0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ML7906A

ML7906A

  • 厂商:

    MICRO-ELECTRONICS

  • 封装:

  • 描述:

    ML7906A - 3-TERMINAL NEGATIVE VOLTAGE REGULATOR - Micro Electronics

  • 数据手册
  • 价格&库存
ML7906A 数据手册
ML7900 SERIES 3-TERMINAL NEGATIVE VOLTAGE REGULATOR The ML7900 series are 3-Terminal Negative Voltage Regulators. These negative regulators are intended as complements to the popular ML7800 series of positive voltage regulations, and they are available in the same voltage options from -5V to -24V. The ML7900 series employ internal current-limiting. safe-area protection , and thermal shutdown, making them virtually indestructible. ■ Package Outline TO-220 (7900A) 1. OUT 2. IN 3. COMMON 32 TO-220F (7900FA) 1 ABSOLUTE MAXIMUM RATINGS PARAMETER Input Voltage (Ta=25℃) SYMBOL VIN Maximum Rating ML7905 to ML7909 ML7912 to ML7920 ML7924 -35 -35 -40 -40 to +125 Operating Junction Temperature Operating Ambient Temperature Tj Topr 15(Tc≦45℃ ) -30 to +125 -30 to +75 UNIT V Storage Temperature Range Operating Temperature Range Power Dissipation Tstg ℃ ℃ W PD THERMAL RESISTANCE Thermal Resistance Junction-to-Ambient Temperature Junction-to-Case Θ ja Θ jc 60 5 ℃/W ELECTRICAL CHARACTERISTICS PARAMETER ML7905A / ML7905FA Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Output Noise Voltage Average Temperature Cofficient of Output Voltage Vo IQ ΔVo Io ΔVo Vin RR VNO VIN=-10V VIN=-10V VIN=-10V (Tj=25℃,C1=0.33μF,Co=0.1μF) Measurement is to be conducted in pulse testing. SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Io=0.5A Io=0mA Io=0.005A to 1.5A -4.8 - -5.0 2.2 50 12.5 60 125 -0.4 -5.2 5.0 100 100 - V mA mV mV dB μV mV/℃ VIN=-7 to -25V Io=0.5A VIN=-10V VIN=-10V Io=0.5A ein=2Vp-p f=120Hz Io=0.5A 54 - BW=10Hz to 100KHz Io=5mA ΔVo / ΔT VIN=-10V REV B Page 1 of 10 ELECTRICAL CHARACTERISTICS PARAMETER ML7906A / ML7906FA Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Vo IQ ΔVo Io VIN=-11V VIN=-11V VIN=-11V (Tj=25℃,C1=0.33 μF,Co=0.1μF) Measurement is to be conducted in pulse testing. SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Io=0.5A Io=0mA Io=0.005A to 1.5A Io=0.5A Io=0.5A -5.75 f=120Hz Io=0.5A 54 - -6.0 2.2 50 12.5 60 150 -0.4 -6.25 5.0 120 120 - V mA mV mV dB μV mV/℃ ΔVo Vin VIN=-8 to -25V RR VIN=-11V ein=2Vp-p VIN=-11V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=-11V Cofficient of Output Voltage ML7908A / ML7908FA Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Vo IQ ΔVo Io VIN=-14V VIN=-14V VIN=-14V BW=10Hz to 100KHz Io=5mA Io=0.5A Io=0mA Io=0.005A to 1.5A Io=0.5A -7.7 f=120Hz Io=0.5A 54 - -8.0 2.2 60 12.5 60 200 -0.7 -8.3 5.0 160 160 - V mA mV mV dB μV mV/℃ ΔVo Vin VIN=-10.5 to -25V RR VIN=-14V Io=0.5A ein=2Vp-p VIN=-14V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=-14V Cofficient of Output Voltage ML7909A / ML7909FA Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Vo IQ ΔVo Io VIN=-15V VIN=-15V VIN=-15V BW=10Hz to 100KHz Io=5mA Io=0.5A Io=0mA Io=0.005A to 1.5A Io=0.5A -8.65 f=120Hz Io=0.5A 54 - -9.0 2.2 60 8 60 250 -0.8 -9.35 5.0 180 180 - V mA mV mV dB μV mV/℃ ΔVo Vin VIN=-11.5 to -25V RR VIN=-15V Io=0.5A ein=2Vp-p VIN=-15V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=-15V Cofficient of Output Voltage ML7912A / ML7912FA Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Vo IQ ΔVo Io VIN=-19V VIN=-19V VIN=-19V BW=10Hz to 100KHz Io=5mA Io=0.5A Io=0mA Io=0.005A to 1.5A Io=0.5A -11.5 f=120Hz Io=0.5A 54 - -12.0 2.7 60 5 60 300 -0.8 -12.5 6.0 240 240 - V mA mV mV dB μV mV/℃ ΔVo Vin VIN=-14.5 to -30V RR VIN=-19V Io=0.5A ein=2Vp-p VIN=-19V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=-19V Cofficient of Output Voltage BW=10Hz to 100KHz Io=5mA REV