0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
US3881EUA-AAA-000-BU

US3881EUA-AAA-000-BU

  • 厂商:

    MELEXIS(迈来芯)

  • 封装:

    TO226-3

  • 描述:

    IC HALL ELFFECT SW MP TO-92UA

  • 详情介绍
  • 数据手册
  • 价格&库存
US3881EUA-AAA-000-BU 数据手册
US3881 Hall Latch Low Voltage & High Sensitivity Features and Benefits Applications  Wide operating voltage range from 2.2V to 18V  Automotive, Consumer and Industrial  Very high magnetic sensitivity  Solid-state switch  CMOS technology  Brushless DC motor commutation  Chopper-stabilized amplifier stage  Speed detection  Low current consumption  Linear position detection  Open drain output   Angular position detection Thin SOT23 3L and flat TO-92 3L both RoHS Compliant packages  Proximity detection Ordering information Product code US3881 US3881 US3881 US3881 US3881 US3881 Legend: Temperature code: Package Code: Packing Form: Ordering Example: Temperature Code E E K K L L Package Code SE UA SE UA SE UA Option code AAA-000 AAA-000 AAA-000 AAA-000 AAA-000 AAA-000 Packing form code RE BU RE BU RE BU L(-40 to 150°C) E(-40 to 85°C) K (-40 to 125°C) SE = TSOT-23L UA = TO92-3L BU = Bulk RE = Reel US3881ESE-AAA-000-RE 1. Functional Diagram 2. General Description The Melexis US3881 is a Hall-effect latch designed in mixed signal CMOS technology. The device integrates a voltage regulator, Hall sensor with dynamic offset cancellation system, Schmitt trigger and an open-drain output driver, all in a single package. The low operating voltage and extended choice of temperature range make it suitable for use in automotive, industrial and consumer low voltage applications. The devices are delivered in a Thin Small Outline Transistor (TSOT) for surface mount process and in a Plastic Single In Line (TO-92 flat) for through-hole mount. Both REVISION 020 –13 JUNE 2019 3901003881 3-lead packages are RoHS compliant. Page 1 of 11 US3881 Hall Latch Low Voltage & High Sensitivity Contents 1. Functional Diagram ................................................................................................................................ 1 2. General Description ............................................................................................................................... 1 3. Glossary of Terms .................................................................................................................................. 3 4. Absolute Maximum Ratings ................................................................................................................... 3 5. Pin Definitions and Descriptions ............................................................................................................ 3 6. General Electrical Specifications ............................................................................................................ 4 7. Magnetic Specifications ......................................................................................................................... 4 8. Output Behaviour versus Magnetic Pole ................................................................................................ 4 9. Detailed General Description ................................................................................................................. 5 10. Unique Features .................................................................................................................................. 5 11. Performance Graphs ............................................................................................................................ 6 12. Application Information ....................................................................................................................... 7 12.1. Typical Three-Wire Application Circuit ............................................................................................ 7 12.2. Two-Wire Circuit ............................................................................................................................... 7 12.3. Automotive and Harsh, Noisy Environments Three-Wire Circuit ................................................... 7 13. Application Comments ......................................................................................................................... 7 14. Standard information regarding manufacturability of Melexis products with different soldering processes .............................................................................................................................................. 8 15. ESD Precautions ................................................................................................................................... 8 16. Package Information ............................................................................................................................ 9 16.1. SE Package (TSOT-3L) ....................................................................................................................... 9 16.2. UA Package (TO-92 flat) .................................................................................................................... 9 17. Contact .............................................................................................................................................. 11 18. Disclaimer .......................................................................................................................................... 11 REVISION 020 –13 JUNE 2019 3901003881 Page 2 of 11 US3881 Hall Latch Low Voltage & High Sensitivity 3. Glossary of Terms MilliTesla (mT), Gauss Units of magnetic flux density: 1mT = 10 Gauss Restriction of Hazardous Substances Thin Small Outline Transistor (TSOT package) – also referred with the Melexis package code “SE” Electro-Static Discharge Brush-Less Direct-Current RoHS TSOT ESD BLDC 4. Absolute Maximum Ratings Parameter Supply Voltage Supply Current Output Voltage Output Current Storage Temperature Range Maximum Junction Temperature Symbol VDD IDD VOUT IOUT TS TJ Value 20 50 20 50 -50 to 150 165 Units V mA V mA °C °C Table 1: Absolute maximum ratings Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum- rated conditions for extended periods may affect device reliability. Operating Temperature Range Temperature Suffix “E” Temperature Suffix “K” Temperature Suffix “L” Symbol TA TA TA Value -40 to 85 -40 to 125 -40 to 150 Units °C °C °C 5. Pin Definitions and Descriptions SE Pin № 1 2 3 UA Pin № 1 3 2 Name VDD OUT GND Type Supply Output Ground Function Supply Voltage pin Open Drain Output pin Ground pin Table 2: Pin definitions and descriptions REVISION 020 –13 JUNE 2019 3901003881 Page 3 of 11 US3881 Hall Latch Low Voltage & High Sensitivity 6. General Electrical Specifications o DC Operating Parameters TA = 25 C, VDD = 2.2V to 18V (unless otherwise specified) Parameter Symbol Test Conditions Min Supply Voltage VDD Operating 2.2 Typ Max 18 Units V Supply Current Output Saturation Voltage IDD VDSon B < BRP IOUT = 20mA, B > BOP 2.5 0.4 5 0.5 mA V Output Leakage Current IOFF B < BRP, VOUT = 24V 0.01 10 µA Output Rise Time tr RL = 1kΩ, CL = 20pF 0.25 µs Output Fall Time tf RL = 1kΩ, CL = 20pF 0.25 Maximum Switching Frequency FSW 10 µs KHz SE Package Thermal Resistance RTH 301 °C/W UA Package Thermal Resistance RTH 200 °C/W 1.5 Single layer (1S) Jedec board Table 3: Electrical specifications 7. Magnetic Specifications o DC Operating Parameters TA = 25 C, VDD = 2.2V to 18V (unless otherwise specified) Parameter Symbol Test Conditions Min Operating Point BOP 1 Release Point BRP TA = 85°C, E spec. -9 Hysteresis BHYST 5.5 Operating Point BOP 1 Release Point BRP TA = 150°C, L spec. -9 Hysteresis BHYST 5.5 Typ 5 -5 10 5 -5 10 Max 9 -1 12 9 -1 12 Units