0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MCP1640D

MCP1640D

  • 厂商:

    MICROCHIP

  • 封装:

  • 描述:

    MCP1640D - 0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output By...

  • 数据手册
  • 价格&库存
MCP1640D 数据手册
MCP1640/B/C/D 0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option Features • Up to 96% Typical Efficiency • 800 mA Typical Peak Input Current Limit: - IOUT > 100 mA @ 1.2V VIN, 3.3V VOUT - IOUT > 350 mA @ 2.4V VIN, 3.3V VOUT - IOUT > 350 mA @ 3.3V VIN, 5.0V VOUT • Low Start-up Voltage: 0.65V, typical 3.3V VOUT @ 1 mA • Low Operating Input Voltage: 0.35V, typical 3.3VOUT @ 1 mA • Adjustable Output Voltage Range: 2.0V to 5.5V • Maximum Input Voltage  VOUT < 5.5V • Automatic PFM/PWM Operation (MCP1640/C): - PFM Operation Disabled (MCP1640B/D) - PWM Operation: 500 kHz • Low Device Quiescent Current: 19 µA, typical PFM Mode • Internal Synchronous Rectifier • Internal Compensation • Inrush Current Limiting and Internal Soft-Start • Selectable, Logic Controlled, Shutdown States: - True Load Disconnect Option (MCP1640/B) - Input to Output Bypass Option (MCP1640C/D) • Shutdown Current (All States): < 1 µA • Low Noise, Anti-Ringing Control • Overtemperature Protection • Available Packages: - SOT23-6 - 2x3 8-Lead DFN General Description The MCP1640/B/C/D is a compact, high-efficiency, fixed frequency, synchronous step-up DC-DC converter. It provides an easy-to-use power supply solution for applications powered by either one-cell, two-cell, or three-cell alkaline, NiCd, NiMH, one-cell Li-Ion or Li-Polymer batteries. Low-voltage technology allows the regulator to start up without high inrush current or output voltage overshoot from a low 0.65V input. High efficiency is accomplished by integrating the low resistance N-Channel Boost switch and synchronous P-Channel switch. All compensation and protection circuitry are integrated to minimize external components. For standby applications, the MCP1640 operates and consumes only 19 µA while operating at no load and provides a true disconnect from input to output while shut down (EN = GND). Additional device options are available that operate in PWM only mode and connect input to output bypass while shut down. A “true” load disconnect mode provides input to output isolation while disabled by removing the normal boost regulator diode path from input to output. A bypass mode option connects the input to the output using the integrated low resistance P-Channel MOSFET, which provides a low bias keep alive voltage for circuits operating in Deep Sleep mode. Both options consume less than 1 µA of input current. Output voltage is set by a small external resistor divider. Two package options, SOT23-6 and 2x3 DFN-8, are available. Package Types Applications • One, Two and Three Cell Alkaline and NiMH/NiCd Portable Products • Single Cell Li-Ion to 5V Converters • Li Coin Cell Powered Devices • Personal Medical Products • Wireless Sensors • Handheld Instruments • GPS Receivers • Bluetooth Headsets • +3.3V to +5.0V Distributed Power Supply MCP1640 6-Lead SOT23 SW 1 GND 2 EN 3 6 VIN 5 VOUT 4 VFB MCP1640 2x3 DFN* VFB 1 SGND 2 PGND 3 EN 4 EP 9 8 VIN 7 VOUTS 6 VOUTP 5 SW * Includes Exposed Thermal Pad (EP); see Table 3-1.  