B Page 2 of 10 ELECTRICAL CHARACTERISTICS PARAMETER ML7915A / ML7915FA Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Vo IQ ΔVo Io VIN=-23V VIN=-23V VIN=-23V (Tj=25℃,C1=0.33 μF,Co=0.1μF) Measurement is to be conducted in pulse testing. SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Io=0.5A Io=0mA Io=0.005A to 1.5A Io=0.5A -14.4 f=120Hz Io=0.5A 54 - -15.0 2.7 60 5 60 375 -1 -15.6 6.0 300 300 - V mA mV mV dB μV mV/℃ ΔVo Vin VIN=-17.5 to -30V RR VIN=-23V Io=0.5A ein=2Vp-p VIN=-23V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=-23V Cofficient of Output Voltage ML7918A / ML7918FA Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Vo IQ ΔVo Io VIN=-27V VIN=-27V VIN=-27V BW=10Hz to 100KHz Io=5mA Io=0.5A Io=0mA Io=0.005A to 1.5A Io=0.5A -17.3 f=120Hz Io=0.5A 54 - -18.0 2.7 60 5 60 450 -1 -18.7 6.0 360 360 - V mA mV mV dB μV mV/℃ ΔVo Vin VIN=-21 to -33V RR VIN=-27V Io=0.5A ein=2Vp-p VIN=-27V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=-27V Cofficient of Output Voltage ML7924A / ML7924FA Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Vo IQ ΔVo Io VIN=-33V VIN=-33V VIN=-33V BW=10Hz to 100KHz Io=5mA Io=0.5A Io=0mA Io=0.005A to 1.5A Io=0.5A -23.0 f=120Hz Io=0.5A 54 - -24.0 2.7 85 5 60 600 -1 -25.0 6.0 480 480 - V mA mV mV dB μV mV/℃ ΔVo Vin VIN=-28 to -38V RR VIN=-33V Io=0.5A ein=2Vp-p VIN=-33V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=-33V Cofficient of Output Voltage BW=10Hz to 100KHz Io=5mA REV B Page 3 of 10 ■ Equivalent Circuit ■ Power Dissipation vs. Ambient Temperature HS 20 Power Dissipation PD (W) Heat Sink = Heat Sink Thermal Resistance 15 HS = 3 C/W = 5 C/W 10 HS HS = 10 C/W = 20 C/W 5 HS Without Heat Sink 0 25 50 75 Ambient Temperature Ta ( C) ■ Test Circuit 1. Output Voltage, Line Regulation, Load Regulation, Quiescent Current, Average Temperature Coefficient of Output Voltage, Output Noise Voltage. 2. Ripple Rejection 2 3 1 2 3 1 REV B Page 4 of 10 ■ Typical Characteristics REV B Page 5 of 10 ■ Typical Characteristics REV B Page 6 of 10 1. Application Circuit In the following explain only the positive regulator unless otherwise specified. However they can apply to the negative voltage regulator by easy change. Positive/Negative Voltage Supply 78 series +Vin IN GND 0.33uF D1 0.1uF OUT +Vo Note : In the above positive and negative power supply application, D1 and D2 should be connected. If D1 and D2 are not connected, either of positive or negative power supply circuit may not turns on. COM 0.33uF COM -Vin IN 79 series OUT D2 0.1uF -Vo 2. Note in Application Circuit (1) If the higher voltage (above the rated value) or lower voltage (GND-0.5V) is supplied to the input terminals, the IC may be destroyed. To avoid such a case, a zener diode or other parts of the surge supressor should be connected as shown below. L R Vin 1 IN OUT 3 Vo Vin 1 IN OUT 3 Vo GND GND + Ze ner Diode Capacitor + Diode Capacitor (2) If the higher voltage than the input terminal is supplied to the output terminal, the IC may be destroyed. To avoid input terminal short to the GND or the stored voltage in the capacitor back to the output terminal, by the large value capacitor connecting to the output terminal application, the SBD should be required as shown below; DIODE 2 2 Vin 1 IN OUT 3 Vo * In case of negative voltage regulator, reverse the SBD and capacitor direction. GND 2 + Capacitor REV B Page 7 of 10 3. Thermal Design (1) Heat Producting There are two kinds of heat producting (P LOSS-1, PLOSS-2) in three terminal regulator and the sum of them is total heat producting of IC (PLOSS). (1-1) PLOSS-1 : heat producting by own operation Input voltage (Vin) and quiescent current (IQ) produce the heat