0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TH8056KDC-AAA-008-RE

TH8056KDC-AAA-008-RE

  • 厂商:

    MELEXIS(迈来芯)

  • 封装:

    SOIC8_150MIL

  • 描述:

    IC TRANSCEIVER 1/1 8SOIC

  • 数据手册
  • 价格&库存
TH8056KDC-AAA-008-RE 数据手册
TH8056 Enhanced Single Wire CAN Transceiver Features  Fully compliant to GMW3089 V2.4 and J2411 Single Wire CAN specification for Class B in-vehicle communications  Only 60 µA worst case sleep mode current independent from CAN voltage range  Operating voltage range 5V to 26.5V  Up to 40 kbps bus speed  Up to 100 kbps high-speed transmission mode  Logic inputs compatible with 3.3V and 5V supply systems  Control pin for external voltage regulators  Low RFI due to output wave shaping in normal and high voltage wake up mode  Fully integrated receiver filter  Bus terminals proof against short-circuits and transients in automotive environment  Loss of ground protection, very low leakage current (typ. 20µA at 26.5V and 125°C)  Protection against load dump, jump start  Thermal overload and short circuit protection  Under voltage lockout  Bus dominant time-out feature  Pb-Free 14-pin thermally enhanced and 8-pin SOIC package Ordering Code Product Code TH8056 TH8056 TH8056 TH8056 Temperature Code K K K K Package Code DC DC DC DC Option Code AAA-008 AAA-008 AAA-014 AAA-014 Legend: Temperature Code: Package Code: Option Code: Packing Form: K for Temperature Range -40°C to 125°C DC for SOIC150Mil XXX-008 for 8 Leads, XXX-014 for 14 Leads. RE for Reel, TU for Tube Ordering example: TH8056KDC-AAA-008-TU TH8056 – Datasheet 3901008056 Page 1 of 34 Packing Form Code TU RE TU RE June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver General Description The TH8056 is a physical layer device for a single wire data link capable of operating with various CSMA/CR protocols such as the Bosch Controller Area Network (CAN) version 2.0. This serial data link network is intended for use in applications where a high data rate is not required and a lower data rate can achieve cost reductions in both the physical media components and the microprocessor and/or dedicated logic devices that use the network. The network shall be able to operate in either the normal data rate mode or the high-speed data download mode for assembly line and service data transfer operations. The high-speed mode is only intended to be operational when the bus is attached to an off-board service node. This node shall provide temporary bus electrical loads which facilitate higher speed operation. The bit rate for normal communications is typically 33.33kbit/s, for high-speed transmissions as described above a typical bit rate of 83.33kbit/s is recommended. The TH8056 is designed in accordance with the Single Wire CAN Physical Layer Specification GMW3089 V2.4 and supports many additional features like under-voltage lock-out, time-out for faulty blocked input signals, output blanking time in case of bus ringing and a very low sleep mode current. TH8056 – Datasheet 3901008056 Page 2 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver Contents 1. Functional Diagram .................................................................................................... 5 2. Electrical Specification .............................................................................................. 6 2.1 2.2 2.3 2.4 2.5 2.6 3. Operating Conditions ............................................................................................. 6 Absolute Maximum Ratings ................................................................................... 6 Static Characteristics ............................................................................................. 7 Dynamic Characteristics ........................................................................................ 9 Bus loading requirements .................................................................................... 