mT mT mT mT mT mT Table 4: Magnetic specifications 8. Output Behaviour versus Magnetic Pole DC Operating Parameters TA = -40 C to 150 C, VDD = 2.2V to 18V (unless otherwise specified) Parameter Test Conditions (SE) OUT (SE) Test Conditions (UA) OUT (UA) South pole B < BRP High B > BOP Low North pole B > BOP Low B < BRP High Table 5: Output behaviour versus magnetic pole REVISION 020 –13 JUNE 2019 3901003881 Page 4 of 11 US3881 Hall Latch Low Voltage & High Sensitivity 9. Detailed General Description Based on mixed signal CMOS technology, Melexis US3881 is a Hall-effect device with high magnetic sensitivity. This multipurpose latch suits most of the application requirements. The chopper-stabilized amplifier uses switched capacitor techniques to suppress the offset generally observed with Hall sensors and amplifiers. The CMOS technology makes this advanced technique possible and contributes to smaller chip size and lower current consumption than bipolar technology. The small chip size is also an important factor to minimize the effect of physical stress. This combination results in more stable magnetic characteristics and enables faster and more precise design. The operating voltage from 2.2V to 18V, low current consumption and large choice of operating temperature range according to “L”, “K” and “E” specification make this device suitable for automotive, industrial and consumer low voltage applications. The output signal is open-drain type. Such output allows simple connectivity with TTL or CMOS logic by using a pull-up resistor tied between a pull-up voltage and the device output.. 10. Unique Features The US3881 exhibits latch magnetic switching characteristics. Therefore, it requires both south and north poles to operate properly. The device behaves as a latch with symmetric operating and release switching points (BOP=|BRP|). This means magnetic fields with equivalent strength and opposite direction drive the output high and low. Removing the magnetic field (B→0) keeps the output in its previous state. This latching property defines the device as a magnetic memory. A magnetic hysteresis BHYST keeps BOP and BRP separated by a minimal value. This hysteresis prevents output oscillation near the switching point REVISION 020 –13 JUNE 2019 3901003881 Page 5 of 11 US3881 Hall Latch Low Voltage & High Sensitivity 11. Performance Graphs REVISION 020 –13 JUNE 2019 3901003881 Page 6 of 11 US3881 Hall Latch Low Voltage & High Sensitivity 12. Application Information 12.1. Typical Three-Wire Application Circuit 12.2. Two-Wire Circuit 12.3. Automotive and Harsh, Noisy Environments Three-Wire Circuit 13. Application Comments For proper operation, a 100nF bypass capacitor should be placed as close as possible to the device between the VDD and ground pin. For reverse voltage protection, it is recommended to connect a resistor or a diode in series with the VDD pin. When using a resistor, three points are important: - the resistor has to limit the reverse current to 50mA maximum (VCC / R1 ≤ 50mA) - the resulting device supply voltage VDD has to be higher than VDD min (VDD = VCC – R1.IDD) - the resistor has to withstand the power dissipated in reverse voltage condition (PD = VCC2 / R1) When using a diode, a reverse current cannot flow and the voltage drop is almost constant (≈0.7V). Therefore, a 100Ω/0.25W resistor for 5V application and a diode for higher supply voltage are recommended. Both solutions provide the required reverse voltage protection. When a weak power supply is used or when the device is intended to be used in noisy environment, it is recommended that figure 12.3 from the Application Information section is used. The low-pass filter formed by R1 and C1 and the zener diode Z1 bypass the disturbances or voltage spikes occurring on the device supply voltage VDD. The diode D1 provides additional reverse voltage protection. REVISION 020 –13 JUNE 2019 3901003881 Page 7 of 11 US3881 Hall Latch Low Voltage & High Sensitivity 14. Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods: Reflow Soldering SMD’s (Surface Mount Devices)   IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2) EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2) Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)   EN60749-20 Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices Iron Soldering THD’s (Through Hole Devices)  EN60749-15 Resistance to soldering temperature for through-hole mounted devices Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  EIA/JEDEC JESD22-B102 and EN60749-21 Solderability For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx 15. ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. REVISION 020 –13 JUNE 2019 3901003881 Page 8 of 11 US3881 Hall Latch Low Voltage & High Sensitivity 16. Package Information 16.1. SE Package (TSOT-3L) Notes: 1. Dimension “D” and “E1” do not include mold flash or protrusions. Mold flash or protrusion shall not exceed 0.15mm on “D” and 0.25mm on “E” per side. 2. Dimension “b” does not include dambar protrusion. Marking: Top side : 3yww 3 = part number (US3881) y = last digit of year ww = calendar week Hall plate location 0.891 1.417 Notes: 1. All dimensions are in millimeters 0.275 SIDE VIEW Package line TOP VIEW This table in mm min max A A1 A2 D E E1 L b c e e1  – 1.00 0.025 0.10 0.85 0.90 2.80 3.00 2.60 3.00 1.50 1.70 0.30 0.50 0.30 0.45 0.10 0.20 0.95 BSC 1.90 BSC 0° 8° REVISION 020 –13 JUNE 2019 3901003881 Page 9 of 11 US3881 Hall Latch Low Voltage & High Sensitivity 16.2. UA Package (TO-92 flat) Notes: 1. 2. Mold flashes and protrusion are not included. Gate burrs shall not exceed 0.127mm on the top side. 2.0 1.4 0.425 This table in mm min max min max A D E F J L L1 S b1 b2 c e e1 2.80 3.20 3.90 4.30 1.40 1.60 0.00 0.20 2.51 2.72 14.0 15.0 1.55 1.75 0.63 0.84 0.35 0.44 0.43 0.52 0.35 0.44 2.51 2.57 1.24 1.30     5° MAX 5° REF 45° REF 3° REF REVISION 020 –13 JUNE 2019 3901003881 Page 10 of 11 US3881 Hall Latch Low Voltage & High Sensitivity 17. Contact For the latest version of this document, go to our website at www.melexis.com. For additional information, please contact our Direct Sales team and get help for your specific needs: Europe, Africa Telephone: +32 13 67 04 95 Email : sales_europe@melexis.com Americas Telephone: +1 603 223 2362 Email : sales_usa@melexis.com Asia Email : sales_asia@melexis.com 18. Disclaimer The information furnished by Melexis herein (“Information”) is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein (“Product”) (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, includ ing warranties of fitness for particular purpose, noninfringement and merchantability. No obligation or liability shall arise or flow out of Melexis’ rendering of technical or other services. The Information is provided "as is” and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose. The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the In formation does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights. This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or lifesustaining equipment are specifically not recommended by Melexis. The Product(s) may not be used for the following applications subject to export control regulations: the development, product ion, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance o r storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation. The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-andconditions. This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document. Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016) ISO/TS 16949 and ISO14001 Certified REVISION 020 –13 JUNE 2019 3901003881 Page 11 of 11
US3881EUA-AAA-000-BU
物料型号:US3881 器件简介:Melexis US3881 是一款采用混合信号CMOS技术设计的霍尔效应锁存器。

