0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MCP1624

MCP1624

  • 厂商:

    MICROCHIP

  • 封装:

  • 描述:

    MCP1624 - Low-Voltage Input Boost Regulator for PIC® Microcontrollers - Microchip Technology

  • 数据手册
  • 价格&库存
MCP1624 数据手册
MCP1623/24 Low-Voltage Input Boost Regulator for PIC® Microcontrollers Features • Up to 96% Typical Efficiency • 425 mA Typical Peak Input Current Limit: - IOUT > 50 mA @ 1.2V VIN, 3.3V VOUT - IOUT > 175 mA @ 2.4V VIN, 3.3V VOUT - IOUT > 175 mA @ 3.3V VIN, 5.0V VOUT • Low Start-up Voltage: 0.65V, typical 3.3V VOUT @ 1 mA • Low Operating Input Voltage: 0.35V, typical 3.3VOUT @ 1 mA • Adjustable Output Voltage Range: 2.0V to 5.5V • Maximum Input Voltage  VOUT < 5.5V • Automatic PFM/PWM Operation (MCP1624) • PWM-only Operation (MCP1623) • 500 kHz PWM Frequency • Low Device Quiescent Current: 19 µA, typical PFM mode • Internal Synchronous Rectifier • Internal Compensation • Inrush Current Limiting and Internal Soft-Start • True Load Disconnect • Shutdown Current (All States): < 1 µA • Low Noise, Anti-Ringing Control • Overtemperature Protection • SOT-23-6 Package General Description The MCP1623/24 is a compact, high-efficiency, fixed frequency, synchronous step-up DC-DC converter. It provides an easy-to-use power supply solution for PIC microcontroller applications powered by either one-cell, two-cell, or three-cell alkaline, NiCd, NiMH, one-cell Li-Ion or Li-Polymer batteries. Low-voltage technology allows the regulator to start up without high inrush current or output voltage overshoot from a low 0.65V input. High efficiency is accomplished by integrating the low resistance N-Channel Boost switch and synchronous P-Channel switch. All compensation and protection circuitry are integrated to minimize external components. For standby applications, the MCP1624 operates and consumes only 19 µA while operating at no load. The MCP1623 device option is available that operates in PWM-only mode. A “true” load disconnect mode provides input to output isolation while disabled (EN = GND) by removing the normal boost regulator diode path from input to output. This mode consumes less than 1 µA of input current. Output voltage is set by a small external resistor divider. Packaging MCP1623/24 6-Lead SOT-23 SW 1 GND 2 EN 3 6 VIN 5 VOUT 4 VFB Applications • One, Two and Three Cell Alkaline and NiMH/NiCd Low-Power PIC® Microcontroller Applications  2010 Microchip Technology Inc. DS41420A-page 1 MCP1623/24 L1 4.7 µH VOUT 3.3V 976 K VFB 562 K GND VSS VDD VIN 0.9V To 1.7V + ALKALINE SW V OUT VIN CIN 4.7 µF EN COUT 10 µF PIC® MCU - MCP1623/24 Typical Application Circuit 100 90 80 VIN = 2.5V VIN = 1.2V VIN = 0.8V Efficiency (%) 70 60 50 40 30 20 0.01 0.1 1 10 100 1000 IOUT (mA) MCP1624 Efficiency vs. IOUT, VOUT = 3.3V FIGURE 1: Typical Application. DS41420A-page 2  2010 Microchip Technology Inc. MCP1623/24 1.0 ELECTRICAL CHARACTERISTICS † Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings † EN, FB, VIN, VSW, VOUT - GND ........................... +6.5V EN, FB ........... (GND - 0.3V) Output Short Circuit Current....................... Continuous Power Dissipation ............................ Internally Limited Storage Temperature .........................-65oC to +150oC Ambient Temp. with Power Applied......-40oC to +85oC Operating Junction Temperature........-40oC to +125oC ESD Protection On All Pins: HBM........................................................ 3 kV MM........................................................ 300 V DC CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, IOUT = 15 mA, TA = +25°C. Boldface specifications apply over the TA range of -40oC to +85oC. Parameters Input Characteristics Minimum Start-Up Voltage Minimum Input Voltage After Start-Up Output Voltage Adjust Range Maximum Output Current Feedback Voltage Feedback Input Bias Current Quiescent Current – PFM mode Quiescent Current – PWM mode Quiescent Current – Shutdown Sym VIN VIN VOUT IOUT VFB IVFB IQPFM Min — — 2.0 50 1.120 — — Typ 0.65 0.35 Max 0.8 — 5.5 Units V V V mA V pA µA Note 1 Note 1 Conditions VOUT  VIN; Note 2 1.5V VIN, 3.3V VOUT — — Measured at VOUT = 4.0V; EN = VIN, IOUT = 0 mA; Note 3 Measured at VOUT; EN = VIN IOUT = 0 mA; Note 3 VOUT = EN = GND; Includes N-Channel and P-Channel Switch Leakage VIN = VSW = 5V; VOUT = 5.5V VEN = VFB = GND VIN = VSW = GND; VOUT = 5.5V VIN = 3.3V, ISW = 100 mA VIN = 3.3V, ISW = 100 mA — 1.21 10 19 — 1.299 — 30 IQPWM IQSHDN — — 220 0.7 — 2.3 µA µA NMOS Switch Leakage PMOS Switch Leakage NMOS Switch ON Resistance PMOS Switch ON Resistance Note 1: 2: 3: 4: 5: INLK IPLK RDS(ON)N RDS(ON)P — — — — 0.3 0.05 0.6 0.9 1 0.2 — — µA µA   3.3 K resistive load, 3.3VOUT (1 mA). For VIN > VOUT, VOUT will not remain in regulation. IQ is measured from VOUT; VIN quiescent current will vary with boost ratio. VIN quiescent current can be estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)). 220 resistive load, 3.3VOUT (15 mA). Peak current limit determined by characterization, not production tested.  2010 Microchip Technology Inc. DS41420A-page 3 MCP1623/24 DC CHARACTERISTICS (CONTINUED) Electrical Characteristics: Unless otherwise indicated, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, IOUT = 15 mA, TA = +25°C. Boldface specifications apply over the TA range of -40oC to +85oC. Parameters NMOS Peak Switch Current Limit VOUT Accuracy Line Regulation Sym IN(MAX) VOUT% Min 300 -7.4 Typ 425 — Max — +7.4 Units mA % Note 5 Conditions Includes Line and Load Regulation; VIN = 1.5V IOUT = 50 mA VIN = 1.5V to 3V IOUT = 25 mA IOUT = 25 mA to 50 mA; VIN = 1.5V VOUT/V OUT) / VIN| VOUT / VOUT| DCMAX fSW VIH VIL IENLK tSS TSD TSDHYS — 0.01 — %/V Load Regulation Maximum Duty Cycle Switching Frequency EN Input Logic High EN Input Logic Low EN Input Leakage Current Soft-start Time Thermal Shutdown Die Temperature Die Temperature Hysteresis Note 1: 2: 3: 4: 5: — — 370 90 — — — — — 0.01 90 500 — — 0.005 750 150 10 — — 630 — 20 — — — — % % kHz %of VIN IOUT = 1 mA %of VIN IOUT = 1 mA µA µS C C VEN = 5V EN Low-to-High, 90% of VOUT; Note 4 3.3 K resistive load, 3.3VOUT (1 mA). For VIN > VOUT, VOUT will not remain in regulation. IQ is measured from VOUT; VIN quiescent current will vary with boost ratio. VIN quiescent current can be estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)). 