10 Timing Diagrams ................................................................................................. 12 Functional Description ............................................................................................. 14 3.1 TxD Input pin ....................................................................................................... 14 3.2 Mode 0 and Mode 1 pins ..................................................................................... 15 3.3 RxD Output pin .................................................................................................... 16 3.4 Bus LOAD pin ...................................................................................................... 16 3.5 Vbat INPUT pin.................................................................................................... 17 3.6 CAN BUS pin ....................................................................................................... 17 3.7 INH Pin (TH8056 KDC A only)............................................................................. 17 3.8 State Diagram...................................................................................................... 19 3.9 Power Dissipation ................................................................................................ 20 3.9.1. Thermal behaviour of TH8056 with SOIC8 – TH8056 KDC A8 .................... 21 3.10 Application Circuitry ............................................................................................. 23 4. Pin Description ......................................................................................................... 24 5. Package Dimensions ................................................................................................ 26 5.1 5.2 6. Tape and Reel Specification .................................................................................... 28 6.1 6.2 7. Tape Specification ............................................................................................... 28 Reel Specification for SOIC14NB ........................................................................ 29 ESD/EMC Remarks ................................................................................................... 30 7.1 7.2 7.3 7.4 8. SOIC14 ................................................................................................................ 26 SOIC8 .................................................................................................................. 27 General Remarks ................................................................................................ 30 ESD-Test ............................................................................................................. 30 EMC .................................................................................................................... 30 Latch Up Test ...................................................................................................... 30 Revision History ....................................................................................................... 31 TH8056 – Datasheet 3901008056 Page 3 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver 9. Standard information regarding manufacturability of Melexis products with different soldering processes ......................................................................................... 33 10. Disclaimer .............................................................................................................. 