0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
24AA32AF

24AA32AF

  • 厂商:

    MICROCHIP

  • 封装:

  • 描述:

    24AA32AF - 32K I2C™ Serial EEPROM with Quarter-Array Write-Protect - Microchip Technology

  • 数据手册
  • 价格&库存
24AA32AF 数据手册
24AA32AF/24LC32AF 32K I2C™ Serial EEPROM with Quarter-Array Write-Protect Device Selection Table Part Number 24AA32AF 24LC32AF Note 1: VCC Range 1.7-5.5 2.5-5.5 Max. Clock Frequency 400 kHz(1) 400 kHz Temp. Ranges I I, E Description: The Microchip Technology Inc. 24AA32AF/24LC32AF (24XX32AF*) is a 32 Kbit Electrically Erasable PROM. The device is organized as a single block of 4K x 8-bit memory with a 2-wire serial interface. Low-voltage design permits operation down to 1.7V, with standby and read currents of only 1 μA and 400 μA, respectively. It has been developed for advanced, lowpower applications such as personal communications or data acquisition. The 24XX32AF also has a page write capability for up to 32 bytes of data. Functional address lines allow up to eight devices on the same bus, for up to 256 Kbits address space. The 24XX32AF is available in the standard 8-pin PDIP, surface mount SOIC, TSSOP, TDFN and MSOP packages. The 24XX32AF is also available in the 5-lead SOT-23 package. 100 kHz for VCC 4,000V • More than 1 Million Erase/Write Cycles • Data Retention > 200 Years • Factory Programming Available • Packages Include 8-lead PDIP, SOIC, TSSOP, MSOP, TDFN and 5-lead SOT-23 • Pb-Free and RoHS Compliant • Temperature Ranges: - Industrial (I): -40°C to +85°C - Automotive (E): -40°C to +125°C Block Diagram A0 A1 A2 WP HV Generator I/O Control Logic Memory Control Logic XDEC EEPROM Array Page Latches I/O SDA Vcc VSS SCL YDEC Sense Amp. R/W Control Package Types PDIP, MSOP, SOIC, TSSOP A0 A1 A2 VSS 1 2 3 4 8 7 6 5 VCC WP SCL SDA SDA 3 4 VCC SCL VSS 1 2 SOT-23 5 WP A0 1 A1 2 A2 3 VSS 4 TDFN 8 VCC 7 WP 6 SCL 5 SDA *24XX32AF is used in this document as a generic part number for the 24AA32AF/24LC32AF devices. © 2009 Microchip Technology Inc. DS22184A-page 1 24AA32AF/24LC32AF 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings (†) VCC .............................................................................................................................................................................6.5V All inputs and outputs w.r.t. VSS ......................................................................................................... -0.3V to VCC +1.0V Storage temperature ...............................................................................................................................-65°C to +150°C Ambient temperature with power applied ................................................................................................-40°C to +125°C ESD protection on all pins ......................................................................................................................................................≥ 4 kV † NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. TABLE 1-1: DC CHARACTERISTICS Industrial (I): TA = -40°C to +85°C, VCC = +1.7V to +5.5V Automotive (E): TA = -40°C to +125°C, VCC = +2.5V to +5.5V Min. — DC CHARACTERISTICS Param. Symbol No. D1 D2 D3 D4 — VIH VIL VHYS Characteristic A0, A1, A2, WP, SCL and SDA pins High-level input voltage Low-level input voltage Hysteresis of Schmitt Trigger inputs (SDA, SCL pins) Low-level output voltage Input leakage current Output leakage current Pin capacitance (all inputs/outputs) Typ. — — — — Max. — — 0.3 VCC 0.2 VCC — Units — V V V V — — Conditions 0.7 VCC — 0.05 VCC VCC ≥ 2.5V VCC < 2.5V VCC ≥ 2.5V (Note 1) D5 D6 D7 D8 D9 D10 D11 VOL ILI ILO CIN, COUT ICC read ICCS — — — — — — — — — — — — 0.1 0.05 0.01 — 0.40 ±1 ±1 10 3 400 1 5 V μA μA pF mA μA μA μA IOL = 3.0 mA, VCC = 4.5V IOL = 2.1 mA, Vcc = 2.5V VIN = VSS or VCC VOUT = VSS or VCC VCC = 5.0V (Note 1) TA = 25°C, FCLK = 1 MHz VCC = 5.5V, SCL = 400 kHz Industrial Automotive SDA = SCL = VCC = 5.5V A0, A1, A2, WP = VSS ICC write Operating current Standby current Note 1: 2: This parameter is periodically sampled and not 100% tested. Typical measurements taken at room temperature. DS22184A-page 2 © 2009 Microchip Technology Inc. 24AA32AF/24LC32AF TABLE 1-2: AC CHARACTERISTICS Electrical Characteristics: Industrial (I): VCC = +1.7V to 5.5V TA = -40°C to +85°C Automotive (E): VCC = +2.5V to 5.5V TA = -40°C to 125°C Characteristic Clock frequency Clock high time Clock low time SDA and SCL rise time (Note 1) SDA and SCL fall time (Note 1) Start condition hold time Start condition setup time Data input hold time Data input setup time Stop condition setup time WP setup time WP hold time Output valid from clock (Note 2) Bus free time: Time the bus must be free before a new transmission can start Output fall time from VIH minimum to VIL maximum CB ≤ 100 pF Input filter spike suppression (SDA and SCL pins) Write cycle time (byte or page) Endurance Min. — — 4000 600 4700 1300 — — — 4000 600 4700 600 0 250 100 4000 600 4000 600 4700 1300 — — 4700 1300 10 + 0.1CB — — 1,000,000 Max. 100 400 — — — — 1000 300 300 — — — — — — — — — — — — — 3500 900 — — 250 Units kHz ns ns ns ns ns ns ns ns ns ns ns ns ns 1.7V ≤ VCC < 2.5V 2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V 2.5V ≤ VCC ≤ 5.5V (Note 2) 1.7V ≤ VCC < 2.5V 2.5V ≤ VCC ≤ 5.5V 1.7 V ≤ VCC < 2.5V 2.5 V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V 2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V 2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V 2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V 2.5V ≤ VCC ≤ 5.5V (Note 1) Conditions 1.7V ≤ VCC < 2.5V 2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V 2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V 2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V 2.5V ≤ VCC ≤ 5.5V AC CHARACTERISTICS Param. No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Sym. FCLK THIGH TLOW TR TF THD:STA TSU:STA THD:DAT TSU:DAT TSU:STO TSU:WP THD:WP TAA TBUF 15 TOF ns 16 17 18 TSP TWC — 50 5 — ns ms (Notes 1 and 3) — cycles 25°C (Note 4) Note 1: Not 100% tested. CB = total capacitance of one bus line in pF. 2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions. 3: The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs, which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation. 4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model, which can be obtained from Microchip’s web site at www.microchip.com. © 2009 Microchip Technology Inc. DS22184A-page 3 24AA32AF/24LC32AF FIGURE 1-1: BUS TIMING DATA 5 4 2 D4 SCL SDA IN 7 6 16 3 8 9 10 13 SDA OUT (protected) (unprotected) 14 WP 11 12 DS22184A-page 4 © 2009 Microchip Technology Inc. 24AA32AF/24LC32AF 2.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 2-1. TABLE 2-1: Name A0 A1 A2 VSS SDA SCL WP VCC PIN FUNCTION TABLE PDIP 1 2 3 4 5 6 7 8 SOIC 1 2 3 4 5 6 7 8 TSSOP 1 2 3 4 5 6 7 8 TDFN 1 2 3 4 5 6 7 8 MSOP 1 2 3 4 5 6 7 8 SOT-23 — — — 2 3 1 5 4 Description Chip Address Input Chip Address Input Chip Address Input Ground Serial Address/Data I/O Serial Clock Write-Protect Input +1.7V to 5.5V Power Supply 2.1 A0, A1, A2 Chip Address Inputs 2.3 Serial Clock (SCL) The A0, A1 and A2 inputs are used by the 24XX32AF for multiple device operation. The levels on these inputs are compared with the corresponding bits in the slave address. The chip is selected if the comparison is true. Up to eight devices may be connected to the same bus by using different Chip Select bit combinations. These inputs must be connected to either VCC or VSS. In most applications, the chip address inputs A0, A1 and A2 are hard-wired to logic ‘0’ or logic ‘1’. For applications in which these pins are controlled by a microcontroller or other programmable device, the chip address pins must be driven to logic ‘0’ or logic ‘1’ before normal device operation can proceed. Address pins are not available in the SOT-23 package. The SCL input is used to synchronize the data transfer to and from the device. 2.4 Write-Protect (WP) This pin must be connected to either VSS or VCC. If tied to VSS, write operations are enabled. If tied to VCC, write operations are inhibited for the upper 1/4 of the array (C00h-FFFh), but read operations are not affected. 