MCP1623/24
Low-Voltage Input Boost Regulator for PIC® Microcontrollers
Features
• Up to 96% Typical Efficiency • 425 mA Typical Peak Input Current Limit: - IOUT > 50 mA @ 1.2V VIN, 3.3V VOUT - IOUT > 175 mA @ 2.4V VIN, 3.3V VOUT - IOUT > 175 mA @ 3.3V VIN, 5.0V VOUT • Low Start-up Voltage: 0.65V, typical 3.3V VOUT @ 1 mA • Low Operating Input Voltage: 0.35V, typical 3.3VOUT @ 1 mA • Adjustable Output Voltage Range: 2.0V to 5.5V • Maximum Input Voltage VOUT < 5.5V • Automatic PFM/PWM Operation (MCP1624) • PWM-only Operation (MCP1623) • 500 kHz PWM Frequency • Low Device Quiescent Current: 19 µA, typical PFM mode • Internal Synchronous Rectifier • Internal Compensation • Inrush Current Limiting and Internal Soft-Start • True Load Disconnect • Shutdown Current (All States): < 1 µA • Low Noise, Anti-Ringing Control • Overtemperature Protection • SOT-23-6 Package
General Description
The MCP1623/24 is a compact, high-efficiency, fixed frequency, synchronous step-up DC-DC converter. It provides an easy-to-use power supply solution for PIC microcontroller applications powered by either one-cell, two-cell, or three-cell alkaline, NiCd, NiMH, one-cell Li-Ion or Li-Polymer batteries. Low-voltage technology allows the regulator to start up without high inrush current or output voltage overshoot from a low 0.65V input. High efficiency is accomplished by integrating the low resistance N-Channel Boost switch and synchronous P-Channel switch. All compensation and protection circuitry are integrated to minimize external components. For standby applications, the MCP1624 operates and consumes only 19 µA while operating at no load. The MCP1623 device option is available that operates in PWM-only mode. A “true” load disconnect mode provides input to output isolation while disabled (EN = GND) by removing the normal boost regulator diode path from input to output. This mode consumes less than 1 µA of input current. Output voltage is set by a small external resistor divider.
Packaging
MCP1623/24 6-Lead SOT-23
SW 1 GND 2 EN 3 6 VIN 5 VOUT 4 VFB
Applications
• One, Two and Three Cell Alkaline and NiMH/NiCd Low-Power PIC® Microcontroller Applications
2010 Microchip Technology Inc.
DS41420A-page 1
MCP1623/24
L1 4.7 µH VOUT 3.3V 976 K VFB 562 K GND
VSS VDD
VIN 0.9V To 1.7V +
ALKALINE
SW V OUT VIN
CIN 4.7 µF
EN
COUT 10 µF
PIC® MCU
-
MCP1623/24 Typical Application Circuit
100 90 80
VIN = 2.5V
VIN = 1.2V VIN = 0.8V
Efficiency (%)
70 60 50 40 30 20 0.01 0.1 1
10
100
1000
IOUT (mA)
MCP1624 Efficiency vs. IOUT, VOUT = 3.3V
FIGURE 1:
Typical Application.
DS41420A-page 2
2010 Microchip Technology Inc.
MCP1623/24
1.0 ELECTRICAL CHARACTERISTICS
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.
Absolute Maximum Ratings †
EN, FB, VIN, VSW, VOUT - GND ........................... +6.5V EN, FB ........... (GND - 0.3V) Output Short Circuit Current....................... Continuous Power Dissipation ............................ Internally Limited Storage Temperature .........................-65oC to +150oC Ambient Temp. with Power Applied......-40oC to +85oC Operating Junction Temperature........-40oC to +125oC ESD Protection On All Pins: HBM........................................................ 3 kV MM........................................................ 300 V
DC CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, IOUT = 15 mA, TA = +25°C. Boldface specifications apply over the TA range of -40oC to +85oC.