34 TH8056 – Datasheet 3901008056 Page 4 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver 1. Functional Diagram INH * VBAT TH8056 5V Supply & References Biasing& VBAT Monitor Reverse Current Protection RCOsc Wave Shaping TxD CANH CAN Driver Time Out FeedbackLoop Input Filter MODE0 MODE CONTROL MODE1 LOAD Receive Comparator Loss of Ground Detection Reverse Current Protection Wake up filter RxD RxD Blanking Time Filter GND Figure 1 - Block Diagram TH8056 – Datasheet 3901008056 Page 5 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver * INH terminal is present on TH8056 KDC A only 2. Electrical Specification All voltages are referenced to ground (GND). Positive currents flow into the IC. The absolute maximum ratings (in accordance with IEC 134) given in the table below are limiting values that do not lead to a permanent damage of the device but exceeding any of these limits may do so. Long term exposure to limiting values may affect the reliability of the device. 2.1 Operating Conditions Parameter Symbol Min Max Unit VBAT 5.0 18 V Operating ambient temperature for TH8056 KDC A TA -40 125 °C Junction temperature TJ -40 150 °C Battery voltage 2.2 Absolute Maximum Ratings Parameter Supply Voltage Symbol VBAT Short-term supply voltage VBAT.ld Transient supply voltage Transient supply voltage Transient supply voltage VBAT.tr1 VBAT..tr2 VBAT..tr3 CANH voltage VCANH Transient bus voltage Transient bus voltage Transient bus voltage DC voltage on pin LOAD DC voltage on pins TxD, MODE1, MODE0,RxD, ESD capability of any pin (Human Body Model) Maximum latch – up free current at any Pin Condition VCANH..tr1 VCANH.tr2 VCANH.tr3 VLOAD Load dump; t150mm2 (low conductance board in accordance to JEDEC51-7) [2] [3] TH8056 – Datasheet 3901008056 Page 6 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver 2.3 Static Characteristics Unless otherwise specified all values in the following tables are valid for VBAT = 5V to 26.5V and TAMB=-40°C to 125oC. All voltages are referenced to ground (GND), positive currents flow into the IC. Parameter Symbol Condition Min Typ Max Unit 6 12 18 V PIN VBAT Operating supply voltage VBAT Low battery operating supply voltage VBAT_L except high-speed/sleep mode 5 6 V Short duration Operating supply voltage VBAT_JS T 200Ω, Normal, high-speed mode, 5V < VBAT < 6V 3.4 5.1 V Bus output voltage Voh RL > 200Ω, Normal mode, 6V < VBAT < 26.5V 4.4 5.1 V Bus output voltage, high-speed mode Voh RL > 75Ω, high-speed mode, 8V < VBAT < 16V 4.2 5.1 V Fixed Wake-up Output High Voltage VohWuFix Wake-up mode, RL > 200Ω, 11.2V < VBAT < 26.5V 9.9 12.5 V Offset Wake-up Output High Voltage VohWuOffset Wake-up mode, RL > 200Ω, 5V < VBAT < 11.2V VBAT – 1.5 VBAT V Recessive state or sleep mode, Rload = 6.5 kΩ, -0.2 0.20 V Recessive state output voltage Vol Bus short circuit current -ICAN_SHORT VCANH = 0V, VBAT = 26.5V, TxD = 0V 50 350 mA Bus leakage current during loss of ground ILKN_CAN[1] Loss of ground, VCANH = 0V -50 10 µA TxD high; -10 10 µA Bus leakage current, bus positive ILKP_CAN Bus input threshold Vih Normal, high-speed mode 2.0 2.1 2.2 V Bus input threshold low battery Vihlb Normal mode 5VHigh (if VCC_ECU on) VBAT standby RxD CAN M0/1 INH after min. 100ms -> no mode change -> no valid wake up low VS high / float. low[1] wake up request from Bus Sleep Mode [1] M0/1 INH/CAN low floating low after HVWU, high after VBAT on & VCCECU present TH8056 – Datasheet 3901008056 Page 19 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver Figure 6 – State Diagram 3.9 Power Dissipation The TH8056 has an integrated protection against thermal overload. If the junction temperature reaches the thermal shutdown threshold the TH8056 disables the transmitter driver to reduce the power dissipation to protect the IC itself from thermal overload. The function of the transceiver will become again available if the junction temperate drops below the thermal recovery temperature. To secure a stable functioning within the application and to avoid a transmitter switch off due to thermal overload under normal operating conditions, the application must take care of the maximum power dissipation of the IC. The junction temperature can be calculated with: TJ = Ta + Pd * θja TJ Junction temperature Ta Ambient temperature Pd Dissipated power θja Thermal resistance The Junction temperature shouldn’t exceed under normal operating conditions the limit specified in chapter 2.3 Static Characteristics. The