2.2 Serial Data (SDA) SDA is a bidirectional pin used to transfer addresses and data into and out of the device. It is an open-drain terminal, therefore, the SDA bus requires a pull-up resistor to VCC (typical 10 kΩ for 100 kHz, 2 kΩ for 400 kHz) For normal data transfer, SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating Start and Stop conditions. © 2009 Microchip Technology Inc. DS22184A-page 5 24AA32AF/24LC32AF 3.0 FUNCTIONAL DESCRIPTION 4.4 Data Valid (D) The 24XX32AF supports a bidirectional, 2-wire bus and data transmission protocol. A device that sends data onto the bus is defined as transmitter, while a device receiving data is defined as a receiver. The bus has to be controlled by a master device which generates the Serial Clock (SCL), controls the bus access and generates the Start and Stop conditions, while the 24XX32AF works as slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated. The state of the data line represents valid data when, after a Start condition, the data line is stable for the duration of the high period of the clock signal. The data on the line must be changed during the low period of the clock signal. There is one clock pulse per bit of data. Each data transfer is initiated with a Start condition and terminated with a Stop condition. The number of data bytes transferred between Start and Stop conditions is determined by the master device and is, theoretically, unlimited (although only the last thirty-two bytes will be stored when doing a write operation). When an overwrite does occur, it will replace data in a first-in first-out (FIFO) fashion. 4.0 BUS CHARACTERISTICS The following bus protocol has been defined: • Data transfer may be initiated only when the bus is not busy. • During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as a Start or Stop condition. Accordingly, the following bus conditions have been defined (Figure 4-1). 4.5 Acknowledge Each receiving device, when addressed, is obliged to generate an Acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this Acknowledge bit. Note: The 24XX32AF does not generate any Acknowledge bits if an internal programming cycle is in progress. 4.1 Bus Not Busy (A) Both data and clock lines remain high. 4.2 Start Data Transfer (B) A high-to-low transition of the SDA line while the clock (SCL) is high determines a Start condition. All commands must be preceded by a Start condition. 4.3 Stop Data Transfer (C) A low-to-high transition of the SDA line while the clock (SCL) is high determines a Stop condition. All operations must be ended with a Stop condition. The device that acknowledges, has to pull down the SDA line during the Acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the Acknowledge related clock pulse. Of course, setup and hold times must be taken into account. During reads, a master must signal an end of data to the slave by not generating an Acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave (24XX32AF) will leave the data line high to enable the master to generate the Stop condition. FIGURE 4-1: (A) SCL (B) DATA TRANSFER SEQUENCE ON THE SERIAL BUS (D) (D) (C) (A) SDA Start Condition Address or Acknowledge Valid Data Allowed to Change Stop Condition DS22184A-page 6 © 2009 Microchip Technology Inc. 24AA32AF/24LC32AF 5.0 DEVICE ADDRESSING A control byte is the first byte received following the Start condition from the master device (Figure 5-1). The control byte consists of a four-bit control code. For the 24XX32AF, this is set as ‘1010’ binary for read and write operations. The next three bits of the control byte are the Chip Select bits (A2, A1, A0). The Chip Select bits allow the use of up to eight 24XX32AF devices on the same bus and are used to select which device is accessed. The Chip Select bits in the control byte must correspond to the logic levels on the corresponding A2, A1 and A0 pins for the device to respond. These bits are in effect the three Most Significant bits of the word address. For the SOT-23 package, the address pins are not available. During device addressing, the A1, A2, and A0 Chip Select bits (Figure 5-2) should be set to ‘0’. The last bit of the control byte defines the operation to be performed. When set to a ‘1’, a read operation is selected. When set to a zero, a write operation is selected. The next two bytes received define the address of the first data byte (Figure 5-2). Because only A11 to A0 are used, the upper four address bits are “don’t care” bits. The upper address bits are transferred first, followed by the Less Significant bits. Following the Start condition, the 24XX32AF monitors the SDA bus checking