < Range 1 > CT2 = -20°C (hard codded) < Range 2 > CT3 = 0°C (hard codded) < Range 3 > CT4 = 80°C (hard codded) < Range 4 > CT5 = 120°C (hard codded) < Range 5 > CT6 < Range 6 > CT7 < Range 7 > CT8 < Range 8 11.2.2.9.1.2. Restoring the sensitivity slope for each range has been extracted in 11.1.10 [ ]  If [ ]  If [ ]  If [ ]  If [ ]  If [ ]  If [ If ]  Now we can calculate sensitivity correction coefficients for each temperature range: REVISION 3 – DECEMBER 9, 2019 3901090641 Page 40 of 55 MLX90641 16x12 IR array Datasheet ( ( ( ( ))) ( ( ( ))) ( ( ( ( )) ( ( )) ( ( ( )) )) ( ( ( ( )) )) ( ( )) )) ( ( ( ))) )) ( ( ( ( ( ( ( ))) )) 11.2.2.9.1.3. Extended To range calculation The input parameter for this calculation is the object temperature calculated in Calculating To for basic temperature range (0°C…80 °C) . If ( ) < -20°C we are in range 1 and we will use the parameters ( If -20°C < If 0°C < If 80°C < and < -40°C we are in range 2 and we will use the parameters ( ( ) ( ) , < 80°C we are in range 3 and we will use the parameters ( ( ) , and , < 120°C we are in range 4 and we will use the parameters ( ) ) and , ) and ) If 120°C < ( ) < CT6°C we are in range 5 and we will use the parameters ( , and ) If CT6°C < ( ) < CT7°C we are in range 6 and we will use the parameters ( , and ) If CT7°C < ( ) < CT8°C we are in range 7 and we will use the parameters ( , and ) If CT8°C < ( ) ( ) we are in range 8 and we will use the parameters ( √ ( ( ) , and ) ) ( ( ( ) )) REVISION 3 – DECEMBER 9, 2019 3901090641 Page 41 of 55 MLX90641 16x12 IR array Datasheet 12. Performance graphs 12.1. Accuracy 12.1.1. Pixel accuracy All accuracy specifications apply under settled isothermal conditions only. Furthermore, the accuracy is only valid if the object fills the FOV of the sensor completely. Parameter definitions: Frame accuracy is defined as average value of the all (768) pixels in the frame or for frame ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ( ) ∑ ( can be expressed as: ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ( ) Non-uniformity is defined as the maximum deviation of each individual pixel reading vs. the absolute accuracy. (| ( ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ( )|) Pixel absolute accuracy is defined as: ( ) To, °C 300°C Frame accuracy ±1°C ±3.0%*|To-Ta| Non-uniformity zone1 ±1°C ±1.5%*|To-Ta| Non-uniformity zone2 ±2°C ±1.5%*|To-Ta| Non-uniformity zone3 ±4°C ±1.5%*|To-Ta| 200°C Frame accuracy ±2.5°C ±3.0%*|To-Ta| Non-uniformity zone1 ±1°C ±1.5%*|To-Ta| Non-uniformity zone2 ±2°C ±1.5%*|To-Ta| Non-uniformity zone3 ±4°C ±1.5%*|To-Ta| Frame accuracy ±4°C ±3.0%*|To-Ta| Non-uniformity ±1°C ±1.5%*|To-Ta| 100°C Frame accuracy ±1°C Non-uniformity zone1 ±0.5°C Non-uniformity zone2 ±1°C Non-uniformity zone3 ±2°C±2%*|To-Ta| 0°C -20°C ±5.5°C ±5% * |To-Ta| -40°C ±3°C ±5% * |To-Ta| 0°C ±4°C ±5% * |To-Ta| 50°C 125°C Figure 17 Temperature absolute accuracy - MLX90641BCA REVISION 3 – DECEMBER 9, 2019 3901090641 Page 42 of 55 MLX90641 16x12 IR array Datasheet To, °C 300°C 200°C Frame accuracy ±4°C ±3.0%*|To-Ta| Non-uniformity ±1°C ±1.5%*|To-Ta| Frame accuracy ±2.5°C ±3.0%*|To-Ta| Non-uniformity zone1 ±1.5°C ±1.5%*|To-Ta| Non-uniformity zone2 ±2.5°C ±1.5%*|To-Ta| Frame accuracy ±1°C ±3.0%*|To-Ta| Non-uniformity zone1 ±1°C ±2%*|To-Ta| Non-uniformity zone2 ±2°C ±2%*|To-Ta| 100°C 0°C ±5.5°C ±3°C ±5% * |To-Ta| -20°C -40°C ±4°C ±5% * |To-Ta| 50°C 0°C 125°C Figure 18 Temperature absolute accuracy - MLX90641BCB Zone 3 Zone 3 Zone 1 Zone 3 Zone 2 Zone 1 Zone 3 Zone 2 Figure 19 Different accuracy zones depending on device type (BCA on the left and BCB on the right) Example: If we assume that the sensor (BCA type, zone 1) is measuring a target at 80°C that would mean that there should be no pixel with error bigger than: ( ) NOTES: 1) For best performance it is recommended to keep the supply voltage as accurate and stable as possible to 3.3V ± 0.05V 2) As a result of long term (years) drift there can be an additional measurement deviation of ± 3°C for object temperatures around room temperature. 