power dissipation of an IC is the major factor determining the junction temperature. The TH8056 consumes current in different functions. A part of the supply current goes to the load and the other part dissipates internally. The internal part has a constant passive part and an active part which depends on the actual bus transmission. The complete internal part causes and increasing of the junction temperature. Ptot = PINT_a + PINT_P PINT_a Internal power dissipation active PINT_p Internal power dissipation passive Ptot Overall power dissipation D Duty cycle for data transmission The internal passive part can be calculated with the operating voltage and the normal mode supply current recessive. The active part can be calculated with the voltage drop of the driving transistor and the current of the CAN bus. The active part generates only during data transmission power dissipation. Therefore the duty cycle has to be taken into account. PINT_p = VBAT * IBAT PINT_a = (VBAT – VCANH) * Iload * D VBAT Battery supply voltage IBAT Normal mode supply current recessive Iload Can network current D Duty cycle for data transmission VCANH Voltage at CANH pin The power dissipation of the load can be calculated with the CANH voltage and the CAN bus current. Pload = VCANH * Iload * D where Iload = VCANH / Rload_net Pload Power dissipation of the load resistor Iload Current of CAN network VCANH Voltage at CANH pin Rload_net Network total resistance TH8056 – Datasheet 3901008056 Page 20 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver Assumptions: VBAT = 26.5V Rload = 6.49 kΩ Network with 32 nodes VCANH = 5.1V IBAT = 6mA D = 50% Ta = 125°C ΘJA = 70k/W (Thermally enhanced SOIC14 package) Computations: Rload_net = 6.49kΩ / 32nodes = 203Ω Iload = 5.1V / 203Ω = 25mA Pload = 5.1V * 25mA * 0.5 = 64mW PINT_a = (26.5V – 5.1V) * 25mA * 0.5 = 267mW PINT_P = 26.5V * 6mA = 159mW Ptot = 267mW + 159mW = 426mW Tj = 125°C + 426mW * 70k/W = 155°C The above calculation shows that under worst case conditions (max. operating voltage, max bus load, max ambient temperature) the TH8056 with the thermally enhanced SOIC14 package operates below the thermal limit. A stable functioning is possible up to these limits. 3.9.1. Thermal behaviour of TH8056 with SOIC8 – TH8056 KDC A8 The thermal impedance of an SOIC8 package is about twice in comparison to the thermally enhanced SOIC14 package. Therefore the maximum power dissipation within this package is only about the half. The using of the SOIC8 version of TH8056 depends on the network architecture (number of nodes), the max. ambient temperature and the needed functionality (using of INH pin). The following diagram shows the relationship between junction temperature, ambient temperature and number of nodes, which have to be taken into account for using the SOIC8 version. TH8056 – Datasheet 3901008056 Page 21 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver UBAT = 26.5V; Ta = 125°C UBAT = 18V; Ta = 125°C 160 150 UBAT = 26.5V; Ta = 105°C Junction Temperature 140 UBAT = 18V; Ta = 105°C 130 Save Operating Area SOIC8 Package 120 UBAT = 26.5V; Ta = 85°C 110 100 90 80 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Number of Network Nodes Figure 7 – Save operating area of SOIC8 package TH8056 – Datasheet 3901008056 Page 22 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver 3.10 Application Circuitry other loads [1] VBAT VBAT_ECU Voltage regulator VBAT +5V ECU connector to Single Wire CAN Bus 100nF 2.7k INH VBAT CAN controller 9 RxD 100pF 10 5 47µH 12 CANH TH8056 MODE0 MODE1 TxD 1k 3 100pF 6.49k 4 2 11 LOAD 1,7,8,14 ESD Protection TPSMA16A or MMBZ27VCLT1 or equivalent GND [1] recommended capacitance at VBAT_ECU > 1uF (immunity to ISO7637/1 test pulses) Figure 8 – Application Circuitry TH8056 KDC A TH8056 – Datasheet 3901008056 Page 23 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver other loads [1] VBAT VBAT_ECU Voltage regulator VBAT +5V ECU connector to Single Wire CAN