Parameters Input Characteristics Minimum Start-Up Voltage Minimum Input Voltage After Start-Up Output Voltage Adjust Range Maximum Output Current Feedback Voltage Feedback Input Bias Current Quiescent Current – PFM mode Quiescent Current – PWM mode Quiescent Current – Shutdown
Sym VIN VIN VOUT IOUT VFB IVFB IQPFM
Min — — 2.0 50 1.120 — —
Typ 0.65 0.35
Max 0.8 — 5.5
Units V V V mA V pA µA Note 1 Note 1
Conditions
VOUT VIN; Note 2 1.5V VIN, 3.3V VOUT — — Measured at VOUT = 4.0V; EN = VIN, IOUT = 0 mA; Note 3 Measured at VOUT; EN = VIN IOUT = 0 mA; Note 3 VOUT = EN = GND; Includes N-Channel and P-Channel Switch Leakage VIN = VSW = 5V; VOUT = 5.5V VEN = VFB = GND VIN = VSW = GND; VOUT = 5.5V VIN = 3.3V, ISW = 100 mA VIN = 3.3V, ISW = 100 mA
— 1.21 10 19
— 1.299 — 30
IQPWM IQSHDN
— —
220 0.7
— 2.3
µA µA
NMOS Switch Leakage PMOS Switch Leakage NMOS Switch ON Resistance PMOS Switch ON Resistance Note 1: 2: 3: 4: 5:
INLK IPLK RDS(ON)N RDS(ON)P
— — — —
0.3 0.05 0.6 0.9
1 0.2 — —
µA µA
3.3 K resistive load, 3.3VOUT (1 mA). For VIN > VOUT, VOUT will not remain in regulation. IQ is measured from VOUT; VIN quiescent current will vary with boost ratio. VIN quiescent current can be estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)). 220 resistive load, 3.3VOUT (15 mA). Peak current limit determined by characterization, not production tested.
2010 Microchip Technology Inc.
DS41420A-page 3
MCP1623/24
DC CHARACTERISTICS (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, IOUT = 15 mA, TA = +25°C. Boldface specifications apply over the TA range of -40oC to +85oC.
Parameters NMOS Peak Switch Current Limit VOUT Accuracy Line Regulation
Sym IN(MAX) VOUT%
Min 300 -7.4
Typ 425 —
Max — +7.4
Units mA % Note 5
Conditions
Includes Line and Load Regulation; VIN = 1.5V IOUT = 50 mA VIN = 1.5V to 3V IOUT = 25 mA IOUT = 25 mA to 50 mA; VIN = 1.5V
VOUT/V OUT) / VIN| VOUT / VOUT| DCMAX fSW VIH VIL IENLK tSS TSD TSDHYS
—
0.01
—
%/V
Load Regulation Maximum Duty Cycle Switching Frequency EN Input Logic High EN Input Logic Low EN Input Leakage Current Soft-start Time Thermal Shutdown Die Temperature Die Temperature Hysteresis Note 1: 2: 3: 4: 5:
— — 370 90 — — — — —
0.01 90 500 — — 0.005 750 150 10
— — 630 — 20 — — — —
% % kHz
%of VIN IOUT = 1 mA %of VIN IOUT = 1 mA µA µS C C VEN = 5V EN Low-to-High, 90% of VOUT; Note 4
3.3 K resistive load, 3.3VOUT (1 mA). For VIN > VOUT, VOUT will not remain in regulation. IQ is measured from VOUT; VIN quiescent current will vary with boost ratio. VIN quiescent current can be estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)). 220 resistive load, 3.3VOUT (15 mA). Peak current limit determined by characterization, not production tested.