220 resistive load, 3.3VOUT (15 mA). Peak current limit determined by characterization, not production tested. TEMPERATURE SPECIFICATIONS Electrical Specifications: Parameters Temperature Ranges Operating Junction Temperature Range Storage Temperature Range Maximum Junction Temperature Package Thermal Resistance Thermal Resistance, 5L-TSOT23 JA — 192 — °C/W EIA/JESD51-3 Standard TJ TA TJ -40 -65 — — — — +125 +150 +150 °C °C °C Transient Steady State Sym Min Typ Max Units Conditions DS41420A-page 4  2010 Microchip Technology Inc. MCP1623/24 2.0 Note: TYPICAL PERFORMANCE CURVES The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. 27.5 25.0 VIN = 1.2V VOUT = 5.0V 22.5 20.0 17.5 15.0 12.5 10.0 -40 -25 -10 5 20 35 50 65 80 VOUT = 2.0V VOUT = 3.3V 100 90 80 70 60 50 40 30 20 10 0 0.01 0.1 1 VIN = 1.6V IQ PFM Mode (µA) Efficiency (%) VIN = 0.8V VIN = 1.2V 10 100 1000 Ambient Temperature (°C) IOUT (mA) FIGURE 2-1: VOUT IQ vs. Ambient Temperature in PFM Mode. 300 275 250 225 200 175 150 -40 -25 -10 5 20 35 50 65 80 VOUT = 3.3V V IN = 1.2V VOUT = 5.0V FIGURE 2-4: MCP1624 Efficiency vs. IOUT, VOUT = 2.0V. 100 90 80 70 60 50 40 30 20 10 0 0.01 0.1 1 VIN = 2.5V IQ PWM Mode (µA) Efficiency (%) VIN = 0.8V VIN = 1.2V 10 100 1000 Ambient Temperature (°C) IOUT (mA) FIGURE 2-2: VOUT IQ vs. Ambient Temperature in PWM Mode. 350 FIGURE 2-5: MCP1624 Efficiency vs. IOUT, VOUT = 3.3V. 100 VIN = 3.6V 90 80 70 60 50 40 30 20 10 0 0.01 VIN = 1.8V VIN = 1.2V Output Current (mA) 300 250 200 150 100 50 0 0.5 1 1.5 VOUT = 2.0V VOUT = 3.3V VOUT = 5.0V Efficiency (%) 2 2.5 3 3.5 4 4.5 5 0.1 1 10 100 1000 Input Voltage (V) IOUT (mA) FIGURE 2-3: VOUT. MCP1623/24 IOUTMAX vs. FIGURE 2-6: MCP1624 Efficiency vs. IOUT, VOUT = 5.0V.  2010 Microchip Technology Inc. DS41420A-page 5 MCP1623/24 Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. 100 90 80 70 60 50 40 30 20 10 0 0.01 0.25 0.40 1.00 VIN = 1.6V 0.85 VOUT = 3.3V Efficiency (%) VIN = 1.2V VIN = 0.8V Startup VIN (V) 0.70 0.55 Shutdown 0.1 1 10 100 1000 0 20 40 60 80 100 IOUT (mA) IOUT (mA) FIGURE 2-7: MCP1623 Efficiency vs. IOUT, VOUT = 2.0V. 100 90 80 70 60 50 40 30 20 10 0 0.01 0.1 1 10 100 1000 VIN = 0.8V VIN = 1.2V VIN = 2.5V FIGURE 2-10: Minimum Start-up and Shutdown VIN into Resistive Load vs. IOUT. 525 VOUT = 3.3V Switching Frequency (kHz) 520 515 510 505 500 495 490 485 480 -40 -25 -10 5 20 35 50 65 80 Efficiency (%) IOUT (mA) Ambient Temperature (°C) FIGURE 2-8: MCP1623 Efficiency vs. IOUT, VOUT = 3.3V. 100 90 80 70 VIN = 1.8V VIN = 3.6V FIGURE 2-11: Temperature. 