12.1.2. Ta accuracy Absolute accuracy for the Ta channel (die temperature): NOTE: Actual sensor surrounding temperature would be approximately 5°C lower REVISION 3 – DECEMBER 9, 2019 3901090641 Page 43 of 55 MLX90641 16x12 IR array Datasheet 12.2. Startup time 12.2.1. First valid data After POR the first valid data is available after (depending on the selected refresh rate) , ms which is calculated as: (Example refresh rate is 2Hz – the default value) It is always subpage 0 to be measured first after POR then subpage 1 and so on alternating. NOTE1: In case one changes the refresh rate on the fly (by writing new values into device register (0x800D)) the settings will take place only after the subpage under measurement is finished. NOTE2: Although the first subpage is ready after 500ms it is necessary to have data from both subpages in order to be able to calculate the Ta meaning that the valid data are only possible after twice the refresh rate after POR . Default Set 8Hz 40ms 2Hz Valid data Subpage 0 Active 2Hz refresh rate Subpage 1 Subpage 0 8Hz refresh rate start 12.2.2. Thermal behavior Although electrically the device is set and running there is thermal stabilization time nec essary before the device can reach the specified accuracy – up to 3 min. REVISION 3 – DECEMBER 9, 2019 3901090641 Page 44 of 55 MLX90641 16x12 IR array Datasheet 12.3. Noise performance and resolution There are two bits in the configuration register that allow changing the resolution of the MLX90641 measurements. Increasing the resolution decreases the quantization noise and improves the overall noise performance. Measurement conditions for the noise are: To=Ta=25°C NOTE: Due to the nature of the thermal infrared radiation, it is normal that the noise will decrease for high temperature and increase for lower temperatures Figure 20 MLX90641BCx noise vs refresh rate for different device types Not all pixels have the same noise performance. Because of the optical performance of the integrated lens, it is normal that the pixels in the corner of the frame are noisier in comparison with the pixels in the middle. The graphs bellow show the distribution of the noise density versus the pixel position in the frame (pixel number) Figure 21 MLX90641BCA noise vs pixel and refresh rate at 1Hz and 2Hz Figure 22 MLX90641BCA noise vs pixel and refresh rate at 4Hz, 8Hz and 16Hz REVISION 3 – DECEMBER 9, 2019 3901090641 Page 45 of 55 MLX90641 16x12 IR array Datasheet Figure 23 MLX90641BCB noise vs pixel and refresh rate at 1Hz and 2Hz Figure 24 MLX90641BCB noise vs pixel and refresh rate at 4Hz, 8Hz and 16Hz NETD (K) 1Hz RMS noise (temperature equivalent), all pixels MLX90641 Average Min Standard deviation BCA 0.07 0.04 0.03 BCB 0.15 0.07 0.05 Table 12 Noise performance REVISION 3 – DECEMBER 9, 2019 3901090641 Page 46 of 55 MLX90641 16x12 IR array Datasheet 12.4. Field of view (FOV) Point heat source Sensitivity 100% 50% Field Of View Angle of incidence Rotated sensor Figure 25 Field Of View measurement The specified FOV is calculated for the wider direction, in this case for the 16 pixels. FOV MLX90641-ESF-BCA MLX90641-ESF-BCB X direction Y direction Typ 110° 55° Typ 75° 35° Central pointing from normal (X & Y direction) Max 5° 3° Table 13 Available FOV options REVISION 3 – DECEMBER 9, 2019 3901090641 Page 47 of 55 MLX90641 16x12 IR array Datasheet 13. Application information 13.1. Optical considerations As this is an optical device a care must be taking such that the device performs according to the specification. One such parameter is FOV obstruction. It is paramount that the FOV in the optical path is kept clear. The external aperture is designed such to shape the FOV of the device and is installed prior calibration process thus cam be considered as part of the device which does not impact the performance but may be used as a reference for the so called “Optical free zone” – see Figure 27 hereafter. Figure 26 Application examples concerning the optical consideration 13.2. Electrical considerations Figure 27 MLX90641Bxx electrical connections As the MLX90641Bxx is fully I2C compatible it allows to