the device type identifier being transmitted and, upon receiving a ‘1010’ code and appropriate device select bits, the slave device outputs an Acknowledge signal on the SDA line. Depending on the state of the R/W bit, the 24XX32AF will select a read or write operation. FIGURE 5-1: CONTROL BYTE FORMAT Read/Write Bit Chip Select Bits 0 A2 A1 A0 R/W ACK Control Code S 1 0 1 Slave Address Start Bit Acknowledge Bit 5.1 Contiguous Addressing Across Multiple Devices The Chip Select bits A2, A1 and A0 can be used to expand the contiguous address space for up to 256K bits by adding up to eight 24XX32AF devices on the same bus. In this case, software can use A0 of the control byte as address bit A12; A1 as address bit A13; and A2 as address bit A14. It is not possible to sequentially read across device boundaries. The SOT-23 package does not support multiple device addressing on the same bus. FIGURE 5-2: ADDRESS SEQUENCE BIT ASSIGNMENTS Address High Byte Address Low Byte Control Byte 1 0 1 0 A 2 A 1 A 0 R/W x x x x AA 11 10 A 9 A 8 A 7 • • • • • • A 0 Control Code Chip Select Bits x = “don’t care” bit © 2009 Microchip Technology Inc. DS22184A-page 7 24AA32AF/24LC32AF 6.0 6.1 WRITE OPERATIONS Byte Write 6.2 Page Write Following the Start condition from the master, the control code (4 bits), the Chip Select (3 bits), and the R/W bit (which is a logic low) are clocked onto the bus by the master transmitter. This indicates to the addressed slave receiver that the address high byte will follow once it has generated an Acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the high-order byte of the word address and will be written into the Address Pointer of the 24XX32AF. The next byte is the Least Significant Address Byte. After receiving another Acknowledge signal from the 24XX32AF, the master device will transmit the data word to be written into the addressed memory location. The 24XX32AF acknowledges again and the master generates a Stop condition. This initiates the internal write cycle and, during this time, the 24XX32AF will not generate Acknowledge signals (Figure 6-1). If an attempt is made to write to the array with the WP pin held high, the device will acknowledge the command, but no write cycle will occur. No data will be written and the device will immediately accept a new command. After a byte Write command, the internal address counter will point to the address location following the one that was just written. The write control byte, word address and the first data byte are transmitted to the 24XX32AF in the same way as in a byte write. However, instead of generating a Stop condition, the master transmits up to 31 additional bytes which are temporarily stored in the on-chip page buffer and will be written into memory once the master has transmitted a Stop condition. Upon receipt of each word, the five lower Address Pointer bits are internally incremented by ‘1’. If the master should transmit more than 32 bytes prior to generating the Stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte write operation, once the Stop condition is received, an internal write cycle will begin (Figure 6-2). If an attempt is made to write to the array with the WP pin held high, the device will acknowledge the command, but no write cycle will occur, no data will be written, and the device will immediately accept a new command. Note: Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or ‘page size’) and end at addresses that are integer multiples of [page size – 1]. If a Page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary. 6.3 Write Protection The WP pin allows the user to write-protect 1/4 of the array (C00h-FFFh) when the pin is tied to VCC. If tied to VSS the write protection is disabled. The WP pin is sampled at the Stop bit for every Write command (Figure 4-1). Toggling the WP pin after the Stop bit will have no effect on the execution of the write cycle. DS22184A-page 8 © 2009 Microchip Technology Inc. 24AA32AF/24LC32AF FIGURE 6-1: BYTE WRITE S T A R T Control Byte Address High Byte xxx x A C K A C K A C K A C K Address Low Byte S T O P P Bus Activity Master SDA Line Bus Activity x = “don’t care” bit Data S 1 0 1 0AAA 0 210 FIGURE 6-2: S T A R T PAGE WRITE Control Byte Address High Byte xxxx A C K A C K A C K A C