mentioned below equation. PLOSS-1 = Vin X IQ Input Vin IN GND OUT Iout Output Vout IQ (1-2) PLOSS-2 : heat producing by output current and the input-output differential voltage. Internal power transistor produces the hest mentioned following equation. PLOSS-2 = (Vin-Vout) x Iout (W) Therefore, the total heat producing PLOSS is : PLOSS = PLOSS-1 + PLOSS-2 = Vin X IQ + (Vin-Vout) X Iout (2) (2-1) Thermal Resistance Definition of Thermal Resistance : θ Thermal resistance (θ ) is a degree of heat radiation mentioned following equation. = (T1 - T2)/P ( ℃ /W) Heat Producing Quantity Ambient Temperature or case temperature Heat Source Temperature P(W) (W) : P (W) :T2 (℃ ) :T1 (℃ ) T1 Rp T1 > T2 T2 (2-2) Thermal resistance of TO-220 There are two kinds of thermal resistance of TO-220. One is " θjc" for the application with the heat sink, the other is "θja" for the application without the heat sink. thermal resistance between IC chip (junction point) and the package back side θjc : contacting with the heat sink. θja : thermal resistance between IC chip (junction point) and ambience. REV B Page 8 of 10 (3) Heat Radiation Balance The heat produced in the IC is radiated to ambience through the package and the heat sink. The quantity of the heat radiation depends on the heat source temperature, ambient temperature and the thermal resistance of the package. (3-1) TO-220 with heat sink Heat radiation balance model of the TO-220 with heat sink is shown as below. PLOSS θJC θCH θHS Tj Heat Source (junction) Temperature θJS Ambient Temperature Ta Where θjc : θjs : θCH : thermal resistance between IC chip (junction point) and the package backside connecting to the heatsink. thermal resistance between IC chip (junction point) and the package surface. thermal resistance between package backside and the heat sink including the condidtion of insulator, silicon grease and tighten torque. thermal resistance of the heat sink Package Face Side Resin Chip Package Back Side θHS : θJS θJC θCH θHS IC Heat Sink If the js is large enough compare with other thermal resistance, the js can be neglected and the heat radiation model can be mentioned as below. PLOSS θJC θCH θHS Tj Ta The relation between temperature and heat radiation quantity is shown below. Tj=P LOSS X (θjc+θCH +θHS) + Ta (℃ ) REV B Page 9 of 10 (4) Thermal Design The heat radiation balance model of the TO-220 with the heat sink is shown as follows. Heat radiation balance Tj = P LOSS X (θjc +θCH + θHS) + Ta PLOSS = Vin X IQ + (Vin-Vout) X Iout Substituting "Eq.(4-2) into "Eq.(4-1)" obtains Tj = [Vin X I Q +(Vin-Vout) X Iout] X (θjc +θCH +θHS)+Ta In Eq.(4-3) Vin, Iout, θCH, θHS, Ta depand on using condition. Tj, I Q,Vout,θjc depend on IC depend on IC specification. WhenθCH, IQ and Tj are assumed the following values, Eq.(4-3) becomes Eq.(4-4). θCH=0.3 to 0.4 ( ℃/W) Insert the mica paper (0.1t) and thermal conduction silicon grease between the IC and heat sink and tighten them with the bolt by 4Kg*cm-min. IQ = 5 to 6mA (max.) Tj = 125 ℃ (max.) Tj(max) = 125 = [5 X Vin + (Vin-Vout) X Iout] X (5+0.3+ θHS) +Ta When fix the Vout, Tj depends on the Vin, Iout, θHS and Ta. It means; Lower Vin and / or Iout are required to linit the temperature rise. Smaller θHS is required for the effective heat reduce (i.e. using the large heat sink). In the thermal design, when fix the Vin, Iout and Ta, selectthe heat sink which θHS is smaller that the result of Eq.(4-4). For more detail, please refer the heat resistance value mentioned in the specification of the heat sink supplier. ( ℃) (4-4) ( ℃) (4-3) (℃ ) (W) (4-1) (4-2) REV B Page 10 of 10
ML7906A 价格&库存

很抱歉,暂时无法提供与“ML7906A”相匹配的价格&库存,您可以联系我们找货

免费人工找货