它集成了电压调节器、霍尔传感器、动态偏移消除系统、施密特触发器和开路输出驱动器。

引脚分配: - VDD(1号引脚):供电电压引脚 - OUT(2号引脚):开路输出引脚 - GND(3号引脚):地引脚 参数特性: - 工作电压范围:2.2V 至 18V - 非常低的工作电流 - 封装信息:提供SOT23 3L和TO-92 3L两种封装,均符合RoHS标准 功能详解:US3881 适用于多种应用,如汽车、消费电子和工业领域,可作为无刷直流电机换向器、速度检测、线性位置检测、角度位置检测和接近检测等。

应用信息:US3881 具有锁存特性,需要南北极磁场才能正常工作。

输出信号为开路类型,可以通过上拉电阻与TTL或CMOS逻辑简单连接。

具有对称的开关点(BOP=|BRP|),意味着等强度且方向相反的磁场驱动输出高和低。

移除磁场(B=0)时,输出保持先前状态。

这种锁存特性定义了该设备作为磁存储器的功能。

磁性滞后(BHYST)保持BOP和BRP之间最小值,防止开关点附近的输出振荡。
US3881EUA-AAA-000-BU 价格&库存

很抱歉,暂时无法提供与“US3881EUA-AAA-000-BU”相匹配的价格&库存,您可以联系我们找货

免费人工找货