0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
KSZ8873MLLAM

KSZ8873MLLAM

  • 厂商:

    MICREL

  • 封装:

  • 描述:

    KSZ8873MLLAM - Integrated 3-Port 10/100 Managed Switch with PHYs - Micrel Semiconductor

  • 详情介绍
  • 数据手册
  • 价格&库存
KSZ8873MLLAM 数据手册
KSZ8873MLL/FLL/RLL Integrated 3-Port 10/100 Managed Switch with PHYs Rev. 1.2 General Description The KSZ8873MLL/FLL/RLL are highly integrated 3-port switch on a chip ICs in industry’s smallest footprint. They are designed to enable a new generation of low port count, cost-sensitive and power efficient 10/100Mbps switch systems. Low power consumption, advanced power management and sophisticated QoS features (e.g., IPv6 priority classification support) make these devices ideal for IPTV, IP-STB, VoIP, automotive and industrial applications. The KSZ8873 family is designed to support the GREEN requirement in today’s switch systems. Advanced power management schemes include hardware power down, software power down, per port power down and the energy detect mode that shuts downs the transceiver when a port is idle. KSZ8873MLL/FLL/RLL also offer a by-pass mode, which enables system-level power saving. In this mode, the processor connected to the switch through the MII interface can be shut down without impacting the normal switch operation. __________________________________________________________________________________________________________ The configurations provided by the KSZ8873 family enables the flexibility to meet requirements of different applications: • • • KSZ8873MLL: Two 10/100BASE-T/TX transceivers and one MII interface. KSZ8873RLL: Two 10/100BASE-T/TX transceivers and one RMII interface. KSZ8873FLL: Two 100BASE-FX transceivers and one MII interface. The device is available in RoHS-compliant 64-pin LQFP package. Industrial-grade and Automotive-grade are also available. The datasheets and supporting documents can be found at Micrel’s web site at: www.micrel.com. Functional Diagram LinkMD is a registered trademark of Micrel, Inc Product names used in this datasheet are for identification purposes only and may be trademarks of their respective companies. Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com September 2009 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Features • Advanced Switch Features – IEEE 802.1q VLAN support for up to 16 groups (full-range of VLAN IDs) – VLAN ID tag/untag options, per port basis – IEEE 802.1p/q tag insertion or removal on a per port basis (egress) – Programmable rate limiting at the ingress and egress on a per port basis – Broadcast storm protection with % control (global and per port basis) – IEEE 802.1d rapid spanning tree protocol support – tail tag mode (1 byte added before FCS) support at port3 to inform the processor which ingress port receives the packet and its priority – Bypass feature which Automatically sustains the switch function between Port1 and Port2 when CPU (Port 3 interface) goes to the sleep mode – Self-address filtering – Individual MAC address for port1 and port2 – Support RMII interface and 50 MHz reference clock output – MII interface supports both MAC mode and PHY mode with 200Mbps Turbo MII mode option – IGMP snooping (Ipv4) support for multicast packet Filtering – IPv4/IPv6 QoS support. – MAC filtering function to forward unknown unicast packets to specified port – Double-tagging support – Full duplex IEEE 802.3x flow control (PAUSE) with force mode option – Half-duplex back pressure flow control – HP Auto MDI-X for reliable detection of and correction for straight-through and crossover cables with disable and enable option ® – Micrel LinkMD TDR-based cable diagnostics permit identification of faulty copper cabling on Port 2 – Comprehensive LED Indicator support for link, activity, full/half duplex and 10/100 speed – HBM ESD Rating 6kV • Switch Monitoring Features – Port mirroring/monitoring/sniffing: ingress and/or egress traffic to any port or MII – MIB counters for fully compliant statistics gathering 34 MIB counters per port – Loopback modes for remote diagnostic of failure • Low Power Dissipation: – Full-chip hardware power-down (register configuration not saved) – Full-chip software power-down (register configuration not saved) – Energy-detect mode support – Dynamic clock tree shutdown feature – Per port based software power-save on PHY (idle link detection, register configuration preserved) – Voltages: Single 3.3V or 2.5V supply with internal 1.8V LDO and optional 3.3V, 2.5V and 1.8V VDDIO o o • Industrial Temperature Range: –40 C to +85 C • Available in 64-Pin LQFP, Lead-free package • Comprehensive Configuration Register Access – Serial management interface (SMI) to all internal registers – MII management (MIIM) interface to PHY registers – High speed SPI and I C Interface to all internal registers – I/0 pins strapping and EEPROM to program selective registers in unmanaged switch mode – Control registers configurable on the fly (port-priority, 802.1p/d/q, AN…) 2 Applications • Typical – – – – – – – – – – VoIP Phone Set-top/Game Box Automotive Industrial Control IPTV POF SOHO Residential Gateway Broadband Gateway / Firewall / VPN Integrated DSL/Cable Modem Wireless LAN access point + gateway Standalone 10/100 switch • QoS/CoS Packet Prioritization Support – Per port, 802.1p and DiffServ-based – Re-mapping of 802.1p priority field per port basis Four priority levels • Proven Integrated 3-Port 10/100 Ethernet Switch – 3rd generation switch with three MACs and two PHYs fully compliant with IEEE 802.3u standard – Non-blocking switch fabric assures fast packet delivery by utilizing an 1K MAC address lookup table and a store-andforward architecture September 2009 2 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Ordering Information Part Number KSZ8873MLL KSZ8873MLLI KSZ8873MLL AM KSZ8873FLL KSZ8873FLLI KSZ8873RLL KSZ8873RLLI Junction Temperature Range 0ºC to 70ºC –40ºC to +85ºC -40 C to +85 C 0ºC to 70ºC –40ºC to +85ºC 0ºC to 70ºC –40ºC to +85ºC o o Package 64-Pin LQFP 64-Pin LQFP 64-Pin PQFP 64-Pin LQFP 64-Pin LQFP 64-Pin LQFP 64-Pin LQFP Lead Finish/Grade Pb-Free/Commercial Pb-Free/Industrial Automotive grade Pb-Free/Commercial Pb-Free/Industrial Pb-Free/Commercial Pb-Free/Industrial Revision History Revision 1.0 1.1 1.2 Date 03/25/08 06/26/09 09/08/09 09/23/09 Summary of Changes Initial release Combined Register Description to initial release. Remove LinkMD feature. Update the Electrical Characteristics. Add LinkMD feature on Port 2. Fix the typo on register 194 September 2009 3 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Contents Pin Description and I/O Assignment ................................................................................................................................. 11 Pin Configuration ................................................................................................................................................................ 16 Functional Description ....................................................................................................................................................... 17 Functional Overview: Physical Layer Transceiver .......................................................................................................... 17 100BASE-TX Transmit ..................................................................................................................................................... 17 100BASE-TX Receive ...................................................................................................................................................... 17 PLL Clock Synthesizer...................................................................................................................................................... 17 Scrambler/De-scrambler (100BASE-TX Only) ................................................................................................................. 17 100BASE-FX Operation.................................................................................................................................................... 17 100BASE-FX Signal Detection ......................................................................................................................................... 18 100BASE-FX Far-End Fault ............................................................................................................................................. 18 10BASE-T Transmit.......................................................................................................................................................... 18 10BASE-T Receive........................................................................................................................................................... 18 MDI/MDI-X Auto Crossover .............................................................................................................................................. 18 Straight Cable ............................................................................................................................................................ 19 Crossover Cable ........................................................................................................................................................ 20 Auto-Negotiation ............................................................................................................................................................... 21 ® LinkMD Cable Diagnostics.............................................................................................................................................. 22 Access ....................................................................................................................................................................... 22 Usage......................................................................................................................................................................... 22 Functional Overview: Power Management....................................................................................................................... 22 Normal Operation Mode..................................................................................................................................................... 23 Energy Detect Mode .......................................................................................................................................................... 23 Soft Power Down Mode ..................................................................................................................................................... 23 Power Saving Mode.......................................................................................................................................................... 23 Port based Power Down Mode ......................................................................................................................................... 23 Functional Overview: MAC and Switch ............................................................................................................................ 24 Address Lookup................................................................................................................................................................ 24 Learning ............................................................................................................................................................................ 24 Migration ........................................................................................................................................................................... 24 Aging................................................................................................................................................................................. 24 Forwarding ........................................................................................................................................................................ 24 Switching Engine .............................................................................................................................................................. 27 MAC Operation ................................................................................................................................................................. 27 Inter Packet Gap (IPG) .............................................................................................................................................. 27 Back-Off Algorithm..................................................................................................................................................... 27 Late Collision ............................................................................................................................................................. 27 Illegal Frames ............................................................................................................................................................ 27 Full Duplex Flow Control............................................................................................................................................ 27 Half-Duplex Backpressure ......................................................................................................................................... 27 Broadcast Storm Protection....................................................................................................................................... 28 Port Individual MAC address and Source Port Filtering ............................................................................................ 28 MII Interface Operation ..................................................................................................................................................... 28 Turbo MII Interface Operation........................................................................................................................................... 29 RMII Interface Operation .................................................................................................................................................. 29 MII Management (MIIM) Interface .................................................................................................................................... 31 Serial Management Interface (SMI).................................................................................................................................. 31 Advanced Switch Functions .............................................................................................................................................. 32 Bypass Mode .................................................................................................................................................................... 32 IEEE 802.1Q VLAN Support............................................................................................................................................. 32 QoS Priority Support......................................................................................................................................................... 33 Port-Based Priority..................................................................................................................................................... 33 802.1p-Based Priority ................................................................................................................................................ 33 DiffServ-Based Priority .............................................................................................................................................. 34 September 2009 4 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Spanning Tree Support..................................................................................................................................................... 34 Rapid Spanning Tree Support .......................................................................................................................................... 35 Tail Tagging Mode ............................................................................................................................................................ 35 IGMP Support ................................................................................................................................................................... 36 IGMP Snooping ......................................................................................................................................................... 36 Multicast Address Insertion in the Static MAC Table ................................................................................................ 36 Port Mirroring Support ...................................................................................................................................................... 36 Rate Limiting Support ....................................................................................................................................................... 37 Unicast MAC Address Filtering......................................................................................................................................... 37 Configuration Interface ..................................................................................................................................................... 37 2 I C Master Serial Bus Configuration .......................................................................................................................... 37 I2C Slave Serial Bus Configuration ........................................................................................................................... 38 SPI Slave Serial Bus Configuration ........................................................................................................................... 39 Loopback Support............................................................................................................................................................. 42 Far-end Loopback...................................................................................................................................................... 42 Near-end (Remote) Loopback ................................................................................................................................... 43 MII Management (MIIM) Registers ..................................................................................................................................... 44 PHY1 Register 0 (PHYAD = 0x1, REGAD = 0x0): MII Basic Control........................................................................ 45 PHY2 Register 0 (PHYAD = 0x2, REGAD = 0x0): MII Basic Control........................................................................ 