Bus 100nF 2.7k VBAT 100pF 5 4 CAN controller RxD 47µH 7 CANH TH8056 MODE0 MODE1 TxD 1k 100pF 2 6.49k 3 1 6 LOAD ESD Protection TPSMA16A or MMBZ27VCLT1 or equivalent 8 GND [1] recommended capacitance at VBAT_ECU > 1uF (immunity to ISO7637/1 test pulses) Figure 9 – Application circuitry TH8056 KDC A8 4. Pin Description TH8056 KDC A TH8056 KDC A8 GND 1 14 GND TxD 1 TxD 2 13 N.C. MODE0 2 MODE0 3 12 CANH MODE1 3 MODE1 4 11 LOAD RXD 4 RXD 5 10 VBAT N.C. 6 9 INH GND 7 8 GND TH8056 – Datasheet 3901008056 TH8056 Page 24 of 34 TH8056 8 GND 7 CANH 6 LOAD 5 VBAT June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver Pin TH8056 KDC A Pin TH8056 KDC A8 Name IO-Typ 1 - GND P Ground 2 1 TXD I Transmit data from MCU to CAN 3 2 MODE0 I Operating mode select input 0 4 3 MODE1 I Operating mode select input 1 5 4 RXD O Receive data from CAN to MCU 6 - N.C. 7 - GND P Ground 8 - GND P Ground 9 - INH O Control Pin for external voltage regulator (high voltage high side switch) 10 5 VBAT P Battery voltage 11 6 LOAD O Resistor load (loss of ground low side switch ) 12 7 CANH I/O Single wire CAN bus pin 13 - N.C. 14 8 GND P Ground TH8056 – Datasheet 3901008056 Description Page 25 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver 5. Package Dimensions 5.1 SOIC14 Small Outline Integrated Circiut (SOIC), SOIC 14, 150 mil A1 B C D E e H h L A α ZD A2 8.56 8.74 3.81 3.99 1.27 5.80 6.20 0.25 0.50 0.41 1.27 1.52 1.72 0° 8° 0.51 1.37 1.57 0.337 0.344 0.160 0.167 0.050 0.228 0.244 0.010 0.020 0.016 0.050 0.060 0.068 0° 8° 0.020 0.054 0.062 All Dimension in mm, coplanarity < 0.1 mm min max 0.10 0.25 0.36 0.45 0.19 0.25 All Dimension in inch, coplanarity < 0.004” min max 0.004 0.01 0.014 0.0075 0.018 0.0098 TH8056 – Datasheet 3901008056 Page 26 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver 5.2 SOIC8 Small Outline Integrated Circiut (SOIC), SOIC 8, 150 mil A1 B C D E e H h L A α ZD A2 4.80 4.98 3.81 3.99 1.27 5.80 6.20 0.25 0.50 0.41 1.27 1.52 1.72 0° 8° 0.53 1.37 1.57 0.189 0.196 0.150 0.157 0.050 0.016 0.050 0.060 0.068 0° 8° 0.021 0.054 0.062 All Dimension in mm, coplanarity < 0.1 mm min max 0.10 0.25 0.36 0.46 0.19 0.25 All Dimension in inch, coplanarity < 0.004” min max 0.004 0.0098 0.014 0.0075 0.018 0.0098 TH8056 – Datasheet 3901008056 0.2284 0.0099 0.244 0.0198 Page 27 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver 6. Tape and Reel Specification 6.1 Tape Specification max. 10° max. 10° IC pocket R Top View n. mi Sectional View T2 P0 D0 P2 T E G1 < A0 > F K0 W B0 B1 S1 P1 G2 D1 T1 Cover Tape Abwickelrichtung Standard Reel with diameter of 13“ D0 Package Parts per Reel Width Pitch SOIC14 3000 16 mm 8 mm SOIC8 3000 12 mm 8 mm E P0 P2 Tmax T1 max G1 min G2 min B1 max D1 min F P1 Rmin T2 max W 1.75 ±0.1 4.0 ±0.1 2.0 ±0.1 0.6 0.1 0.75 0.75 12.1 1.5 7.5 ±0.1 4 – 12 ±0.1 30 8.0 16.0 ±0.3 1.75 ±0.1 4.0 ±0.1 2.0 ±0.1 0.6 0.1 0.75 0.75 8.2 1.5 5.5 ±0.05 4 ±0.1 30 6.5 12.0 ±0.3 SOIC14 1.5 +0.1 SOIC8 1.5 +0.1 A0, B0, K0 can be calculated with package specification. Cover Tape width 13.3 mm. TH8056 – Datasheet 3901008056 Page 28 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver 6.2 Reel Specification for SOIC14NB W2 W1 B* D* C A N Amax B* C D*min 330 2.0 ±0.5 13.0 +0,5/-0,2 20.2 Width of half reel Nmin W1 W2 max 4 mm 100.0 4.4 7.1 8 mm 100.0 8.4 11.1 TH8056 – Datasheet 3901008056 Page 29 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver 7. ESD/EMC Remarks 7.1 General Remarks Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. 7.2 ESD-Test The TH8056 is tested according to MIL883D (human body model). 