4.5 4 3.5 3 FOSC vs. Ambient VOUT = 5.0V Efficiency (%) VIN (V) 60 50 40 30 20 10 0 0.01 0.1 1 VIN = 1.2V V OUT = 3.3V VOUT = 2.0V 2.5 2 1.5 1 0.5 0 0 1 2 3 4 5 6 7 8 9 10 10 100 1000 IOUT (mA) IOUT (mA) FIGURE 2-9: MCP1623 Efficiency vs. IOUT, VOUT = 5.0V. FIGURE 2-12: MCP1623 PWM Pulse Skipping Mode Threshold vs. IOUT. DS41420A-page 6  2010 Microchip Technology Inc. MCP1623/24 Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. 10000 PWM / PFM PWM ONLY 1000 VOUT = 5.0V VOUT = 3.3V IIN (µA) VOUT = 2.0V 100 VOUT = 2.0V 10 0.8 1.1 1.4 1.7 2 2.3 VOUT = 3.3V VOUT = 5.0V 2.6 2.9 3.2 3.5 VIN (V) FIGURE 2-13: VIN. 5 Switch Resistance (Ohms) 4 P - Channel Input No Load Current vs. FIGURE 2-16: MCP1624 3.3V VOUT PFM Mode Waveforms. 3 2 1 0 1 N - Channel 1.5 2 2.5 3 3.5 4 4.5 5 > VIN or VOUT FIGURE 2-14: N-Channel and P-Channel RDSON vs. > of VIN or VOUT. 16 14 12 VOUT = 2.0V V OUT = 3 .3V FIGURE 2-17: MCP1623 3.3V VOUT PWM Mode Waveforms. VOUT = 5.0V IOUT (mA) 10 8 6 4 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 VIN (V) FIGURE 2-15: Current vs. VIN. PFM/PWM Threshold FIGURE 2-18: Waveforms. MCP1623/24 High Load  2010 Microchip Technology Inc. DS41420A-page 7 MCP1623/24 Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. FIGURE 2-19: 3.3V Start-up After Enable. FIGURE 2-22: MCP1623 3.3V VOUT Load Transient Waveforms. MCP1623 PWM FIGURE 2-20: VENABLE. 3.3V Start-up when VIN = FIGURE 2-23: MCP1623 2.0V VOUT Load Transient Waveforms. FIGURE 2-21: MCP1624 3.3V VOUT Load Transient Waveforms. FIGURE 2-24: Waveforms. 3.3V VOUT Line Transient DS41420A-page 8  2010 Microchip Technology Inc. MCP1623/24 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: Pin No. SW GND EN FB VOUT VIN PIN FUNCTION TABLE MCP1623/24 SOT23 1 2 3 4 5 6 Ground Pin Enable Control Input Pin Feedback Voltage Pin Output Voltage Pin Input Voltage Pin Description Switch Node, Boost Inductor Input Pin 3.1 Switch Node Pin (SW) Connect the inductor from the input voltage to the SW pin. The SW pin carries inductor current and can be as high as 425 mA peak. The integrated N-Channel switch drain and integrated P-Channel switch source are internally connected at the SW node. 3.2 Ground Pin (GND) The ground or return pin is used for circuit ground connection. Length of trace from input cap return, output cap return and GND pin should be made as short as possible to minimize noise on the GND pin. 3.3 Enable Pin (EN) The EN pin is a logic-level input used to enable or disable device switching and lower quiescent current while disabled. A logic high (>90% of VIN) will enable the regulator output. A logic low (627@ 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ b N 4 E E1 PIN 1 ID BY LASER MARK 1 2 e e1 D 3 A A2 c φ A1 L L1 8QLWV 'LPHQVLRQ /LPLWV 0,1 0,//,0(7(56 120   %6&  %6&         ƒ  ± ± ± ± ± ± ± ± ± ±         ƒ  0$; 1XPEHU RI 3LQV 3LWFK 2XWVLGH /HDG 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H H $ $ $ ( ( ' / / I F /HDG :LGWK E  ±  1RWHV  'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG  PP SHU VLGH  'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60(
MCP1624 价格&库存

很抱歉,暂时无法提供与“MCP1624”相匹配的价格&库存,您可以联系我们找货

免费人工找货