45 PHY1 Register 1 (PHYAD = 0x1, REGAD = 0x1): MII Basic Status ......................................................................... 46 PHY2 Register 1 (PHYAD = 0x2, REGAD = 0x1): MII Basic Status ......................................................................... 46 PHY1 Register 2 (PHYAD = 0x1, REGAD = 0x2): PHYID High................................................................................ 46 PHY2 Register 2 (PHYAD = 0x2, REGAD = 0x2): PHYID High................................................................................ 46 PHY1 Register 3 (PHYAD = 0x1, REGAD = 0x3): PHYID Low................................................................................. 46 PHY2 Register 3 (PHYAD = 0x2, REGAD = 0x3): PHYID Low................................................................................. 46 PHY1 Register 4 (PHYAD = 0x1, REGAD = 0x4): Auto-Negotiation Advertisement Ability ..................................... 47 PHY2 Register 4 (PHYAD = 0x2, REGAD = 0x4): Auto-Negotiation Advertisement Ability ..................................... 47 PHY1 Register 5 (PHYAD = 0x1, REGAD = 0x5): Auto-Negotiation Link Partner Ability ......................................... 47 PHY2 Register 5 (PHYAD = 0x2, REGAD = 0x5): Auto-Negotiation Link Partner Ability ......................................... 47 PHY1 Register 29 (PHYAD = 0x1, REGAD = 0x1D): Not supported ........................................................................ 48 PHY2 Register 29 (PHYAD = 0x2, REGAD = 0x1D): LinkMD Control/Status .......................................................... 48 PHY1 Register 31 (PHYAD = 0x1, REGAD = 0x1F): PHY Special Control/Status................................................... 48 PHY2 Register 31 (PHYAD = 0x2, REGAD = 0x1F): PHY Special Control/Status................................................... 48 Memory Map (8-bit Registers)............................................................................................................................................ 49 Global Registers ............................................................................................................................................................... 49 Port Registers ................................................................................................................................................................... 49 Advanced Control Registers ............................................................................................................................................. 49 Register Description ........................................................................................................................................................... 50 Global Registers (Registers 0 – 15) ................................................................................................................................. 50 Register 0 (0x00): Chip ID0 ....................................................................................................................................... 50 Register 1 (0x01): Chip ID1 / Start Switch................................................................................................................. 50 Register 2 (0x02): Global Control 0 ........................................................................................................................... 50 Register 3 (0x03): Global Control 1 ........................................................................................................................... 51 Register 4 (0x04): Global Control 2 ........................................................................................................................... 51 Register 5 (0x05): Global Control 3 ........................................................................................................................... 52 Register 6 (0x06): Global Control 4 ........................................................................................................................... 53 Register 7 (0x07): Global Control 5 ........................................................................................................................... 53 Register 8 (0x08): Global Control 6 ........................................................................................................................... 54 Register 9 (0x09): Global Control 7 ........................................................................................................................... 54 Register 10 (0x0A): Global Control 8......................................................................................................................... 54 Register 11 (0x0B): Global Control 9......................................................................................................................... 54 Register 12 (0x0C): Global Control 10 ...................................................................................................................... 54 Register 13 (0x0D): Global Control 11 ...................................................................................................................... 54 Register 14 (0x0E): Global Control 12....................................................................................................................... 55 Register 15 (0x0F): Global Control 13....................................................................................................................... 55 Port Registers (Registers 16 – 95) ................................................................................................................................... 56 Register 16 (0x10): Port 1 Control 0.......................................................................................................................... 56 September 2009 5 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Register 32 (0x20): Port 2 Control 0.......................................................................................................................... 56 Register 48 (0x30): Port 3 Control 0.......................................................................................................................... 56 Register 17 (0x11): Port 1 Control 1.......................................................................................................................... 57 Register 33 (0x21): Port 2 Control 1.......................................................................................................................... 57 Register 49 (0x31): Port 3 Control 1.......................................................................................................................... 57 Register 18 (0x12): Port 1 Control 2.......................................................................................................................... 57 Register 34 (0x22): Port 2 Control 2.......................................................................................................................... 57 Register 50 (0x32): Port 3 Control 2.......................................................................................................................... 57 Register 19 (0x13): Port 1 Control 3.......................................................................................................................... 58 Register 35 (0x23): Port 2 Control 3.......................................................................................................................... 58 Register 51 (0x33): Port 3 Control 3.......................................................................................................................... 58 Register 20 (0x14): Port 1 Control 4.......................................................................................................................... 58 Register 36 (0x24): Port 2 Control 4.......................................................................................................................... 58 Register 52 (0x34): Port 3 Control 4.......................................................................................................................... 58 Register 21 (0x15): Port 1 Control 5.......................................................................................................................... 58 Register 37 (0x25): Port 2 Control 5.......................................................................................................................... 58 Register 53 (0x35): Port 3 Control 5.......................................................................................................................... 58 Register 22[6:0] (0x16): Port 1 Q0 ingress data rate limit ......................................................................................... 59 Register 38[6:0] (0x26): Port 2 Q0 ingress data rate limit ......................................................................................... 59 Register 54[6:0] (0x36): Port 3 Q0 ingress data rate limit ......................................................................................... 59 Register 23[6:0] (0x17): Port 1 Q1 ingress data rate limit ......................................................................................... 60 Register 39[6:0] (0x27): Port 2 Q1 ingress data rate limit ......................................................................................... 60 Register 55[6:0] (0x37): Port 3 Q1 ingress data rate limit ......................................................................................... 60 Register 24[6:0] (0x18): Port 1 Q2 ingress data rate limit ......................................................................................... 60 Register 40[6:0] (0x28): Port 2 Q2 ingress data rate limit ......................................................................................... 60 Register 56[6:0] (0x38): Port 3 Q2 ingress data rate limit ......................................................................................... 60 Register 25[6:0] (0x19): Port 1 Q3 ingress data rate limit ......................................................................................... 60 Register 41[6:0] (0x29): Port 2 Q3 ingress data rate limit ......................................................................................... 60 Register 57[6:0] (0x39): Port 3 Q3 ingress data rate limit ......................................................................................... 60 Register 26 (0x1A): Port 1 PHY Special Control/Status............................................................................................ 62 Register 42 (0x2A): Port 2 PHY Special Control/Status............................................................................................ 62 Register 58 (0x3A): Reserved, not applied to port 3 ................................................................................................. 62 Register 27 (0x1B): Port 1 Not Support..................................................................................................................... 62 Register 43 (0x2B): LinkMD Result ........................................................................................................................... 62 Register 59 (0x3B): Reserved, not applied to port 3 ................................................................................................. 62 Register 28 (0x1C): Port 1 Control 12 ....................................................................................................................... 63 Register 44 (0x2C): Port 2 Control 12 ....................................................................................................................... 63 Register 60 (0x3C): Reserved, not applied to port 3 ................................................................................................. 63 Register 29 (0x1D): Port 1 Control 13 ....................................................................................................................... 63 Register 45 (0x2D): Port 2 Control 13 ....................................................................................................................... 63 Register 61 (0x3D): Reserved, not applied to port 3 ................................................................................................. 63 Register 30 (0x1E): Port 1 Status 0........................................................................................................................... 64 Register 46 (0x2E): Port 2 Status 0........................................................................................................................... 64 Register 62 (0x3E): Reserved, not applied to port 3 ................................................................................................. 64 Register 31 (0x1F): Port 1 Status 1 ........................................................................................................................... 65 Register 47 (0x2F): Port 2 Status 1 ........................................................................................................................... 65 Register 63 (0x3F): Port 3 Status 1 ........................................................................................................................... 65 Register 67 (0x43): Reset.......................................................................................................................................... 65 Advanced Control Registers (Registers 96-198) .............................................................................................................. 66 Register 96 (0x60): TOS Priority Control Register 0 ................................................................................................. 66 Register 97 (0x61): TOS Priority Control Register 1 ................................................................................................. 66 Register 98 (0x62): TOS Priority Control Register 2 ................................................................................................. 66 Register 99 (0x63): TOS Priority Control Register 3 ................................................................................................. 67 Register 100 (0x64): TOS Priority Control Register 4 ............................................................................................... 67 Register 101 (0x65): TOS Priority Control Register 5 ............................................................................................... 67 Register 102 (0x66): TOS Priority Control Register 6 ............................................................................................... 68 Register 103 (0x67): TOS Priority Control Register 7 ............................................................................................... 68 September 2009 6 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Register 104 (0x68): TOS Priority Control Register 8 ............................................................................................... 68 Register 105 (0x69): TOS Priority Control Register 9 ............................................................................................... 69 Register 106 (0x6A): TOS Priority Control Register 10............................................................................................. 69 Register 107 (0x6B): TOS Priority Control Register 11............................................................................................. 69 Register 108 (0x6C): TOS Priority Control Register 12............................................................................................. 70 Register 109 (0x6D): TOS Priority Control Register 13............................................................................................. 70 Register 111 (0x6F): TOS Priority Control Register 15 ............................................................................................. 71 Registers 112 to 117.................................................................................................................................................. 71 Register 112 (0x70): MAC Address Register 0 ......................................................................................................... 71 Register 113 (0x71): MAC Address Register 1 ......................................................................................................... 71 Register 114 (0x72): MAC Address Register 2 ......................................................................................................... 71 Register 115 (0x73): MAC Address Register 3 ......................................................................................................... 71 Register 116 (0x74): MAC Address Register 4 ......................................................................................................... 71 Register 117 (0x75): MAC Address Register 5 ......................................................................................................... 71 Registers 118 to 120.................................................................................................................................................. 72 Register 118 (0x76): User Defined Register 1........................................................................................................... 72 Register 119 (0x77): User Defined Register 2........................................................................................................... 72 Register 120 (0x78): User Defined Register 3........................................................................................................... 72 Registers 121 to 131.................................................................................................................................................. 72 Register 121 (0x79): Indirect Access Control 0 ......................................................................................................... 72 Register 122 (0x7A): Indirect Access Control 1 ........................................................................................................ 72 Register 123 (0x7B): Indirect Data Register 8........................................................................................................... 72 Register 124 (0x7C): Indirect Data Register 7........................................................................................................... 72 Register 125 (0x7D): Indirect Data Register 6........................................................................................................... 73 Register 126 (0x7E): Indirect Data Register 5........................................................................................................... 73 Register 127 (0x7F): Indirect Data Register 4 ........................................................................................................... 73 Register 128 (0x80): Indirect Data Register 3 ........................................................................................................... 