2010 Microchip Technology Inc. DS22234A-page 1 MCP1640/B/C/D L1 4.7 µH VIN 0.9V To 1.7V SW V OUT VIN VOUT 3.3V @ 100 mA 976 K ALKALINE + - CIN 4.7 µF EN VFB 562 K COUT 10 µF GND L1 4.7 µH VIN 3.0V To 4.2V SW V VIN VOUT 5.0V @ 300 mA 976 K OUTS VOUTP VFB + LI-ION CIN 4.7 µF EN COUT 10 µF 309 K - PGND SGND Efficiency vs. IOUT for 3.3VOUT 100.0 V IN = 2.5V Efficiency (%) 80.0 V IN = 0.8V V IN = 1.2V 60.0 40.0 0.1 1.0 10.0 Output Current (mA) 100.0 1000.0 DS22234A-page 2  2010 Microchip Technology Inc. MCP1640/B/C/D 1.0 ELECTRICAL CHARACTERISTICS † Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings † EN, FB, VIN, VSW, VOUT - GND ........................... +6.5V EN, FB ........... (GND - 0.3V) Output Short Circuit Current....................... Continuous Output Current Bypass Mode........................... 400 mA Power Dissipation ............................ Internally Limited Storage Temperature .........................-65oC to +150oC Ambient Temp. with Power Applied......-40oC to +85oC Operating Junction Temperature........-40oC to +125oC ESD Protection On All Pins: HBM........................................................ 3 kV MM........................................................ 300 V DC CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, IOUT = 15 mA, TA = +25°C. Boldface specifications apply over the TA range of -40oC to +85oC. Parameters Input Characteristics Minimum Start-Up Voltage Minimum Input Voltage After Start-Up Output Voltage Adjust Range Maximum Output Current Sym VIN VIN VOUT IOUT Min — — 2.0 Typ 0.65 0.35 Max 0.8 — 5.5 Units V V V mA mA mA V pA µA Note 1 Note 1 Conditions VOUT  VIN; Note 2 1.2V VIN, 2.0V VOUT 1.5V VIN, 3.3V VOUT 3.3V VIN, 5.0V VOUT — — Measured at VOUT = 4.0V; EN = VIN, IOUT = 0 mA; Note 3 Measured at VOUT; EN = VIN IOUT = 0 mA; Note 3 VOUT = EN = GND; Includes N-Channel and P-Channel Switch Leakage VIN = VSW = 5V; VOUT = 5.5V VEN = VFB = GND VIN = VSW = GND; VOUT = 5.5V VIN = 3.3V, ISW = 100 mA VIN = 3.3V, ISW = 100 mA 150 100 150 350 1.21 10 19 — — — 1.245 — 30 Feedback Voltage Feedback Input Bias Current Quiescent Current – PFM Mode Quiescent Current – PWM Mode Quiescent Current – Shutdown VFB IVFB IQPFM 1.175 — — IQPWM IQSHDN — — 220 0.7 — 2.3 µA µA NMOS Switch Leakage PMOS Switch Leakage NMOS Switch ON Resistance PMOS Switch ON Resistance Note 1: 2: 3: 4: 5: INLK IPLK RDS(ON)N RDS(ON)P — — — — 0.3 0.05 0.6 0.9 1 0.2 — — µA µA   3.3 K resistive load, 3.3VOUT (1 mA). For VIN > VOUT, VOUT will not remain in regulation. IQ is measured from VOUT; VIN quiescent current will vary with boost ratio. VIN quiescent current can be estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)). 220 resistive load, 3.3VOUT (15 mA). Peak current limit determined by characterization, not production tested.  2010 Microchip Technology Inc. DS22234A-page 3 MCP1640/B/C/D DC CHARACTERISTICS (CONTINUED) Electrical Characteristics: Unless otherwise indicated, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, IOUT = 15 mA, TA = +25°C. Boldface specifications apply over the TA range of -40oC to +85oC. Parameters NMOS Peak Switch Current Limit VOUT Accuracy Line Regulation Sym IN(MAX) VOUT% VOUT/ VOUT) / VIN| VOUT / VOUT| DCMAX fSW VIH VIL IENLK tSS TSD TSDHYS Min 600 -3 -1 Typ 850 — 0.01 Max — +3 1 Units mA % %/V Note 5 Conditions Includes Line and Load Regulation; VIN = 1.5V VIN = 1.5V to 3V IOUT = 25 mA IOUT = 25 mA to 100 mA; VIN = 1.5V Load Regulation Maximum Duty Cycle Switching Frequency EN Input Logic High EN Input Logic Low EN Input Leakage Current Soft-start Time Thermal Shutdown Die Temperature Die Temperature Hysteresis Note 1: 2: 3: 4: 5: -1 88 425 90 — — — — — 0.01 90 500 — — 0.005 750 150 10 1 — 575 — 20 — — — — % % kHz %of VIN IOUT = 1 mA %of VIN IOUT = 1 mA µA µS C C VEN = 5V EN Low to High, 90% of VOUT; Note 4 3.3 K resistive load, 3.3VOUT (1 mA). For VIN > VOUT, VOUT will not remain in regulation. IQ is measured from VOUT; VIN quiescent current will vary with boost ratio. VIN quiescent current can be estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)). 