have a system in which the MCU may be supplied with VDD=2.6V…5V while the sensor it’s self is supplied from separate supply VDD1=3.3V (or even left with no supply i.e. VDD=0V), with the I2C connection running at supply voltage of the MCU. REVISION 3 – DECEMBER 9, 2019 3901090641 Page 48 of 55 MLX90641 16x12 IR array Datasheet 13.3. Using the device in “image mode” In some applications may not be necessary to calculate the temperature but rather to have just and image (for instance in machine vision systems). In this case it is not necessary to carry out all calculations which would save computation time or allow the one to use weaker CPU. In order to get thermal image only following computation flow is to be used: Supply voltage value calculation - 11.2.2.2 Ambient temperature calculation - 11.2.2.3 Gain compensation - 11.2.2.5.1 IR data compensation – offset, VDD and Ta - 11.2.2.5.3 IR data gradient compensation - 11.2.2.7 Normalizing to sensitivity - 11.2.2.8 Image (data) processing Figure 28 Calculation flow in thermal image mode REVISION 3 – DECEMBER 9, 2019 3901090641 Page 49 of 55 MLX90641 16x12 IR array Datasheet 14. Application Comments Significant contamination at the optical input side (sensor filter) might cause unknown additional filtering/distortion of the optical signal and therefore result in unspecified errors. IR sensors are inherently susceptible to errors caused by thermal gradients. There are physical reasons for these phenomena and, in spite of the careful design of the MLX90641Bxx, it is recommended not to subject the MLX90641Bxx to heat transfer and especially transient conditions. The MLX90641Bxx is designed and calibrated to operate as a non-contact thermometer in settled conditions. Using the thermometer in a very different way will result in unknown results. Capacitive loading on an I2C can degrade the communication. Some improvement is possible with use of current sources compared to resistors in pull-up circuitry. Further improvement is possible with specialized commercially available bus accelerators. With the MLX90641Bxx additional improvement is possible by increasing the pull-up current (decreasing the pull-up resistor values). Input levels for I2C compatible mode have higher overall tolerance than the I2C specification, but the output low level is rather low even with the high-power I2C specification for pull-up currents. Another option might be to go for a slower communication (clock speed), as the MLX90641Bxx implements Schmidt triggers on its inputs in I2C compatible mode and is therefore not really sensitive to rise time of the bus (it is more likely the rise time to be an issue than the fall time, as far as the I2C systems are open drain with pull-up). Power dissipation within the package may affect performance in two ways: by heating the “ambient” sensitive element significantly beyond the actual ambient temperature, as well as by causing gradients over the package that will inherently cause thermal gradient over the cap Power supply decoupling capacitor is needed as with most integrated circuits. MLX90641Bxx is a mixed-signal device with sensors, small signal analog part, digital part and I/O circuitry. In order to keep the noise low power supply switching noise needs to be decoupled. High noise from external circuitry can also affect noise performance of the device. In many applications a 100nF SMD plus 10µF ceramic capacitors close to the Vdd and Vss pins would be a good choice. It should be noted that not only the trace to the Vdd pin needs to be short, but also the one to the Vss pin. Using MLX90641Bxx with short pins improves the effect of the power supply decoupling. Check www.melexis.com for most recent application notes about MLX90641Bxx. REVISION 3 – DECEMBER 9, 2019 3901090641 Page 50 of 55 MLX90641 16x12 IR array Datasheet 15. Mechanical drawings 15.1. FOV 55° Figure 29 Mechanical drawing of 55° FOV device REVISION 3 – DECEMBER 9, 2019 3901090641 Page 51 of 55 MLX90641 16x12 IR array Datasheet 15.2. FOV 110° Figure 30 Mechanical drawing of 110° FOV device REVISION 3 – DECEMBER 9, 2019 3901090641 Page 52 of 55 MLX90641 16x12 IR array Datasheet 15.3. Device marking The MLX90641 is laser marked with 10 symbols as follows. 