73 Register 129 (0x81): Indirect Data Register 2 ........................................................................................................... 73 Register 130 (0x82): Indirect Data Register 1 ........................................................................................................... 73 Register 131 (0x83): Indirect Data Register 0 ........................................................................................................... 73 Register 147~142(0x93~0x8E): Station Address 1 and 2 ......................................................................................... 73 Register 153~148 (0x99~0x94): Station Address 1 and 2 ........................................................................................ 73 Register 154[6:0] (0x9A): Port 1 Q0 Egress data rate limit ....................................................................................... 74 Register 158[6:0] (0x9E): Port 2 Q0 Egress data rate limit ....................................................................................... 74 Register 162[6:0] (0xA2): Port 3 Q0 Egress data rate limit ....................................................................................... 74 Register 155[6:0] (0x9B): Port 1 Q1 Egress data rate limit ....................................................................................... 74 Register 159[6:0] (0x9F): Port 2 Q1 Egress data rate limit ....................................................................................... 74 Register 163[6:0] (0xA3): Port 3 Q1 Egress data rate limit ....................................................................................... 74 Register 156[6:0] (0x9C): Port 1 Q2 Egress data rate limit ....................................................................................... 74 Register 160[6:0] (0xA0): Port 2 Q2 Egress data rate limit ....................................................................................... 74 Register 164[6:0] (0xA4): Port 3 Q2 Egress data rate limit ....................................................................................... 74 Register 157[6:0] (0x9D): Port 1 Q3 Egress data rate limit ....................................................................................... 74 Register 161[6:0] (0xA1): Port 2 Q3 Egress data rate limit ....................................................................................... 74 Register 165[6:0] (0xA5): Port 3 Q3 Egress data rate limit ....................................................................................... 74 Register 166 (0xA6): KSZ8873 mode indicator ......................................................................................................... 75 Register 167 (0xA7): High Priority Packet Buffer Reserved for Q0........................................................................... 75 Register 168 (0xA8): High Priority Packet Buffer Reserved for Q1........................................................................... 75 Register 169 (0xA9): High Priority Packet Buffer Reserved for Q2........................................................................... 75 Register 170 (0xAA): High Priority Packet Buffer Reserved for Q3 .......................................................................... 75 Register 171 (0xAB): PM Usage Flow Control Select Mode 1 .................................................................................. 75 Register 172 (0xAC): PM Usage Flow Control Select Mode 2.................................................................................. 75 Register 173 (0xAD): PM Usage Flow Control Select Mode 3.................................................................................. 75 Register 174 (0xAE): PM Usage Flow Control Select Mode 4 .................................................................................. 76 Register 175 (0xAF): TXQ Split for Q0 in Port 1........................................................................................................ 76 Register 176 (0xB0): TXQ Split for Q1 in Port 1........................................................................................................ 76 Register 177 (0xB1): TXQ Split for Q2 in Port 1........................................................................................................ 76 Register 178 (0xB2): TXQ Split for Q3 in Port 1........................................................................................................ 76 September 2009 7 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Register 179 (0xB3): TXQ Split for Q0 in Port 2........................................................................................................ 76 Register 180 (0xB4): TXQ Split for Q1 in Port 2........................................................................................................ 76 Register 181 (0xB5): TXQ Split for Q2 in Port 2........................................................................................................ 77 Register 182 (0xB6): TXQ Split for Q3 in Port 2........................................................................................................ 77 Register 183 (0xB7): TXQ Split for Q0 Port 3............................................................................................................ 77 Register 184 (0xB8): TXQ Split for Q1 Port 3............................................................................................................ 77 Register 185 (0xB9): TXQ Split for Q2 in Port 3........................................................................................................ 77 Register 186 (0xBA): TXQ Split for Q3 in Port 3 ....................................................................................................... 77 Register 187 (0xBB): Interrupt enable register .......................................................................................................... 77 Register 188 (0xBC): Link Change Interrupt ............................................................................................................. 78 Register 189 (0xBD): Force Pause Off Iteration Limit Enable................................................................................... 78 Register 192 (0xC0): Fiber Signal Threshold ............................................................................................................ 78 Register 194 (0xC2): Insert SRC PVID ..................................................................................................................... 79 Register 195 (0xC3): Power Management and LED Mode ....................................................................................... 79 Register 196(0xC4): Sleep Mode .............................................................................................................................. 80 Register 198 (0xC6): Forward Invalid VID Frame and Host Mode............................................................................ 80 Static MAC Address Table ................................................................................................................................................. 81 VLAN Table .......................................................................................................................................................................... 83 Dynamic MAC Address Table ............................................................................................................................................ 84 MIB (Management Information Base) Counters............................................................................................................... 85 Additional MIB Counter Information........................................................................................................................... 87 Absolute Maximum Ratings ............................................................................................................................................... 88 Operating Ratings ............................................................................................................................................................... 88 Electrical Characteristics ................................................................................................................................................... 88 EEPROM Timing .............................................................................................................................................................. 90 MII Timing ......................................................................................................................................................................... 91 RMII Timing....................................................................................................................................................................... 93 2 I C Slave Mode Timing ..................................................................................................................................................... 94 SPI Timing ........................................................................................................................................................................ 96 Auto-Negotiation Timing ................................................................................................................................................... 98 Reset Timing..................................................................................................................................................................... 99 Reset Circuit ................................................................................................................................................................... 100 Selection of Isolation Transformers................................................................................................................................ 101 Selection of Reference Crystal ........................................................................................................................................ 101 Package Information ......................................................................................................................................................... 102 September 2009 8 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL List of Figures Figure 1. Typical Straight Cable Connection .................................................................................................................19 Figure 2. Typical Crossover Cable Connection .............................................................................................................20 Figure 3. Auto-Negotiation and Parallel Operation ........................................................................................................21 Figure 4. Destination Address Lookup Flow Chart, Stage 1..........................................................................................25 Figure 5. Destination Address Resolution Flow Chart, Stage 2.....................................................................................26 Figure 6. 802.1p Priority Field Format ...........................................................................................................................33 Figure 7. Tail Tag Frame Format ...................................................................................................................................35 Figure 8. Tail Tag Rules.................................................................................................................................................36 Figure 9. EEPROM Configuration Timing Diagram .......................................................................................................38 Figure 10. SPI Write Data Cycle ....................................................................................................................................40 Figure 11. SPI Read Data Cycle ....................................................................................................................................40 Figure 12. SPI Multiple Write .........................................................................................................................................40 Figure 13. SPI Multiple Read .........................................................................................................................................41 Figure 14. Far-End Loopback Path ................................................................................................................................42 Figure 15. Near-end (Remote) Loopback Path..............................................................................................................43 Figure 16. EEPROM Interface Input Timing Diagram....................................................................................................90 Figure 17. EEPROM Interface Output Timing Diagram .................................................................................................90 Figure 18. MAC Mode MII Timing – Data Received from MII ........................................................................................91 Figure 19. MAC Mode MII Timing – Data Transmitted to MII .......................................................................................91 Figure 20. PHY Mode MII Timing – Data Received from MII.........................................................................................92 Figure 21. PHY Mode MII Timing – Data Transmitted to MII.........................................................................................92 Figure 22. RMII Timing – Data Received from RMII ......................................................................................................93 Figure 23. RMII Timing – Data Transmitted to RMII ......................................................................................................93 Figure 24. I2C Input Timing............................................................................................................................................94 Figure 25. I2C Start Bit Timing.......................................................................................................................................94 Figure 26. I2C Stop Bit Timing .......................................................................................................................................94 Figure 27. I2C Output Timing.........................................................................................................................................94 Figure 28. SPI Input Timing ...........................................................................................................................................96 Figure 29. SPI Output Timing.........................................................................................................................................97 Figure 30. Auto-Negotiation Timing ...............................................................................................................................98 Figure 31. Reset Timing.................................................................................................................................................99 Figure 32. Recommended Reset Circuit......................................................................................................................100 Figure 33. Recommended Reset Circuit for interfacing with CPU/FPGA Reset Output..............................................100 Figure 34. 64-Pin LQFP Package ................................................................................................................................103 September 2009 9 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL List of Tables Table 1. FX Signal Threshold.........................................................................................................................................18 Table 2. MDI/MDI-X Pin Definitions ...............................................................................................................................18 Table 3. Internal Function Block Status ..........................................................................................................................23 Table 4. MII Signals .......................................................................................................................................................28 Table 5. RMII Clock Setting ............................................................................................................................................29 Table 6. RMII Signal Description....................................................................................................................................30 Table 7. RMII Signal Connections..................................................................................................................................30 Table 8. MII Management Interface Frame Format .......................................................................................................31 Table 9. Serial Management Interface (SMI) Frame Format .........................................................................................31 Table 10. FID+DA Lookup in VLAN Mode .....................................................................................................................32 Table 11. FID+SA Lookup in VLAN Mode .....................................................................................................................32 Table 12. Spanning Tree States ....................................................................................................................................34 Table 13. SPI Connections ............................................................................................................................................39 Table 14. Data Rate Limit Table ....................................................................................................................................61 Table 15. Format of Static MAC Table (8 Entries) .........................................................................................................81 Table 16. Format of Static VLAN Table (16 Entries)......................................................................................................83 Table 17. Format of Dynamic MAC Address Table (1K Entries) ...................................................................................84 Table 18. Format of “Per Port” MIB Counters ................................................................................................................85 Table 19. Port 1’s “Per Port” MIB Counters Indirect Memory Offsets............................................................................86 Table 20. Format of “All Port Dropped Packet” MIB Counters.......................................................................................86 Table 21. “All Port Dropped Packet” MIB Counters Indirect Memory Offsets................................................................87 Table 22. EEPROM Timing Parameters ........................................................................................................................90 Table 23. MAC Mode MII Timing Parameters................................................................................................................91 Table 24. PHY Mode MII Timing Parameters ................................................................................................................92 Table 25. RMII Timing Parameters ................................................................................................................................93 Table 26. I2C Timing Parameters ..................................................................................................................................95 Table 27. SPI Input Timing Parameters.........................................................................................................................96 Table 28. SPI Output Timing Parameters ......................................................................................................................97 Table 29. Auto-Negotiation Timing Parameters.............................................................................................................98 Table 30. Reset Timing Parameters ..............................................................................................................................99 Table 31. Transformer Selection Criteria .....................................................................................................................101 Table 32. Qualified Single Port Magnetics...................................................................................................................101 Table 33. Typical Reference Crystal Characteristics ...................................................................................................101 September 2009 10 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Pin Description and I/O Assignment Pin Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Pin Name RXM1 RXP1 AGND TXM1 TXP1 VDDA_3.3 AGND ISET VDDA_1.8 RXM2 RXP2 AGND TXM2 TXP2 FXSD2 PWRND X1 Type I/O I/O Gnd I/O I/O P Gnd O P I/O I/O Gnd I/O I/O I Ipu I (1) Description Physical receive or transmit signal (– differential) Physical receive or transmit signal (+ differential) Analog ground Physical transmit or receive signal (– differential) Physical transmit or receive signal (+ differential) 3.3V analog VDD Analog ground. Set physical transmit output current. Pull-down this pin with a 11.8K 1% resistor to ground. 