220 resistive load, 3.3VOUT (15 mA). Peak current limit determined by characterization, not production tested. TEMPERATURE SPECIFICATIONS Electrical Specifications: Parameters Temperature Ranges Operating Junction Temperature Range Storage Temperature Range Maximum Junction Temperature Package Thermal Resistances Thermal Resistance, 5L-TSOT23 Thermal Resistance, 8L-2x3 DFN JA JA — — 192 93 — — °C/W °C/W EIA/JESD51-3 Standard TJ TA TJ -40 -65 — — — — +125 +150 +150 °C °C °C Transient Steady State Sym Min Typ Max Units Conditions DS22234A-page 4  2010 Microchip Technology Inc. MCP1640/B/C/D 2.0 Note: TYPICAL PERFORMANCE CURVES The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. 27.5 25.0 VIN = 1.2V VOUT = 5.0V 100 90 80 VOUT = 2.0V VIN = 1.6V IQ PFM Mode (µA) 22.5 20.0 17.5 15.0 12.5 10.0 -40 -25 -10 5 20 35 50 65 80 VOUT = 2.0V VOUT = 3.3V Efficiency (%) 70 60 50 40 30 20 10 0 0.01 0.1 1 VIN = 0.8V VIN = 1.2V PWM / PFM PWM ONLY 10 100 1000 Ambient Temperature (°C) IOUT (mA) FIGURE 2-1: VOUT IQ vs. Ambient Temperature in PFM Mode. 300 VOUT = 5.0V 275 250 225 200 175 150 -40 -25 -10 5 20 35 50 65 80 VOUT = 3.3V V IN = 1.2V FIGURE 2-4: 2.0V VOUT PFM / PWM Mode Efficiency vs. IOUT. 100 90 80 V OUT = 3.3V V IN = 2.5V IQ PWM Mode (µA) Efficiency (%) 70 60 50 40 30 20 10 0 0.01 0.1 1 VIN = 0.8V VIN = 1.2V PWM / PFM PWM ONLY 10 100 1000 Ambient Temperature (°C) IOUT (mA) FIGURE 2-2: VOUT IQ vs. Ambient Temperature in PWM Mode. 600 VOUT = 5.0V 500 400 300 200 100 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VOUT = 2.0V VOUT = 3.3V FIGURE 2-5: 3.3V VOUT PFM / PWM Mode Efficiency vs. IOUT. 100 90 80 VOUT = 5.0V VIN = 2.5V Efficiency (%) 70 60 50 40 30 20 10 0 0.01 0.1 1 VIN = 1.2V VIN = 1.8V IOUT (mA) PWM / PFM PWM ONLY 10 100 1000 VIN (V) IOUT (mA) FIGURE 2-3: Maximum IOUT vs. VIN. FIGURE 2-6: 5.0V VOUT PFM / PWM Mode Efficiency vs. IOUT.  2010 Microchip Technology Inc. DS22234A-page 5 MCP1640/B/C/D Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. 3.33 3.325 3.32 3.315 VIN = 1.8V 0.85 Startup 0.70 0.55 Shutdown 0.40 0.25 IOUT = 15 mA VIN = 1.2V 1.00 VOUT = 3.3V VOUT (V) 3.31 3.305 3.3 3.295 3.29 3.285 -40 -25 -10 5 20 35 50 65 80 VIN = 0.8V VIN (V) 0 20 40 60 80 100 Ambient Temperature (°C) IOUT (mA) FIGURE 2-7: Temperature. 3.38 3.36 3.3V VOUT vs. Ambient FIGURE 2-10: Minimum Start-up and Shutdown VIN into Resistive Load vs. IOUT. 525 Switching Frequency (kHz) VIN = 1.5V VOUT = 3.3V 520 515 510 505 500 495 490 485 480 -40 -25 -10 5 20 35 50 65 80 IOUT = 5 mA 3.34 VOUT (V) 3.32 3.30 IOUT = 15 mA 3.28 IOUT = 50 mA 3.26 -40 -25 -10 5 20 35 50 65 80 Ambient Temperature (°C) Ambient Temperature (°C) FIGURE 2-8: Temperature. 3.40 TA = 85°C 3.36 3.3V VOUT vs. Ambient FIGURE 2-11: Temperature. 4.5 FOSC vs. Ambient IOUT = 5 mA 4 3.5 3 VOUT = 5.0V VOUT (V) VIN (V) 3.32 3.28 TA = 25°C V OUT = 3.3V VOUT = 2.0V 2.5 2 1.5 1 0.5 TA = - 40°C 3.24 3.20 0.8 1.2 1.6 2 2.4 2.8 0 0 1 2 3 4 5 6 7 8 9 10 VIN (V) IOUT (mA) FIGURE 2-9: 3.3V VOUT vs. VIN. FIGURE 2-12: PWM Pulse Skipping Mode Threshold vs. IOUT. DS22234A-page 6  2010 Microchip Technology Inc. MCP1640/B/C/D Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. 