K A C K Address Low Byte S T O P P Bus Activity Master SDA Line Bus Activity Data Byte 0 Data Byte 31 S10 1 0AAA 0 210 x = “don’t care” bit © 2009 Microchip Technology Inc. DS22184A-page 9 24AA32AF/24LC32AF 7.0 ACKNOWLEDGE POLLING FIGURE 7-1: Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the Stop condition for a Write command has been issued from the master, the device initiates the internally-timed write cycle. ACK polling can then be initiated immediately. This involves the master sending a Start condition followed by the control byte for a Write command (R/W = 0). If the device is still busy with the write cycle, then no ACK will be returned. If no ACK is returned, the Start bit and control byte must be re-sent. If the cycle is complete, the device will return the ACK and the master can then proceed with the next Read or Write command. See Figure 7-1 for flow diagram of this operation. ACKNOWLEDGE POLLING FLOW Send Write Command Send Stop Condition to Initiate Write Cycle Send Start Send Control Byte with R/W = 0 Did Device Acknowledge (ACK = 0)? Yes Next Operation No DS22184A-page 10 © 2009 Microchip Technology Inc. 24AA32AF/24LC32AF 8.0 READ OPERATION 8.3 Sequential Read Read operations are initiated in the same way as write operations, with the exception that the R/W bit of the control byte is set to ‘1’. There are three basic types of read operations: current address read, random read and sequential read. Sequential reads are initiated in the same way as a random read, except that once the 24XX32AF transmits the first data byte, the master issues an acknowledge as opposed to the Stop condition used in a random read. This acknowledge directs the 24XX32AF to transmit the next sequentially addressed 8-bit word (Figure 8-3). Following the final byte transmitted to the master, the master will NOT generate an acknowledge, but will generate a Stop condition. To provide sequential reads, the 24XX32AF contains an internal Address Pointer which is incremented by ‘1’ upon completion of each operation. This Address Pointer allows the entire memory contents to be serially read during one operation. The internal Address Pointer will automatically roll over from address FFF to address 000 if the master acknowledges the byte received from the array address FFF. 8.1 Current Address Read The 24XX32AF contains an address counter that maintains the address of the last word accessed, internally incremented by ‘1’. Therefore, if the previous read access was to address ‘n’ (n is any legal address), the next current address read operation would access data from address n + 1. Upon receipt of the control byte with R/W bit set to ‘1’, the 24XX32AF issues an acknowledge and transmits the 8-bit data word. The master will not acknowledge the transfer, but does generate a Stop condition and the 24XX32AF discontinues transmission (Figure 8-1). 8.2 Random Read Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, the word address must first be set. This is accomplished by sending the word address to the 24XX32AF as part of a write operation (R/W bit set to ‘0’). Once the word address is sent, the master generates a Start condition following the acknowledge. This terminates the write operation, but not before the internal Address Pointer is set. The master issues the control byte again, but with the R/W bit set to a ‘1’. The 24XX32AF will then issue an acknowledge and transmit the 8-bit data word. The master will not acknowledge the transfer, but does generate a Stop condition which causes the 24XX32AF to discontinue transmission (Figure 8-2). After a random Read command, the internal address counter will point to the address location following the one that was just read. FIGURE 8-1: CURRENT ADDRESS READ Bus Activity Master S T A R T S A C K N O A C K Control Byte S T O P P Data (n) SDA Line Bus Activity © 2009 Microchip Technology Inc. DS22184A-page 11 24AA32AF/24LC32AF FIGURE 8-2: Bus Activity Master SDA Line S T A R T RANDOM READ Control Byte Address High Byte Address Low Byte S T A R T A C K Control Byte Data Byte S T O P P A C K N O A C K AA S1010A1 0 0 xxx x 2 A C Bus Activity K x = “don’t care” bit A C K S 1 0 1 0 A A A1 210 FIGURE 8-3: Bus Activity Master SDA Line Bus Activity SEQUENTIAL READ Control Byte Data n Data n + 1 