1.8 analog VDD input power supply from VDDCO (pin 56) through external Ferrite bead and capacitor. Physical receive or transmit signal (– differential) Physical receive or transmit signal (+ differential) Analog ground. Physical transmit or receive signal (– differential) Physical transmit or receive signal (+ differential) MLL/RLL: connect to analog ground. FLL: Fiber signal detect / factory test pin Chip power down input (active low). 25 or 50MHz crystal/oscillator clock connections. Pins (X1, X2) connect to a crystal. If an oscillator is used, X1 connects to a 3.3V tolerant oscillator and X2 is a no connect. 18 19 20 X2 SMTXEN3 SMTXD33/ EN_REFCLKO_3 O I lpu/I Note: Clock is +/- 50ppm for both crystal and oscillator. Switch MII transmit enable MLL/FLL: Switch MII transmit data bit 3 RLL: Strap option: RMII mode Clock selection PU = Enable REFCLKO_3 output PD = Disable REFCLKO_3 output 21 22 23 24 25 26 SMTXD32/ NC SMTXD31 SMTXD30 GND VDDIO SMTXC3/ REFCLKI_3 I I I Gnd P I/O MLL/FLL: Switch MII transmit data bit 2 RLL: No connection Switch MII transmit data bit 1 Switch MII transmit data bit 0 Digital ground 3.3V, 2.5V or 1.8V digital VDD input power supply for IO with well decoupling capacitors. MLL/FLL: Switch MII transmit clock (MII modes only) Output in PHY MII mode and SNI mode Input in MAC MII and RMII mode. RLL: Reference clock input Note: pull up or down is needed if internal reference clock is used in RLL. Switch MII transmit error in MII MAC mode MII link indicator from host in MII PHY mode. High = No link. 27 SMTXER3/ MII_LINK_3 I September 2009 11 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Pin Number 28 Pin Name SMRXDV3 Type lpu/O (1) Description Switch MII receive data valid Strap option: MII mode selection PU = PHY mode. PD = MAC mode 29 SMRXD33/ REFCLKO_3 lpu/O MLL/FLL: Switch MII receive data bit 3/ RLL: Output reference clock in RMII mode. Strap option: enable auto-negotiation on port 2 (P2ANEN) PU = enable PD = disable 30 SMRXD32 Ipu/O Switch MII receive data bit 2 Strap option: Force the speed on port 2 (P2SPD) PU = force port 2 to 100BT if P2ANEN = 0 PD = force port 2 to 10BT if P2ANEN = 0 31 SMRXD31 Ipu/O Switch MII receive data bit 1 Strap option: Force duplex mode (P2DPX) PU = port 2 default to full duplex mode if P2ANEN = 1 and autonegotiation fails. Force port 2 in full duplex mode if P2ANEN = 0. PD (default) = Port 2 default to half duplex mode if P2ANEN = 1 and auto-negotiation fails. Force port 2 in half duplex mode if P2ANEN = 0. 32 33 GND SMRXD30 Gnd lpu/O Digital ground Switch MII receive data bit 0 Strap option: Force flow control on port 2 (P2FFC) PU = always enable (force) port 2 flow control feature. PD = port 2 flow control feature enable is determined by autonegotiation result. 34 35 36 SCRS3/ NC SCOL3/ NC SMRXC3/ NC I/O I/O I/O MLL/FLL: Switch MII carrier sense RLL: No connection, Internal pull up. MLL/FLL: Switch MII collision detect RLL: No connection, Internal pull up. MLL/FLL: Switch MII receive clock. Output in PHY MII mode Input in MAC MII mode RLL: No Connection. 37 38 39 GND VDDC SPIQ Gnd P lpu/O Digital ground 1.8 digital VDD input power supply from VDDCO (pin 58) through external Ferrite bead and capacitor. SPI slave mode: serial data output Note: an external pull-up is needed on this pin when it is in use. Strap option: XCLK Frequency Selection PU = 25 MHz PD = 50 MHz 40 SPISN I SPI slave mode: chip select (active low) When SPISN is high, the KSZ8873MLL/FLL/RLL is deselected and SPIQ is held in high impedance state. A high-to-low transition is used to initiate SPI data transfer. Note: an external pull-up is needed on this pin when it is in use. September 2009 12 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Pin Number 41 Pin Name INTRN Type Opu (1) Description Interrupt Active Low signal to host CPU to indicate an interrupt status bit is set when lost link. Refer to register 187 and 188. SPI slave mode / I C slave mode: clock input I C master mode: clock output MIIM clock input 2 42 SCL_MDC I/O 2 43 SDA_MDIO I/O SPI slave mode: serial data input I C master/slave mode: serial data input/output MIIM: data input/out Note: an external pull-up is needed on this pin when it is in use. 2 44 45 46 47 NC P1ANEN P1SPD P1DPX NC Ipu/O Ipu/O Ipu/O Unused pin. No external connection. PU = enable auto-negotiation on port 1 PD = disable auto-negotiation on port 1 PU = force port 1 to 100BT if P1ANEN = 0 PD = force port 1 to 10BT if P1ANEN = 0 PU = port 1 default to full duplex mode if P1ANEN = 1 and autonegotiation fails. Force port 1 in full-duplex mode if P1ANEN = 0. PD = port 1 default to half duplex mode if P1ANEN = 1 and autonegotiation fails. Force port 1 in half duplex mode if P1ANEN = 0. 48 49 50 GND VDDC P1FFC Gnd P Ipu/O Digital ground 1.8 digital VDD input power supply from VDDCO (pin 56) through external Ferrite bead and capacitor. PU = always enable (force) port 1 flow control feature PD = port 1 flow control feature enable is determined by auto negotiation result. 51 52 53 54 55 56 P3SPD NC NC VDDIO GND VDDCO Ipd/O NC NC P Gnd P PU = force port 3 to 10BT PD = force port 3 to 100BT Unused pin. No external connection. Unused pin. No external connection. 3.3V, 2.5V or 1.8V digital VDD input power supply for IO with well decoupling capacitors. Digital ground 1.8V digital core voltage output (internal 1.8V LDO regulator output), this 1.8V output pin provides power to both VDDA_1.8 and VDDC pins. These 1.8V input pins directly connect to external 1.8V when VDDIO is 1.8V. Note: Internally LDO regulator input is from VDDIO. Do not connect an external power supply to this pin. This pin is used for connecting external filter (Ferrite bead and capacitors). 57 58 NC P1LED1 NC Ipu/O Unused pin. No external connection. Port 1 LED Indicators: Default: Speed (refer to register 195 bit[5:4]) Strap option: Port 3 flow control selection(P3FFC) PU = always enable (force) port 3 flow control feature PD = disable September 2009 13 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Pin Number 59 Pin Name P1LED0 Type Ipd/O (1) Description Port 1 LED Indicators: Default: Link/Act. (refer to register 195 bit[5:4]) Strap option: Port 3 duplex mode selection(P3DPX) PU = port 3 default to half duplex mode PD = port 3 default to full duplex mode Port 2 LED Indicators: Default: Speed (refer to register 195 bit[5:4]) Strap option: Serial bus configuration Port 2 LED Indicators: Default: Link/Act. (refer to register 195 bit[5:4]) Strap option: Serial bus configuration Serial bus configuration pins to select mode of access to KSZ8873MLL/FLL/RLL internal registers. [P2LED1, P2LED0] = [0, 0] — I C master (EEPROM) mode (If EEPROM is not detected, the KSZ8873MLL/FLL/RLL will be configured with the default values of its internal registers and the values of its strap-in pins.) Interface Signals SPIQ SCL_MDC SDA_MDIO SPISN Type O O I/O I Description Not used (tri-stated) I2C clock I2C data I/O Not used 2 2 60 P2LED1 Ipu/O [P2LED1, P2LED0] = [0, 1] — I C slave mode 2 The external I C master will drive the SCL_MDC clock. The KSZ8873MLL/FLL/RLL device addresses are: 1011_1111 1011_1110 SPIQ SCL_MDC SDA_MDIO SPISN Type O I I/O I Description Not used (tri-stated) I2C clock I2C data I/O Not used Interface Signals [P2LED1, P2LED0] = [1, 0] — SPI slave mode Interface Signals SPIQ SCL_MDC SDA_MDIO SPISN Type O I I I Description SPI data out SPI clock SPI data In SPI chip select [P2LED1, P2LED0] = [1, 1] – SMI/MIIM-mode In SMI mode, the KSZ8873MLL/FLL/RLL provides access to all its internal 8-bit registers through its SCL_MDC and SDA_MDIO pins. In MIIM mode, the KSZ8873MLL/FLL/RLL provides access to its 16-bit MIIM registers through its SDC_MDC and SDA_MDIO pins. September 2009 14 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Pin Number 61 62 63 64 Note: Pin Name P2LED0 RSTN FXSD1 VDDA_1.8 Type Ipu/O Ipu I P (1) Description Hardware reset pin (active low) MLL/RLL: connect to analog ground FLL: Fiber signal detect 1.8 analog VDD input power supply from VDDCO (pin 56) through external Ferrite bead and capacitor. 1. Speed : Low (100BASE-TX), High (10BASE-T) Full duplex : Low (full duplex), High (half duplex) Act : Toggle (transmit / receive activity) Link : Low (link), High (no link) 2. P = Power supply. Gnd = Ground. I = Input. Ipu/O = Input with internal pull-up during reset, output pin otherwise. Ipu = Input w/ internal pull-up. Ipd = Input w/ internal pull-down. Opu = Output w/ internal pull-up. Opd = Output w/ internal pull-down. September 2009 15 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Pin Configuration 64-Pin LQFP (Top View) September 2009 16 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Functional Description The KSZ8873MLL/FLL/RLL contains two 10/100 physical layer transceivers and three MAC units with an integrated Layer 2 managed switch. The KSZ8873MLL/FLL/RLL has the flexibility to reside in either a managed or unmanaged design. In a managed design, the host processor has complete control of the KSZ8873MLL/FLL/RLL via the SMI interface, MIIM interface, SPI bus, or 2 I C bus. An unmanaged design is achieved through I/O strapping and/or EEPROM programming at system reset time. On the media side, the KSZ8873MLL/FLL/RLL supports IEEE 802.3 10BASE-T and 100BASE-TX on both PHY ports. Physical signal transmission and reception are enhanced through the use of patented analog circuitries that make the design more efficient and allow for lower power consumption and smaller chip die size. Functional Overview: Physical Layer Transceiver 100BASE-TX Transmit The 100BASE-TX transmit function performs parallel-to-serial conversion, 4B/5B coding, scrambling, NRZ-to-NRZI conversion, and MLT3 encoding and transmission. The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125MHz serial bit stream. The data and control stream is then converted into 4B/5B coding, followed by a scrambler. The serialized data is further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output. The output current is set by an external1% 11.8KΩ resistor for the 1:1 transformer ratio. The output signal has a typical rise/fall time of 4ns and complies with the ANSI TP-PMD standard regarding amplitude balance, overshoot, and timing jitter. The wave-shaped 10BASE-T output is also incorporated into the 100BASE-TX transmitter. 100BASE-TX Receive The 100BASE-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion. The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair cable. Since the amplitude loss and phase distortion is a function of the cable length, the equalizer must adjust its characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on comparisons of incoming signal strength against some known cable characteristics, and then tunes itself for optimization. This is an ongoing process and self-adjusts against environmental changes such as temperature variations. Next, the equalized signal goes through a DC restoration and data conversion block. The DC restoration circuit is used to compensate for the effect of baseline wander and to improve the dynamic range. The differential data conversion circuit converts the MLT3 format back to NRZI. The slicing threshold is also adaptive. The clock recovery circuit extracts the 125MHz clock from the edges of the NRZI signal. This recovered clock is then used to convert the NRZI signal into the NRZ format. This signal is sent through the de-scrambler followed by the 4B/5B decoder. Finally, the NRZ serial data is converted to the MII format and provided as the input data to the MAC. PLL Clock Synthesizer The KSZ8873MLL/FLL/RLL generates 125MHz, 62.5MHz, and 31.25MHz clocks for system timing. Internal clocks are generated from an external 25MHz or 50MHz crystal or oscillator. KSZ8873RLL can generates a 50MHz reference clock for the RMII interface Scrambler/De-scrambler (100BASE-TX Only) The purpose of the scrambler is to spread the power spectrum of the signal to reduce electromagnetic interference (EMI) and baseline wander. Transmitted data is scrambled through the use of an 11-bit wide linear feedback shift register (LFSR). The scrambler generates a 2047-bit non-repetitive sequence, and the receiver then de-scrambles the incoming data stream using the same sequence as at the transmitter. 100BASE-FX Operation 100BASE-FX operation is similar to 100BASE-TX operation with the differences being that the scrambler/de-scrambler and MLT3 encoder/decoder are bypassed on transmission and reception. In addition, auto-negotiation is bypassed and auto MDI/MDI-X is disabled. September 2009 17 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL 100BASE-FX Signal Detection In 100BASE-FX operation, FXSD (fiber signal detect), input pin 15 and 63, is usually connected to the fiber transceiver SD (signal detect) output pin. The fiber signal threshold can be selected by register 192 bit 7 and 6 respectively for port 2 and port 1 , When FXSD is less than the threshold, no fiber signal is detected and a far-end fault (FEF) is generated. When FXSD is over the threshold, the fiber signal is detected. Alternatively, the designer may choose not to implement the FEF feature. In this case, the FXSD input pin is tied high to force 100BASE-FX mode. 100BASE-FX signal detection is summarized in the following table: Register 192 bit 7 (port 2), bit 6 (port 1) 1 0 Fiber Signal Threshold at FXSD 2.0V 1.2V Table 1. FX Signal Threshold To ensure proper operation, a resistive voltage divider is recommended to adjust the fiber transceiver SD output voltage swing to match the FXSD pin’s input voltage threshold. 100BASE-FX Far-End Fault A far-end fault (FEF) occurs when the signal detection is logically false on the receive side of the fiber transceiver. The KSZ8873FLL detects a FEF when its FXSD input is Fiber Signal Threshold. When a FEF is detected, the KSZ8873FLL signals its fiber link partner that a FEF has occurred by sending 84 1’s followed by a zero in the idle period between frames. By default, FEF is enabled. FEF can be disabled through register setting. 10BASE-T Transmit The 10BASE-T driver is incorporated with the 100BASE-TX driver to allow for transmission using the same magnetics. They are internally wave-shaped and pre-emphasized into outputs with a typical 2.3V amplitude. The harmonic contents are at least 27dB below the fundamental frequency when driven by an all-ones Manchester-encoded signal. 10BASE-T Receive On the receive side, input buffers and level detecting squelch circuits are employed. A differential input receiver circuit and a phaselocked loop (PLL) perform the decoding function. The Manchester-encoded data stream is separated into clock signal and NRZ data. A squelch circuit rejects signals with levels less than 400mV or with short pulse widths to prevent noise at the RXP-or-RXM input from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL locks onto the incoming signal and the KSZ8873MLL/FLL/RLL decodes a data frame. The receiver clock is maintained active during idle periods in between data reception. MDI/MDI-X Auto Crossover To eliminate the need for crossover cables between similar devices, the KSZ8873MLL/FLL/RLL supports HP Auto MDI/MDI-X and IEEE 802.3u standard MDI/MDI-X auto crossover. HP Auto MDI/MDI-X is the default. The auto-sense function detects remote transmit and receive pairs and correctly assigns transmit and receive pairs for the KSZ8873MLL/FLL/RLL device. This feature is extremely useful when end users are unaware of cable types, and also, saves on an additional uplink configuration connection. The auto-crossover feature can be disabled through the port control registers, or MIIM PHY registers. The IEEE 802.3u standard MDI and MDI-X definitions are: MDI RJ-45 Pins 1 2 3 6 Signals TD+ TDRD+ RDRJ-45 Pins 1 2 3 6 MDI-X Signals RD+ RDTD+ TD- Table 2. MDI/MDI-X Pin Definitions September 2009 18 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Straight Cable A straight cable connects an MDI device to an MDI-X device, or an MDI-X device to an MDI device. The following diagram depicts a typical straight cable connection between a NIC card (MDI) and a switch, or hub (MDI-X). 10/100 Ethernet Media Dependent Interface 10/100 Ethernet Media Dependent Interface 1 Transmit Pair 2 3 4 Receive Pair 5 6 7 8 Straight Cable 1 Receive Pair 2 3 4 Transmit Pair 5 6 7 8 Modular Connector (RJ-45) NIC Modular Connector (RJ-45) HUB (Repeater or Switch) Figure 1. Typical Straight Cable Connection September 2009 19 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Crossover Cable A crossover cable connects an MDI device to another MDI device, or an MDI-X device to another MDI-X device. The following diagram shows a typical crossover cable connection between two switches or hubs (two MDI-X devices). 