TEMPERATURE SPECIFICATIONS
Electrical Specifications: Parameters Temperature Ranges Operating Junction Temperature Range Storage Temperature Range Maximum Junction Temperature Package Thermal Resistance Thermal Resistance, 5L-TSOT23 JA — 192 — °C/W EIA/JESD51-3 Standard TJ TA TJ -40 -65 — — — — +125 +150 +150 °C °C °C Transient Steady State Sym Min Typ Max Units Conditions
DS41420A-page 4
2010 Microchip Technology Inc.
MCP1623/24
2.0
Note:
TYPICAL PERFORMANCE CURVES
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C.
27.5 25.0 VIN = 1.2V VOUT = 5.0V
22.5 20.0 17.5 15.0 12.5 10.0 -40 -25 -10 5 20 35 50 65 80 VOUT = 2.0V VOUT = 3.3V
100 90 80 70 60 50 40 30 20 10 0
0.01 0.1 1
VIN = 1.6V
IQ PFM Mode (µA)
Efficiency (%)
VIN = 0.8V
VIN = 1.2V
10
100
1000
Ambient Temperature (°C)
IOUT (mA)
FIGURE 2-1: VOUT IQ vs. Ambient Temperature in PFM Mode.
300 275 250 225 200 175 150 -40 -25 -10 5 20 35 50 65 80 VOUT = 3.3V V IN = 1.2V VOUT = 5.0V
FIGURE 2-4: MCP1624 Efficiency vs. IOUT, VOUT = 2.0V.
100 90 80 70 60 50 40 30 20 10 0
0.01 0.1 1 VIN = 2.5V
IQ PWM Mode (µA)
Efficiency (%)
VIN = 0.8V
VIN = 1.2V
10
100
1000
Ambient Temperature (°C)
IOUT (mA)
FIGURE 2-2: VOUT IQ vs. Ambient Temperature in PWM Mode.
350
FIGURE 2-5: MCP1624 Efficiency vs. IOUT, VOUT = 3.3V.
100 VIN = 3.6V 90 80 70 60 50 40 30 20 10 0 0.01 VIN = 1.8V VIN = 1.2V
Output Current (mA)
300 250 200 150 100 50 0 0.5 1 1.5 VOUT = 2.0V
VOUT = 3.3V
VOUT = 5.0V
Efficiency (%)
2
2.5
3
3.5
4
4.5
5
0.1
1
10
100
1000
Input Voltage (V)
IOUT (mA)
FIGURE 2-3: VOUT.
MCP1623/24 IOUTMAX vs.
FIGURE 2-6: MCP1624 Efficiency vs. IOUT, VOUT = 5.0V.
2010 Microchip Technology Inc.
DS41420A-page 5
MCP1623/24
Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C.
100 90 80 70 60 50 40 30 20 10 0 0.01
0.25 0.40 1.00
VIN = 1.6V
0.85
VOUT = 3.3V
Efficiency (%)
VIN = 1.2V VIN = 0.8V
Startup
VIN (V)
0.70 0.55 Shutdown
0.1
1
10
100
1000
0
20
40
60
80
100
IOUT (mA)
IOUT (mA)
FIGURE 2-7: MCP1623 Efficiency vs. IOUT, VOUT = 2.0V.
100 90 80 70 60 50 40 30 20 10 0 0.01 0.1 1 10 100 1000 VIN = 0.8V VIN = 1.2V VIN = 2.5V
FIGURE 2-10: Minimum Start-up and Shutdown VIN into Resistive Load vs. IOUT.
525 VOUT = 3.3V
Switching Frequency (kHz)
520 515 510 505 500 495 490 485 480 -40 -25 -10 5 20 35 50 65 80
Efficiency (%)
IOUT (mA)
Ambient Temperature (°C)
FIGURE 2-8: MCP1623 Efficiency vs. IOUT, VOUT = 3.3V.
100 90 80 70 VIN = 1.8V VIN = 3.6V
FIGURE 2-11: Temperature.