Data n + 2 Data n + x S T O P P A C K A C K A C K A C K N O A C K DS22184A-page 12 © 2009 Microchip Technology Inc. 24AA32AF/24LC32AF 9.0 9.1 PACKAGING INFORMATION Package Marking Information 8-Lead PDIP (300 mil) XXXXXXXX T/XXXNNN YYWW Example: 24LC32AF I/P e3 13F 0527 8-Lead SOIC (3.90 mm) XXXXXXXT XXXXYYWW NNN Example: 4LC32AFI SN e3 0527 13F 8-Lead TSSOP XXXX TYWW NNN Example: 4LAF I527 13F 8-Lead MSOP Example: XXXXXT YWWNNN 4L32FI 52713F 8-Lead 2x3 TDFN XXX YWW NN Example: AH4 527 I3 5-Lead SOT-23 Example: XXNN 6QNN © 2009 Microchip Technology Inc. DS22184A-page 13 24AA32AF/24LC32AF 1st Line Marking Codes Part Number 24AA32A 24LC32A Note: TSSOP 4AAF 4LAF T = Temperature grade (I, E). MSOP I Temp. 4A32FT 4L32FT AH1 AH4 TDFN E Temp. — AH5 6PNN 6QNN SOT-23 I Temp. E Temp. — 6RNN Legend: XX...X T Y YY WW NNN e3 Note: Part number or part number code Temperature (I, E) Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code (2 characters for small packages) Pb-free JEDEC designator for Matte Tin (Sn) For very small packages with no room for the Pb-free JEDEC designator e3 , the marking will only appear on the outer carton or reel label. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Note: Note: Please visit www.microchip.com/Pbfree for the latest information on Pb-free conversion. *Standard OTP marking consists of Microchip part number, year code, week code, and traceability code. DS22184A-page 14 © 2009 Microchip Technology Inc. 24AA32AF/24LC32AF /HDG 3ODVWLF 'XDO ,Q /LQH 3 ± 1RWH PLO %RG\ >3',3@ )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ N NOTE 1 E1 1 2 D 3 E A2 A A1 e b1 b L c eB 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 7RS WR 6HDWLQJ 3ODQH 0ROGHG 3DFNDJH 7KLFNQHVV %DVH WR 6HDWLQJ 3ODQH 6KRXOGHU WR 6KRXOGHU :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK 7LS WR 6HDWLQJ 3ODQH /HDG 7KLFNQHVV 8SSHU /HDG :LGWK /RZHU /HDG :LGWK 2YHUDOO 5RZ 6SDFLQJ † 1 H $ $ $ ( ( ' / F E E H% ± 0,1 ,1&+(6 120 %6& ± ± ± 0$; ± ± 1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWK WKH KDWFKHG DUHD † 6LJQLILFDQW &KDUDFWHULVWLF 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV SHU VLGH 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ & % © 2009 Microchip Technology Inc. DS22184A-page 15 24AA32AF/24LC32AF /HDG 3ODVWLF 6PDOO 2XWOLQH 61 ± 1DUURZ 1RWH PP %RG\ >62,&@ )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ D e N E E1 NOTE 1 1 2 3 b h φ c h α A A2 A1 L L1 β 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII † 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK &KDPIHU RSWLRQDO )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV /HDG :LGWK 0ROG 'UDIW $QJOH 7RS 0ROG 'UDIW $QJOH %RWWRP 1 H $ $ $ ( ( ' K / / I F E D E ƒ ƒ ƒ ± 0,1 0,//,0(7(56 120 %6& ± ± ± %6& %6& %6& ± ± 5() ± ± ± ± ± ƒ ƒ ± 0$; ƒ 1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD † 6LJQLILFDQW &KDUDFWHULVWLF 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\ PP SHU VLGH 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ & % DS22184A-page 16 © 2009 Microchip Technology Inc. 24AA32AF/24LC32AF /HDG 3ODVWLF 6PDOO 2XWOLQH 61 ± 1DUURZ 1RWH PP %RG\ >62,&@ )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ © 2009 Microchip Technology Inc. DS22184A-page 17 24AA32AF/24LC32AF /HDG 3ODVWLF 7KLQ 6KULQN 6PDOO 2XWOLQH 67 ± 1RWH PP %RG\ >76623@ )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ D N E E1 NOTE 1 1 b 2 e c A A2 φ A1 L1 L 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 0ROGHG 3DFNDJH /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H $ $ $ ( ( ' / / I F ƒ ± 0,1 0,//,0(7(56 120 %6& ± ± %6& 0$; 5() ± ± ƒ /HDG :LGWK E ± 1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\ PP SHU VLGH 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ & % DS22184A-page 18 © 2009 Microchip Technology Inc. 24AA32AF/24LC32AF /HDG 3ODVWLF 'XDO )ODW 1R /HDG 3DFNDJH 01 ± [ [ 1RWH PP %RG\ >7')1@ )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ © 2009 Microchip Technology Inc. DS22184A-page 19 24AA32AF/24LC32AF /HDG 3ODVWLF 'XDO )ODW 1R /HDG 3DFNDJH 01 ± [ [ 1RWH PP %RG\ >7')1@ )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ DS22184A-page 20 © 2009 Microchip Technology Inc. 24AA32AF/24LC32AF /HDG 3ODVWLF 0LFUR 6PDOO 2XWOLQH 3DFNDJH 06 >0623@ 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ D N E E1 NOTE 1 1 2 b A A2 c φ e A1 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H $ $ $ ( ( ' / / I F L1 0,//,0(7(56 0,1 120 %6& ± ± ± %6& %6& %6& 5() ƒ ± ± ƒ 0$; L /HDG :LGWK E ± 1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\ PP SHU VLGH 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ & % © 2009 Microchip Technology Inc. DS22184A-page 21 24AA32AF/24LC32AF /HDG 3ODVWLF 6PDOO 2XWOLQH 7UDQVLVWRU 27 >627 1RWH @ )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ b N E E1 1 e 2 3 e1 D A A2 c φ A1 L L1 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV /HDG 3LWFK 2XWVLGH /HDG 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H H $ $ $ ( ( ' / / I F ƒ %6& %6& ± ± ± ± ± ± ± ± ± ± ƒ 0,1 0,//,0(7(56 120 0$; /HDG :LGWK E ± 1RWHV 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV PP SHU VLGH 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ & % DS22184A-page 22 © 2009 Microchip Technology Inc. 24AA32AF/24LC32AF APPENDIX A: REVISION HISTORY Revision A (05/09) Original Release. © 2009 Microchip Technology Inc. DS22184A-page 23 24AA32AF/24LC32AF NOTES: DS22184A-page 24 © 2009 Microchip Technology Inc. 24AA32AF/24LC32AF THE MICROCHIP WEB SITE Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives CUSTOMER SUPPORT Users of Microchip products can receive assistance through several channels: • • • • • Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.com CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions. © 2009 Microchip Technology Inc. DS22184A-page 25 24AA32AF/24LC32AF READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. To: RE: Technical Publications Manager Reader Response Total Pages Sent ________ From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ Application (optional): Would you like a reply? Y N Literature Number: DS22184A FAX: (______) _________ - _________ Device: 24AA32AF/24LC32AF Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this document easy to follow? If not, why? 4. What additions to the document do you think would enhance the structure and subject? 5. What deletions from the document could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document? DS22184A-page 26 © 2009 Microchip Technology Inc. 24AA32AF/24LC32AF PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. Device X /XX Examples: a) b) c) d) e) f) g) h) 24AA32AF-I/P: Industrial Temperature,1.7V, PDIP package 24AA32AF-I/SN: Industrial Temperature,1.7V, SOIC package 24AA32AF-I/SM: Industrial Temperature.,1.7V, SOIC (5.28 mm) package 24AA32AF-I/ST: Industrial Temperature.,1.7V, TSSOP package 24LC32AF-I/P: Industrial Temperature, 2.5V, PDIP package 24LC32AF-E/SN: Automotive Temperature, 2.5V SOIC package 24LC32AF-E/SM: Automotive Temperature, 2.5V SOIC (5.28 mm) package 24LC32AFT-I/ST: Industrial Temperature, 2.5V, TSSOP package, Tape and Reel Temperature Package Range 24AA32AF: 1.7V, 32 Kbit Serial EEPROM with half-array write-protect 24AA32AFT: 1.7V, 32 Kbit I2C Serial EEPROM with half-array write-protect (Tape and Reel) 24LC32AF: 2.5V, 32 Kbit I2C Serial EEPROM with half-array write-protect 24LC32AFT: 2.5V, 32 Kbit I2C Serial EEPROM with half-array write-protect (Tape and Reel) = = -40°C to +85°C -40°C to +125°C Plastic DIP (300 mil body), 8-lead Plastic SOIC (3.90 mm body), 8-lead Plastic TSSOP (4.4 mm), 8-lead Plastic Micro Small Outline (MSOP), 8-lead TDFN (2x3x0.75mm body), 8-lead SOT-23 (Tape and Reel only), 5-lead I2C Device: Temperature I Range: E Package: P = SN = ST = MS = MNY(1)= OT = Note 1: “Y” indicates a Nickel Palladium Gold (NiPdAu) finish. © 2009 Microchip Technology Inc. DS22184A-page 27 24AA32AF/24LC32AF NOTES: DS22184A-page 28 © 2009 Microchip Technology Inc. Note the following details of the code protection feature on Microchip devices: • • Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” • • • Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP, PICkit, PICDEM, PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. © 2009 Microchip Technology Inc. DS22184A-page 29 WORLDWIDE SALES AND SERVICE AMERICAS Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 EUROPE Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 03/26/09 DS22184A-page 30 © 2009 Microchip Technology Inc.
24AA32AF 价格&库存

很抱歉,暂时无法提供与“24AA32AF”相匹配的价格&库存,您可以联系我们找货

免费人工找货