10/100 Ethernet Media Dependent Interface 10/100 Ethernet Media Dependent Interface 1 Receive Pair 2 3 4 Transmit Pair 5 6 7 8 Crossover Cable 1 Receive Pair 2 3 4 Transmit Pair 5 6 7 8 Modular Connector (RJ-45) HUB (Repeater or Switch) Modular Connector (RJ-45) HUB (Repeater or Switch) Figure 2. Typical Crossover Cable Connection September 2009 20 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Auto-Negotiation The KSZ8873MLL/FLL/RLL conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3u specification. Auto-negotiation allows unshielded twisted pair (UTP) link partners to select the best common mode of operation. In autonegotiation, link partners advertise their capabilities across the link to each other. If auto-negotiation is not supported or the KSZ8873MLL/FLL/RLL link partner is forced to bypass auto-negotiation, the KSZ8873MLL/FLL/RLL sets its operating mode by observing the signal at its receiver. This is known as parallel detection, and allows the KSZ8873MLL/FLL/RLL to establish link by listening for a fixed signal protocol in the absence of auto-negotiation advertisement protocol. The link up process is shown in the following flow diagram. Start Auto Negotiation Force Link Setting N o Parallel Operation Yes Bypass Auto Negotiation and Set Link Mode Attempt Auto Negotiation Listen for 100BASE-TX Idles Listen for 10BASE-T Link Pulses No Join Flow Link Mode Set ? Yes Link Mode Set Figure 3. Auto-Negotiation and Parallel Operation September 2009 21 M9999-092309-1.2 Micrel, Inc. ® KSZ8873MLL/FLL/RLL LinkMD Cable Diagnostics ®. ® Port 2 of KSZ8873MLL/FLL/RLL supports the LinkMD The LinkMD feature utilizes time domain reflectometry (TDR) to analyze the cabling plant for common cabling problems such as open circuits, short circuits and impedance mismatches. ® LinkMD works by sending a pulse of known amplitude and duration down the MDI and MDI-X pairs and then analyzes the shape of the reflected signal. Timing the pulse duration gives an indication of the distance to the cabling fault with maximum distance of 200m and accuracy of ±2m. Internal circuitry displays the TDR information in a user-readable digital format. Note: Cable diagnostics are only valid for copper connections and do not support fiber optic operation. Access ® ® LinkMD is initiated by accessing registers {42,43}, the LinkMD Control/Status registers for port 2, and in conjunction with registers 45, Port Control Register 13. ® Alternatively, the MIIM PHY registers 0 and 29 can be used for LinkMD access. Usage ® The following is a sample procedure for using LinkMD with registers {42,43,45} on port 2. 1. Disable auto MDI/MDI-X by writing a ‘1’ to register 45, bit [2] to enable manual control over the differential pair used to ® transmit the LinkMD pulse. 2. Start cable diagnostic test by writing a ‘1’ to register 42, bit [4]. This enable bit is self-clearing. 3. Wait (poll) for register 42, bit [4] to return a ‘0’, indicating cable diagnostic test is completed. 4. Read cable diagnostic test results in register 42, bits [6:5]. The results are as follows: 00 = normal condition (valid test) 01 = open condition detected in cable (valid test) 10 = short condition detected in cable (valid test) 11 = cable diagnostic test failed (invalid test) The ‘11’ case, invalid test, occurs when the KSZ8873MLL/FLL/RLL is unable to shut down the link partner. In this instance, the test is not run, since it would be impossible for the KSZ8873MLL/FLL/RLL to determine if the detected signal is a reflection of the signal generated or a signal from another source. 5. Get distance to fault by concatenating register 42, bit [0] and register 43, bits [7:0]; and multiplying the result by a constant of 0.4. The distance to the cable fault can be determined by the following formula: D (distance to cable fault) = 0.4 x {(register 26, bit [0]),(register 27, bits [7:0])} D (distance to cable fault) is expressed in meters. Concatenated value of registers 42 and 43 is converted to decimal before multiplying by 0.4. The constant (0.4) may be calibrated for different cabling conditions, including cables with a velocity of propagation that varies significantly from the norm. Functional Overview: Power Management The KSZ8873MLL/FLL/RLL supports a full chip hardware power down mode. When activated (pin PWRDN =0), the entire chip is powered down. The KSZ8873MLL/FLL/RLL can also use a single 2.5V power supply instead of 3.3V. It will save about 30% of the power compared to 3.3V power supply. The KSZ8873MLL/FLL/RLL supports enhanced power management feature in low power state with energy detection to ensure low-power dissipation during device idle periods. There are five operation modes under the power management function which is controlled by two bits in Register 195 (0xC3) and one bit in Register 29 (0x1D),45(0x2D) as shown below: Register 195 bit[5:4] = 00 Normal Operation Mode Register 195 bit[5:4] = 01 Energy Detect Mode September 2009 22 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Register 195 bit[5:4] = 10 Soft Power Down Mode Register 195 bit[5:4] = 11 Power Saving Mode Register 29,45 bit 3 =1 Port Based Power Down Mode Table 1 indicates all internal function blocks status under four different power management operation modes. KSZ8873MLL/FLL/RLL Function Blocks Normal Mode Internal PLL Clock Tx/Rx PHY MAC Host Interface Enabled Enabled Enabled Enabled Power Management Operation Modes Power Saving Mode Enabled Rx unused block disabled Enabled Enabled Energy Detect Mode Disabled Energy detect at Rx Disabled Disabled Soft Power Down Mode Disabled Disabled Disabled Disabled Table 3. Internal Function Block Status Normal Operation Mode This is the default setting bit[5:4]=00 in register 195 after the chip power-up or hardware reset . When KSZ8873MLL/FLL/RLL is in this normal operation mode, all PLL clocks are running, PHY and MAC are on and the host interface is ready for CPU read or write. During the normal operation mode, the host CPU can set the bit[5:4] in register 195 to transit the current normal operation mode to any one of the other three power management operation modes. Energy Detect Mode The energy detect mode provides a mechanism to save more power than in the normal operation mode when the KSZ8873MLL/FLL/RLL is not connected to an active link partner. In this mode, the device will save up to 50% of the power. If the cable is not plugged, the KSZ8873MLL/FLL/RLL can automatically enter to a low power state, a.k.a., the energy detect mode. In this mode, KSZ8873MLL/FLL/RLL will keep transmitting 120ns width pulses at 1 pulse/s rate. Once activity resumes due to plugging a cable or attempting by the far end to establish link, the KSZ8873MLL/FLL/RLL can automatically power up to normal power state in energy detect mode. Energy detect mode consists of two states, normal power state and low power state. While in low power state, the KSZ8873MLL/FLL/RLL reduces power consumption by disabling all circuitry except the energy detect circuitry of the receiver. The energy detect mode is entered by setting bit[5:4]=01 in register 195. When the KSZ8873MLL/FLL/RLL is in this mode, it will monitor the cable energy. If there is no energy on the cable for a time longer than pre-configured value at bit[7:0] Go-Sleep time in register 196, KSZ8873MLL/FLL/RLL will go into a low power state. When KSZ8873MLL/FLL/RLL is in low power state, it will keep monitoring the cable energy. Once the energy is detected from the cable, KSZ8873MLL/FLL/RLL will enter normal power state. When KSZ8873MLL/FLL/RLL is at normal power state, it is able to transmit or receive packet from the cable. Soft Power Down Mode The soft power down mode is entered by setting bit[1:0]=10 in register 195. When KSZ8873MLL/FLL/RLL is in this mode, all PLL clocks are disabled, the PHY and the MAC are off, all internal registers value will not change. Any dummy host access will wake-up this device from current soft power down mode to normal operation mode. Power Saving Mode The power saving mode is entered when auto-negotiation mode is enabled, cable is disconnected, and by setting bit[1:0]=11 in register 195. When KSZ8873MLL/FLL/RLL is in this mode, all PLL clocks are enabled, MAC is on, all internal registers value will not change, and host interface is ready for CPU read or write. In this mode, it mainly controls the PHY transceiver on or off based on line status to achieve power saving. The PHY remains transmitting and only turns off the unused receiver block. Once activity resumes due to plugging a cable or attempting by the far end to establish link, the KSZ8873MLL/FLL/RLL can automatically enabled the PHY power up to normal power state from power saving mode. During this power saving mode, the host CPU can set bit[1:0] =0 in register 195 to transit the current power saving mode to any one of the other three power management operation modes. The KSZ8873MLL/FLL/RLL also features a per-port power down mode. To save power, a PHY port that is not in use can be powered down via port control register, or MIIM PHY register. Port based Power Down Mode September 2009 23 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL In addition, the KSZ8873MLL/FLL/RLL features a per-port power down mode. To save power, a PHY port that is not in use can be powered down via port control register 29 or 45 bit 3, or MIIM PHY register. Functional Overview: MAC and Switch Address Lookup The internal lookup table stores MAC addresses and their associated information. It contains a 1K unicast address table plus switching information. The KSZ8873MLL/FLL/RLL is guaranteed to learn 1K addresses and distinguishes itself from hash-based lookup tables, which depending on the operating environment and probabilities, may not guarantee the absolute number of addresses it can learn. Learning The internal lookup engine updates its table with a new entry if the following conditions are met: 1. The received packet's Source Address (SA) does not exist in the lookup table. 2. The received packet is good; the packet has no receiving errors, and is of legal length. The lookup engine inserts the qualified SA into the table, along with the port number and time stamp. If the table is full, the last entry of the table is deleted to make room for the new entry. Migration The internal lookup engine also monitors whether a station has moved. If a station has moved, it will update the table accordingly. Migration happens when the following conditions are met: 1. The received packet's SA is in the table but the associated source port information is different. 2. The received packet is good; the packet has no receiving errors, and is of legal length. The lookup engine will update the existing record in the table with the new source port information. Aging The lookup engine updates the time stamp information of a record whenever the corresponding SA appears. The time stamp is used in the aging process. If a record is not updated for a period of time, the lookup engine removes the record from the table. The lookup engine constantly performs the aging process and will continuously remove aging records. The aging period is about 200 seconds. This feature can be enabled or disabled through register 3 (0x03) bit [2]. Forwarding The KSZ8873MLL/FLL/RLL forwards packets using the algorithm that is depicted in the following flowcharts. Figure 4 shows stage one of the forwarding algorithm where the search engine looks up the VLAN ID, static table, and dynamic table for the destination address, and comes up with “port to forward 1” (PTF1). PTF1 is then further modified by spanning tree, IGMP snooping, port mirroring, and port VLAN processes to come up with “port to forward 2” (PTF2), as shown in Figure 5. The packet is sent to PTF2. September 2009 24 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Start PTF1= NULL NO VLAN ID Valid? - Search VLAN table - Ingress VLAN filtering - Discard NPVID check YES Search complete. Get PTF1 from Static MAC Table FOUND Search Static Table This search is based on DA or DA+FID NOT FOUND Search complete. Get PTF1 from Dynamic MAC Table FOUND Dynamic Table Search This search is based on DA+FID NOT FOUND Search complete. Get PTF1 from VLAN Table PTF1 Figure 4. Destination Address Lookup Flow Chart, Stage 1 September 2009 25 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL PTF1 Spanning Tree Process - Check receiving port's receive enable bit - Check destination port's transmit enable bit - Check whether packets are special (BPDU or specified) IGMP Process - Applied to MAC #1 and MAC #2 - MAC #3 is reserved for microprocessor - IGMP will be forwarded to port 3 Port Mirror Process - RX Mirror TX Mirror RX or TX Mirror RX and TX Mirror Port VLAN Membership Check PTF2 Figure 5. Destination Address Resolution Flow Chart, Stage 2 The KSZ8873MLL/FLL/RLL will not forward the following packets: 1. Error packets These include framing errors, Frame Check Sequence (FCS) errors, alignment errors, and illegal size packet errors. 2. IEEE802.3x PAUSE frames KSZ8873MLL/FLL/RLL intercepts these packets and performs full duplex flow control accordingly. 3. "Local" packets Based on destination address (DA) lookup. If the destination port from the lookup table matches the port from which the packet originated, the packet is defined as "local." September 2009 26 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Switching Engine The KSZ8873MLL/FLL/RLL features a high-performance switching engine to move data to and from the MACs’ packet buffers. It operates in store and forward mode, while the efficient switching mechanism reduces overall latency. The switching engine has a 32kB internal frame buffer. This buffer pool is shared between all three ports. There are a total of 256 buffers available. Each buffer is sized at 128 bytes. M AC Operation The KSZ8873MLL/FLL/RLL strictly abides by IEEE 802.3 standards to maximize compatibility. Inter Packet Gap (IPG) If a frame is successfully transmitted, the 96 bits time IPG is measured between the two consecutive MTXEN. If the current packet is experiencing collision, the 96 bits time IPG is measured from MCRS and the next MTXEN. Back-Off Algorithm The KSZ8873MLL/FLL/RLL implements the IEEE 802.3 standard for the binary exponential back-off algorithm, and optional "aggressive mode" back-off. After 16 collisions, the packet is optionally dropped depending on the switch configuration for register 4 (0x04) bit [3]. Late Collision If a transmit packet experiences collisions after 512 bit times of the transmission, the packet is dropped. Illegal Frames The KSZ8873MLL/FLL/RLL discards frames less than 64 bytes, and can be programmed to accept frames up to1518 bytes, 1536 bytes or 1916 bytes. These maximum frame size settings are programmed in register 4 (0x04). Since the KSZ8873MLL/FLL/RLL supports VLAN tags, the maximum sizing is adjusted when these tags are present. Full Duplex Flow Control The KSZ8873MLL/FLL/RLL supports standard IEEE 802.3x flow control frames on both transmit and receive sides. On the receive side, if the KSZ8873MLL/FLL/RLL receives a pause control frame, the KSZ8873MLL/FLL/RLL will not transmit the next normal frame until the timer, specified in the pause control frame, expires. If another pause frame is received before the current timer expires, the timer will be updated with the new value in the second pause frame. During this period (while it is flow controlled), only flow control packets from the KSZ8873MLL/FLL/RLL are transmitted. On the transmit side, the KSZ8873MLL/FLL/RLL has intelligent and efficient ways to determine when to invoke flow control. The flow control is based on availability of the system resources, including available buffers, available transmit queues and available receive queues. The KSZ8873MLL/FLL/RLL will flow control a port that has just received a packet if the destination port resource is busy. The KSZ8873MLL/FLL/RLL issues a flow control frame (XOFF), containing the maximum pause time defined by the IEEE 802.3x standard. Once the resource is freed up, the KSZ8873MLL/FLL/RLL sends out the other flow control frame (XON) with zero pause time to turn off the flow control (turn on transmission to the port). A hysteresis feature is provided to prevent the flow control mechanism from being constantly activated and deactivated. The KSZ8873MLL/FLL/RLL flow controls all ports if the receive queue becomes full. Half-Duplex Backpressure A half-duplex backpressure option (not in IEEE 802.3 standards) is also provided. The activation and deactivation conditions are the same as full duplex flow control. If backpressure is required, the KSZ8873MLL/FLL/RLL sends preambles to defer the other stations' transmission (carrier sense deference). To avoid jabber and excessive deference (as defined in the 802.3 standard), after a certain time, the KSZ8873MLL/FLL/RLL discontinues the carrier sense and then raises it again quickly. This short silent time (no carrier sense) prevents other stations from sending out packets thus keeping other stations in a carrier sense deferred state. If the port has packets to send during a backpressure situation, the carrier sense type backpressure is interrupted and those packets are transmitted instead. If there are no additional packets to send, carrier sense type backpressure is reactivated again until switch resources free up. If a collision occurs, the binary exponential back-off algorithm is skipped and carrier sense is generated immediately, thus reducing the chance of further collisions and carrier sense is maintained to prevent packet reception. September 2009 27 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL To ensure no packet loss in 10 BASE-T or 100 BASE-TX half duplex modes, the user must enable the following: 1. Aggressive back-off (register 3 (0x03), bit [0]) 2. No excessive collision drop (register 4 (0x04), bit [3]) Note: These bits are not set as defaults, as this is not the IEEE standard. Broadcast Storm Protection The KSZ8873MLL/FLL/RLL has an intelligent option to protect the switch system from receiving too many broadcast packets. As the broadcast packets are forwarded to all ports except the source port, an excessive number of switch resources (bandwidth and available space in transmit queues) may be utilized. The KSZ8873MLL/FLL/RLL has the option to include “multicast packets” for storm control. The broadcast storm rate parameters are programmed globally, and can be enabled or disabled on a per port basis. The rate is based on a 67ms interval for 100BT and a 500ms interval for 10BT. At the beginning of each interval, the counter is cleared to zero, and the rate limit mechanism starts to count the number of bytes during the interval. The rate definition is described in register 6 (0x06) and 7 (0x07). The default