4.5 4 3.5 3
FOSC vs. Ambient
VOUT = 5.0V
Efficiency (%)
VIN (V)
60 50 40 30 20 10 0 0.01 0.1 1
VIN = 1.2V
V OUT = 3.3V VOUT = 2.0V
2.5 2 1.5 1 0.5 0 0 1 2 3 4 5 6 7 8 9 10
10
100
1000
IOUT (mA)
IOUT (mA)
FIGURE 2-9: MCP1623 Efficiency vs. IOUT, VOUT = 5.0V.
FIGURE 2-12: MCP1623 PWM Pulse Skipping Mode Threshold vs. IOUT.
DS41420A-page 6
2010 Microchip Technology Inc.
MCP1623/24
Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C.
10000
PWM / PFM PWM ONLY
1000
VOUT = 5.0V VOUT = 3.3V
IIN (µA)
VOUT = 2.0V 100 VOUT = 2.0V 10 0.8 1.1 1.4 1.7 2 2.3
VOUT = 3.3V
VOUT = 5.0V
2.6
2.9
3.2
3.5
VIN (V)
FIGURE 2-13: VIN.
5 Switch Resistance (Ohms) 4
P - Channel
Input No Load Current vs.
FIGURE 2-16: MCP1624 3.3V VOUT PFM Mode Waveforms.
3 2 1 0
1 N - Channel 1.5 2 2.5 3 3.5 4 4.5 5
> VIN or VOUT
FIGURE 2-14: N-Channel and P-Channel RDSON vs. > of VIN or VOUT.
16 14 12 VOUT = 2.0V V OUT = 3 .3V
FIGURE 2-17: MCP1623 3.3V VOUT PWM Mode Waveforms.
VOUT = 5.0V
IOUT (mA)
10 8 6 4 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4
VIN (V)
FIGURE 2-15: Current vs. VIN.
PFM/PWM Threshold
FIGURE 2-18: Waveforms.
MCP1623/24 High Load
2010 Microchip Technology Inc.
DS41420A-page 7
MCP1623/24
Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C.
FIGURE 2-19:
3.3V Start-up After Enable.
FIGURE 2-22: MCP1623 3.3V VOUT Load Transient Waveforms.
MCP1623 PWM
FIGURE 2-20: VENABLE.
3.3V Start-up when VIN =
FIGURE 2-23: MCP1623 2.0V VOUT Load Transient Waveforms.
FIGURE 2-21: MCP1624 3.3V VOUT Load Transient Waveforms.
FIGURE 2-24: Waveforms.
3.3V VOUT Line Transient
DS41420A-page 8
2010 Microchip Technology Inc.
MCP1623/24
3.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
Pin No. SW GND EN FB VOUT VIN
PIN FUNCTION TABLE
MCP1623/24 SOT23 1 2 3 4 5 6 Ground Pin Enable Control Input Pin Feedback Voltage Pin Output Voltage Pin Input Voltage Pin Description Switch Node, Boost Inductor Input Pin
3.1
Switch Node Pin (SW)
Connect the inductor from the input voltage to the SW pin. The SW pin carries inductor current and can be as high as 425 mA peak. The integrated N-Channel switch drain and integrated P-Channel switch source are internally connected at the SW node.
3.2
Ground Pin (GND)
The ground or return pin is used for circuit ground connection. Length of trace from input cap return, output cap return and GND pin should be made as short as possible to minimize noise on the GND pin.
3.3
Enable Pin (EN)
The EN pin is a logic-level input used to enable or disable device switching and lower quiescent current while disabled. A logic high (>90% of VIN) will enable the regulator output. A logic low (627@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ
b
N
4
E E1 PIN 1 ID BY LASER MARK 1 2 e e1 D 3
A
A2
c
φ
A1
L L1
8QLWV 'LPHQVLRQ /LPLWV 0,1 0,//,0(7(56 120 %6& %6& ± ± ± ± ± ± ± ± ± ± 0$;
1XPEHU RI 3LQV 3LWFK 2XWVLGH /HDG 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV
1 H H $ $ $ ( ( ' / / I F
/HDG :LGWK E ± 1RWHV 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG PP SHU VLGH 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60(