10000 PWM / PFM PWM ONLY 1000 VOUT = 5.0V VOUT = 3.3V IIN (µA) VOUT = 2.0V 100 VOUT = 2.0V 10 0.8 1.1 1.4 1.7 VOUT = 3.3V VOUT = 5.0V 2 2.3 2.6 2.9 3.2 3.5 VIN (V) FIGURE 2-13: VIN. 5 Switch Resistance (Ohms) 4 P - Channel Input No Load Current vs. FIGURE 2-16: MCP1640 3.3V VOUT PFM Mode Waveforms. 3 2 1 0 1 N - Channel 1.5 2 2.5 3 3.5 4 4.5 5 > VIN or VOUT FIGURE 2-14: N-Channel and P-Channel RDSON vs. > of VIN or VOUT. 16 VOUT = 5.0V 14 12 VOUT = 2.0V V OUT = 3 .3V FIGURE 2-17: MCP1640B 3.3V VOUT PWM Mode Waveforms. IOUT (mA) 10 8 6 4 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 VIN (V) FIGURE 2-15: Current vs. VIN. PFM / PWM Threshold FIGURE 2-18: Waveforms. MCP1640/B High Load  2010 Microchip Technology Inc. DS22234A-page 7 MCP1640/B/C/D Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. FIGURE 2-19: 3.3V Start-up After Enable. FIGURE 2-22: MCP1640B 3.3V VOUT Load Transient Waveforms. FIGURE 2-20: VENABLE. 3.3V Start-up when VIN = FIGURE 2-23: MCP1640B 2.0V VOUT Load Transient Waveforms. FIGURE 2-21: MCP1640 3.3V VOUT Load Transient Waveforms. FIGURE 2-24: Waveforms. 3.3V VOUT Line Transient DS22234A-page 8  2010 Microchip Technology Inc. MCP1640/B/C/D 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: Pin No. SW GND EN FB VOUT VIN SGND PGND VOUTS VOUTP EP PIN FUNCTION TABLE Description Switch Node, Boost Inductor Input Pin Ground Pin 4 1 8 2 3 7 6 — 9 Enable Control Input Pin Feedback Voltage Pin Output Voltage Pin Input Voltage Pin Signal Ground Pin Power Ground Pin Output Voltage Sense Pin Output Voltage Power Pin Exposed Thermal Pad (EP); must be connected to VSS. MCP1640/B/C/D MCP1640/B/C/D SOT23 2x3 DFN 1 2 3 4 5 6 5 3.1 Switch Node Pin (SW) 3.6 Connect the inductor from the input voltage to the SW pin. The SW pin carries inductor current and can be as high as 800 mA peak. The integrated N-Channel switch drain and integrated P-Channel switch source are internally connected at the SW node. Power Supply Input Voltage Pin (VIN) Connect the input voltage source to VIN. The input source should be decoupled to GND with a 4.7 µF minimum capacitor. 3.7 Signal Ground Pin (SGND) 3.2 Ground Pin (GND) The ground or return pin is used for circuit ground connection. Length of trace from input cap return, output cap return and GND pin should be made as short as possible to minimize noise on the GND pin. In the SOT23-6 package, a single ground pin is used. The signal ground pin is used as a return for the integrated VREF and error amplifier. In the 2x3 DFN package, the SGND and power ground (PGND) pins are connected externally. 3.8 Power Ground Pin (PGND) 3.3 Enable Pin (EN) The EN pin is a logic-level input used to enable or disable device switching and lower quiescent current while disabled. A logic high (>90% of VIN) will enable the regulator output. A logic low (627 1RWH @ )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ b N 4 E E1 PIN 1 ID BY LASER MARK 1 2 e e1 D 3 A A2 c φ A1 L L1 8QLWV 'LPHQVLRQ /LPLWV 0,1 0,//,0(7(56 120 %6& %6& ± ± ± ± ± ± ± ± ƒ ± ± ƒ 0$; 1XPEHU RI 3LQV 3LWFK 2XWVLGH /HDG 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H H $ $ $ ( ( ' / / I F /HDG :LGWK E ± 1RWHV 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV PP SHU VLGH 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ & % DS22234A-page 22  2010 Microchip Technology Inc. MCP1640/B/C/D Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  2010 Microchip Technology Inc. DS22234A-page 23 MCP1640/B/C/D /HDG 3ODVWLF 'XDO )ODW 1R /HDG 3DFNDJH 0& ± [ [ 1RWH PP %RG\ >')1@ )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ e b N L D N K E E2 EXPOSED PAD NOTE 1 1 2 D2 TOP VIEW BOTTOM VIEW 2 1 NOTE 1 A A3 A1 NOTE 2 8QLWV 'LPHQVLRQ /LPLWV 0,1 0,//,0(7(56 120 %6& 0$; 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 6WDQGRII &RQWDFW 7KLFNQHVV 2YHUDOO /HQJWK 2YHUDOO :LGWK ([SRVHG 3DG /HQJWK ([SRVHG 3DG :LGWK &RQWDFW :LGWK &RQWDFW /HQJWK &RQWDFW WR ([SRVHG 3DG 1 H $ $ $ ' ( ' ( E / . ± 5() %6& %6& ± ± ± 1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 3DFNDJH PD\ KDYH RQH RU PRUH H[SRVHG WLH EDUV DW HQGV 3DFNDJH LV VDZ VLQJXODWHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ & & DS22234A-page 24  2010 Microchip Technology Inc. MCP1640/B/C/D /HDG 3ODVWLF 'XDO )ODW 1R /HDG 3DFNDJH 0& ± [ [ 1RWH PP %RG\ >')1@ )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ  2010 Microchip Technology Inc. DS22234A-page 25 MCP1640/B/C/D NOTES: DS22234A-page 26  2010 Microchip Technology Inc. MCP1640/B/C/D APPENDIX A: REVISION HISTORY Revision A (February 2010) • Original Release of this Document.  2010 Microchip Technology Inc. DS22234A-page 27 MCP1640/B/C/D NOTES: DS22234A-page 28  2010 Microchip Technology Inc. MCP1640/B/C/D PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. Device X Tape and Reel X Temperature Range /XX Package Examples: a) b) Device MCP1640: MCP1640T: MCP1640B: MCP1640BT: MCP1640C: MCP1640CT: MCP1640D: MCP1640DT: 0.65V, PWM/PFM True Disconnect, Sync Boost Regulator 0.65V, PWM/PFM True Disconnect, Sync Boost Regulator (Tape and Reel) 0.65V, PWM Only True Disconnect, Sync Boost Regulator 0.65V, PWM Only True Disconnect, Sync Boost Regulator (Tape and Reel) 0.65V, PWM/PFM Input to Output Bypass, Sync Boost Regulator 0.65V, PWM/PFM Input to Output Bypass, Sync Boost Regulator (Tape and Reel) 0.65V, PWM Only Input to Output Bypass, Sync Boost Regulator 0.65V, PWM Only Input to Output Bypass, Sync Boost Regulator (Tape and Reel) +85C MCP1640-I/MC: MCP1640T-I/MC: 0.65V, Sync Reg., 8LD-DFN pkg. Tape and Reel, 0.65V, Sync Reg., 8LD-DFN pkg. 0.65V, Sync Reg., 8LD-DFN pkg. Tape and Reel, 0.65V, Sync Reg., 8LD-DFN pkg. 0.65V, Sync Reg., 8LD-DFN pkg. Tape and Reel, 0.65V, Sync Reg., 8LD-DFN pkg. c) d) MCP1640B-I/MC: MCP1640BT-I/MC: e) f) MCP1640C-I/MC: MCP1640CT-I/MC: g) h) Temperature Range I = -40C to (Industrial) 0.65V, Sync Reg., 8LD-DFN pkg. MCP1640DT-I/MC:: Tape and Reel, 0.65V, Sync Reg., 8LD-DFN pkg. Tape and Reel, 0.65V, Sync Reg., 6LD SOT-23 pkg. MCP1640BT-I/CHY: Tape and Reel, 0.65V, Sync Reg., 6LD SOT-23 pkg. MCP1640CT-I/CHY: Tape and Reel, 0.65V, Sync Reg., 6LD SOT-23 pkg. MCP1640DT-I/CHY: Tape and Reel, 0.65V, Sync Reg., 6LD SOT-23 pkg. MCP1640T-I/CHY: MCP1640D-I/MC:: Package CH = Plastic Small Outline Transistor (SOT-23), 6-lead MC = Plastic Dual Flat, No Lead (2x3 DFN), 8-lead i) j) k) l)  2010 Microchip Technology Inc. DS22234A-page 29 MCP1640/B/C/D NOTES: DS22234A-page 30  2010 Microchip Technology Inc. Note the following details of the code protection feature on Microchip devices: • • Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” • • • Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-60932-019-5 Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.  2010 Microchip Technology Inc. DS22234A-page 31 WORLDWIDE SALES AND SERVICE AMERICAS Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 EUROPE Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 01/05/10 DS22234A-page 32  2010 Microchip Technology Inc.
MCP1640D 价格&库存

很抱歉,暂时无法提供与“MCP1640D”相匹配的价格&库存,您可以联系我们找货

免费人工找货