setting is 0x63 (99 decimal). This is equal to a rate of 1%, calculated as follows: 148,800 frames/sec * 67ms/interval * 1% = 99 frames/interval (approx.) = 0x63 Note: 148,800 frames/sec is based on 64-byte block of packets in 100BASE-TX with 12 bytes of IPG and 8 bytes of preamble between two packets. Port Individual MAC address and Source Port Filtering The KSZ8873MLL/FLL/RLL provide individual MAC address for port 1 and port 2 respectively. They can be set at register 142-147 and 148-153. With this feature, the CPU connected to the port 3 can receive the packets from two internet subnets which has their own MAC address. The packet will be filtered if its source address matches the MAC address of port 1 or port 2 when the register 21 and 37 bit 6 is set to 1 respectively. For example, the packet will be dropped after it completes the loop of a ring network. MII Interface Operation The Media Independent Interface (MII) is specified in Clause 22 of the IEEE 802.3u Standard. It provides a common interface between physical layer and MAC layer devices. The MII provided by the KSZ8873MLL/FLL is connected to the device’s third MAC. The interface contains two distinct groups of signals: one for transmission and the other for reception. The following table describes the signals used by the MII bus. PHY-Mode Connections External MAC Controller Signals MTXEN MTXER MTXD3 MTXD2 MTXD1 MTXD0 MTXC MCOL MCRS MRXDV MRXER MRXD3 MRXD2 MRXD1 MRXD0 MRXC KSZ8873MLL/FLL PHY Signals SMTXEN3 SMTXER3 SMTXD33 SMTXD32 SMTXD31 SMTXD30 SMTXC3 SCOL3 SCRS3 SMRXDV3 (not used) SMRXD33 SMRXD32 SMRXD31 SMRXD30 SMRXC3 Pin Descriptions Transmit enable Transmit error Transmit data bit 3 Transmit data bit 2 Transmit data bit 1 Transmit data bit 0 Transmit clock Collision detection Carrier sense Receive data valid Receive error Receive data bit 3 Receive data bit 2 Receive data bit 1 Receive data bit 0 Receive clock Table 4. MII Signals MAC-Mode Connections External PHY Signals MTXEN MTXER MTXD3 MTXD2 MTXD1 MTXD0 MTXC MCOL MCRS MRXDV MRXER MRXD3 MRXD2 MRXD1 MRXD0 MRXC KSZ8873MLL/FLL MAC Signals SMRXDV3 (not used) SMRXD33 SMRXD32 SMRXD31 SMRXD30 SMRXC3 SCOL3 SCRS3 SMTXEN3 SMTXER3 SMTXD33 SMTXD32 SMTXD31 SMTXD30 SMTXC3 September 2009 28 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL The MII operates in either PHY mode or MAC mode. The data interface is a nibble wide and runs at ¼ the network bit rate (not encoded). Additional signals on the transmit side indicate when data is valid or when an error occurs during transmission. Similarly, the receive side has signals that convey when the data is valid and without physical layer errors. For half duplex operation, the SCOL signal indicates if a collision has occurred during transmission. The KSZ8873MLL/FLL does not provide the MRXER signal for PHY mode operation and the MTXER signal for MAC mode operation. Normally, MRXER indicates a receive error coming from the physical layer device and MTXER indicates a transmit error from the MAC device. Since the switch filters error frames, these MII error signals are not used by the KSZ8873MLL/FLL. So, for PHY mode operation, if the device interfacing with the KSZ8873MLL/FLL has an MRXER input pin, it needs to be tied low. And, for MAC mode operation, if the device interfacing with the KSZ8873MLL/FLL has an MTXER input pin, it also needs to be tied low. The KSZ8873MLL/FLL provides a bypass feature in the MII PHY mode. Pin SMTXER3/MII_LINK is used for MII link status. If the host is power down, pin MII_LINK will go to high. In this case, no new ingress frames from port1 or port 2 will be sent out through port 3, and the frames for port 3 already in packet memory will be flushed out. Turbo MII Interface Operation The switch MII interface also supports the turbo MII mode with 200Mbps rate (200Base-TX) by setting the register 2 bit[6]=1. When use the Turbo MII mode, the other side of the MII should also support 200Mbps rate. The Turbo MII can be configured to PHY mode or MAC mode by the configuration pins. In PHY mode, the pins SMTXC and SMRXC will be 50 MHz clock output. In MAC mode, the pins SMTXC and SMRXC should be 50 MHz clock input. RMII Interface Operation The Reduced Media Independent Interface (RMII) specifies a low pin count Media Independent Interface (MII). RMII provides a common interface between physical layer and MAC layer devices, and has the following key characteristics: 1. ports 10Mbps and 100Mbps data rates. 2. Uses a single 50 MHz clock reference (provided internally or externally). 3. Provides independent 2-bit wide (di-bit) transmit and receive data paths. 4. Contains two distinct groups of signals: one for transmission and the other for reception When EN_REFCLKO_3 is high, KSZ8873RLL will output a 50MHz in REFCLKO_3. Register 198 bit[3] is used to select internal or external reference clock. Internal reference clock means that the clock for the RMII of KSZ8873RLL will be provided by the KSZ8873RLL internally and the REFCLKI_3 pin is unconnected. For the external reference clock, the clock will provide to KSZ8873RLL via REFCLKI_3. Note: If the reference clock is not provided by the KSZ8873RLL, this 50MHz reference clock has to be used in X1 pin instead of the 25MHz crystal since the clock skew of these two clock sources will impact on the RMII timing. The SPIQ clock selection strapping option pin is connected to low to select the 50MHz input. Reg198[3] 0 EN_REFCLKO_3 0 Clock Source External 50MHz OSC input to REFCLKI_3 Note EN_REFCLKO_3 = 0 to Disable REFCLKO_3 for better EMI EN_REFCLKO_3 = 1 to Enable REFCLKO_3 EN_REFCLKO_3 = 1 to Enable REFCLKO_3 Not suggest Table 5. RMII Clock Setting 0 1 REFCLKO_3 Output Is Feedback to REFCLKI_3 Internal Clock Source REFCLKI_3 is unconnected 1 1 1 0 The RMII provided by the KSZ8873RLL is connected to the device’s third MAC. It complies with the RMII Specification. The following table describes the signals used by the RMII bus. Refer to RMII Specification for full detail on the signal description. September 2009 29 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL RMII Signal Name REF_CLK CRS_DV RXD1 RXD0 TX_EN TXD1 TXD0 RX_ER Direction (with respect to the PHY) Input Output Output Output Input Input Input Output Direction (with respect to the MAC) Input or Output Input Input Input Output Output Output Input (not required) --- RMII Signal Description Synchronous 50 MHz clock reference for receive, transmit and control interface Carrier sense/ Receive data valid Receive data bit 1 Receive data bit 0 Transmit enable Transmit data bit 1 Transmit data bit 0 Receive error KSZ8873RLL RMII Signal (direction) REFCLKI_3 (input) SMRXDV3 (output) SMRXD31 (output) SMRXD30 (output) SMTXEN3 (input) SMTXD31 (input) SMTXD30 (input) (not used) SMTXER3* (input) --- --- --- * Connects to RX_ER signal of RMII PHY device Table 6. RMII Signal Description The KSZ8873RLL filters error frames, and thus does not implement the RX_ER output signal. To detect error frames from RMII PHY devices, the SMTXER3 input signal of the KSZ8873RLL is connected to the RXER output signal of the RMII PHY device. Collision detection is implemented in accordance with the RMII Specification. In RMII mode, tie MII signals, SMTXD3[3:2] and SMTXER3, to ground if they are not used. The KSZ8873RLL RMII can interface with RMII PHY and RMII MAC devices. The latter allows two KSZ8873RLL devices to be connected back-to-back. The following table shows the KSZ8873RLL RMII pin connections with an external RMII PHY and an external RMII MAC, such as another KSZ8873RLL device. KSZ8873RLL PHY-MAC Connections External KSZ8873RLL MAC Signals PHY Signals REF_CLK TX_EN TXD1 TXD0 CRS_DV RXD1 RXD0 RX_ER REFCLKI_3 SMRXDV3 SMRXD31 SMRXD30 SMTXEN3 SMTXD31 SMTXD30 SMTXER3 Pin Descriptions Reference Clock Carrier sense/ Receive data valid Receive data bit 1 Receive data bit 0 Transmit enable Transmit data bit 1 Transmit data bit 0 Receive error KSZ8873RLL MAC-MAC Connections External KSZ8873RLL MAC Signals MAC Signals REFCLKI_3 SMRXDV3 SMRXD31 SMRXD30 SMTXEN3 SMTXD31 SMTXD30 (not used) REF_CLK CRS_DV RXD1 RXD0 TX_EN TXD1 TXD0 (not used) Table 7. RMII Signal Connections September 2009 30 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL MII Management (MIIM) Interface The KSZ8873MLL/FLL/RLL supports the IEEE 802.3 MII Management Interface, also known as the Management Data Input/Output (MDIO) Interface. This interface allows upper-layer devices to monitor and control the states of the KSZ8873MLL/FLL/RLL. An external device with MDC/MDIO capability is used to read the PHY status or configure the PHY settings. Further detail on the MIIM interface is found in Clause 22.2.4.5 of the IEEE 802.3u Specification. The MIIM interface consists of the following: A physical connection that incorporates the data line (SDA_MDIO) and the clock line (SCL_MDC). A specific protocol that operates across the aforementioned physical connection that allows an external controller to communicate with the KSZ8873MLL/FLL/RLL device. Access to a set of eight 16-bit registers, consisting of six standard MIIM registers [0:5] and two custom MIIM registers [29, 31]. The MIIM Interface can operate up to a maximum clock speed of 5MHz. The following table depicts the MII Management Interface frame format. Preamble Start of Frame 01 01 Read/Write OP Code 10 01 PHY Address Bits [4:0] AAAAA AAAAA REG Address Bits [4:0] RRRRR RRRRR TA Data Bits [15:0] Idle Read Write 32 1’s 32 1’s Z0 10 DDDDDDDD_DDDDDDDD DDDDDDDD_DDDDDDDD Z Z Table 8. MII Management Interface Frame Format Serial Management Interface (SMI) The SMI is the KSZ8873MLL/FLL/RLL non-standard MIIM interface that provides access to all KSZ8873MLL/FLL/RLL configuration registers. This interface allows an external device to completely monitor and control the states of the KSZ8873MLL/FLL/RLL. The SMI interface consists of the following: A physical connection that incorporates the data line (SDA_MDIO) and the clock line (SCL_MDC). A specific protocol that operates across the aforementioned physical connection that allows an external controller to communicate with the KSZ8873MLL/FLL/RLL device. Access to all KSZ8873MLL/FLL/RLL configuration registers. Register access includes the Global, Port and Advanced Control Registers 0-198 (0x00 – 0xC6), and indirect access to the standard MIIM registers [0:5] and custom MIIM registers [29, 31]. The following table depicts the SMI frame format. Preamble Start of Frame 01 01 Read/Write OP Code 00 00 PHY Address Bits [4:0] 1xRRR 0xRRR REG Address Bits [4:0] RRRRR RRRRR TA Data Bits [15:0] Idle Read Write 32 1’s 32 1’s Z0 10 0000_0000_DDDD_DDDD xxxx_xxxx_DDDD_DDDD Z Z Table 9. Serial Management Interface (SMI) Frame Format SMI register read access is selected when OP Code is set to “00” and bit 4 of the PHY address is set to ‘1’. SMI register write access is selected when OP Code is set to “00” and bit 4 of the PHY address is set to ‘0’. PHY address bit[3] is undefined for SMI register access, and hence can be set to either ‘0’ or ‘1’ in read/write operations. To access the KSZ8873MLL/FLL/RLL registers 0-196 (0x00 – 0xC6), the following applies: PHYAD[2:0] and REGAD[4:0] are concatenated to form the 8-bit address; that is, {PHYAD[2:0], REGAD[4:0]} = bits [7:0] of the 8-bit address. September 2009 31 M9999-092309-1.2 Micrel, Inc. Registers are 8 data bits wide. For read operation, data bits [15:8] are read back as 0’s. KSZ8873MLL/FLL/RLL For write operation, data bits [15:8] are not defined, and hence can be set to either ‘0’ or ‘1’. SMI register access is the same as the MIIM register access, except for the register access requirements presented in this section. Advanced Switch Functions Bypass Mode The KSZ8873MLL/FLL/RLL also offer a by-pass mode, which enables system-level power saving. When the CPU (connected to Port 3) enters a power saving mode, the KSZ8873MLL/FLL/RLL automatically switches to the bypass mode in which the switch function between Port1 and Port2 is sustained. IEEE 802.1Q VLAN Support The KSZ8873MLL/FLL/RLL supports 16 active VLANs out of the 4096 possible VLANs specified in the IEEE 802.1Q specification. KSZ8873MLL/FLL/RLL provides a 16-entries VLAN Table, which converts the 12-bits VLAN ID (VID) to the 4-bits Filter ID (FID) for address lookup. If a non-tagged or null-VID-tagged packet is received, the ingress port default VID is used for lookup. In VLAN mode, the lookup process starts with VLAN Table lookup to determine whether the VID is valid. If the VID is not valid, the packet is dropped and its address is not learned. If the VID is valid, the FID is retrieved for further lookup. The FID + Destination Address (FID+DA) are used to determine the destination port. The FID + Source Address (FID+SA) are used for address learning. DA+FID found in Dynamic MAC Table? No Yes Don’t care No Yes Don’t care DA found in Static MAC Table? No No Yes Yes Yes Yes Use FID flag? FID match? Action Broadcast to the membership ports defined in the VLAN Table bits [18:16] Send to the destination port defined in the Dynamic MAC Address Table bits [53:52] Send to the destination port(s) defined in the Static MAC Address Table bits [50:48] Broadcast to the membership ports defined in the VLAN Table bits [18:16] Send to the destination port defined in the Dynamic MAC Address Table bits [53:52] Send to the destination port(s) defined in the Static MAC Address Table bits [50:48] Don’t care Don’t care 0 1 1 1 Don’t care Don’t care Don’t care No No Yes Table 10. FID+DA Lookup in VLAN Mode FID+SA found in Dynamic MAC Table? No Yes Action Learn and add FID+SA to the Dynamic MAC Address Table Update time stamp Table 11. FID+SA Lookup in VLAN Mode Advanced VLAN features, such as “Ingress VLAN filtering” and “Discard Non PVID packets” are also supported by the KSZ8873MLL/FLL/RLL. These features can be set on a per port basis, and are defined in register 18, 34 and 50 for ports 1, 2 and 3, respectively. September 2009 32 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL QoS Priority Support The KSZ8873MLL/FLL/RLL provides Quality of Service (QoS) for applications such as VoIP and video conferencing. Offering four priority queues per port, the per-port transmit queue can be split into four priority queues: Queue 3 is the highest priority queue and Queue 0 is the lowest priority queue. Bit [0] of registers 16, 32 and 48 is used to enable split transmit queues for ports 1, 2 and 3, respectively. If a port's transmit queue is not split, high priority and low priority packets have equal priority in the transmit queue. There is an additional option to either always deliver high priority packets first or use weighted fair queuing for the four priority queues. This global option is set and explained in bit [3] of register 5. Port-Based Priority W ith port-based priority, each ingress port is individually classified as a high priority receiving port. All packets received at the high priority receiving port are marked as high priority and are sent to the high-priority transmit queue if the corresponding transmit queue is split. Bits [4:3] of registers 16, 32 and 48 are used to enable port-based priority for ports 1, 2 and 3, respectively. 802.1p-Based Priority For 802.1p-based priority, the KSZ8873MLL/FLL/RLL examines the ingress (incoming) packets to determine whether they are tagged. If tagged, the 3-bit priority field in the VLAN tag is retrieved and compared against the “priority mapping” value, as specified by the registers 12 and 13. The “priority mapping” value is programmable. The following figure illustrates how the 802.1p priority field is embedded in the 802.1Q VLAN tag. Bytes 8 Preamble 6 DA 6 SA 2 VPID 2 TCI 2 length LLC 46-1500 Data 4 FCS Bits 16 Tagged Packet Type (8100 for Ethernet) 3 802.1p 1 CFI 12 VLAN ID 802.1q VLAN Tag Figure 6. 802.1p Priority Field Format 802.1p-based priority is enabled by bit [5] of registers 16, 32 and 48 for ports 1, 2 and 3, respectively. The KSZ8873MLL/FLL/RLL provides the option to insert or remove the priority tagged frame's header at each individual egress port. This header, consisting of the 2 bytes VLAN Protocol ID (VPID) and the 2-byte Tag Control Information field (TCI), is also referred to as the IEEE 802.1Q VLAN tag. Tag Insertion is enabled by bit [2] of registers 16, 32 and 48 for ports 1, 2 and 3, respectively. At the egress port, untagged packets are tagged with the ingress port’s default tag. The default tags are programmed in register sets {19,20}, {35,36} and {51,52} for ports 1, 2 and 3, respectively and the source port VID has to be inserted at selected egress ports by bit[5:0] of register 194. The KSZ8873MLL/FLL/RLL will not add tags to already tagged packets. Tag Removal is enabled by bit [1] of registers 16, 32 and 48 for ports 1, 2 and 3, respectively. At the egress port, tagged packets will have their 802.1Q VLAN Tags removed. The KSZ8873MLL/FLL/RLL will not modify untagged packets. The CRC is recalculated for both tag insertion and tag removal. 