7.3 EMC The test on EMC impacts is done according to ISO 7637-1 for power supply pins and ISO 7637-3 for dataand signal pins. Power Supply pin VBAT, CANH, LOAD: Testpulse Condition Duration 1 t1 = 5 s / US = -100 V / tD = 2 ms 5000 pulses 2 t1 = 0.5 s / US = 100 V / tD = 0.05 ms 5000 pulses 3a/b US = -200 V/ US = 200 V burst 100ns / 10 ms / 90 ms break 1h 5 Ri = 0.5 Ω, tD = 400 ms 10 pulses every 1min tr = 0.1 ms / UP+US = 40 V 7.4 Latch Up Test The TH8056 is tested according to JESD78 (Class 2). TH8056 – Datasheet 3901008056 Page 30 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver 8. Revision History Version Changes 001 001a 002 003 004 005 006 007 - 008 009 010 011 - - Remark Initial Release Added chapter revision history Error corrected within Figure 1 - Block Diagram Pinout corrected within Figure 8 – Application Circuitry compatibility to GMW3089 Version 2.2 Static Characteristics modified according to GMW3089 V2.2 Dynamic Characteristics modified according to GMW3089 V2.2 Bus loading requirements modified according to GMW3089 V2.2 High-speed Mode added remark VBAT input pin description changed Add Tape and Reel Specification Change of ESD/EMC Remarks Changed application circuitry according to GMW3089 Rev.2.2 Change of chapter 9. Assembly Information Change of Order Code Update of chapter “Features” with compatibility to GMW3089 V2.3 and very low leakage current during loss of ground Update of chapter “Features” high voltage wake up mode instead of high speed .. Change of “Static characteristics” o Supply current dominant o Transmit delay Change of “Dynamic characteristics” o Input min pulse length o Condition for mode change from normal to standby, standby to sleep and sleep to normal Change of application circuitry acc. To GMW3089 V2.3 Spec. Change of “Static characteristics” o Offset Wake-up Output High Voltage o Mode pull down resistor Additional Package Version SOIC8 Additional chapter “Power Dissipation” Adaption of sleep mode condition acc. To GMW3089 Rev. 2.4 Change of ESD capability of CANH pin Update of Assembly information Change of Parameter “Input minumum pulse length at CANH” Change of “Short duration operating supply voltage” Change of “Receive Delay” Change of “Low level input voltage” at TxD, Mode 0,1 TH8056 – Datasheet 3901008056 Page 31 of 34 Date Sep. 2002 March 2003 06/13/03 09/18/03 12/01/03 05/13/04 06/14/04 24/06/04 31/08/04 15/04/05 21/03/06 08/12/06 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver Version Changes 012 013 - 014 - Remark Change of load pin definition to be compliant to GMW3089 2.4 Change of chapter 6.1 Tape Specification o Number of parts per reel Logo, disclaimer,information regarding solderability, ordering code TH8056 – Datasheet 3901008056 Page 32 of 34 Date 07/03/07 09/11/10 14/june/12 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver 9. Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods: Reflow Soldering SMD’s (Surface Mount Devices) • • IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2) EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2) Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • • EN60749-20 Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices Iron Soldering THD’s (Through Hole Devices) • EN60749-15 Resistance to soldering temperature for through-hole mounted devices Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • EIA/JEDEC JESD22-B102 and EN60749-21 Solderability For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx TH8056 – Datasheet 3901008056 Page 33 of 34 June 2012 Rev 014 TH8056 Enhanced Single Wire CAN Transceiver 10. Disclaimer Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering of technical or other services. © 2012 Melexis NV. All rights reserved. For the latest version of this document, go to our website at www.melexis.com Or for additional information contact Melexis Direct: Europe, Africa, Asia: Phone: +32 1367 0495 E-mail: sales_europe@melexis.com America: Phone: +1 248 306 5400 E-mail: sales_usa@melexis.com ISO/TS 16949 and ISO14001 Certified TH8056 – Datasheet 3901008056 Page 34 of 34 June 2012 Rev 014 Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Melexis: TH8056KDC-AAA-008-SP TH8056KDC-AAA-008-RE TH8056KDC-AAA-014-SP TH8056KDC-AAA-008-TU TH8056KDC-AAA-014-RE TH8056KDC-AAA-014-TU
TH8056KDC-AAA-008-RE 价格&库存

很抱歉,暂时无法提供与“TH8056KDC-AAA-008-RE”相匹配的价格&库存,您可以联系我们找货

免费人工找货