1 A A xxxxx xx Laser marking 2 digits Split number 5 digits LOT number 1  A FOV = 110° B FOV = 55° A Device without thermal gradient compensation (TGC = 0 and may not be changed) C Device with thermal gradient compensation (TGC = -4…+3.992) MLX90641 Example: “1CA1052801” – Device type MLX90641BCA from lot 10528, sub LOT split 1 and Thermal Gradient Compensation activated. REVISION 3 – DECEMBER 9, 2019 3901090641 Page 53 of 55 MLX90641 16x12 IR array Datasheet 16. Standard Information Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to standards in place in Semiconductor industry. For further details about test method references and for compliance verification of se lected soldering method for product integration, Melexis recommends reviewing on our web site the General Guidelines soldering recommendation. For all soldering technologies deviating from the one mentioned in above document (regarding peak temperature, temperature gradient, temperature profile etc), additional classification and qualification tests have to be agreed upon with Melexis. For package technology embedding trim and form post-delivery capability, Melexis recommends to consult the dedicated trim&form recommendation application note: lead trimming and forming recommendations Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/en/quality-environment 17. ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. 18. Revision History Table 25/07/2016 Initial release 12/08/2016 Calibration data stored into EEPROM, pixel reading modes explained 13/01/2017 Added CP data extraction, example updated, accuracy table 01/02/2017 Kta(i,j) and Kv(i,j) coefficients extraction from EEPROM corrected 15/12/2017 Overall rework 12/04/2018 extra temperature ranges calculations, new approach of Emissivity compensation 08/11/2018 Driver link, Max temp = 300°C, ESD = 4kV, step mode removed, FOV added, 06/02/2019 Emissivity compensation changed, added absolute accuracy for Ta 06/12/2019 Rev 3: long term accuracy note, optical consideration, package chamfer info, note regarding max current trough SDA driver, docserver number in the footer Table 14 Revision history REVISION 3 – DECEMBER 9, 2019 3901090641 Page 54 of 55 MLX90641 16x12 IR array Datasheet 19. Contact For the latest version of this document, go to our website at www.melexis.com. For additional information, please contact our Direct Sales team and get help for your specific needs: Europe, Africa Telephone: +32 13 67 04 95 Email : sales_europe@melexis.com Americas Telephone: +1 603 223 2362 Email : sales_usa@melexis.com Asia Email : sales_asia@melexis.com 20. Disclaimer The information furnished by Melexis herein (“Information”) is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein (“Product”) (ii) any and al l liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, includ ing warranties of fitness for particular purpose, noninfringement and merchantability. No obligation or liability shall arise or flow out of Melexis’ rendering of technical or other services. The Information is provided "as is” and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose. The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described b y the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights. This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s ) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or lifesustaining equipment are specifically not recommended by Melexis. The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a mean s of violence in an armed conflict or any similar violent situation. The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-andconditions. This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document. Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016) ISO/TS 16949 and ISO14001 Certified REVISION 3 – DECEMBER 9, 2019 3901090641 Page 55 of 55
MLX90641ESF-BAB-000-TU 价格&库存

很抱歉,暂时无法提供与“MLX90641ESF-BAB-000-TU”相匹配的价格&库存,您可以联系我们找货

免费人工找货