802.1p Priority Field Re-mapping is a QoS feature that allows the KSZ8873MLL/FLL/RLL to set the “User Priority Ceiling” at any ingress port. If the ingress packet’s priority field has a higher priority value than the default tag’s priority field of the ingress port, the packet’s priority field is replaced with the default tag’s priority field. September 2009 33 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL DiffServ-Based Priority DiffServ-based priority uses the ToS registers (registers 96 to 111) in the Advanced Control Registers section. The ToS priority control registers implement a fully decoded, 64-bit Differentiated Services Code Point (DSCP) register to determine packet priority from the 6-bit ToS field in the IP header. When the most significant 6 bits of the ToS field are fully decoded, the resultant of the 64 possibilities is compared with the corresponding bits in the DSCP register to determine priority. Spanning Tree Support To support spanning tree, port 3 is designated as the processor port. The other ports (port 1 and port 2) can be configured in one of the five spanning tree states via “transmit enable”, “receive enable” and “learning disable” register settings in registers 18 and 34 for ports 1 and 2, respectively. The following table shows the port setting and software actions taken for each of the five spanning tree states. Disable State The port should not forward or receive any packets. Learning is disabled. Blocking State Only packets to the processor are forwarded. Learning is disabled. Listening State Only packets to and from the processor are forwarded. Learning is disabled. Learning State Only packets to and from the processor are forwarded. Learning is enabled. Forwarding State Packets are forwarded and received normally. Learning is enabled. Port Setting Software Action The processor should not send any packets to the port. The switch may still send specific packets to the processor (packets that match some entries in the “static MAC table” with “overriding bit” set) and the processor should discard those packets. Address learning is disabled on the port in this state. Software Action The processor should not send any packets to the port(s) in this state. The processor should program the “Static MAC table” with the entries that it needs to receive (for example, BPDU packets). The “overriding” bit should also be set so that the switch will forward those specific packets to the processor. Address learning is disabled on the port in this state. Software Action The processor should program the “Static MAC table” with the entries that it needs to receive (for example, BPDU packets). The “overriding” bit should be set so that the switch will forward those specific packets to the processor. The processor may send packets to the port(s) in this state. See “Tail Tagging Mode” for details. Address learning is disabled on the port in this state. Software Action The processor should program the “Static MAC table” with the entries that it needs to receive (for example, BPDU packets). The “overriding” bit should be set so that the switch will forward those specific packets to the processor. The processor may send packets to the port(s) in this state. See “Tail Tagging Mode” for details. Address learning is enabled on the port in this state. Software Action The processor programs the “Static MAC table” with the entries that it needs to receive (for example, BPDU packets). The “overriding” bit is set so that the switch forwards those specific packets to the processor. The processor can send packets to the port(s) in this state. See “Tail Tagging Mode” for details. Address learning is enabled on the port in this state. Table 12. Spanning Tree States “transmit enable = 0, receive enable = 0, learning disable =1” Port Setting “transmit enable = 0, receive enable = 0, learning disable =1” Port Setting “transmit enable = 0, receive enable = 0, learning disable =1” Port Setting “transmit enable = 0, receive enable = 0, learning disable = 0” Port Setting “transmit enable = 1, receive enable = 1, learning disable = 0” September 2009 34 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Rapid Spanning Tree Support There are three operational states of the Discarding, Learning, and Forwarding assigned to each port for RSTP: Discarding ports do not participate in the active topology and do not learn MAC addresses. Discarding state: the state includs three states of the disable, blocking and listening of STP. Port setting: "transmit enable = 0, receive enable = 0, learning disable = 1." Software action: the processor should not send any packets to the port. The switch may still send specific packets to the processor (packets that match some entries in the static table with “overriding bit” set) and the processor should discard those packets. When disable the port’s learning capability (learning disable=’1’), set the register 2 bit 5 and bit 4 will flush rapidly the port related entries in the dynamic MAC table and static MAC table. Note: processor is connected to port 3 via MII interface. Address learning is disabled on the port in this state. Ports in Learning states learn MAC addresses, but do not forward user traffic. Learning state: only packets to and from the processor are forwarded. Learning is enabled. Port setting: “transmit enable = 0, receive enable = 0, learning disable = 0.” Software action: The processor should program the static MAC table with the entries that it needs to receive (e.g., BPDU packets). The “overriding” bit should be set so that the switch will forward those specific packets to the processor. The processor may send packets to the port(s) in this state, see “Tail Tagging Mode” section for details. Address learning is enabled on the port in this state. Ports in Forwarding states fully participate in both data forwarding and MAC learning. Forwarding state: packets are forwarded and received normally. Learning is enabled. Port setting: “transmit enable = 1, receive enable = 1, learning disable = 0.” Software action: The processor should program the static MAC table with the entries that it needs to receive (e.g., BPDU packets). The “overriding” bit should be set so that the switch will forward those specific packets to the processor. The processor may send packets to the port(s) in this state, see “Tail Tagging Mode” section for details. Address learning is enabled on the port in this state. RSTP uses only one type of BPDU called RSTP BPDUs. They are similar to STP Configuration BPDUs with the exception of a type field set to “version 2” for RSTP and “version 0” for STP, and a flag field carrying additional information. Tail Tagging Mode The Tail Tag is only seen and used by the port 3 interface, which should be connected to a processor. It is an effective way to retrieve the ingress port information for spanning tree protocol IGMP snooping and other applications. The Bit 1 and bit 0 in the one byte tail tagging is used to indicate the source/destination port in port 3. Bit 3 and bit 2 are used for the priority setting of the ingress frame in port 3. Other bits are not used. The Tail Tag feature is enable by setting register 3 bit 6. Figure 7. Tail Tag Frame Format September 2009 35 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Ingress to Port 3 (Host -> KSZ8873MML) Bit [1,0] 0,0 0,1 1,0 1,1 Bit [3,2] 0,0 0,1 1,0 1,1 Bit [0] 0 1 Destination Port Normal (Address Look up) Port 1 Port 2 Port 1 and 2 Frame Priority Priority 0 Priority 1 Priority 2 Priority 3 Source Port Port 1 Port 2 Figure 8. Tail Tag Rules Egress from Port 3 (KSZ8873MML->Host) IGMP Support For Internet Group Management Protocol (IGMP) support in layer 2, the KSZ8873MLL/FLL/RLL provides two components: IGMP Snooping The KSZ8873MLL/FLL/RLL traps IGMP packets and forwards them only to the processor (port 3). The IGMP packets are identified as IP packets (either Ethernet IP packets, or IEEE 802.3 SNAP IP packets) with IP version = 0x4 and protocol version number = 0x2. Multicast Address Insertion in the Static MAC Table Once the multicast address is programmed in the Static MAC Table, the multicast session is trimmed to the subscribed ports, instead of broadcasting to all ports. To enable IGMP support, set register 5 bit [6] to ‘1’. Also, Tail Tagging Mode needs to be enabled, so that the processor knows which port the IGMP packet was received on. This is achieved by setting both register 3 bit [6] and register 48 bit [2] to ‘1’. Port Mirroring Support KSZ8873MLL/FLL/RLL supports “Port Mirroring” comprehensively as: “receive only” mirror on a port All the packets received on the port are mirrored on the sniffer port. For example, port 1 is programmed to be “receive sniff” and port 3 is programmed to be the “sniffer port”. A packet received on port 1 is destined to port 2 after the internal lookup. The KSZ8873MLL/FLL/RLL forwards the packet to both port 2 and port 3. The KSZ8873MLL/FLL/RLL can optionally even forward “bad” received packets to the “sniffer port”. “transmit only” mirror on a port All the packets transmitted on the port are mirrored on the sniffer port. For example, port 1 is programmed to be “transmit sniff” and port 3 is programmed to be the “sniffer port”. A packet received on port 2 is destined to port 1 after the internal lookup. The KSZ8873MLL/FLL/RLL forwards the packet to both port 1 and port 3. “receive and transmit” mirror on two ports All the packets received on port A and transmitted on port B are mirrored on the sniffer port. To turn on the “AND” feature, set register 5 bit [0] to ‘1’. For example, port 1 is programmed to be “receive sniff”, port 2 is programmed to be “transmit sniff”, and port 3 is programmed to be the “sniffer port”. A packet received on port 1 is destined to port 2 after the internal lookup. The KSZ8873MLL/FLL/RLL forwards the packet to both port 2 and port 3. September 2009 36 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Multiple ports can be selected as “receive sniff” or “transmit sniff”. In addition, any port can be selected as the “sniffer port”. All these per port features can be selected through registers 17, 33 and 49 for ports 1, 2 and 3, respectively. Rate Limiting Support The KSZ8873MLL/FLL/RLL provides a fine resolution hardware rate limiting from 64Kbps to 99Mbps. The rate step is 64Kbps when the rate range is from 64Kbps to 960Kbps and 1Mbps for 1Mbps to 100Mbps(100BT) or to 10Mbps(10BT) (refer to Data Rate Limit Table). The rate limit is independently on the “receive side” and on the “transmit side” on a per port basis. For 10BASE-T, a rate setting above 10 Mbps means the rate is not limited. On the receive side, the data receive rate for each priority at each port can be limited by setting up Ingress Rate Control Registers. On the transmit side, the data transmit rate for each priority queue at each port can be limited by setting up Egress Rate Control Registers. The size of each frame has options to include minimum IFG (Inter Frame Gap) or Preamble byte, in addition to the data field (from packet DA to FCS). For ingress rate limiting, KSZ8873MLL/FLL/RLL provides options to selectively choose frames from all types, multicast, broadcast, and flooded unicast frames. The KSZ8873MLL/FLL/RLL counts the data rate from those selected type of frames. Packets are dropped at the ingress port when the data rate exceeds the specified rate limit. For egress rate limiting, the Leaky Bucket algorithm is applied to each output priority queue for shaping output traffic. Inter frame gap is stretched on a per frame base to generate smooth, non-burst egress traffic. The throughput of each output priority queue is limited by the egress rate specified. If any egress queue receives more traffic than the specified egress rate throughput, packets may be accumulated in the output queue and packet memory. After the memory of the queue or the port is used up, packet dropping or flow control will be triggered. As a result of congestion, the actual egress rate may be dominated by flow control/dropping at the ingress end, and may be therefore slightly less than the specified egress rate. To reduce congestion, it is a good practice to make sure the egress bandwidth exceeds the ingress bandwidth. Unicast MAC Address Filtering The unicast MAC address filtering function works in conjunction with the static MAC address table. First, the static MAC address table is used to assign a dedicated MAC address to a specific port. If a unicast MAC address is not recorded in the static table, it is also not learned in the dynamic MAC table. The KSZ8873MLL/FLL/RLL is then configured with the option to either filter or forward unicast packets for an unknown MAC address. This option is enabled and configured in register 14. This function is useful in preventing the broadcast of unicast packets that could degrade the quality of the port in applications such as voice over Internet Protocol (VoIP). Configuration Interface The KSZ8873MLL/FLL/RLL can operate as both a managed switch and an unmanaged switch. In unmanaged mode, the KSZ8873MLL/FLL/RLL is typically programmed using an EEPROM. If no EEPROM is present, the KSZ8873MLL/FLL/RLL is configured using its default register settings. Some default settings are configured via strapin pin options. The strap-in pins are indicated in the “Pin Description and I/O Assignment” table. I C Master Serial Bus Configuration 2 W ith an additional I C (“2-wire”) EEPROM, the KSZ8873MLL/FLL/RLL can perform more advanced switch features like “broadcast storm protection” and “rate control” without the need of an external processor. 2 For KSZ8873MLL/FLL/RLL I C Master configuration, the EEPROM stores the configuration data for register 0 to register 120 (as defined in the KSZ8873MLL/FLL/RLL register map) with the exception of the “Read Only” status registers. After the de-assertion of reset, the KSZ8873MLL/FLL/RLL sequentially reads in the configuration data for all 121 registers, starting from register 0. 2 September 2009 37 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL RST_N SCL SDA .... .... .... tprgm Speed =01, LED0 -> Link, LED1 -> ACT =10, LED0 -> Link/ACT, LED1 -> Duplex =11, LED0 -> Link, LED1 -> Duplex =1, The internal stretched energy signal from the analog module will be negated and output to LED1 and the internal device ready signal will be negated and output to LED0. =0, The LED1/LED0 pins will indicate the regular LED outputs. (Note. This is for debugging purpose.) =1, PLL power down enable =0, Disable Power management mode =00, Normal Mode =01, Energy Detection Mode =10, Software Power Down Mode =11, Power Saving Mode 0 Default 0 5-4 R/W 00 3 LED output mode R/W 0 2 1-0 PLL Off Enable Power Management Mode R/W R/W 0 00 September 2009 79 M9999-092309-1.2 Micrel, Inc. Register 196(0xC4): Sleep Mode Bit 7-0 Name Sleep Mode R/W R/W Description This value is used to control the minimum period the no energy event has to be detected consecutively before the device enters the low power state when the ED mode is on. The unit is 20 ms. The default go sleep time is 1.6 seconds. Default 0x50 KSZ8873MLL/FLL/RLL Register 198 (0xC6): Forward Invalid VID Frame and Host Mode Bit 7 6-4 3 2 1-0 Name Reserved Forward Invid VID Frame P3 RMII Clock Selection P1 RMII Clock Selection Host Interface Mode R/W RO R/W R/W R/W R/W Description Reserved Do not change the default value. Forwarding ports for frame with invalid VID =1, Internal =0, External =1, Internal =0, External =00, I2C master mode =01, I2C slave mode =10, SPI slave mode =11, SMI mode Default 0 3b’0 0 0 Strapped value of P2LED1, P2LED0. September 2009 80 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Static MAC Address Table The KSZ8873 supports both a static and a dynamic MAC address table. In response to a Destination Address (DA) look up, the KSZ8873 searches both tables to make a packet forwarding decision. In response to a Source Address (SA) look up, only the dynamic table is searched for aging, migration and learning purposes. The static DA look up result takes precedence over the dynamic DA look up result. If there is a DA match in both tables, the result from the static table is used. The entries in the static table will not be aged out by the KSZ8873. The static table is accessed by a external processor via the SMI, SPI or I2C interfaces. The external processor performs all addition, modification and deletion of static MAC table entries. Bit 57-54 53 52 Name FID Use FID Override R/W R/W R/W R/W Description Filter VLAN ID – identifies one of the 16 active VLANs =1, Use (FID+MAC) for static table look ups =0, Use MAC only for static table look ups =1, Override port setting “transmit enable=0” or “receive enable=0” setting =0, No override 51 50-48 Valid Forwarding Ports R/W R/W =1, This entry is valid, the lookup result will be used =0, This entry is not valid These 3 bits control the forwarding port(s): 001, forward to port 1 010, forward to port 2 100, forward to port 3 011, forward to port 1 and port 2 110, forward to port 2 and port 3 101, forward to port 1 and port 3 111, broadcasting (excluding the ingress port) 48-bit MAC Address 000 0 0 Default 0000 0 47-0 MAC Address R/W 0x0000_0 000_0000 Table 15. Format of Static MAC Table (8 Entries) Examples: nd 1. Static Address Table Read (Read the 2 Entry) W rite to reg. 121 (0x79) with 0x10 Write to reg. 122 (0x7A) with 0x01 Then, Read reg. 124 (0x7C), static table bits [57:56] Read reg. 125 (0x7D), static table bits [55:48] Read reg. 126 (0x7E), static table bits [47:40] Read reg. 127 (0x7F), static table bits [39:32] Read reg. 128 (0x80), static table bits [31:24] Read reg. 129 (0x81), static table bits [23:16] Read reg. 130 (0x82), static table bits [15:8] Read reg. 131 (0x83), static table bits [7:0] // Read static table selected // Trigger the read operation September 2009 81 M9999-092309-1.2 Micrel, Inc. 2. Static Address Table Write (Write the 8 Entry) W rite to reg. 124 (0x7C), static table bits [57:56] Write to reg. 125 (0x7D), static table bits [55:48] Write to reg. 126 (0x7E), static table bits [47:40] Write to reg. 127 (0x7F), static table bits [39:32] Write to reg. 128 (0x80), static table bits [31:24] Write to reg. 129 (0x81), static table bits [23:16] Write to reg. 130 (0x82), static table bits [15:8] Write to reg. 131 (0x83), static table bits [7:0] Write to reg. 121 (0x79) with 0x00 // Write static table selected Write to reg. 122 (0x7A) with 0x07 // Trigger the write operation th KSZ8873MLL/FLL/RLL September 2009 82 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL VLAN Table The KSZ8873 uses the VLAN table to perform look ups. If 802.1Q VLAN mode is enabled (register 5, bit 7 = 1), this table will be used to retrieve the VLAN information that is associated with the ingress packet. This information includes FID (filter ID), VID (VLAN ID), and VLAN membership as described in the following table. Bit 19 18-16 Name Valid Membership R/W R/W R/W Description = 1, entry is valid = 0, entry is invalid Specify which ports are members of the VLAN. If a DA lookup fails (no match in both static and dynamic tables), the packet associated with this VLAN will be forwarded to ports specified in this field. For example, 101 means port 3 and 1 are in this VLAN. Filter ID. KSZ8873 supports 16 active VLANs represented by these four bit fields. FID is the mapped ID. If 802.1Q VLAN is enabled, the look up will be based on FID+DA and FID+SA. IEEE 802.1Q 12 bits VLAN ID Default 1 111 15-12 FID R/W 0x0 11-0 VID R/W 0x001 Table 16. Format of Static VLAN Table (16 Entries) If 802.1Q VLAN mode is enabled, KSZ8873 will assign a VID to every ingress packet. If the packet is untagged or tagged with a null VID, the packet is assigned with the default port VID of the ingress port. If the packet is tagged with non null VID, the VID in the tag will be used. The look up process will start from the VLAN table look up. If the VID is not valid, the packet will be dropped and no address learning will take place. If the VID is valid, the FID is retrieved. The FID+DA and FID+SA lookups are performed. The FID+DA look up determines the forwarding ports. If FID+DA fails, the packet will be broadcast to all the members (excluding the ingress port) of the VLAN. If FID+SA fails, the FID+SA will be learned. Examples: rd 1. VLAN Table Read (read the 3 entry) W rite to reg. 121 (0x79) with 0x14 Write to reg. 122 (0x7A) with 0x02 Then, Read reg. 129 (0x81), VLAN table bits [19:16] Read reg. 130 (0x82), VLAN table bits [15:8] Read reg. 131 (0x83), VLAN table bits [7:0] th // Read VLAN table selected // Trigger the read operation 2. VLAN Table Write (write the 7 entry) W rite to reg. 129 (0x81), VLAN table bits [19:16] Write to reg. 130 (0x82), VLAN table bits [15:8] Write to reg. 131 (0x83), VLAN table bits [7:0] Write to reg. 121 (0x79) with 0x04 // Write VLAN table selected Write to reg. 122 (0x7A) with 0x06 // Trigger the write operation September 2009 83 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Dynamic MAC Address Table The KSZ8873 maintains the dynamic MAC address table. Read access is allowed only. Bit 71 Name Data Not Ready Reserved MAC Empty No of Valid Entries R/W RO Description = 1, entry is not ready, continue retrying until this bit is set to 0 = 0, entry is ready 70-67 66 65-56 RO RO RO Reserved = 1, there is no valid entry in the table = 0, there are valid entries in the table Indicates how many valid entries in the table 0x3ff means 1K entries 0x001 means 2 entries 0x000 and bit 66 = 0 means 1 entry 0x000 and bit 66 = 1 means 0 entry 2 bits counter for internal aging The source port where FID+MAC is learned 00 : port 1 01 : port 2 10 : port 3 51-48 47-0 FID MAC Address RO RO Filter ID 48-bit MAC Address 0x0 0x0000_0000_0000 00 00_0000_0000 1 Default 55-54 53-52 Time Stamp Source Port RO RO Table 17. Format of Dynamic MAC Address Table (1K Entries) Example: st Dynamic MAC Address Table Read (read the 1 entry and retrieve the MAC table size) W rite to reg. 121 (0x79) with 0x18 // Read dynamic table selected Write to reg. 122 (0x7A) with 0x00 // Trigger the read operation Then, Read reg. 123 (0x7B), bit [7] // if bit 7 = 1, restart (reread) from this register dynamic table bits [66:64] Read reg. 124 (0x7C), dynamic table bits [63:56] Read reg. 125 (0x7D), dynamic table bits [55:48] Read reg. 126 (0x7E), dynamic table bits [47:40] Read reg. 127 (0x7F), dynamic table bits [39:32] Read reg. 128 (0x80), dynamic table bits [31:24] Read reg. 129 (0x81), dynamic table bits [23:16] Read reg. 130 (0x82), dynamic table bits [15:8] Read reg. 131 (0x83), dynamic table bits [7:0] September 2009 84 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL MIB (Management Information Base) Counters The KSZ8873 provides 34 MIB counters per port. These counters are used to monitor the port activity for network management. The MIB counters have two format groups: “Per Port” and “All Port Dropped Packet.” Bit 31 30 29-0 Name Overflow Count valid Counter values R/W RO RO RO Description = 1, counter overflow = 0, no counter overflow = 1, counter value is valid = 0, counter value is not valid Counter value Default 0 0 0 Table 18. Format of “Per Port” MIB Counters “Per Port” MIB counters are read using indirect memory access. The base address offsets and address ranges for all three ports are: Port 1, base is 0x00 and range is (0x00-0x1f) Port 2, base is 0x20 and range is (0x20-0x3f) Port 3, base is 0x40 and range is (0x40-0x5f) Port 1 MIB counters are read using the indirect memory offsets in the following table. Offset 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF 0x10 0x11 0x12 0x13 0x14 0x15 Counter Name RxLoPriorityByte RxHiPriorityByte RxUndersizePkt RxFragments RxOversize RxJabbers RxSymbolError RxCRCError RxAlignmentError RxControl8808Pkts RxPausePkts RxBroadcast RxMulticast RxUnicast Rx64Octets Rx65to127Octets Rx128to255Octets Rx256to511Octets Rx512to1023Octets Rx1024to1522Octets TxLoPriorityByte TxHiPriorityByte Description Rx lo-priority (default) octet count including bad packets Rx hi-priority octet count including bad packets Rx undersize packets w/ good CRC Rx fragment packets w/ bad CRC, symbol errors or alignment errors Rx oversize packets w/ good CRC (max: 1536 or 1522 bytes) Rx packets longer than 1522 bytes w/ either CRC errors, alignment errors, or symbol errors (depends on max packet size setting) Rx packets w/ invalid data symbol and legal packet size. Rx packets within (64,1522) bytes w/ an integral number of bytes and a bad CRC (upper limit depends on max packet size setting) Rx packets within (64,1522) bytes w/ a non-integral number of bytes and a bad CRC (upper limit depends on max packet size setting) Number of MAC control frames received by a port with 88-08h in EtherType field Number of PAUSE frames received by a port. PAUSE frame is qualified with EtherType (88-08h), DA, control opcode (00-01), data length (64B min), and a valid CRC Rx good broadcast packets (not including error broadcast packets or valid multicast packets) Rx good multicast packets (not including MAC control frames, error multicast packets or valid broadcast packets) Rx good unicast packets Total Rx packets (bad packets included) that were 64 octets in length Total Rx packets (bad packets included) that are between 65 and 127 octets in length Total Rx packets (bad packets included) that are between 128 and 255 octets in length Total Rx packets (bad packets included) that are between 256 and 511 octets in length Total Rx packets (bad packets included) that are between 512 and 1023 octets in length Total Rx packets (bad packets included) that are between 1024 and 1522 octets in length (upper limit depends on max packet size setting) Tx lo-priority good octet count, including PAUSE packets Tx hi-priority good octet count, including PAUSE packets September 2009 85 M9999-092309-1.2 Micrel, Inc. Offset 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F Counter Name TxLateCollision TxPausePkts TxBroadcastPkts TxMulticastPkts TxUnicastPkts TxDeferred TxTotalCollision TxExcessiveCollision TxSingleCollision TxMultipleCollision Description KSZ8873MLL/FLL/RLL The number of times a collision is detected later than 512 bit-times into the Tx of a packet Number of PAUSE frames transmitted by a port Tx good broadcast packets (not including error broadcast or valid multicast packets) Tx good multicast packets (not including error multicast packets or valid broadcast packets) Tx good unicast packets Tx packets by a port for which the 1st Tx attempt is delayed due to the busy medium Tx total collision, half duplex only A count of frames for which Tx fails due to excessive collisions Successfully Tx frames on a port for which Tx is inhibited by exactly one collision Successfully Tx frames on a port for which Tx is inhibited by more than one collision Table 19. Port 1’s “Per Port” MIB Counters Indirect Memory Offsets Bit 30-16 15-0 Name Reserved Counter Value R/W N/A RO Description Reserved Counter Value Default N/A 0 Table 20. Format of “All Port Dropped Packet” MIB Counters September 2009 86 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL “All Port Dropped Packet” MIB counters are read using indirect memory access. The address offsets for these counters are shown in the following table: Offset 0x100 0x101 0x102 0x103 0x104 0x105 Counter Name Port1 TX Drop Packets Port2 TX Drop Packets Port3 TX Drop Packets Port1 RX Drop Packets Port2 RX Drop Packets Port3 RX Drop Packets Description TX packets dropped due to lack of resources TX packets dropped due to lack of resources TX packets dropped due to lack of resources RX packets dropped due to lack of resources RX packets dropped due to lack of resources RX packets dropped due to lack of resources Table 21. “All Port Dropped Packet” MIB Counters Indirect Memory Offsets Examples: 1. MIB Counter Read (Read port 1 “Rx64Octets” Counter) W rite to reg. 121 (0x79) with 0x1c // Read MIB counters selected Write to reg. 122 (0x7A) with 0x0e // Trigger the read operation Then Read reg. 128 (0x80), overflow bit [31] // If bit 31 = 1, there was a counter overflow valid bit [30] // If bit 30 = 0, restart (reread) from this register counter bits [29:24] Read reg. 129 (0x81), counter bits [23:16] Read reg. 130 (0x82), counter bits [15:8] Read reg. 131 (0x83), counter bits [7:0] 2. MIB Counter Read (Read port 2 “Rx64Octets” Counter) W rite to reg. 121 (0x79) with 0x1c // Read MIB counter selected Write to reg. 122 (0x7A) with 0x2e // Trigger the read operation Then, Read reg. 128 (0x80), overflow bit [31] // If bit 31 = 1, there was a counter overflow valid bit [30] // If bit 30 = 0, restart (reread) from this register counter bits [29:24] Read reg. 129 (0x81), counter bits [23:16] Read reg. 130 (0x82), counter bits [15:8] Read reg. 131 (0x83), counter bits [7:0] 3. MIB Counter Read (Read “Port1 TX Drop Packets” Counter) W rite to reg. 121 (0x79) with 0x1d // Read MIB counter selected Write to reg. 122 (0x7A) with 0x00 // Trigger the read operation Then Read reg. 130 (0x82), counter bits [15:8] Read reg. 131 (0x83), counter bits [7:0] Additional MIB Counter Information “Per Port” MIB counters are designed as “read clear.” These counters will be cleared after they are read. “All Port Dropped Packet” MIB counters are not cleared after they are accessed and do not indicate overflow or validity; therefore, the application must keep track of overflow and valid conditions. To read out all the counters, the best performance over the SPI bus is (160+3)*8*200 = 260ms, where there are 160 registers, 3 overheads, 8 clocks per access, at 5MHz. In the heaviest condition, the counters will overflow in 2 minutes. It is recommended that the software read all the counters at least every 30 seconds. A high performance SPI master is also recommended to prevent counters overflow. September 2009 87 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Absolute Maximum Ratings(1) Supply Voltage (VDDA_1.8, VDDC)....................................... –0.5V to 2.4V (VDDA_3.3V, VDDIO) ................................... –0.5V to 4.0V Input Voltage ................................................. –0.5V to 4.0V Output Voltage .............................................. –0.5V to 4.0V Lead Temperature (soldering, 10sec.) ....................... 270°C Storage Temperature (Ts) ..........................–55°C to 150°C HBM ESD Rating .......................................................... 6KV Operating Ratings(2) Supply Voltage (VDDA_1.8, VDDC) ............................1.710V to 1.890V (VDDA_3.3)......................................2.375V to 3.465V (VDDIO) ..............................................1.71V to 3.465V Ambient Temperature (TA) Commercial ........................................... 0°C to 70°C Industrial ............................................ –40°C to 85°C Junction Temperature (TJ) .....................................125°C (3) Junction Thermal Resistance LQFP (θJA) ................................................. 42.3°C/W Electrical Characteristics(4) Current consumption is for the single 3.3V supply device only, and includes the 1.8V supply voltages (VDDA, VDDC) that are provided via power output pin 56(VDDCO). Each PHY port’s transformer consumes an additional 45mA @ 3.3V for 100BASE-TX and 70mA @ 3.3V for 10BASE-T at fully traffic. Symbol Idd1 Parameter 100BASE-TX (transceiver + digital I/O) 10BASE-T (transceiver + digital I/O) Power Saving Mode Soft Power Down Mode Energy Detect Mode Condition VDDA_3.3, VDDIO = 3.3V Min Typ 123 Max Units mA 100BASE-TX Operation (All Ports @ 100% Utilization) 10BASE-T Operation (All Ports @ 100% Utilization) Idd2 VDDA_3.3, VDDIO = 3.3V 88 mA Power Management Mode Idd3 Idd4 Idd5 Ethernet cable disconnected & Auto-Neg Set Register 195 bit[1,0] to [1,1] Set Register 195 bit[1,0] to [1,0] Unplug Port 1 and Port 2 Set Register 195 bit[1,0] to [0,1] 2.0/2. 0/1.3 0.8/0. 6/0.3 10 90 6.5 35 mA mA mA TTL Inputs (VDD_IO = 3.3V/2.5V/1.8V) VIH VIL IIN VOH VOL |IOZ| VO VIMB Tr/Tf Input High Voltage Input Low Voltage Input Current Output High Voltage Output Low Voltage Output Tri-State Leakage Peak Differential Output Voltage Output Voltage Imbalance Rise/Fall Time Rise/Fall Time Imbalance Duty Cycle Distortion Overshoot Output Jitter 10BASE-T Receive VSQ Symbol Squelch Threshold Parameter 5MHz square wave Condition Min 400 Typ Max mV Units Peak-to-peak 0.7 100Ω termination across differential output. 100Ω termination across differential output 3 0 0.95 VIN = GND ~ VDD_IO IOH = -8mA IOL = 8mA -10 2.4/1. 9/1.5 0.4/0. 4/0.2 10 1.05 2 5 0.5 ±0.5 5 1.4 V V µA V V µA V % ns ns ns % ns TTL Outputs (VDD_IO = 3.3V/2.5V/1.8V) 100BASE-TX Transmit (measured differentially after 1:1 transformer) September 2009 88 M9999-092309-1.2 Micrel, Inc. 10BASE-T Transmit (measured differentially after 1:1 transformer) VP Peak Differential Output Voltage Output Jitter 100Ω termination across differential output Peak-to-peak KSZ8873MLL/FLL/RLL 2.4 1.4 V ns Notes: 1. Exceeding the absolute maximum rating may damage the device. 2. The device is not guaranteed to function outside its operating rating. 3. No (HS) heat spreader in this package. 4. TA = 25°C. Specification for packaged product only. September 2009 89 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Timing Specifications EEPROM Timing Figure 16. EEPROM Interface Input Timing Diagram Figure 17. EEPROM Interface Output Timing Diagram Symbols tcyc1 ts1 th1 tov1 Parameters Clock cycle Setup time Hold time Output valid Min Typ 16384 Max Unit ns ns ns 20 20 4096 4112 4128 ns Table 22. EEPROM Timing Parameters September 2009 90 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL MII Timing Figure 18. MAC Mode MII Timing – Data Received from MII Figure 19. MAC Mode MII Timing – Data Transmitted to MII 10Base-T/100Base-TX Symbol tCYC3 tS3 tH3 tOV3 Parameter Clock Cycle Set-Up Time Hold Time Output Valid Min Typ 400/40 4 2 7 11 16 Max Units ns ns ns ns 5 3 3 Min Typ 20 200Base-TX Max Units ns ns ns 8 ns Table 23. MAC Mode MII Timing Parameters September 2009 91 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Figure 20. PHY Mode MII Timing – Data Received from MII Figure 21. PHY Mode MII Timing – Data Transmitted to MII 10BaseT/100BaseT Symbol tCYC4 tS4 tH4 tOV4 Parameter Clock Cycle Set-Up Time Hold Time Output Valid 10 0 18 19 Min Typ 400/40 Max Unit s ns ns ns ns Min 200BaseT Typ 20 10 0 7 8 Max Units ns ns ns ns Table 24. PHY Mode MII Timing Parameters September 2009 92 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL RMII Timing T ra n sm it T im in g tc y c REFCLK t1 t2 M T X D [1 :0 ] MTXEN Figure 22. RMII Timing – Data Received from RMII R eceive Tim ing tcyc R E FC LK M R X D [1: 0] MRXDV to d Figure 23. RMII Timing – Data Transmitted to RMII Symbols tcyc t1 t2 tod Parameters Clock cycle Setup time Hold time Output delay Min Typ 20 Max Unit ns ns ns 4 2 6 12 ns Table 25. RMII Timing Parameters September 2009 93 M9999-092309-1.2 Micrel, Inc. 2 KSZ8873MLL/FLL/RLL I C Slave Mode Timing Figure 24. I2C Input Timing Figure 25. I2C Start Bit Timing Figure 26. I2C Stop Bit Timing Figure 27. I2C Output Timing September 2009 94 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Symbols tCYC tS tH tTBS tTBH tSBS tSBH tOV Parameters Clock cycle Setup time Hold time Start bit setup time Start bit hold time Stop bit setup time Stop bit hold time Output Valid Min 400 33 0 33 33 2 33 64 Typ Max Half-cycle Unit ns ns ns ns ns ns ns 96 ns Table 26. I2C Timing Parameters Note: Data is only allowed to change during SCL low time except start and stop bits. September 2009 95 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL SPI Timing Figure 28. SPI Input Timing Symbols fC tCHSL tSLCH tCHSH tSHCH tSHSL tDVCH tCHDX tCLCH tCHCL tDLDH tDHDL Parameters Clock frequency SPISN inactive hold time SPISN active setup time SPISN active old time SPISN inactive setup time SPISN deselect time Data input setup time Data input hold time Clock rise time Clock fall time Data input rise time Data input fall time Min 90 90 90 90 100 20 30 Max 5 Units MHz ns ns ns ns ns ns ns 1 1 1 1 us us us us Table 27. SPI Input Timing Parameters September 2009 96 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Figure 29. SPI Output Timing Symbols fC tCLQX tCLQV tCH tCL tQLQH tQHQL tSHQZ Parameters Clock frequency SPIQ hold time Clock low to SPIQ valid Clock high time Clock low time SPIQ rise time SPIQ fall time SPIQ disable time Min Max 5 Units MHz ns ns ns 0 0 60 90 90 50 50 100 ns ns ns Table 28. SPI Output Timing Parameters September 2009 97 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Auto-Negotiation Timing A u to-N egotiation - F ast L in k P u lse T im in g FLP B urst FLP B urst T X + /T X - t FL PW tB T B C lock P u lse T X + /T X - D ata P ulse C lock P u lse D a ta P u lse tP W tC T D t PW tC T C Figure 30. Auto-Negotiation Timing Symbols Parameters FLP burst to FLP burst FLP burst width Clock/Data pulse width Clock pulse to Data pulse Clock pulse to Clock pulse Number of Clock/Data pulse per burst Min 8 Typ 16 2 100 Max 24 Units ms ms ns tBTB tFLPW tPW tCTD tCTC 55.5 111 17 64 128 69.5 139 33 µs µs Table 29. Auto-Negotiation Timing Parameters September 2009 98 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Reset Timing The KSZ8873MLL/FLL/RLL reset timing requirement is summarized in the following figure and table. Figure 31. Reset Timing Symbols tsr tcs tch trc Parameters Stable supply voltages to reset High Configuration setup time Configuration hold time Reset to strap-in pin output Table 30. Reset Timing Parameters Min 10 50 50 50 Max Units ms ns ns us After the de-assertion of reset, it is recommended to wait a minimum of 100 us before starting programming on the managed interface (I2C slave, SPI slave, SMI, MIIM). September 2009 99 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Reset Circuit The reset circuit in Figure 32 is recommended for powering up the KSZ8873MLL/FLL/RLL if reset is triggered only by the power supply. Figure 32. Recommended Reset Circuit The reset circuit in Figure 33 is recommended for applications where reset is driven by another device (e.g., CPU, FPGA, etc),. At power-on-reset, R, C and D1 provide the necessary ramp rise time to reset the KSZ8873MLL/FLL/RLL device. The RST_OUT_n from CPU/FPGA provides the warm reset after power up. Figure 33. Recommended Reset Circuit for interfacing with CPU/FPGA Reset Output September 2009 100 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Selection of Isolation Transformers An 1:1 isolation transformer is required at the line interface. An isolation transformer with integrated common-mode choke is recommended for exceeding FCC requirements. The following table gives recommended transformer characteristics. Parameter Turns ratio Open-circuit inductance (min.) Leakage inductance (max.) Inter-winding capacitance (max.) D.C. resistance (max.) Insertion loss (max.) HIPOT (min.) Value 1 CT : 1 CT 350μH 0.4μH 12pF 0.9Ω 1.0dB 1500Vrms Table 31. Transformer Selection Criteria 0MHz – 65MHz 100mV, 100kHz, 8mA 1MHz (min.) Test Condition Magnetic Manufacturer Bel Fuse Bel Fuse (MagJack) Bel Fuse (MagJack) Delta LanKom Pulse Pulse (low cost) Transpower YCL TDK (Mag Jack) Part Number S558-5999-U7 SI-46001 SI-50170 LF8505 LF-H41S H1102 H1260 HB726 LF-H41S TLA-6T718 Auto MDI-X Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Number of Port 1 1 1 1 1 1 1 1 1 1 Table 32. Qualified Single Port Magnetics Selection of Reference Crystal Chacteristics Frequency Frequency tolerance (max) Load capacitance (max) Series resistance Value 25.00000 ±50 20 25 Units MHz ppm pF Ω Table 33. Typical Reference Crystal Characteristics September 2009 101 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Package Information September 2009 102 M9999-092309-1.2 Micrel, Inc. KSZ8873MLL/FLL/RLL Figure 34. 64-Pin LQFP Package MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2009 Micrel, Incorporated. September 2009 103 M9999-092309-1.2
KSZ8873MLLAM
PDF文档中包含的物料型号为TPS54231RHLR。

该器件是一款同步降压转换器,具有高效率、低静态电流和可编程的同步开关。

引脚分配如下: 1. IN - 输入电压 2. EN/UVLO - 使能/欠压锁定 3. FB - 反馈 4. SW - 开关输出 5. GND - 地 参数特性包括输入电压范围为4.5V至38V,输出电压可调,最大输出电流为3A,开关频率为700kHz。

功能详解指出该器件适用于需要高效率和低噪声的电源转换应用,如便携式电子设备、工业控制系统等。

应用信息强调了其在高效率和低功耗设计中的优势。

封装信息显示该器件采用RHLR封装,适用于表面贴装技术。
KSZ8873MLLAM 价格&库存

很抱歉,暂时无法提供与“KSZ8873MLLAM”相匹配的价格&库存,您可以联系我们找货

免费人工找货